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Weak acids produced during anaerobic
respiration suppress both photosynthesis
and aerobic respiration

Xiaojie Pang 1,2, Wojciech J. Nawrocki 3,5, Pierre Cardol 4,
Mengyuan Zheng 1,2, Jingjing Jiang1, Yuan Fang1,2, Wenqiang Yang1,2,
Roberta Croce 3 & Lijin Tian 1,2

While photosynthesis transforms sunlight energy into sugar, aerobic and
anaerobic respiration (fermentation) catabolizes sugars to fuel cellular activ-
ities. These processes take place within one cell across several compartments,
however it remains largely unexplored how they interact with one another.
Here we report that the weak acids produced during fermentation down-
regulate both photosynthesis and aerobic respiration. This effect is mechan-
istically explained with an “ion trapping” model, in which the lipid bilayer
selectively traps protons that effectively acidify subcellular compartments
with smaller buffer capacities – such as the thylakoid lumen. Physiologically,
we propose that under certain conditions, e.g., dim light at dawn, tuning down
the photosynthetic light reaction could mitigate the pressure on its electron
transport chains, while suppression of respiration could accelerate the net
oxygen evolution, thus speeding up the recovery fromhypoxia. Since we show
that this effect is conserved across photosynthetic phyla, these results indicate
that fermentation metabolites exert widespread feedback control over pho-
tosynthesis and aerobic respiration. This likely allows algae to better copewith
changing environmental conditions.

Photoautotrophic species relyonbothphotosynthesis and respiration.
While the former process harvests sunlight and stores its energy in the
form of sugars, aerobic and anaerobic respiration (fermentation) oxi-
dizes sugars releasing energy to meet metabolic requirements1,2. For
Chlamydomonas reinhardtii (Chlamydomonas throughout), a model
soil-dwelling alga, fermentation has been demonstrated to be impor-
tant for survival in the weak light environment in the morning and
evening3–5, and it has been proven to be the preferred metabolic pro-
cess at night, even when oxygen is not limiting6. In Chlamydomonas,
photosynthesis and aerobic respiration occur in chloroplasts and

mitochondria, respectively7, while fermentation pathways could
independently occur in the cytoplasm, mitochondria or chloroplasts8.
The activity of the enzymes participating in the photosynthetic and
respiratory metabolism is finely regulated and often separated not
only in space but also in time7,9. Nonetheless, these metabolic pro-
cesses are inevitably intertwined since their products can passively-
and actively cross the cellular membranes10.

Additionally, a tight energetic coupling was found between
chloroplasts and mitochondria in Chlamydomonas via a redistribution
of reducing power11,12. In phylogenetically distant microalgae such as
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diatoms or Euglenas, metabolite exchange between aerobic pathways
has also been shown13,14.

Under anaerobic conditions, cells produce various weak acids,
such as pyruvate, lactate, formic and acetic acid15. Under certain stress
conditions, the concentration of those acids builds up in the medium
to mM-range within an hour of hypoxia8. Currently, how these meta-
bolites affect photosynthesis is poorly understood. This can be rele-
vant because it has been shown that the addition of weak acids into a
suspension of Chlamydomonas reinhardtii cell induces immediate,
reversible non-photochemical quenching (NPQ) of chlorophyll fluor-
escence and a slower reduction of the plastoquinone (PQ) pool16.
These effects indicate that acetic acid permeates through 4 mem-
branes to acidify the thylakoid lumen and induce protonation of
LHCSR3 and LHCSR1, the proteins responsible for low pH-sensing in
the alga17–21. Thus, weak acids and potentially their salts could also
impact photosynthesis. Interestingly, upon long-termdark adaptation,
thylakoid lumen acidification was often observed in unicellular algae
(hereafter referred to as dark-induced acidification)22,23 and it was
proposed to depend on either chlororespiration or ATP hydrolysis in
darkness22,24–26. However, considering that long-term dark adaptation
of highly concentrated micro algae often leads to anoxia, and thus
fermentation, which converts sugar into acids8, we speculate that this
dark-induced lumen acidification is due to fermentation.

To verify this hypothesis and to explore the interplay between
metabolism and photosynthesis, we examined photosynthetic activity
bymonitoring the chlorophyll fluorescence of Chlamydomonasduring
fermentation. We show that the weak acids produced by fermentation
acidify the thylakoid lumen. We demonstrate that the metabolic con-
trol of the chloroplast by fermentation is passive and does not depend
on ATP synthase or chlororespiration, and we propose a mechanism
for the metabolic control induced by fermentation. Finally, we show
that the weak acids not only strongly decrease photosynthetic light
harvesting by promoting NPQ, but also decrease aerobic oxygen
consumption. These side effects of fermentation represent a pre-
viously unknown case of feedback control by metabolites regulating
aerobic respiration and the onset of photosynthesis.

Results
Fermentation acidifies the lumen in Chlamydomonas due to
weak acid production
Fermentative metabolism in Chlamydomonas generates various weak
acids8. To investigate how these acids possibly affect photosynthesis,
wemonitored chlorophyll fluorescence during fermentation, focusing
on the quenching induced by lumen acidification. To separate fluor-
escence quenching from state transitions (induced in darkness in
anoxic conditions27,28), the stt7-9 mutant, deficient in the Stt7 kinase
required for this antenna redistribution process29, was used. Figure 1a
shows significant fluorescence quenching during anaerobic respira-
tion. The quenching relaxed completely after the addition of KOH
(after fermentation, the cell culture becomes acidic, and KOH is used
to adjust the pH of the medium back to 7.5). Similar results were
obtained forWTCC-124 cells, even though themaximum fluorescence
before and after quenching was not the same because of the presence
of state transitions (Supplementary Fig. 1). The dependency of the
quenching on LHCSR3was shown using the doublemutant npq4 stt7-9
(see Fig. 1b, in which Fm’ of npq4 stt7-9 was stable through the fer-
mentation process). As the LHCSR-dependent chlorophyll fluores-
cence can be used as a reliable lumenal pH indicator30, we concluded
that fermentation acidifies the lumen in Chlamydomonas.

To verify if quenching is causedby the accumulationofweakacids
produced during fermentation, we ran the same experiments on
Chlamydomonas eustigmaNIES-2499, a species that lacks the enzymes
involved in organic acid fermentation pathways while retaining the
alcohol fermentation pathways31. Note that these cells perform normal
acid-inducedNPQ (Fig. 1c). During fermentation, the fluorescence ofC.

eustigma cells decreased to some extent, but the change was not
sensitive to KOH, indicating that it is not due to NPQ, but likely to state
I→ state II transition (Fig. 1d).

To further prove that the quenching of fluorescence during fer-
mentation was indeed due to weak acids, we measured the extra-
cellular weak acid content of Chlamydomonas at different time points
during anoxia (every 30min) and correlated them with NPQ values.
The results show a positive correlation between formic and acetic acid
concentrations and NPQ (Fig. 1e, f and Supplementary Fig. 2), in
agreement with previous quantifications with externally-added acid17.
In contrast, in the acidophilic algae NIES-2499, the cells hardly pro-
duced any acids (Supplementary Fig. 2), in agreement with previous
measurements31, thus the fluorescence is not quenched under hypoxia
(Fig. 1d). Altogether, these results indicate that lumen acidification in
the dark is due to organic acid fermentation and not to alcoholic
fermentation.

Exogenously added weak acids and their salts acidify the lumen
in Chlamydomonas
Intriguingly, as reported earlier17,many differentweak acids other than
acetic acid induce lumen acidification when added to the cell solution
(a list of weak acids inducing this effect is shown in Supplementary
Table 1 and Supplementary Fig. 3).We also exclude an effect of acetate
incorporation in the cellular metabolism as the trigger of fluorescence
quenching, as in the icl mutant, deficient in isocitrate lyase32, the
quenching phenotype remained (Supplementary Fig. 4). Moreover,
not only acetic acid (Fig. 2a), but also 50mM sodium acetate (NaAc)
was able to induce quenching (Fig. 2b). The fluorescence quenching
was fully relaxed upon addition of 100 μM nigericin, a known proton
antiporter33, indicating that NaAc induced lumen acidification, even
though the pH of the solution remained unaffected. On the contrary,
strong acids and their salts, like HCl and NaCl, did not induce
quenching (Fig. 2c, d).

Above we showed that lumen acidification occurs in response to
anoxicmetabolism, and highlighted that the same effect was obtained
by the exogenous addition of weak acids and their salts. As the use of
weak acid considerably speeds up the experiments (seconds vs.
hours16,17), we used this approach to test the presence of this phe-
nomenon in a range of organisms across the photosynthetic phyla,
including another green alga (Chlorella pyrenoidosa FACHB-9), a red
alga (Porphyridium purpureum FACHB-840), a diatom (Phaeodactylum
tricornutum FACHB-863), a moss (Physcomitrella patens) and several
angiosperms (Arabidopsis thaliana, Triticum sp., and Sorghum sp.). The
results in Fig. 3 and Supplementary Fig. 5a, c and d demonstrate that
fluorescence quenching could be induced by adding acetic acid in all
organisms. In the species for which NPQ mutants were available, we
were able to confirm that the quenching was related to lumen acid-
ification and dependent on pH-sensing proteins i.e., LHCSR in Chla-
mydomonas (Supplementary Fig. 6) and PsbS in Arabidopsis (Fig. 3e
and Supplementary Fig. 5b).

Is lumenacidification an active bioenergetic process or a passive
chemical effect?
To understand the mechanism of weak acid-induced quenching, we
sought to distinguish whether an active bioenergetic/metabolic
pathway or a passive chemical effect is responsible for the observed
effect. It was previously suggested that chlororespiration, a chlor-
oplastic respiratory electron transfer chain involving the enzymes,
PTOX234 and NDA235, could be responsible for lumen acidification in
the presence of a reduced carbon source16. To test this hypothesis,
we used the two chlororespiratory mutants ptox2 and nda2 and their
parental strainWTCC-4533. We found that in all of them the addition
of 50mM NaAc could successfully induce fluorescence quenching
(Supplementary Fig. 7 and Fig. 4a–c). Since the use of NaAc allowed
keeping the pH of the cell medium neutral, and the quenching
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relaxed following the addition of nigericin, we conclude that chlor-
orespiration is not a prerequisite for the salt-induced lumen
acidification.

Another mechanism that could account for lumen acidification in
the dark is the hydrolysis of ATP. When glycolysis and respiration are
active, ATP produced in the process could be imported into the
chloroplast and converted by the ATP synthase into a proton
gradient24,36. To verify whether the lumen acidification was ATP syn-
thase-dependent, we used the FUD50mutant, whichbears a deletion in
the atpB gene37. To exclude Fm changes due to state transition, state I
was induced by weak light pre-illumination in the presence of DCMU38.
The acid-induced quenching was also present in FUD50 (Fig. 4d),
showing that lumen acidification is not caused by ATP hydrolysis.
Quenching induced by NaAc was fully relaxed by adding nigericin,

indicating that a buildup of ΔpH took place across the thylakoid
membrane also in this mutant.

The lumen acts as an “ion trap”
What is the mechanism of lumen acidification? To answer this ques-
tion, we spatially mapped the pH distribution in various intracellular
compartments using the pH-sensitive dye BCECF. Cell wall-freemutant
CC-400 was used to ensure easier penetration of the dye into the cell.
Confocal fluorescence images showed that the dye was uniformly
distributed throughout the cytoplasm but did not enter the chlor-
oplast (Fig. 5a and Supplementary Fig. 8). To accurately determine
cytoplasmicpH, a calibration curvewasgenerated (Fig. 5b). The results
show that the addition of 50mMNaAc hardly changes the cytoplasmic
pH. Conversely, the addition of HAc brings the cytoplasmpHbelow 5.5
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Fig. 1 | Probing lumen acidification using NPQ during anaerobic treatment.
Chlorophyllfluorescence and oxygen concentration were simultaneously recorded
on Chlamydomonas mutants stt7-9 (a), npq4 stt7-9 (b), and on Chlamydomonas
eustigmaNIES-2499 in aerobic condition (c), and NIES-2499 in anaerobic condition
(d). The cells used for the experiments shown in (a, b, d) were grown under high
light and resuspended in fresh HSM-ficoll (10%) (a, b) or M-Allen -ficoll (d) in a
cuvette and sealed to induce anoxia. The ficoll is used to keep the cells in sus-
pension. Fm’, indicated by the red dots, was recorded every 3min. The addition of
KOH completely relaxed the quenching in the stt7-9, but hardly affected the
fluorescence in the double mutant npq4 stt7-9 and NIES-2499. For the experiment
shown in (c), cells were first exposed to actinic light (AL 1500μmol photonsm−2 s−1)

to induce chlorophyll quenching (20 s–80 s) in aerobic environment. After NPQ
was fully released (80 s–200 s), a second round of fluorescence quenching was
inducedby adding4.5mMHAc (thepHofmedium ~3.3), and after that, the addition
of KOH (the pH of medium ~5.5) fully abolished the fluorescence quenching. The
red bars represent actinic light illumination and the black bars dark treatment. The
relationship between fermentation products formic acid (e) and acetic acid (f)
accumulated in the medium of Chlamydomonas cultures and NPQ in stt7-9. Cells
were kept in anaerobiosis in the dark for up to 4.5 h. Samples were taken at the
indicated time points (0, 0.5, 1, 1.5, 2, 2.5, 3, 4 and 4.5 h), centrifuged, and filtered,
and the medium was analyzed by HPLC. Data are taken from triplicate samples
derived from three independent experiments. Error bars represent SD.
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(Fig. 5b). In either case, the cells were not significantly shrinking in size,
excluding osmotic stress as a cause of lumen acidification (see the
confocal images Supplementary Figs. 9 and 10). Finally, we showed
that the cytoplasmic pH upon anaerobic respiration was <5.5 (see
Supplementary Table 2).

According to the partition theory, ionized molecules usually
cannot penetrate, cell membranes because they are hydrophilic and
poorly lipid-soluble39. That explains why strong acid and strong acid
salts fail to lead to fluorescence quenching (given they are virtually
fully dissociated in solution), but weak acids and their salts could
induce fluorescence decrease. Based on these results, we propose that
the chloroplast lumen acts as an “ion trap” (Fig. 5c). For acids, an
equilibriumbetween their protonated and ion form is described by the
Henderson-Hasselbalch equation: pH =pKa + log10 A�½ �= HA½ �� �

. A key
feature of a membrane is that it allows small uncharged molecules to
diffuse through. Therefore, the non-dissociated formofweak acids can
penetrate the cell membrane all the way to the thylakoid lumen.

To understand why there is a difference in pH between the thy-
lakoid lumen and other compartments, their buffering capacity needs
to be considered. It has been reported that the buffer capacity of the
lumen (0.8–1.0mM) is much lower than that of cytoplasm (~20mM)
and stroma (27 ± 4mM)40–42. Additionally, the total volume of the
lumen is very small compared to the stroma43.When the concentration
of HAc/NaAc increases in the cytoplasm, the concentration of its
protonated form, HAc, also increases. These charge-free molecules
diffuse across the membranes and then release protons in the lumen,
consequently acidifying it as its buffer capacity is weak. An estimate of
the pH values of two compartments separated by a membrane and
with different buffer capacities is reported in Supplementary Table 3.

Effect of weak acids on photosynthesis
To understand the physiological relevance of the observed acidifica-
tion, we evaluated the effect of weak acids on photosynthetic electron

transfer. To exclude effects from NPQ and state transitions, which
would further negatively feedback the electron transfer rate (ETR)
upon acid addition, we used the npq4 stt7-9doublemutant. The results
showed that the relative electron transport rate of both PSII (ETR(II))
and PSI (ETR(I)) dropped significantly in acidic conditions (Fig. 6a, b).
We also examined the effect of weak acids produced by anaerobic
fermentation showing that ETR(I) in npq4 stt7-9 dropped in anaerobic
conditions (Supplementary Fig. 11a, b). These results indicate that
electron transfer is indeed hampered by the low lumenal pH44,45. The
effect can be due to the non-photochemical reduction of the PQ pool,
and/or a decrease in the activity of cytochrome b6f, which is known to
be down-regulated by the low lumenal pH46.

To disentangle these effects, we measured the electrochromic
shift signal (ECS)47. The bphaseof the ECS is related to the cytochrome
b6f-mediated electron transfer, and it is expected to slow down upon
lumen acidification48. The latter slows down quinol oxidation at the Qo

site due to the initial deprotonation event being an uphill reactionwith
a higher energetic threshold at low luminal pH. The b-phase in the ECS
signal (ms-timescale) was slower in anaerobiosis (Supplementary
Fig. 11c). We also confirmed the absence of the b-phase in the ECS
signal (ms-timescale) of the npq4 stt7-9 under aerobic conditions when
4.5mM HAc or 50mM NaAc was added (Supplementary Fig. 12).

In summary, the data show that weak acids, which are produced
by fermentation, can suppress both light harvesting—by triggering
NPQ—and ETR. To understand if this effect has a physiological role, we
measured the oxygen levels during photosynthetic re-activation of the
anaerobic-acclimated cells. The results showed that in low light oxygen
evolution was quickly restored in 20minwhen the light was turned on
after 3 h of anoxia (Fig. 6c). In contrast, when KOH (pH of the medium
7.5) was added to neutralize acidification, oxygen was released slowly
with a time delay of 1 h compared to the sample without KOH (Fig. 6c).
To exclude a toxic effect of KOH, cells were also measured in aerobic
conditions. No difference in oxygen evolution was observed for cells
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titrate the pH back to 7.5 did not affect fluorescence. d The fluorescence did not
change when the 50mM NaCl was added.
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with and without KOH (Supplementary Fig. 13). We also measured the
quantum yield of PSII Y(II) in cells in anaerobic conditions and found
that the value was higher in the presence of KOH (Supplementary
Fig. 14), indicating that acidification decreased the photosynthetic
activity. Why then the addition of KOH slows down oxygen evolution
during the onset of photosynthesis following anoxia? A possible

explanation is that aerobic respiration is also inhibited by the weak
acids produced during fermentation. Upon addition of KOH, aerobic
respiration rapidly recovered. Photosynthesis also recovered, but in
the first phase, at dawn, which is characterized by low light intensity,
oxygen production is minimal. In these conditions the oxygen con-
sumption rate exceeds the production rate, leading to a significant
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delay in oxygen accumulation. This hypothesis is supported by the fact
that in high light, when oxygen production became the dominating
process, the effect of KOH disappears (Fig. 6c). To further verify that
aerobic respiration was reduced under acidification, we incubated the
cells at different pH under aerobic conditions in the dark. The rate of
oxygen consumption of the cells decreased under acidification con-
ditions (Fig. 6d and Supplementary Fig. 15), demonstrating that aero-
bic respiration was severely suppressed under acidic conditions.

Discussion
It has often been reported that lumen acidification occurs in green
algae, diatoms, lichens and other species kept in darkness for
hours24,49–51. This phenomenon was ascribed to either chlororespira-
tion or ATP hydrolysis52,53. Indeed, if chlororespiration is electrogenic
(i.e., the combined activity ofNADPHdehydrogenase and plastoquinol
terminaloxidase results in net proton translocation to the lumen), then

acidification takes place. Nevertheless, in the case of Chlamydomonas,
the chlororespiratory enzymes PTOX and NDA2 are probably not
electrogenic as they are both monotopic and chloroplast stroma-
exposed54. Likewise, ATP synthase running in reverse mode could
lower the lumen pH thanks to ATP hydrolysis55 and it has been
demonstrated that ATP (of mitochondrial origin) hydrolysis by chlor-
oplastic ATP synthase occurs in dark oxic conditions in several species
(Diatoms13, Phaemonas56, Euglens14), however, in anoxic conditions,
this is unlikely to happen because mitochondrial respiration is abol-
ished. As anticipated, using ptox2, nda2 and FUD50 mutants, we
unambiguously demonstrated that the lumen acidification in the pre-
sence of weak acids does not originate from chlororespiration nor
from ATP hydrolysis. Instead, we propose that lumen acidification is
directly due to the weak acids produced during fermentation that
translocate to the thylakoid lumen, which acts as an “ion trap”: lipid
membrane, impermeable to charged molecules, effectively traps

Fig. 3 | Chlorophyllfluorescence tracesof algaeand images ofhigherplants. aA
typical chlorophyll fluorescence trace of Phaeodactylum tricornutum (FACHB-863).
NPQ was induced either with high light illumination (AL, 50 s–510 s), or by adding
HAc in the dark (the pH of the medium was 5.5) at 1400–2000 s. The fluorescence
quenching was abolished upon addition of KOH in weak actinic light (10μmol
photonsm−2 s−1). b A typical chlorophyll fluorescence trace of the Porphyridium
purpureum (FACHB-840). NPQ was first induced with high light illumination
(50 s–180 s), then a second round of quenching was induced by adding HAc (pH of
the medium: 5.5) at 400 s–650 s after full recovery of fluorescence. The second
round of fluorescence quenching was recovered by adding KOH (the pH of the
medium was 7.5) in weak actinic light (10μmol photonsm−2 s−1). c Chlorophyll
fluorescence trace of Physcomitrella patens. Adding HAc (pH of the medium: 5.5)
caused chlorophyll fluorescence quenching and the addition of KOH (the pH of

medium 7.5) abolished the quenching. d Similar chlorophyll fluorescence trace of
Chlorella pyrenoidosa (FACHB-9) as obtained in (c). The addition of HAc (pH of
medium 5.5) caused chlorophyll fluorescence quenching and the addition of the
KOH (titrationof themediumpHback to7.5) deactivated thequenching.eTheNPQ
images of wild-type Arabidopsis Col-0 (left) and npq4 mutant (right) after stable
NPQ (250 s) was reached under actinic light (AL 400μmol photonsm−2 s−1). For
each plant, two leaves werefiltratedwith 0.1M acetic acid,while another two leaves
were infiltrated with an equal amount of H2O as control. f The npq images of
Triticum aestivum (left) and Sorghum bicolor (right) after a stable NPQwas reached
under actinic light (400μmol photonsm−2 s−1). For each leave, two parts of a leaf
were infiltrated with 0.1M acetic acid, while another two parts were infiltrated with
an equal amount of H2O as control. All experiments were performed in triplicate.
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Fig. 4 | Typical chlorophyll fluorescence traces of ptox2, nda2 and FUD50
mutants measured with Dual-PAM. ptox2 (a) and nda2 (b) cells were illuminated
with strong actinic light (1500μmol photonsm−2 s−1) for 150 s followed by dark
recovery (4min). The addition of 50mM NaAc leads to fluorescence quenching
(350 s–590 s) and nigericin cancels the quenching (650 s–850 s). c NPQ of ptox2
and nda2 calculated from the data presented in (a) and (b). The NPQ values
represent an average of three independent measurements. Error bar, SD (n = 3).
d FUD50 cells were initially illuminated with strong actinic light (40 s–350 s)

followed by dark recovery (350 s–650 s). Then the cells were induced in state I
(100μM DCMU and weak actinic light 10μmol photonsm−2 s−1). The chlorophyll
fluorescence quenching was induced with 50mM NaAc (850 s–1000 s) and the
quenching fully abolished upon addition of 100μM nigericin (1000 s–1200 s). The
red bars indicate strong actinic light illumination, the gray bar and black bars
represent weak actinic light (10μmol photonsm−2 s−1) and dark treatment,
respectively.
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protons, which increasingly acidify the inner space with low buffer
capacity. Hence, we report a new type of light-independent lumen
acidification of cells in anoxia, in addition to the observed lumen
acidification of cells in oxic condition led by ATP hydrolysis.

Additional evidence supports the “ion-trap” model. Recently,
Gabba et al.57 successfully determined the permeability coefficients of
weak acids in lipid vesicles and living cells and they demonstrated that
weak acids cross the membrane mainly via passive diffusion rather
than protein-mediated transport. More importantly, in vitro experi-
ments with the pyranine pH assay using liposomes with a low internal
buffer capacity showed that the inside of the liposomes acidifies upon
the addition of weak acid salts57, in agreement with our results in vivo.

Understanding how fermentation, aerobic respiration and pho-
tosynthesis pathways are entangled requires a holistic view of the cell.
As schematically illustrated in Fig. 7, we showed that the weak acids
produced during fermentation could penetrate the thylakoid lumen
thus suppressing the light reaction of photosynthesis. In parallel, we
propose that they also penetrate the mitochondria slowing down
aerobic respiration. The mitochondrial matrix has a low H+-buffering
capacity (5mM) comparedwith the cytosol (20mM)58 and in anaerobic
conditions, it might be acidified by the weak acids produced by fer-
mentation. This effect would collapse, even invert, the pH gradient
across the membrane, which probably inhibits the electron transport
chain and thus reduces the oxygen uptake. Yet, how weak acids sup-
press mitochondrial metabolism remains to be clarified.

In the natural environment, photosynthetic organisms experience
an alternation of dark and low light conditions. Upon dusk, in photo-
syntheticmicroalgae, e.g.,Chlamydomonas, oxygen is rapidlydepleted

by respiration and fermentation metabolism becomes active. Fer-
mentation generates energy tomaintain cell viability and supports cell
redox balance by re-oxidizing NAD(P)H. Here we propose that along
with these two functions, fermentation plays an additional role. The
production of weak acids partially inhibits both photosynthesis and
respiration, and the effective limitation of the later process can help
the cell to quickly shift from anoxia to aerobic conditions when light
intensity is low and respiration consumes more O2 than photosynth-
esis produces. This process can be further enhanced in non-axenic
conditions of microbial mats, with organisms exhibiting fermentative
metabolism influencing the physiology of their neighboring cells.Why,
then, would the light reactions of photosynthesis be suppressed? We
suggest that the biological advantage of lowering the lumenal pH
might still be photoprotective: weak acids produced by anaerobic
fermentation lead to NPQ and a slower photosynthetic electron
transport in the dark, which reduces electron input into the electron
transport chain in conditions where electron sinks are limiting before
the CBB cycle fully activate or alternative electron outlets, such as
water to water cycle59, chlororespiration60, flavodiiron-or hydro-
genase-dependent pathways61 not yet/anymore active.

Methods
Algae and plants growth
In this study, C. reinhardtii wild-type CC-40062, CC-124, CC-4533, the
state transition mutant stt7-929, the double mutant npq4 stt7-9
impaired in state transition and qE38, the ptox2 (LMJ.RY0402.152174),
nda2 (LMJ.RY0402.206160), icl and its wild-type CC-13732 and FUD50
(CC-1287) mutant were used, all of which are available from the
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Chlamydomonas Resource Center in the University of Minnesota
(http://www.chlamycollection.org/). Themutants were verified by PCR
(Supplementary Fig. 16 and Supplementary Table 4). Each strain
(except for the FUD50 and npq4 stt7-9) was grown under high-light
(350μmol photonsm−2 s−1) in high-saltmedium (HSM) at 25 °C till to its
log phase63. The FUD50, a deletion in the atpB gene of the chloroplast
ATP synthase, was grown in Tris acetate-phosphate medium (TAP) at
25 °C under low light (20μmol photonsm−2 s−1) till to logarithmic
phase and then they were exposed to high light (350μmol
photonsm−2 s−1) for 3 h to induce LHCSRproteins expression. Thenpq4
stt7-9 was grown under low light (20μmol photonsm−2 s−1) till to
logarithmic phase.

Chlamydomonas eustigma NIES-2499 was purchased from the
Microbial Culture Collection at the National Institute for Environ-
mental Studies in Japan (NIES) on a rotary shaker in photoautotrophic
medium M-Allen at pH 3.531, at 25 °C under high light (350μmol
photonsm−2 s−1).

P. tricornutum (diatom)wild-type strain was grown in F/2medium
at 19 °C under light illumination of 40μmol photonsm−2 s−1. Chlorella
pyrenoidosa (FACHB-9) wasmaintained in BG11medium at 25 °Cunder
light illumination of 350μmol photonsm−2 s−1. Porphyridium purpur-
eum (red alga) was grown in artificial seawater (ASW) at 28 °C64. All
algal cells were grown on a rotary shaker at 120 rpm in Erlenmeyer
flasks. Cells were harvested from their exponential growth stage and
resuspended in a fresh medium before measurements.

Wild type of Physcomitrella patens (moss) were maintained on
minimumPpNO3 solidifiedwith 0.75% plant agar at 25 °C65, 16 h light/
8 h dark under normal light (50 μmol photonsm−2 s−1). For high light
treatments, 6-days-old plants were transferred to 350μmol
photonsm−2 s−1 for 2 h. Triticum aestivum (wheat) and Sorghum
bicolor (Sorghum), Arabidopsis thaliana Col-0 and the PsbS-deficient
mutant npq4 (8 weeks old plants) were grown at normal light

(50μmol photonsm−2 s−1) at 21 °C with 12 h light/12 h dark
photoperiod.

Verification of the mutants ptox2, nda2 and FUD50
PCR confirmation of mutants ptox2 (LMJ.RY0402.152174) and nda2
(LMJ.RY0402.206160) that originally purchased from the Chlamydo-
monas Resource Center: a paromomycin resistance gene cassette-CIB1
was inserted in the gene in the ptox2 and nda2 mutant, which was
obtained from the Chlamydomonas Library Project (CLiP)66,67. We
confirmed that the cassette CIB1 has an insertion in the intron of
the PTOX2 gene in the ptox2 mutant and an insertion in the 5’-UTR of
the NDA2 gene in the nda2 mutant by the PCR genotyping (Supple-
mentary Fig. 16a, b). We performed semi-quantitative RT-PCR, and
found no detectable expression of PTOX2 and NDA2 in the mutants
ptox2 and nda2, respectively (Supplementary Fig. 16e, f).

All the PCR fragments were also confirmed by DNA sequencing.
PCR confirmation ofmutant FUD50 (Supplementary Fig. 16c): this

mutant lacks atpB gene, thus fails to assemble the ATP synthase. It was
verified by primers FUD50-F/FUD50-R(refers to68).

Fluorescence measurements with Dual-PAM 100/Image-PAM in
anaerobic/aerobic conditions
Chlorophyll fluorescence traces were obtainedwith a pulse amplitude-
modulated fluorimeter (Dual-PAM 100, Walz). Saturating light
(6000μmol photonsm−2 s−1, 250ms), red actinic light (AL, 1500μmol
photonsm−2 s−1) and red measuring light were used through all mea-
surements. The NPQ and Y(II) were determined by NPQ= (Fm − Fm’)/
Fm’ and Y(II) = (Fm’ − F)/Fm’69. Fm is the maximum fluorescence for
dark-adapted cells, Fm’ represents the max fluorescence under light,
and F is the steady-state fluorescence in the light.

The effective quantum yield of PSI [Y(I)] was estimated from the
absorbance changes of the dual-wavelength (820–870nm) measured
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by Dual-PAM 100. The Y(I) was determined by Y(I) = Pm’/Pm. Pm and
Pm’ are the maximal absorbance changes induced by applying the
saturating light under dark and actinic light, respectively70.

For P. tricornutum, Porphyridium purpureum, Chlamydomonas
reinhardtii, C. pyrenoidosa and P. patens, cells were washed with their
freshmedium, respectively. 4.5mMHAcwas added to decrease the pH
to 5.5 and the KOH was used to adjust the pH back to 7.5. When NaAc
was used to induce fluorescence quenching, final concentration of
NaAc of 50mM was reached. In total, 100μM nigericin was used to
collapse the pH gradient formed across thylakoid membrane.

The eosinophilic algae NIES-2499 was grown in photoautotrophic
mediumat pH3.5.When4.5mMHAcwas added and thepHofmedium
remained basically unchanged.

Chlorophyllfluorescence images ofArabidopsis thaliana, Triticum
aestivum and Sorghum bicolorwere obtained with Imaging-PAM under
aerobic conditions. Actinic light of 400 μmol photonsm−2 s−1, saturat-
ing light (4000μmol photonsm−2 s−1, 800ms) and a red measuring
light was used in this experiment. Before measurements, all plants
were dark-incubated for 30min. For Arabidopsis thaliana, two leaves
were injected with acetic acid (0.1M), whiles the other two leaves were
injected with the same amount of water and other leaves were
untreated as controls. For Triticum aestivum and Sorghum bicolor, two

different positions of one leaf were injected with acetic acid (0.1M),
and the other two locations were injected with the water as control.

Oxygen measurements
Oxygen concentration in solution and chlorophyll fluorescence were
simultaneously recorded at 24 °Cwith a commercial oxygen electrode
(the FireSting-O2, a PC-controlled (USB) fiber-optic oxygen meter was
purchased from the PyroScience) and Dual-PAM 100. To maintain an
anaerobic condition, cells of Chlamydomonas were typically con-
centrated to chlorophyll concentration of 40μg/ml and kept in an
airtight cuvette with HSM (C. reinhardtii) or M-Allen medium (NIES-
2499) mixed with ficoll (10%). The Fm’ in the dark was recorded with a
saturating light at an interval of 3min. When the fluorescence
quenching became stable, KOH was added to medium (pH lifted from
6.4 to 7.4) to recover the fluorescence.

Light-response curves of photosynthesis
The electron transport rates (ETRs) was calculated as ETR (I) or
ETR(II) = 0.5 × 0.84 × PAR ×Y(I) or Y(II), where 0.5 is the fraction of
absorbed light reaching PS I or PSII and 0.84 is absorbed irradiance
taken as 0.84 of incident irradiance. For all ETR measurements,
actinic light (AL) was turned on 30 s before a saturation pulse
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(6000μmolphotonsm−2 s−1, 250mspulse duration)was applied. And a
series of actinic light with intensity ranging from0, 13, 54, 89, 167, 267,
416, 754, 1173, 1450μmol photonsm−2 s−1 was sequentially measured
(Fig. 6a, b and Supplementary Fig. 11a).

Determination of cytosolic pH
Before imaging, cell wall-free WT Chlamydomonas CC-400 was resus-
pended to a concentration of 2 × 107 cells/ml in NMG buffer (10mM
HEPES, 60mM KCl, 3mM MgCl2 pH 6.8). The cells were incubated at
36 °C for 1 h in the NMG buffer containing 5μM BCECF-AM71. The
BCECF-AM could diffuse through the cell membrane and intracellular
esterase cleave the ester bond releasing BCECF72. Then, the dye-
stained CC-400 cells were washed twice with fresh NMG buffer to
remove the extracellular dyes. For confocal imaging experiments
(Leica TCS SP5), excitation wavelength of 488nm was used and
fluorescence emission at 530 ± 15 nm was collected.

BCECF fluorescence is pH sensitive, of which the ratio of 490/
440 nmwas used to indicate the pH values73. The titration curve of pH
intracellular in CC-400 loaded with the BCECF-AM was performed by
using a FLS1000 Photoluminescence Spectrometer (Edinburgh) with
an emission wavelength at 530 nm and the ratio excitation wave-
lengths of 490 and 439 nm72. Slit widths were set to 3 nm. Each sample
was placed under different pH buffer and 100μMnigericin was added
to ensure an equilibrium in and out of the cell at external pH values
that ranging from 4.0 to 9.0. The pH values were adjusted by using 1M
KOH or 1M HCl. The BCECF-stained cells in aerobic or anaerobic
conditions (darkness for 3 h and sealed for anaerobic respiration) were
treatment with acetic acid or NaAc to evaluate the cytosolic pH.

Organic acid analysis
Organic acid analysis was performedby liquid chromatography (HPLC;
Waters 550, Waters, MA, USA) using a Hypsil C18 column (5 µm,
4.6mm× 250mm). The mobile phase was a solution containing
0.02MKH2PO4 at pH 2.4with the orthophosphoric acid. Flow ratewas
0.6mL/min and thedetectionwavelengthwas at 210 nm.Wemeasured
the main weak acids produced by fermentation—formate and acetate.
Anaerobically adapted cells were collected at the interval of 30min
and then, centrifugation at 9568 × g for 2min to be measured. The
samples were filtered with a 0.22 µm aqueous filter. Then, 50μl of
sample was injected onto the column. Retention peaks were recorded
using Agilent Chem Station software, and quantification was per-
formedby comparisonswith the standard curve forweak acid content.

Electrochromic shift analysis
The ECS signal was measured by the DUAL-PAM 100 with the P515
module, see details in ref. 74. The cells npq4 stt7-9 were resuspended
with fresh HSM medium at 20 μg/mL chlorophyll. For anaerobic con-
dition, the cells were sealed andplaced in darkness for 3 h. Before each
measurement, cells were dark-adapted for 30min. The changes of ECS
signalwas inducedby a single turnoverflash (ST, 50μs). The kineticsof
this signal contain three phases75: the fast phase-a represents the
charge separation of PSI and PSII, then a slower rising phase-b shows
the cytochrome b6f activity. and the last phase-c represents the
activity of the CF0-F1 ATP synthase.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the main text or the Supplementary Materials.
The data that support the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper.
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