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Summary

� Drought is a major abiotic stress that impairs plant growth and development. Despite this, a

comprehensive understanding of drought effects on the photosynthetic apparatus is lacking. In

this work, we studied the consequences of 14-d drought treatment onArabidopsis thaliana.
� We used biochemical and spectroscopic methods to examine photosynthetic membrane

composition and functionality.
� Drought led to the disassembly of PSII supercomplexes and the degradation of PSII core.

The light-harvesting complexes (LHCII) instead remain in the membrane but cannot act as an

antenna for active PSII, thus representing a potential source of photodamage. This effect can

also be observed during nonphotochemical quenching (NPQ) induction when even short

pulses of saturating light can lead to photoinhibition. At a later stage, under severe drought

stress, the PSI antenna size is also reduced and the PSI-LHCI supercomplexes disassemble. Sur-

prisingly, although we did not observe changes in the PSI core protein content, the functional-

ity of PSI is severely affected, suggesting the accumulation of nonfunctional PSI complexes.
� We conclude that drought affects both photosystems, although at a different stage, and

that the operative quantum efficiency of PSII (ΦPSII) is very sensitive to drought and can thus

be used as a parameter for early detection of drought stress.

Introduction

Environmental factors such as temperature, salt, and water avail-
ability severely affect plants’ growth and development. Drought
is one of the most severe abiotic stresses limiting crop
production world-wide, reducing the average crop yield by
[ 50% (Daryanto et al., 2016; Fahad et al., 2017; Cohen
et al., 2021).

Drought effects on plants are complex and include morpholo-
gical, physiological, and biochemical responses at the organism
and cellular levels. For instance, leaves may lose turgor and
become wilted, curled, and yellow (Chaves et al., 2003; Sofo
et al., 2005); stomata close, which decreases CO2 influx and thus
limits photosynthesis yield (Medrano et al., 2002); plant growth
slows down due to the lower rate of cell division and expansion,
which results from an impaired enzymatic activity and lack of
energy supply (Farooq et al., 2009). Drought also affects plant
development, accelerating the switch from the vegetative to the
reproduction phase in an attempt to complete the life cycle
(Desclaux & Roumet, 1996).

Drought also affects the activity of essential photosynthetic
enzymes, such as Rubisco, leading to a reduced rate of photo-
synthesis (Reddy et al., 2004). Upon drought stress, the rate of
photorespiration increases dramatically, resulting in the produc-
tion of ROS (Miller et al., 2010; Das & Roychoudhury, 2014)
that can damage chlorophyll, protein, DNA, lipids, and other
essential macromolecules (Sairam & Tyagi, 2004; Khorobrykh

et al., 2020), ultimately influencing plant metabolism and limit-
ing growth (Flexas & Medrano, 2002; Noctor et al., 2002; Cruz
de Carvalho, 2008).

Previous studies indicated that drought induces the re-
organization of the thylakoid membrane, specifically affecting the
grana stacking, displaying a decrease in the number and layers of
grana (Chen et al., 2016; Shao et al., 2016; Pandey et al., 2023).
Chlorophyll fluorescence measurements are a noninvasive and
rapid method widely used to evaluate the impact of drought stress
on Photosystem II (PSII). FV/FM, a parameter used as a proxy of
the functionality of PSII, drops upon drought stress (Chen
et al., 2016; Yao et al., 2018; Borisova-Mubarakshina et al.,
2020), indicating an impaired PSII function. Water oxidation
capacity is severely influenced since the oxygen-evolving complex
is damaged in drought conditions (Lu & Zhang, 1999; Meng
et al., 2016; Gupta, 2020). It was also shown that the major PSII
antenna, the light-harvesting complex II (LHCII), detaches from
PSII supercomplexes upon short-term drought stress, while the
PSII core remains unaffected and only degrades upon long-term
drought stress (Giardi et al., 1996; Chen et al., 2009, 2016;
Huang et al., 2019). Additionally, the transcript levels of PSII
core proteins (e.g. D1, encoded by PsbA) and PSII major antenna
proteins (i.e. LHCB1 and LHCB2) are down-regulated (Hao
et al., 1999; Wang et al., 2011; Liu et al., 2019; Borisova-
Mubarakshina et al., 2020).

So far, most drought-stress studies have focused on PSII and
its antenna, and less attention has been paid to the drought
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response of the integrated photosynthetic apparatus and espe-
cially of Photosystem I (PSI). In this study, we followed changes
in the photosynthetic apparatus of Arabidopsis thaliana during
14-d drought treatment, combining biochemical and functional
measurements to better understand the effect of drought on the
photosynthetic membrane.

Materials and Methods

Plants’ growth conditions

Wild-type Arabidopsis (Arabidopsis thaliana (L.) Heynh., Col-0)
plants were grown under 120 lmol photons m�2 s�1 (fluores-
cence lamp, the spectrum is shown in Supporting Information
Fig. S1), 12 h : 12 h, day : night cycle, at 23°C : 19°C, and
watered once a week, for 4–5 wk, after which the plants were
separated into Water group (grown for additional 14 d with
water), Semi-drought group (7-d drought-treated), and Drought
group (14-d drought-treated). The plants were grown with soil in
pots laid in a tray, and the day the bottom of the tray was dry was
considered the first day of drought.

Relative water content

The fresh weight of leaves was measured immediately after cutting
them from the plants. The turgid weight was measured after soaking
the (same) leaves in darkness overnight and drying the surface. The
dry weight was measured after covering the leaves with aluminum
foil and setting them in an oven at 60°C for 5 d (Weatherley, 1980).
The relative water content (RWC) was then calculated as:

RWC %ð Þ ¼ Fresh weight�dry weight

Turgid weight�dry weight

Thylakoid isolation

Arabidopsis leaves were harvested and kept on ice. Thylakoids
were isolated under a dim light as described previously (Xu
et al., 2015). The isolated thylakoids were resuspended in a buffer
containing 20 mM HEPES, pH 7.5, 0.4 M sorbitol, 15 mM
NaCl, and 5 mMMgCl2.

Pigment analysis and leaf chlorophyll content
measurements

The absorption spectra of the pigment extracts (in 80% acetone)
were recorded with a UV–Vis spectrophotometer (Cary 4000,
Agilent, Santa Clara, CA, USA). The chlorophyll a : chlorophyll
b ratio (Chla : Chlb) and the chlorophyll : carotenoid ratio (Chl :
Car) were obtained by fitting the spectra of the pigment extracts
with those of the isolated pigments in 80% acetone as described
in Croce et al. (2002). The chlorophyll content was calculated
using the extinction coefficients from (Porra et al., 1989) and
normalized to the leaf dry weight. The relative carotenoid content
was obtained by high-performance liquid chromatography
(HPLC) analysis according to Croce et al. (2002).

PAM measurements of chlorophyll fluorescence and P700
redox state

FV/FM and nonphotochemical quenching (NPQ) kinetics were
measured with a Dual-PAM-100 MODULAR fluorimeter
(Walz, Germany). The measuring light (red) was set to 3 lmol
photons m�2 s�1, the actinic light to 1024 or 71 lmol photons
m�2 s�1, and saturating pulses to 4000 lmol photons m�2 s�1

(150 ms-long).
Light response curves of the PSI efficiency (ΦPSI), PSII effi-

ciency (ΦPSII), and NPQ were measured with a ChlF unit and
P700 dual-wavelength (830/875 nm) unit, as described pre-
viously (Klughammer & Schreiber, 1994). Y(ND) and Y(NA)
represent the quantum yield of nonphotochemical energy dissipa-
tion due to PSI donor and acceptor side limitations, respectively.
To reach a steady-state, plants were kept for 10 min in darkness
or under actinic light before each measurement. The light inten-
sities used are as follows: 14, 38, 71, 127, 217, 340, 532, 826,
1288, and 1955 lmol photons m�2 s�1.

Blue native gels and 2D SDS

Blue native gel electrophoresis (BN-PAGE) was performed
according to Jarvi et al. (2011) and Bielczynski et al. (2016). The
resolving gels were made with an acrylamide gradient from 4% to
12.5% (w/v) T, 3% C (w/w). Here, T is the total concentration
of acrylamide and bisacrylamide monomers, and C is the relative
concentration of the cross-linker bisacrylamide to the total
monomer concentration of acrylamide and bisacrylamide. The
stacking gels were made with 4% (w/v) T and 3% C (w/w).
Before loading, thylakoids (8 lg of chlorophyll content) were
solubilized with 1% α-DM for 10 min (n-Dodecyl-α-D-
maltopyranoside; Anatrace, Maumee, OH, US).

The blue native gels’ strips were cut and loaded onto a
Laemmli-SDS-PAGE for the second dimension (Laemmli, 1970).
The stacking and resolving gels were made with 6% T (w/v) and
13% T (w/v), respectively. After electrophoresis, the gels were
stained with staining solution (0.1% Coomassie Blue R250 in
10% acetic acid, 40% methanol, and 50% H2O) for 2 h and de-
stained with de-staining solution (10% acetic acid, 40% metha-
nol, and 50% H2O) for 2 h for three times. The proteins were
identified based on previous works (Suorsa et al., 2015; Rantala
et al., 2017; Nicol et al., 2019).

Clear native (CN) gels and bands absorption measurement

The CN gels were prepared according to Jarvi et al. (2011). A
gradient from 4% to 12.5% (w/v) T, 3% C (w/w) was used for
the resolving gel, while the stacking gel was composed of 4% (w/
v) T and 3% C (w/w). Eight micrograms (chlorophyll) of thyla-
koids were solubilized with 1% α-DM for 10 min before loading
on the gel. The cathode buffer contained 0.02% α-DM and
0.05% sodium deoxycholate (DOC).

Room-temperature absorption spectra of the bands of the
CN gel were recorded with a BeamBio spectrophotometer, as
described in Hu et al. (2023).
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Isolation of PSI complexes

The experiments were performed as described previously (Caf-
farri et al., 2009). The sucrose density gradients (SDG) were built
by thawing a frozen tube containing a sucrose solution (0.5 M
sucrose, 20 mM Hepes pH 7.5, 0.06% α-DM) at 4°C. Each tube
was loaded with samples of 350 lg Chl after solubilization with
1% α-DM. The gradients were centrifuged for 16 h at 4°C at
160 000 g. The bands were collected with a syringe.

Immunoblotting

Immunoblottings were performed according to Fristedt et al.
(2018). Thylakoids were loaded based on the chlorophyll content
onto a commercially precast gel (4–12% T (w/v) Bis–Tris Plus;
Invitrogen). All the primary antibodies, PsaA (AS06172), PsbC
(AS111787), LHCA1 (AS01005), LHCB1 (AS01004), and
PSBS (AS09533), were purchased from Agrisera, Vännäs, Swe-
den. Chemiluminescence was collected by a LAS 4000 Image
Analyzer and analyzed with the IMAGEJ software.

Electro-elution of protein complexes

Electro-elution of protein complexes from the blue native gel was
performed as described in previous studies (Koochak et al., 2019;
Hu et al., 2023). The band was excised, and the proteins were
eluted with a Model 422 Electro-Eluter (Bio-Rad).

Low-temperature steady-state fluorescence spectroscopy

Low-temperature steady-state fluorescence emission spectra were
measured with a Fluorolog spectrophotometer. The sample (OD
of 0.05 per cm at Qy maximum) was placed in a glass Pasteur
pipette inside a transparent Dewar filled with liquid nitrogen.
The emission spectra were obtained by exciting the sample at
440 nm and recorded with a 1 nm step range from 600 nm to
800 nm.

Electrochromic shift measurements

The functional ratio between PSI and PSII reaction centers
(RCs) and the antenna size of each photosystem were deter-
mined by the electrochromic shift signal (ECS) using a JTS-10
spectrophotometer as described previously (Bailleul et al., 2010).
The PSI : PSII ratio was measured with a single turnover flash
(630 nm, 5 ns full width at half maximum (FWHM)) based on
the ECS signals detected at 520 and 546 nm (white detecting
LEDs filtered with 10 nm FWHM Schott filters) before and
after infiltration of the leaves with PSII inhibitors. PSII inhibi-
tors (which retain PSI activity) were required to separate the
contributions of PSI and PSII. To inhibit PSII, leaves were infil-
trated with 200 lM 3-(3,4-dichlorophenyl)-1,1-dimethylurea
(DCMU), 1 mM hydroxylamine, 10 mM HEPES, and 150 mM
sorbitol at pH 7. The FV/FM after inhibitor infiltration was
always verified to drop below 0.05, ensuring the inhibition was
complete.

The maximal photochemical rates (i.e. antenna size) of PSI
and PSII were measured under continuous light (630 nm,
300 lmol photons m�2 s�1). They were calculated from the
initial slopes of the ECS time profiles at both 520 and 546 nm
before and after PSII inhibition.

Functional antenna size measurements of PSII by
chlorophyll fluorescence induction

Fluorescence induction kinetics were measured with a Dual-
PAM 100 MODULAR fluorimeter (Walz, Germany). Leaves
were dark-adapted for 20 min and infiltrated with DCMU solu-
tion (200 lM DCMU, 10 mM HEPES, and 150 mM sorbitol at
pH 7). Forty-six lmol photons m�2 s�1 light was used for chlor-
ophyll fluorescence induction (250 ms), and then 1952 lmol
photons m�2 s�1 light (50 ms) was performed to verify the clo-
sure of the PSII reaction center.

The reciprocal of the integrated area above the DCMU fluor-
escence curve was used to calculate the PSII antenna size (Lazar
& Pospisil, 1999; Tian et al., 2019).

Time-resolved fluorescence measurements with a streak
camera

Time-resolved measurements were performed with a streak cam-
era setup. In this setup, the laser system is composed of a mode-
locked Ti : Sa oscillator (Coherent Mira, Coherent, Santa Clara,
CA, USA) that seeds a regenerative amplifier (Coherent Rega
9050, Coherent). The regenerative amplifier yielded c. 70 fs
pulses centered at c. 800 nm at a frequency of 250 kHz. The out-
put of the regenerative amplifier was directed through an optical
parametric amplifier (Coheren OPA 9400, Coherent) to obtain
the frequency-doubled excitation pulses, which were centered at
400 nm. The spectral bandwidth of these pulses was restricted to
10 nm FWHM by means of an interference filter. The excitation
pulses were focused into a flow cuvette. The excitation spot dia-
meter was c. 100 lm and the optical path length in the flow cuv-
ette was 1 mm. The flow speed was set at c. 2.5 ml s�1, which
allowed a complete refreshment of the sample in the excitation
spot every c. 10 pulses. The emission from the sample was col-
lected at a right angle and focused into a spectrograph (Chromex
250IS, Pan American Freeway NE, Albuquerque, NM, USA; 50
grooves mm�1). The output light of the spectrograph was
focused onto the input optics of the streak camera (Hamamatsu
C5680, Shizuoka, Japan). The streak camera operated in syn-
chroscan mode and was frequency-locked to the oscillator. The
streak camera images were background- and shading corrected.
The excitation power used was 2.5 lW. To verify whether this
excitation power was low enough to keep PSII in the open state,
a cross-check measurement with the TCSPC was performed (to
be described later): A power study was conducted on the same
samples using the TCSPC setup and the resulting kinetic traces
were analyzed and compared with the data generated with the
streak camera. For both the watered and drought-treated thyla-
koids, the streak camera and TCSPC data yielded very similar
results, confirming that the PSII was also open in the streak
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camera measurements. For both the watered and drought-treated
thylakoids, a smaller window of c. 530 ps was used. For the
drought-treated thylakoids, an additional measurement using a
1.5 ns window was performed as this sample displayed contribu-
tions from longer-lived species.

The time-resolved data from the streak camera were globally
analyzed using the GLOTARAN software (Snellenburg et al., 2012).
In the global analysis, the fluorescence decay traces are fitted
using the following equation:

F t , λð Þ ¼ ∑
n

k¼1

DASk λð Þ � exp � t

τk

� �
�IRF tð Þ

where DASk is the decay-associated spectrum and τk is the related
decay lifetime. The instrument response function was estimated
as a single Gaussian function. The FWHM of the IRF was deter-
mined to be c. 6 and c. 20 ps for the time range 2 and 4 measure-
ments, respectively. For the drought-treated thylakoids, the data
collected in the two time windows were fitted simultaneously.
The correspondence between the raw data and the fit results from
the global analysis are shown in Figs S2–S4.

Time-correlated single-photon counting (TCSPC)

TCSPC measurements were performed with a FluoTime 200
from PICOQUANT. The samples were excited at 468 nm (10MHz
repetition rate), and fluorescence was detected at 680 nm at
20°C. The laser power was 0.15 lW, which was low enough to
avoid chlorophyll annihilation and keep PSII RCs open. The
measurement at 680 nm was performed as first and last to check
that no changes occurred in the samples during the measure-
ments. The decay traces were fitted to a sum of exponentials, in
which the amplitudes and the time constants were allowed to
vary. The exponentials were convoluted with the instrument
response function, which was measured via the fluorescence decay
at 680 nm of pinacyanol iodide (FWHM of 92 ps) in methanol
at room temperature (van Oort et al., 2008). The fitting was per-
formed with the TRFA advanced software (Digris et al., 2014).
The fitting quality was evaluated by the chi-squared test and by
visual inspection of the fitting residuals.

Statistical analysis

Statistical analysis was performed using appropriate tests based
on the sample size. For each data set with [ 10 data points, the
Student’s t-test was used for comparison. Alternatively, a
Kruskal–Wallis rank sum test was performed for data sets with
10 or fewer data points. A statistically significant difference was
defined as P-value lower than 0.05 (P\ 0.05).

Results

Plants of Arabidopsis thaliana were divided into Water, Semi-
drought, and Drought groups. The plants in the Water group
were normally watered (once a week, see the Materials and Methods
section for details), while the Drought group was subject to water

deficit for 14 d (Fig. 1). For some of the experiments, we also
analyzed plants after 7 d of water deficiency (Semi-drought
group).

Although from Day 0 to Day 7, the leaves remained green, at
Day 7 Arabidopsis plants already displayed early stress traits with
some bottom leaves turning slightly reddish-purple. From Day 8
to Day 14, the leaves became purple (or, sometimes, yellowish)
and lost turgor. Notably, differences between plants were visible
when plants were treated with severe stress (Fig. S5). Yellow
leaves were excluded from all the following analyses.

Relative water content and pigment composition

After 14 d of drought treatment, the relative water content
(RWC) decreased from 71% to 15% and the chlorophyll
content dropped to 38% of the initial value (Fig. 2a,b). The
Chla : Chlb ratio also dropped from 3.3 to 2.5 (Fig. 2c), suggest-
ing an increased antenna-to-core stoichiometry and/or a change
in PSI : PSII ratio. The Chl : Car ratio was reduced in water-
deficient plants compared with watered ones (Fig. 2d), as in other
stress conditions (e.g. high light; Bielczynski et al., 2016). The
carotenoid composition of the thylakoid was analyzed using
HPLC and the results are shown in Fig. S6. After drought treat-
ment, the content of neoxanthin, antheraxanthin, and lutein
increased, while the content of β-carotene decreased. Zeaxanthin,
which was absent in the Water sample, appeared in the Drought
sample, resulting in a higher de-epoxidation state of the xantho-
phyll cycle pigments.

Composition of protein complexes in the thylakoid
membrane

Next, we investigated by native gel electrophoresis how drought
affects the composition of the thylakoid membranes. The thyla-
koids from the Drought group were more resistant to detergent
solubilization than those from watered plants (Fig. 3a), suggest-
ing changes in lipid composition/packing relative to the chloro-
phyll content. Note that the Chla : Chlb ratio of the supernatant
and pellet of the drought sample was identical (c. 2.3), indicating
an even solubilization of the membrane. In the Drought group, a
reduction in PSII supercomplexes and an increase in free LHCII
trimer was observed, indicating a disassembly/higher instability
of PSII supercomplexes, in agreement with previous results
(Chen et al., 2016). The amount of PSI-LHCI supercomplexes
was also lower and a new band with the protein composition
(Fig. 3b) and the spectrum (Fig. 3c,d) of the PSI core was
detected. Together with the presence of LHCAs in the mono-
meric band, which was confirmed by immunoblot (Fig. S7),
these results suggest that water deficit leads to a partial disassocia-
tion of PSI-LHCI (Fig. 3a,b).

The data of the native gels were confirmed by the separation of
the individual complexes by sucrose density gradient. In both
Water and Drought samples, band 6 contained the PSI-LHCI
supercomple, as indicated by the analysis of the protein composi-
tion (Fig. S8b) and the 77 K fluorescence emission spectra
(Fig. S8c). However, this band was far less intense in the Drought
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sample (Fig. S8a). Band 5 was instead more intense after
drought and contained mainly a smaller PSI complex in which
the relative amount of all Lhcas, and especially of Lhca3 and

Lhca4 (Fig. S8d) was strongly reduced with respect to the PSI-
LHCI complex. In the Water sample, this band was instead
enriched in PSII (Fig. S8b,c) as observed previously (Caffarri
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Fig. 2 Water content and pigment
composition of Arabidopsis plants watered
(blue bars) or drought-treated (orange bars).
(a) Relative water content (RWC) and (b)
chlorophyll content per dry weight (Chl/DW)
of the leaves. (c) Chla : Chlb ratio and (d)
Chl : Car ratio of the isolated thylakoids. The
asterisks ‘*’ designate data from the Drought
group that are significantly different from
those of the corresponding Water group
(P\ 0.05, Kruskal–Wallis rank sum test).
The bar height represents the mean value;
the whiskers stand for �SD (n≥ 5,
independent biological replicates); the
additional horizontal line in each bar is the
median value. Each individual data point is
shown.
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Day 10 Day 11 Day 12 Day 13 Day 14 (Drought)

Fig. 1 Arabidopsis thaliana plants during the 14-d drought treatment. The images are from the same representative plant.
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et al., 2009). In agreement with the partial loss of Lhcas, which
contain the chlorophylls responsible for the 730 nm emission of
PSI, the maximum of the 77 K emission spectra of band 5 of the
Drought sample was 720 nm (Fig. S8c). Note that the difference
in the intensity of band 1 is due to the larger amount of ‘free’ car-
otenoids present in the membranes of the drought sample.

To examine the changes in protein accumulation, we quanti-
fied each protein relative to the PSII core subunit PsbC or the
PSI core subunit PsaA using immunoblots (Fig. 4). After drought
treatment, the PSI : PSII ratio (PsaA : PsbC) increased. The

LHCA1 : PsaA ratio decreased on average but showed large varia-
tions between replicas. The LHCB1 : PsbC ratio increased by
[ 80%, in agreement with the changes observed in Chla : Chlb
ratios and blue native gels (as mentioned in the previous section).
The same increase was observed for the PSBS : PsbC ratio.

Functional photosynthetic measurements

Next, we investigated the effect of water deficiency on the func-
tionality of the photosynthetic apparatus. Since plants were
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severely affected after 14 d of drought treatment, we also analyzed
plants after 7-d (semi-drought) treatment. FV/FM, a proxy for the
PSII efficiency, of the semi-drought group was comparable to
that of watered plants, whereas the values after 14-d of drought
treatment showed a bimodal distribution (Fig. 5a): the reduction
was small for a large part of the plants, while others showed
almost no PSII activity.

The functional PSI : PSII reaction center (RC) ratio, measured
using the electrochromic (ECS) signal, was comparable in the
Semi-drought and Water groups and significantly lower in
the Drought group (Fig. 5b). This result is in contrast with
the increased PsaA : PsbC ratio determined by immunoblots

(Fig. 4b) and might suggest concomitant PSI photoinhibition in
drought-stressed plants. The average PSI functional antenna size
decreased during drought treatment (Fig. 5c), in agreement with
the disassembling of the PSI-LHCI complex observed on blue
native gel (Fig. 3). Notably, a large heterogeneity in PSI antenna
size was observed upon drought treatment, as some plants still
had a PSI antenna size similar to that of the Water group.

Using functional methods, we found no evidence of an
increase in PSII antenna size during drought treatment. ECS
measurements indicated that the functional antenna size of
PSII decreased (Fig. 5d), while no significant differences were
observed using the chlorophyll induction method in the presence
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of DCMU (Fig. S9). These results are seemingly at odds with the
biochemical data, which showed a higher LHCII : PSII core
(Lhcb1 : PsbC) ratio upon drought. These data together however
suggest that part of the LHCII pool in the membrane is not func-
tionally connected to the photochemical traps.

Next, we checked the light intensity dependence of the main
photosynthetic parameters. The operating efficiency of Photosys-
tem II (ΦPSII) was lower in the Drought group than in the Water
group at all light intensities (Figs 6a, S10). Notably, the results
indicate that drought influences the PSII light use efficiency
already under mild stress (Semi-drought group, Fig. 6a right).

The NPQ induction kinetics was also measured at a saturating
intensity of 1000 lmol photons m�2 s�1 (Fig. 6c). Water plants
showed the typical NPQ kinetics, with a fast rise reaching a pla-
teau within a few minutes and a relatively fast relaxation in the
dark. The Drought group showed a lower NPQ amplitude,
which did not reach a plateau in the light, and recovered slower
than in the Water group, indicating photoinhibition endured
during the measurement. The Semi-drought group showed an
intermediate NPQ level (Fig. 6b), but the recovery in the dark
was the fastest (Fig. 6c). Surprisingly, the effect of drought

on NPQ was light intensity-dependent: the NPQ values of
drought-treated plants were higher than those of the Water group
at low light intensities (≤ 120 lmol photons m�2 s�1), but lower
at higher light intensities (Figs 6c, S10b).

The quantum yield of Photosystem I (ΦPSI) was lower in the
Drought group than in the Water group at all light intensities
(Figs 6d, S10c). The higher values of Y(ND) the limitation in
PSI donor site, (Figs 6e, S10d) in the Drought group compared
with the Water group agree with an impaired PSII function
(Figs 5, 6). The comparable low values of Y(NA) show that the
limitation downstream of PSI is not the key factor influencing
steady-state electron transfer.

Time-resolved fluorescence measurements

To investigate the effect of the observed changes in the photosyn-
thetic membrane composition and organization on the excitation
energy transfer and trapping of the photosystems, we performed
time-resolved fluorescence (TRF) measurements on thylakoids
isolated from the Drought and the Water groups. The spectral-
temporal images from the streak camera measurements are
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presented in Fig. 7(a,b). Comparison of these images already
reveals two major points: (1) The fluorescence is longer-lived in
the drought thylakoids and (2) there is relatively less emission in
the red part of the spectrum (λ [ 700 nm) at early times in the
drought sample. To quantify these observations, global analysis
was performed and the resulting DAS are presented in Fig. 7(c,d).
Two components are needed to fit the fluorescence kinetics of
the Water group (Fig. 7c). The first component has a lifetime of
60 ps and large amplitude in the red part of the spectrum. This
component can therefore be assigned to the trapping of excita-
tions by PSI. The second component has lifetime (305 ps) and
spectrum typical of PSII. The lifetimes and spectra of both com-
ponents are comparable to previous studies (Engelmann
et al., 2006; van Oort et al., 2010; Wientjes et al., 2011).

Three components are instead needed to fit the data of the
Drought group (Fig. 7d). The lifetime of the first component is
much shorter (24 ps) than that of the Water group (60 ps,
Fig. 7c), and the amplitude in the red part of the spectrum is
lower (Fig. 7e). These observations indicate an increased contri-
bution of the PSI core to this component. The second

component has a lifetime of 241 ps and is assigned primarily to
PSII, although it also contains some minor contributions of PSI-
LHCI, as evidenced by the slightly larger amplitude in the far-red
compared with the PSII component of the Water group (Fig. 7f).
The shortening of the lifetime of this component relative to the
Water thylakoids (241 ps vs 305 ps) indicates a reduced antenna
size of PSII, in agreement with the functional analyses (see
Fig. 5d). The third component, with a lifetime of 784 ps (see
Fig. 7f), displays a spectrum similar to that of the 241 ps compo-
nent (Fig. 7f) and has a large contribution to the decay (34%,
determined from the DAS area). We assign this component to
disconnected or poorly connected LHCII trimers, which are also
visible in the blue native gel (Fig. 3).

Shortening of the lifetime and loss of amplitude in the far-red
of the PSI component upon drought stress suggest a partial disas-
sembly of PSI-LHCI in agreement with the biochemical results.
To investigate the properties of the PSI complexes upon drought,
we then performed time-resolved measurements on the gradient
bands containing PSI complexes (i.e. bands 5 and 6) and com-
pared them to the PSI-LHCI purified from the Water group

Fig. 7 Time-resolved fluorescence
measurements with open PSII RCs of
thylakoids isolated from the water and the
drought groups. Data (2D color map) of
thylakoid isolated from (a) Water group and
(b) Drought group excited at 400 nm. Decay-
associated spectra (DAS) of the data of (c)
Water and (d) Drought thylakoids. (e)
Comparison of the normalized (Nor. In the
legend) DAS of the shortest lifetime
component from different samples. (f)
Comparison of the normalized DAS of the
longer components from different samples.
The * indicates that the lifetime of this
component was fixed in the analysis (see
Supporting Information Notes S1).
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(band 6). The results of the global analysis are presented in
Fig. S11. Band 6 of the Water sample shows spectra and lifetimes
typical of PSI-LHCI (Engelmann et al., 2006; Wientjes
et al., 2011): a fast component (4 ps) describing the transfer from
bulk Chls a to red forms and two trapping components with life-
times of 19.9 and 81.0 ps, the latter showing higher amplitude in
the far-red. These components correspond respectively to trap-
ping from bulk Chls, which are mainly in the core, and red Chls,
which are mainly in the LHCI antenna (Wientjes et al., 2011).
An additional component with a long lifetime (3.94 ns), small
amplitude (5% of the decay components), and a blue-shifted
emission peak accounts for a small amount of disconnected Chls
in the sample. In Band 6 from the Drought group (Fig. S11b),
both trapping components are shorter (16.2 ps and 65.9) and
their spectra less red-shifted than in PSI-LHCII. Moreover, the
shortest component dominates the decay, at variance with PSI-
LHCI from the Water group (see Fig. S11d,e). The additional
component of 239 ps has the spectrum and the lifetime of PSII,
in agreement with the presence of this complex in this fraction, as
visible on the SDS-page (Fig. S8b). Finally, the last component
has a long lifetime of 3.46 ns, which is attributed to
disconnected Chls.

The decay of band 5 from the drought thylakoids is dominated
by the 15.6 ps decay of the PSI core. A second trapping compo-
nent of PSI is also present, but it has a shorter lifetime than in
band 6 (40.6 ps vs 65.9 ps), a smaller amplitude, and the spec-
trum is less red-shifted (Fig. S11c). This is in agreement with the
presence in band 5 of smaller PSI-LHCI, which lack two of
the Lhcas as observed in SDS-page (see Fig. S8d,e). The last two
decay components (206 ps and 3.52 ns) could be ascribed to a
mixture of PSII and free Chls.

Discussion

14-d drought treatment severely impairs photosynthetic
activity in Arabidopsis

Drought stress has detrimental effects on plant growth and devel-
opment. At the level of the photosynthetic apparatus, it was
shown that PSII is its primary target (Giardi et al., 1996; Chen
et al., 2009; He et al., 2021; Sapeta et al., 2023). In agreement
with those results, we found that the PSII activity was reduced
and the PSII supercomplexes largely disassembled after 14-d
drought treatment. However, while the PSII core was degraded,
LHCII was still present in the thylakoid membrane. Considering
the high connectivity of the complexes in the membrane (Stir-
bet, 2013), these LHCII trimers can in principle act as an
antenna for the active PSII complexes. However, our functional
measurements show that this is not the case: the antenna size of
PSII decreased upon drought treatment and a long component
appeared in the time-resolved data, indicating that a large pool of
LHCII present in the membrane is not connected (and/or not
well connected) with the core and is in a partially quenched state.
This LHCII pool is also not connected to PSI as a decrease in the
antenna size is observed for this complex. The degradation of
the LHCII occurs at a slower rate than that of all other

components of the photosynthetic apparatus, posing a threat to
the plants through the generation of radical oxygen species that
can lead to photodamage.

A decrease in PSII : PSI ratio as a result of drought stress was
observed previously in wheat (Triticum aestivum L.) and Arabi-
dopsis and was proposed to be functional to an increase in cyclic
electron flow around PSI, optimizing the ATP : NADPH ratio
for the metabolic needs (Zivcak et al., 2013; Chen et al., 2016;
Nawrocki et al., 2019). Moreover, it was reported that PSI was
stable upon water deficiency (Havaux et al., 1986; Masojidek
et al., 1991; Giardi et al., 1996; Sonoike, 2011; Chen
et al., 2016). Our data show that while a decrease in PSII : PSI
ratio is observed at the protein level, surprisingly, this does not
correspond to a decrease at the functional level. On the contrary,
we observed an increase in the functional PSII : PSI ratio, which
indicates the presence in the membranes of nonfunctional PSI
proteins. However, it should be noted that the variability of the
PSI : PSII values upon 14 d of drought treatment is very large,
with some plants showing values close to those of the Water
group, while in others, the value is strongly reduced. These data
suggest that the damage of PSI occurs only upon severe drought
stress. A lag between the functional damage of PSI and the pro-
tein degradation was also observed in chilled plants (Tjus
et al., 1999; Kudoh & Sonoike, 2002; Zhang & Scheller, 2004).
A scheme summarizing the effect of drought on PSI and PSII is
shown in Fig. 8.

NPQ and drought stress

The effect of drought stress on NPQ capacity is debated. It was
reported that in drought conditions, plants protect themselves
from photodamage by increasing NPQ, which rapidly dissipates
the excess absorbed energy as heat (Woo et al., 2008; Zivcak
et al., 2013). However, other authors reported that drought stress
impairs the mechanism of energy dissipation, thus lowering
NPQ (Sperdouli & Moustakas, 2012; Yao et al., 2018). Our data
reconcile these results: the NPQ values of the Drought group
were higher than those of the Water group in low actinic light
(\ 120 lmol photons m�2 s�1) but lower in saturating light
(Fig. S11b). Part of this difference is due to the higher suscept-
ibility of the drought-stressed plants to photoinhibition occurring
during the NPQ measurements when saturating pulses are used
(see Fig. 6c). NPQ induction and recovery kinetics under low
actinic light (at 71 lmol photons m�2 s�1, as shown in Fig. S12)
show that the Drought group had higher NPQ values than the
Water group but exhibit slow dark recovery, indicating that in
low light, the NPQ value in the drought group is dominated by
photoinhibition. In high light, the NPQ value of the Water
group increases because of the large qE induction, while qE
induction is limited in the Drought leaves due to the impairment
of PSII, which results in a lower luminal pH.

ΦPSII is a good indicator of early drought stress

Drought is one of the most significant abiotic stress factors affect-
ing crop productivity and food security world-wide. Early
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detection of drought stress is thus important since it allows for
prompt actions to mitigate its negative effects. FV/FM is often
regarded as a sensitive indicator of drought stress (Oquist
et al., 1992; Woo et al., 2008). However, our data show that it
only dropped by c. 20% after 14 d of water deficiency (Fig. 4a)
and showed no change after 7 d of treatment, despite the leaves
already exhibited some phenotypic alterations. By contrast, we
could observe a decrease in ΦPSII already after 7 d, indicating that
ΦPSII is more sensitive than FV/FM and therefore is a better indi-
cator of early drought stress.
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Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Spectra of the light used for growing the plants.

Fig. S2 Time-resolved fluorescence streak camera data and fitting
of Water sample in the 530 ps time window.

Fig. S3 Time-resolved fluorescence streak camera data and fitting
of Drought sample in the 530 ps time window.

Fig. S4 Time-resolved fluorescence streak camera data and fitting
of Drought sample in the 1.5 ns time window.

Fig. S5 Variability of the effect of 14-d drought treatment on
Arabidopsis plants.

Fig. S6 HPLC analysis on carotenoid composition in thylakoid
from Water and Drought-treated plants.

Fig. S7 Immunoblot analysis of the BN gel band containing Lhc
monomers (in solid square in Fig. 3b) of Drought Arabidopsis.

Fig. S8 Isolation of PSI complexes.

Fig. S9 Functional antenna size of PSII measured with Chl fluor-
escence induction.

Fig. S10 Light response curves of photosynthetic parameters:
ΦPSII, NPQ, ΦPSI, Y(NA), and Y(ND).

Fig. S11 Global analysis of TRF of PSI complexes isolated by
sucrose density gradient.

Fig. S12 NPQ induction and relaxation kinetics upon low acti-
nic light (at 71 lmol photons m�2 s�1).

Notes S1 Fixed long lifetime component in the global analysis of
the streak measurements.
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