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Abstract
The purpose of this paper is to study the convergence of the quasi-maximum
likelihood (QML) estimator for long memory linear processes. We first establish
a correspondence between the long-memory linear process representation and
the long-memory AR(∞) process representation. We then establish the almost
sure consistency and asymptotic normality of the QML estimator. Numerical
simulations illustrate the theoretical results and confirm the good performance
of the estimator.

Keywords: Long memory process, Semiparametric estimation, Linear process, Limit
theorems

1 Introduction
Since Hurst’s (1953) introduction of long-range dependent processes, much research
has focused on estimating the long-range parameter, whether defined on the basis
of the asymptotic power-law behavior of the correlogram at infinity or that of the
spectral density at zero (see the monographs [7] and [17] for more details).
Two estimation frameworks have been studied extensively. The first focused on
the estimation of the long-memory parameter alone, but could be carried out in a
semi-parametric framework, ı.e. if only the asymptotic behavior of the correlation or
spectral density was specified. This led to the first methods proposed historically, such
as those based on the R/S statistic, on quadratic variations, on the log-periodogram,
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or more recent methods such as wavelet or local Whittle (again, see [17] for more
details).
Here we are interested in a more parametric framework, and in estimating all the pa-
rameters of the process, not just the long memory parameter. The first notable results
on the asymptotic behavior of such a parametric estimator were obtained in Fox and
Taqqu (1986) (see [19]) in the special case of Gaussian long-memory processes, using
the Whittle estimator. These results were extended to linear long-memory processes
with a moment of order 4 by Giraitis and Surgailis (1990) (see [20]). In both settings,
the asymptotic normality of the estimator was proved, while non-central limit theo-
rems were obtained for functions of Gaussian processes in [21] or for increments of
the Rosenblatt process in [4]. The asymptotic normality of the maximum likelihood
estimator for Gaussian time series was also obtained by Dahlhaus (1989, see [15])
using that of the Whittle estimator obtained in Fox and Taqqu (1986).
For weakly dependent time series, especially for conditionally heteroscedastic pro-
cesses such as GARCH processes, the quasi-maximum likelihood (QML) estimator
has become the benchmark for parametric estimation, providing very interesting
convergence results where Whittle’s estimator would not. This is true for GARCH
or ARMA-GARCH processes (see [9] and [18]), but also for many others such as
ARCH(∞), AR(∞), APARCH processes, etc. (see [5]). We will also note conver-
gence results for this modified estimator for long-memory squares processes, typically
LARCH(∞) processes, see [8], or quadratic autoregressive conditional heteroscedastic
processes, see [16]. But for long-memory processes, such as those defined by a non-
finite sum of their autocorrelations, to our knowledge only the paper by Boubacar
Mainassara et al. (2021) (see [13]) has shown the normality of this QML estimator in
the special case of a FARIMA(p, d, q) process with weak white noise.
We therefore propose here to study the convergence of the Gaussian QML estima-
tor in the general framework of long-memory one-sided linear processes. In such
a framework, we begin by noting that the QML estimator is in fact a non-linear
least-squares estimator. The key point of our approach is to prove that long-memory
one-sided linear processes can be written in autoregressive form with respect to their
past values, which we can call long-memory linear AR(∞). This is perfectly suited to
the use of QMLE, since this estimator is obtained from the conditional expectation
and variance of the process. We then show the almost sure convergence of QMLE for
these long-memory AR(∞) processes, which generalizes a result obtained in [5] for
weakly dependent AR(∞) processes. We also prove the asymptotic normality of this
estimator, which provides an alternative to the asymptotic normality of Whittle’s
estimator obtained in [20]. An advantage of QML estimation lies in the fact that,
because it is applied to processes with an AR(∞) representation, the fact that the
(Xt) series is centered or not has no effect at all on the parameters of this AR(∞)
representation, particularly on the estimation of the long memory parameter.
Finally, we performed simulations of two long-memory time series and examined the
performance of the QMLE as a function of the size of the observed trajectories. This
showed that the behavior of the QMLE is consistent with theory as the size of the
trajectories increases, and provides a very accurate alternative to Whittle’s estimator.
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An application on real data (average monthly temperatures in the northern hemi-
sphere) is also presented.

This article is organized as follows: the section 2 below presents the AR(∞) notation
of an arbitrary long memory one-sided linear process, the section 3 is devoted to the
presentation of the QMLE estimator and its asymptotic behavior, numerical applica-
tions are treated in the section 4, while all proofs of the various results can be found
in the section 6.

2 Long-memory linear causal time series
Assume that ε = (εt)t∈Z is a sequence of centered independent random variables such
as E[ε20] = 1 and (ai)i∈N is a sequence of real numbers such as:

ai = La(i) i
d−1 for i ∈ N∗ and a0 > 0, (2.1)

where d ∈ (0, 1/2) and with La(·) a positive slow varying function satisfying

for any t > 0, lim
x→∞

La(xt)

La(x)
= 1.

Now, define the causal linear process (Xt)t∈Z by

Xt =

∞∑
i=0

ai εt−i for any t ∈ Z. (2.2)

Since 0 < d < 1/2, it is well know that (Xt)t∈Z is a second order stationary long-
memory process. Indeed, its autocovariance is

rX(k) = Cov (X0, Xk) =

∞∑
i=0

ai ai+k ∼ Cd L
2
a(k) k

2d−1 when k → ∞, (2.3)

where Cd =
∫∞
0

(u+ u2)d−1 du (see for instance Wu et al., 2010).

Then, it is always possible to provide a causal affine representation for (Xt)t∈Z, i.e .
it is always possible to write (Xt)t∈Z as an AR(∞) process:

Proposition 2.1. Let (Xt)t∈Z be a causal linear process defined in (2.2) where (ai)
satisfies (2.1). Then, there exists a sequence of real number (ui)i∈N∗ such as:

Xt = a0 εt +

∞∑
i=1

ui Xt−i for any t ∈ Z, (2.4)
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where (ui)i∈N∗ satisfies

∞∑
i=1

ui = 1 and un ∼
n→∞

a0 d

Γ(d) Γ(1− d)
L−1
a (n)n−1−d = Lu(n)n

−1−d (2.5)

where Lu is a slow varying function.

Remark 2.1. Using (6.1), the reciprocal implication of Proposition 2.1 is also true: if
(Xt) satisfies the linear affine causal representation (2.4) where (ui)i∈N satisfies (2.5),
then (Xt) is a one-sided long-memory linear process satisfying (2.2) where (ai) satisfies
(2.1).

Remark 2.2. It is also known that Γ(d) Γ(1 − d) =
π

sin(π d)
for any d ∈ (0, 1), and

this implies un ∼
n→∞

a0 d sin(π d)

π La(n)
n−1−d.

As a consequence, every long-memory one-sided linear process is a long-memory
AR(∞) process with the special property that the sum of the autoregressive co-
efficients equals 1. This is the key point for the use of quasi-maximum likelihood
estimation in the following section.

Example of the FARIMA process: Let (Xt)t∈Z be a standard FARIMA(0, d, 0)
with d ∈ (0, 1/2), which means X = (I − B)−dε, where B is the usual backward
linear operator on RZ and I the identity operator. Then, using the power series of
(1− x)−d, it is known that

Xt =

∞∑
i=0

aiεt−i with ai =
Γ(i+ d)

Γ(i+ 1)Γ(d)
for t ∈ Z.

Using the Stirling expansion of the Gamma function, i.e. Γ(x) ∼
x→∞

√
2π e−xxx−1/2,

we obtain an ∼
n→∞

1
Γ(d) n

d−1, which is (2.1) with La(n) ∼
n→∞

1
Γ(d) .

Moreover, the decomposition X = ε+ (Id − (Id −B)d)X implies:

Xt = εt + d

∞∑
i=1

Γ(i− d)

Γ(1− d) Γ(i+ 1)
Xt−i for t ∈ Z.

The expansion
Γ(n− d)

Γ(n+ 1)
∼

n→∞
n−1−d provides Xt = εt +

∑∞
n=1 un Xt−n with

un ∼
n→∞

d
Γ(1−d) n

−1−d is equivalent to (2.5) when a0 = 1 and La(n) ∼
n→∞

1
Γ(d) .
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3 Asymptotic behavior of the Gaussian
Quasi-Maximum Likelihood Estimator

3.1 Definition of the estimator
We will assume that (Xt)t∈Z is a long-memory one-sided linear process written as an
AR(∞) process, i.e.

Xt = σ∗ εt +

∞∑
k=1

uk(θ
∗)Xt−k for any t ∈ Z, (3.1)

where
• (εt)t∈Z is a white noise, such that ε0 has an absolutely continuous probability

measure with respect to the Lebesgue measure and such that E[ε20] = 1;
• for θ = t(γ, σ2) ∈ Θ a compact subset of Rp−1 × (0,∞), (un(θ))n∈N is a sequence

of real numbers satisfying for any θ ∈ Θ,

un(θ) = Lθ(n)n
−d(θ)−1 for n ∈ N∗ and

∞∑
n=1

un(θ) = 1. (3.2)

with d(θ) ∈ (0, 1/2). We also assume that the sequence (un(θ)) does not
depend on σ2;

• θ∗ = t(γ∗, σ∗2), θ∗ is in the interior of Θ, with σ∗ > 0 an unknown real parameter
and γ∗ ∈ Rp−1 an unknown vector of parameters.

A simple example of such a sequence (un(θ)) is un(θ) = (ζ(1 + d))−1 n−1−d for
n ∈ N∗, with θ = (d, σ2) ∈ (0, 1/2)× (0,∞) where ζ(·) is the Riemann zeta function.
Then Θ = [dm, dM ]× [σ2

m, σ2
M ], with 0 < dm < dM < 1/2 and 0 < σ2

m < σ2
M .

For ease of reading, denote d∗ = d(θ∗) the long-memory parameter of (Xt). Denote
also d∗+ = d∗+ε where ε ∈ (0, 1/2−d∗) is chosen as small as possible. Since (un(θ))n∈N
satisfies (3.2), we know from Remark 2.1 that there exists Ca such that for any t ∈ Z,

Xt =

∞∑
i=0

ai(θ
∗) εt−i with |ai(θ∗)| ≤

Ca

i1−d∗
+

for all i ∈ N∗. (3.3)

We also deduce from (2.3) that there exists Cc > 0 satisfying

|rX(k)| =
∣∣Cov (X0, Xk)

∣∣ ≤ Cc

(1 + k)1−2d∗
+

for all k ∈ N. (3.4)

In the sequel we will also denote for any θ ∈ Θ,

mt(θ) =

∞∑
k=1

uk(θ)Xt−k for any t ∈ Z. (3.5)
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We want to estimate θ∗ from an observed trajectory (X1, . . . , Xn), where (Xt) is
defined by (3.1). For such an autoregressive causal process, a Gaussian quasi-maximum
likelihood estimator is really appropriate, since it is built on the assumption that
(εt) is Gaussian white noise, and it is well known that an affine function of εt is
still a Gaussian random variable (see for example Bardet and Wintenberger, 2009). It
consists in considering the log-conditional density In(θ) of (X1, . . . , Xn) when (εt) is
a standard Gaussian white noise and with Xt = σ εt +mt(θ), i.e.

In(θ) =

n∑
t=1

qt(θ) = −1

2

n∑
t=1

(
log
(
σ2
)
+

(
Xt −mt(θ)

)2
σ2

)
for any θ ∈ Θ. (3.6)

However, such conditional log-likelihood is not a feasible statistic since mt(θ) depends
on (Xk)k≤0 which is unobserved. Hence it is usual to replace mt(θ) by the following
approximation:

m̂t(θ) =

t−1∑
i=1

ui(θ)Xt−i for any t ∈ N∗, (3.7)

with the convention
∑0

t=1 = 0. Then, a quasi conditional log-likelihood În(θ) can be
defined:

În(θ) = −1

2

n∑
t=1

(
log
(
σ2
)
+

(
Xt − m̂t(θ)

)2
σ2

)
. (3.8)

If Θ is a subset of Rp such as for all θ ∈ Θ there exists an almost surely stationary
solution of the equation Xt = σ εt+mt(θ) for any t ∈ Z, we define the Gaussian quasi
maximum likelihood estimator (QMLE) of θ by

θ̂n = Argmax
θ∈Θ

În(θ). (3.9)

Note that a direct implication of the assumption that (un(θ)) does not depend on σ2

is that if we denote θ̂n = t(γ̂n, σ̂
2
n) the QMLE, then:

γ̂n = Argmin
(γ,σ2)∈Θ

n∑
t=1

(
Xt −

t−1∑
k=1

uk(γ)Xt−k

)2 and σ̂2
n =

1

n

n∑
t=1

(
Xt −

t−1∑
k=1

uk(γ̂n)Xt−k

)2
,

where by writing convention un(θ) = un(γ). Hence, in this case of long-memory
AR(∞), γ̂n is also a non-linear least square estimator of the parameter γ.

3.2 Consistency and asymptotic normality of the estimator
The consistency of the QMLE is established under additional assumptions.

Theorem 3.1. Let (Xt)t∈Z be a process defined by (3.1) and its assumptions. Assume
also:

• for any n ∈ N∗, θ ∈ Θ 7→ un(θ) is a continuous function on Θ;
• If un(θ) = un(θ

′) for all n ∈ N∗ with θ = (γ, σ2) and θ′ = (γ′, σ2), then θ = θ′.
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Let θ̂n be the QMLE defined in (3.9). Then

θ̂n
a.s.−→

n→∞
θ∗.

This result extends the θ̂n consistency obtained in Bardet and Wintenberger (2009)
to short-memory time series models, including ARMA, GARCH, and APARCH,
among others, including AR(∞) processes. It also applies to long memory AR(∞)
processes.

Remark 3.1. Regarding the long-memory linear process example, θ∗ could also be
estimated using Whittle’s estimator, which is constructed from the spectral density
and second-order moments of the process. The consistency and asymptotic normality
of this estimator were shown by Giraitis and Surgailis (1990).

Having shown the consistency, we would like to show the asymptotic normality of the
QML estimator in the case of the long-memory one-sided linear processes considered
above. This amounts to proving it for linear processes whose linear filter depends
on a vector of parameters. This will be the case, for example, for FARIMA(p, d, q)
processes, for which Boubacar et al. (2021) [13] have already shown asymptotic
normality in the more general case where (εt) is weak white noise, i.e. in the case of
weak FARIMA(p, d, q) processes.

As it is typical to establish the asymptotic normality of an M-estimator, we make
assumptions about the differentiability of the sequence of functions (un(θ))n∈N∗ with
respect to θ:

(A) Differentiability of (un(θ))n∈N∗ : for any n ∈ N∗, the function un(θ) is a C2(Θ)
function and for any δ > 0, there exists Cδ > 0 such that:

sup
n∈N

sup
θ∈Θ

{
n1+d(θ)−δ

(∣∣un(θ)
∣∣+ ∥∥∂θun(θ)

∥∥+ ∥∥∂2
θ2un(θ)

∥∥)} ≤ Cδ. (3.10)

Moreover we assume that:

for v ∈ Rp−1, if for all k ∈ N∗, tv ∂γuk(θ
∗) = 0 =⇒ v = 0. (3.11)

Example (called LM in the numerical applications): For the simple example where
(un(θ)) is such as un(θ) = ζ(1 + d)−1n−1−d for n ∈ N∗ with θ = (d, σ2) ∈ (0, 1/2) ×
(0,∞), we have:

∂dun(θ) = − n−1−d

ζ2(1 + d)

(
ζ(1 + d) log(n) + ζ ′(1 + d)

)
∂2
d2un(θ) =

n−1−d

ζ3(1 + d)

(
ζ2(1 + d) log2(n) + 2ζ ′(1 + d)ζ(1 + d) log(n)
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+2(ζ ′(1 + d))2 − ζ ′′(1 + d)ζ(1 + d)
)
.

Therefore (3.10) of (A) is satisfied with d(θ) = d (note also that δ = 0 is not possi-
ble). Moreover (3.11) is also clearly satisfied.

Theorem 3.2. Consider the assumptions of Theorem 3.1 and also that E[ε30] = 0 and
µ4 = ∥ε0∥44 < ∞. Then with θ̂n defined in (3.9), and if (A) holds,

√
n
(
θ̂n − θ∗

)
=

√
n

((
γ̂n
σ̂2
n

)
−
(

γ∗

σ∗2

))
L−→

n→∞
N
(
0 ,
(
(M∗)−1 0

0 σ∗4 (µ∗
4 − 1)

))
, (3.12)

where M∗ = 1
σ∗2

∑∞
k=1

∑∞
ℓ=1 ∂γuk((γ

∗, 0)) t
(
∂γuℓ((γ

∗, 0))
)
rX(ℓ− k).

It is clear that θ̂n satisfies (3.12) in the case of the FARIMA processes (but this
asymptotic normality has been already established under more general assumptions
in Boubacar Maïnassara et al., 2021, [13]) or in the case of the LM processes example.
It is also worth noting that the central limit theorem is written in exactly the same
way as the one obtained in [5], although the latter dealt only with weakly dependent
AR(∞) processes.

Remark 3.2. As already mentioned, Boubacar Maïnassara et al. (2021) [13] have also
established the almost certain convergence and asymptotic normality of the QML
estimator in the specific case of FARIMA processes, but allowing the white noise
(εt) to be a weak white noise (non-correlation) and not a strong white noise as in
our work. This comes at the price of slightly stronger moment conditions: in [13], a
moment of order 2+ ν is required for almost sure convergence and a moment of order
4 + ν for asymptotic normality (with 0 < ν < 1). This is the price to pay in their
Assumption A4 for working with strong mixing properties of (εt).

Remark 3.3. Of course, in this specific context of linear long-memory processes, we
would like to make a comparison between the asymptotic results for the convergence of
the QMLE estimator and those obtained with Whittle’s estimator in [20]. In this paper,
more precisely in Theorem 4, the asymptotic covariance matrix of γ̂n is given by the
spectral density fγ and is written as (4π)−1

∫ π

−π

(
∂γ log(fγ(λ))

)
t
(
∂γ log(fγ(λ))

)
dλ.

However, Dahlhaus in [15] has shown that this asymptotic covariance matrix is also
that of the maximum likelihood estimator in the case of a Gaussian process, the latter
also being (M∗)−1 if (εt) is Gaussian white noise. This means that asymptotically,
the QML and Whittle estimators behave identically. However, we will see a slight
numerical advantage due to the convergence of the QMLE in the case of observed
trajectories whose size is not too large.
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3.3 Case of a non-centered long-memory linear process
Finally, we can consider the special case where the process (Xt) is not centered and
estimate the location parameter µ∗ = E[X0]. This means that (Xt) can now be written
as:

Xt = µ∗ +

∞∑
i=0

ai(θ
∗) εt−i for all t ∈ Z, (3.13)

with the same assumptions on θ, on (ai(θ)) and on (εt).

First of all, the AR(∞) representation we used to define (Xt) does not allow µ∗ to
intervene, so the QML estimator can not estimate this parameter. So, if (Xt) satis-
fies (3.13), then (Xt) still satisfies (3.1). This is because

∑∞
k=1 uk(θ) = 1 for any θ.

Consequently, the QML estimate of the parameter θ is not at all affected by the fact
that (Xt) is not a centered process and verifies (3.13) and Theorems 3.1 and 3.2 are
still valid. Note that the same applies to the Whittle’s estimator, as it was already
remarked in Dahlhaus (1989).

Concerning the estimation of the localization parameter E[X0] = µ∗ for long-memory
processes, this question has been the subject of numerous publications. Among the
most important are [1], [24] and the review article [6]. We are dealing here with long-
memory linear processes, and the article [1] had already shown the most important
point: we can not expect a convergence rate in

√
n, contrary to the other process

parameters. In the case of the QML estimator, this can be explained by the fact that
µ∗ cannot intervene in the equation (3.1), contrary to what would happen for an
ARMA process, for example.

More precisely, from these references, under the assumptions of Theorem 3.2 except
that (Xt) is defined by (3.13), we obtain:

n1/2−d(θ∗)

La(n)

(
Xn − µ∗) L−→

n→∞
N
(
0 ,

Cd(θ∗)

d(θ∗) (2d(θ∗) + 1)

)
with Xn =

1

n

n∑
k=1

Xk,

and Cd =
∫∞
0

(u + u2)d−1 du. However, as we are considering linear processes here,
Adenstedt (1974) [1] proved by a Gauss-Markov type theorem that there exists a Best
Linear Unbiased Estimator (BLUE) and provided its asymptotic efficiency. By adapt-
ing its writing, it will be enough to consider the matrix Σ(θ) =

(
rX(|j − i|)

)
1≤i,j≤n

with rX(k) = Cov (X0, Xk) =

∞∑
i=0

ai(θ) ai+k(θ) and define:

µ̂BLUE(θ
∗) =

(
t I1Σ−1(θ∗) I1

)−1t I1Σ−1(θ∗)X, with X = t(X1, . . . , Xn).

Then it is established in [1] that
Var

(
Xn

)
Var

(
µ̂BLUE(θ∗)

) −→
n→∞

π d(θ∗) (2d(θ∗) + 1)

B
(
1− d(θ∗), 1− d(θ∗)

)
sin
(
π d(θ∗)

) ,
where B(a, b) is the usual Beta function, and this limit belongs to [0.98, 1] when
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0 < d(θ∗) < 1/2. Therefore, since µ̂BLUE(θ
∗) is a linear process, we obtain:

n1/2−d(θ∗)

La(n)

(
µ̂BLUE(θ

∗)− µ∗) L−→
n→∞

N
(
0 ,

π Cd(θ∗)

B
(
1− d(θ∗), 1− d(θ∗)

)
sin
(
π d(θ∗)

)).
Finally, the estimation of θ∗ by θ̂n makes the use of the BLUE estimator of
µ∗ effective. Indeed, as θ̂n is a convergent estimator of θ∗, as θ ∈ (0, 0.5) 7→(
t I1Σ−1(θ) I1

)−1t I1Σ−1(θ) is a continuous function, we deduce by Slutsky’s lemma that:

n1/2−d(θ∗)

La(n)

(
µ̂BLUE(θ̂n)− µ∗) L−→

n→∞
N
(
0 ,

π Cd(θ∗)

B
(
1− d(θ∗), 1− d(θ∗)

)
sin
(
π d(θ∗)

)).
4 Numerical applications

4.1 Numerical simulations
In this section, we report the results of Monte Carlo experiments conducted with
different long-memory causal linear processes. More specifically, we considered:

• Three different processes generated from Gaussian standard white noises:
1. A FARIMA(0, d, 0) process, denoted FARIMA, with parameters σ2 = 4 and

d = 0.1, 0.2, 0.3 and 0.4;
2. A FARIMA(1, d, 0) process, denoted FARIMA(1,d,0), with parameters

σ2 = 4 and d = 0.1, 0.2, 0.3 and 0.4, and AR-parameter α = 0.5 and 0.9;
3. A long-memory causal affine process, denoted LM, defined by:

Xt = a0 εt + ζ(1 + d)−1
∞∑
k=1

k−1−d Xt−k for any t ∈ Z,

with parameters σ2 = 4 and d = 0.1, 0.2, 0.3 and 0.4.
• Several trajectory lengths: n = 300, 1000, 3000 and 10000.
• In the case of the FARIMA process, we compared the accuracy of the QMLE

with the one of the Whittle estimator which also satisfies a central limit theorem
(see [20]). We denote θ̂W = (d̂W , σ̂2

W ) this estimator.

The results are presented in Tables 1, 2 and 3.

The results of Tables 1 and 3 show a weak effect of the value of d on the speed of

10



n d = 0.1, σ2 = 4 d = 0.2, σ2 = 4 d = 0.3, σ2 = 4 d = 0.4, σ2 = 4

300 θ̂n = (d̂n, σ̂
2
n) 0.045 0.327 0.045 0.317 0.046 0.318 0.050 0.327

θ̂W = (d̂W , σ̂2
W ) 0.050 0.327 0.050 0.318 0.051 0.319 0.053 0.332

1000 θ̂n = (d̂n, σ̂
2
n) 0.024 0.179 0.024 0.179 0.025 0.183 0.025 0.184

θ̂W = (d̂W , σ̂2
W ) 0.026 0.179 0.026 0.179 0.026 0.183 0.026 0.185

3000 θ̂n = (d̂n, σ̂
2
n) 0.014 0.103 0.014 0.105 0.014 0.103 0.015 0.100

θ̂W = (d̂W , σ̂2
W ) 0.014 0.103 0.015 0.106 0.014 0.103 0.015 0.100

10000 θ̂n = (d̂n, σ̂
2
n) 0.007 0.056 0.007 0.056 0.008 0.056 0.008 0.052

θ̂W = (d̂W , σ̂2
W ) 0.007 0.056 0.007 0.056 0.008 0.057 0.008 0.052

Table 1: Square roots of the MSE computed for the QMLE θ̂n and the Whittle estima-
tor in the case of a FARIMA process computed from 1000 independent replications.
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Figure 1: Boxplots for estimating d on FARIMA(0, d, 0) processes with the estimators
d̂n and d̂W (denoted dest and dWest for n = 300 (top left), n = 1000 (top right),
n = 3000 (bottom left) and n = 10000 (bottom right).

convergence of the d̂n estimator and, more generally, of θ̂n, which may seem counter-
intuitive since the long memory being stronger, the effect of initial values should
be stronger. To investigate this further, we carried out new numerical studies using
simulations of the FARIMA process for values of d approaching 0.5, i.e. d = 0.43,
d = 0.46 and d = 0.49, and the results are shown in Table 4.

Conclusions of the simulations:
1. The results of the simulations show that the consistency of the QML estimator

θ̂n is satisfied and also that its 1/
√
n convergence rate of the estimators almost

occurs for all processes considered.
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n = 300 n = 1000 n = 3000 n = 10000

d̂n α̂n d̂n α̂n d̂n α̂n d̂n α̂n

d = 0.1 α = 0.5 0.099 0.116 0.063 0.070 0.043 0.048 0.024 0.026
α = 0.9 0.129 0.110 0.060 0.041 0.029 0.017 0.015 0.008

d = 0.2 α = 0.5 0.128 0.140 0.080 0.084 0.041 0.046 0.022 0.023
α = 0.9 0.110 0.084 0.052 0.030 0.028 0.016 0.014 0.009

d = 0.3 α = 0.5 0.148 0.158 0.081 0.088 0.042 0.045 0.023 0.026
α = 0.9 0.103 0.067 0.055 0.034 0.027 0.015 0.016 0.009

d = 0.4 α = 0.5 0.197 0.202 0.119 0.125 0.042 0.045 0.023 0.025
α = 0.9 0.132 0.054 0.069 0.034 0.036 0.017 0.018 0.009

Table 2: Square roots of the MSE computed for the QMLE θ̂n in the case of the
FARIMA(1,d,0) process computed from 1000 independent replications.

n d = 0.1, σ2 = 4 d = 0.2, σ2 = 4 d = 0.3, σ2 = 4 d = 0.4, σ2 = 4

300 θ̂n = (d̂n, σ̂
2
n) 0.048 0.082 0.054 0.083 0.059 0.080 0.065 0.080

1000 θ̂n = (d̂n, σ̂
2
n) 0.025 0.045 0.032 0.047 0.032 0.045 0.038 0.046

3000 θ̂n = (d̂n, σ̂
2
n) 0.014 0.025 0.017 0.027 0.018 0.024 0.020 0.026

10000 θ̂n = (d̂n, σ̂
2
n) 0.008 0.013 0.010 0.013 0.011 0.015 0.012 0.014

Table 3: Square roots of the MSE computed for the QMLE θ̂n in the case of the LM
process computed from 1000 independent replications.

n d = 0.43, σ2 = 4 d = 0.46, σ2 = 4 d = 0.49, σ2 = 4

300 θ̂n = (d̂n, σ̂
2
n) 0.053 0.328 0.065 0.369 0.113 0.633

1000 θ̂n = (d̂n, σ̂
2
n) 0.028 0.177 0.036 0.189 0.066 0.283

3000 θ̂n = (d̂n, σ̂
2
n) 0.016 0.113 0.018 0.109 0.036 0.132

10000 θ̂n = (d̂n, σ̂
2
n) 0.009 0.059 0.011 0.057 0.021 0.071

Table 4: Square roots of the MSE computed for the QMLE θ̂n of FARIMA process
computed from 1000 independent replications when d is close to 0.5.

2. The value of the parameter d seems to have little influence on the speed of conver-
gence of the estimators as long as d does not get too close to 0.5. However, when
we consider values of d which increase towards 0.5, if the rate of convergence still
looks good in

√
n, the asymptotic variance considerably increases.

3. When a short-memory component is added to the long-memory component, as in
the case of a FARIMA(1, d, 0) process, the rate of convergence to d deteriorates,
especially for small trajectories. But the rate of convergence still seems to be in√
n. We can also see that the rate of convergence deteriorates much more sharply

than for the FARIMA(0, d, 0) process as d increases towards 0.5.
4. In the case of the FARIMA process, the comparison between the QML and Whit-

tle estimators leads to very similar results for large n, but for n = 300 the QML
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Figure 2: Recentered series of des monthly temperatures (in degree Celsius) for the
northern hemisphere for the years 1854-1989 (left) and the same series detrended by
simple linear regression (right).

estimator provides slightly more accurate estimate, in particular with a more
centered distribution around the estimated value.

4.2 Application on real data
Here, we will apply the QML estimator to a time series observation known to have
a long memory. These are monthly temperature (in degree Celsius) for the northern
hemisphere for the years 1854-1989, from the data base held at the Climate Research
Unit of the University of East Anglia, Norwich, England. The numbers consist of
the temperature difference from the monthly average over the period 1950-1979. For
our purposes, and given the general rise in temperatures due to climate change, it is
preferable to work on detrended data, for example using simple linear regression, as
had already been done in [7]. Figure 2 shows the two time series:

These data have been studied in [7] (see for example p.179), and Whittle’s estimator of
the long memory parameter for a FARIMA process applied to detrended data yielded
d̂W ≃ 0.37, while the observed path size is n = 1632.
We applied the QML estimator for the FARIMA(0, d, 0) process to this same series
and, as we might have expected, the result was almost identical d̂n ≃ 0.37, with
σ̂n ≃ 0.056. We also applied the QML estimator for processes LM and the result
obtained is rather d̂n ≃ 0.44, which is not very far from the previous value. This
confirms the long-memory nature of this series, and the implementation of a goodness-
of-fit test could enable us to go a little further in choosing between the 2 models or
others (note that such a test has been implemented for FARIMA processes in [14]).

5 Conclusion
In this paper, we have shown that the QML estimator, which offers excellent conver-
gence results for parameters of classical short-memory time series such as GARCH,
ARMA, ARMA-GARCH or APARCH processes, also gives excellent results for long-
memory time series. This had already been established for FARIMA processes, even
with weak white noise, in [13]. And we generalize this to all long-memory linear
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processes, offering a very interesting alternative to Whittle estimation, both from a
theoretical and a numerical point of view.

6 Proofs

6.1 Proofs of the main results
Proof of Proposition 2.1. Using B the lag or backshift linear operator on RZ, we can
denote X = S(B) ε, where X = (Xt)t∈Z and ε = (εt)t∈Z and S(B) =

∑∞
i=0 ai B

i.
We know that there exists a linear operator denoted S−1 such as ε = S−1(B)X.
As a consequence, X = a0 ε + (S(B) − a0 Id) ε = a0 ε + (S(B) − a0 Id)S

−1(B)X =
a0 ε+ (Id − a0 S

−1(B))X which is the affine causal representation of X.
Let Xt = a0 εt +

∑∞
i=1 ui Xt−i. Then, for any t ∈ Z,

Xt = a0 εt +

∞∑
i=1

ui Xt−i

= a0 εt +

∞∑
i=1

∞∑
j=0

ui aj εt−i−j

= a0 εt +

∞∑
k=1

( k−1∑
j=0

uk−j aj

)
εt−k.

As a consequence, denoting u0 = −1, for any k ∈ N∗,

k−1∑
j=0

uk−j aj = ak =⇒
( k∑

i=0

ui

)( k∑
j=0

aj

)
= 0. (6.1)

Finally, since the convergence radius of the power series
∑∞

ℓ=0 aℓ z
ℓ is 1 from

asymptotic expansion (2.1), we deduce that for any z ∈ C, |z| < 1,

( ∞∑
k=0

uk z
k
)( ∞∑

ℓ=0

aℓ z
ℓ
)
= −a0. (6.2)

Now, we are going to use a Karamata Tauberian theorem as it is stated in Corollary
1.7.3 of Bingham et al. (1987):

Fix ρ > 0 and let L a slow varying function. Then if (αn)n∈N is a sequence of
nonnegative real numbers and the power series A(s) =

∑∞
n=0 αn s

n converges for any
s ∈ [0, 1), then

n∑
k=0

αk ∼
n→∞

L(n)nρ ⇐⇒ A(s) ∼ Γ(1 + ρ)

(1− s)ρ
L
(
(1− s)−1

)
as s → 1−. (6.3)
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Note that this result is also established if there exists N0 ∈ N such as (αn)n≥N0 is a
sequence of nonnegative real numbers. We first apply (6.3) to (αn) = (an). Indeed,
from (2.1) and with ρ = d, there exists N0 ∈ N such as (an)n≥N0 is a sequence of
nonnegative real numbers and

∑n
k=0 ak ∼

n→∞
L(n)nρ with L(·) = La(·)

d . Therefore, we
deduce that

∞∑
n=0

an s
n ∼ Γ(1 + d)

d (1− s)d
La

(
(1− s)−1

)
as s → 1−. (6.4)

Therefore, from (6.2), the following expansion can be deduced:

∞∑
n=0

un s
n ∼ −a0 (1− s)d

Γ(d)
L−1
a

(
(1− s)−1

)
as s → 1−. (6.5)

On the other hand, if we consider (6.2) when s → 1−,
∑∞

ℓ=0 aℓ s
ℓ → ∞ since (an)

satisfies (2.1). As a consequence,

∞∑
n=0

un s
n → 0 =

∞∑
n=0

un when s → 1−.

We deduce that un −→
n→∞

0 and the sequence (Un)n∈N can be defined where we denote

Un =
∑∞

k=n+1 uk. But since
∑∞

n=0 un = 0, for any s ∈ [0, 1],

∞∑
k=0

uk s
k = (s− 1)

∞∑
k=0

Uk s
k.

Using (6.5), we deduce

∞∑
k=0

Uk s
k ∼ a0 (1− s)d−1

Γ(d)
L−1
a

(
(1− s)−1

)
as s → 1−.

From (6.1), we also have for any n ∈ N

( n∑
k=0

uk

)( n∑
ℓ=0

aℓ

)
= −a0 (6.6)

Since (an) satisfies (2.1), we know that there exists N0 such as an > 0 and
∑n

ℓ=0 aℓ > 0
for any n ≥ N0. Therefore we know from (6.6) that for any n ≥ N0,

∑n
k=0 uk < 0

and thus Un > 0 since
∑∞

k=0 uk = 0. Thus we can apply (6.3) to (αn) = (Un) with
ρ = 1− d and this induces

n∑
k=0

Uk ∼
n→∞

a0
Γ(d) Γ(2− d)

L−1
a (n)n1−d.

15



Since for n ≥ N0, un > 0, we deduce that (Un) is a positive decreasing sequence for
n ≥ N0. Using again Bingham et al. (1987), we deduce that

Un ∼
n→∞

a0 (1− d)

Γ(d) Γ(2− d)
L−1
a

(
n
)
n−d =

a0
Γ(d) Γ(1− d)

L−1
a

(
n
)
n−d.

To finish with, since (Un) is a positive decreasing sequence for n ≥ N0, we deduce:

un =
a0 d

Γ(d) Γ(1− d)
L−1
a

(
n
)
n−1−d,

and this achieves the proof.

Proof of Theorem 3.1. In the sequel, we will denote for any t ∈ N∗ and θ ∈ Θ,

m̃t(θ) = mt(θ)− m̂t(θ) =

∞∑
k=t

uk(θ)Xt−k. (6.7)

For a random variable Z and r ≥ 1, denote ∥Z∥r =
(
E
[
|Z|r

])1/r.
1. Firstly we prove some useful inequalities.

From the Cauchy-Schwarz Inequality, for any θ ∈ Θ and t ∈ Z,

(
mt(θ)

)2 ≤
( ∞∑

k=1

∣∣uk(θ)
∣∣) ( ∞∑

k=1

∣∣uk(θ)
∣∣X2

t−k

)
≤ sup

θ∈Θ

{ ∞∑
k=1

∣∣uk(θ)
∣∣} sup

θ∈Θ

{ ∞∑
k=1

∣∣uk(θ)
∣∣X2

t−k

}
=⇒

∥∥ sup
θ∈Θ

∣∣mt(θ)
∣∣∥∥2

2
≤
(
sup
θ∈Θ

{ ∞∑
k=1

∣∣uk(θ)
∣∣})2 ∥∥X0

∥∥2
2
< ∞,

since (uk) follows (3.2), Θ is a compact subset, θ ∈ Θ 7→ uk(θ) is a continuous function
for any k ≥ 1 and d(θ) ∈ (0, 1/2).
Using the same inequalities we also obtain that there exists C2 > 0 such that for any
t ≥ 1,

∥∥ sup
θ∈Θ

∣∣m̂t(θ)
∣∣∥∥2

2
< ∞

and
∥∥ sup

θ∈Θ

∣∣m̃t(θ)
∣∣∥∥2

2
≤
(
sup
θ∈Θ

{ ∞∑
k=t+1

∣∣uk(θ)
∣∣})2 ∥∥X0

∥∥2
2
≤ C2 t

−2 d, (6.8)

with 0 < d < infθ∈Θ d(θ) from the condition (3.2) on (un(θ)).
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Finally with  qt(θ) = − 1
2

(
log
(
σ2
)
+

(
Xt−mt(θ)

)2
σ2

)
q̂t(θ) = − 1

2

(
log
(
σ̂2
)
+

(
Xt−m̂t(θ)

)2
σ2

) , (6.9)

we obtain from the previous bounds and σ2 ∈ [σ2
m, σ2

M ] where 0 < σ2
m < σ2

M ,

sup
θ∈Θ

∣∣qt(θ)∣∣ ≤ sup
θ∈Θ

{ 1

σ2
m

(
X2

t +m2
t (θ)

)
+

1

2

∣∣ log(σ2
M )
∣∣}

=⇒
∥∥∥ sup

θ∈Θ

∣∣qt(θ)∣∣∥∥∥
1
≤ 1

σ2
m

(
∥Xt∥22 +

∥∥ sup
θ∈Θ

∣∣mt(θ)
∣∣∥∥2

2

)
+

1

2

∣∣ log(σ2
M )
∣∣

< ∞. (6.10)

And to conclude with these preliminary bounds, using Cauchy-Schwarz and the
triangular inequality, there exists C > 0 such as for t ≥ 1,∥∥∥ sup

θ∈Θ

∣∣qt(θ)− q̂t(θ)
∣∣∥∥∥

1
≤ 1

2

∥∥∥ sup
θ∈Θ

∣∣2Xt +mt(θ) + m̂t(θ)
∣∣∥∥∥

2

∥∥∥ sup
θ∈Θ

∣∣m̃t(θ)
∣∣∥∥∥

2

≤ 1

2

(
2 ∥X2

0∥22 +
∥∥ sup

θ∈Θ

∣∣mt(θ)
∣∣∥∥2

2
+
∥∥ sup

θ∈Θ

∣∣m̂t(θ)
∣∣∥∥2

2

) (
C2 t

−2 d
)1/2

≤ C t−d. (6.11)

2. From its AR(∞) representation (2.1), and since ∥X0∥2 < ∞, then (Xt)t∈Z is a
second order ergodic stationary sequence (see Theorem 36.4 in Billingsley, 1995). But
for any θ ∈ Θ, there exists Hq

θ : RN → R such that

qt(θ) = Hq
θ

(
(εt−j)j≥0

)
,

with also E
[∣∣qt(θ)∣∣] < ∞ from (6.10). Then using Theorem 36.4 in Billingsley (1995),(

qt(θ)
))

t∈Z is an ergodic stationary sequence for any θ ∈ Θ and therefore

In(θ)
a.s.−→

n→∞
E
[
q0(θ)

]
for any θ ∈ Θ,

with In(θ) defined in (3.6). Moreover, since Θ is a compact set and since we have
E
[
supθ∈Θ

∣∣qt(θ)∣∣] < ∞ from (6.10), using Theorem 2.2.1. in Straumann (2005), we
deduce that

(
qt(θ)

))
t∈Z also follows a uniform ergodic theorem and we obtain

sup
θ∈Θ

∣∣In(θ)− E
[
q0(θ)

]∣∣ a.s.−→
n→∞

0. (6.12)

Now, using În(θ) defined in (3.8), we can write

sup
θ∈Θ

∣∣In(θ)− În(θ)
∣∣ ≤ 1

n

n∑
t=1

sup
θ∈Θ

∣∣qt(θ)− q̂t(θ)
∣∣. (6.13)
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In Corollary 1 of Kounias and Weng (1969), it is established that for a L1 sequence of
r.v. (Zt)t and a sequence of positive real numbers (bn)n∈N∗ such as bn −→

n→∞
∞, then∑∞

t=1

E
[
|Zt|
]

bt
< ∞ implies 1

bn

∑n
t=1 Zt

a.s.−→
n→∞

0.

Therefore, with bt = t and Zt = supθ∈Θ

∣∣qt(θ)− q̂t(θ)
∣∣ for t ∈ N∗, using the inequality

(6.11),

∞∑
t=1

1

t
E
[
sup
θ∈Θ

∣∣qt(θ)− q̂t(θ)
∣∣] ≤ C

∞∑
t=1

t−d−1 < ∞

=⇒ 1

n

n∑
t=1

sup
θ∈Θ

∣∣qt(θ)− q̂t(θ)
∣∣ a.s.−→
n→∞

0.

Then, using (6.13) and (6.12), we deduce:

sup
θ∈Θ

∣∣În(θ)− E
[
q0(θ)

]∣∣ a.s.−→
n→∞

0. (6.14)

3. Finally, the same argument already detailed in the proof of Theorem 1 of Bardet
and Wintenberger (2009) is used: θ ∈ Θ 7→ E

[
q0(θ)

]
has a unique maximum reached in

θ = θ∗ ∈ Θ because it is assumed that if un(θ) = un(θ
′) for all n ∈ N∗ with θ = (γ, σ2)

and θ′ = (γ′, σ2), then θ = θ′. This property and the uniform almost sure consistency
(6.14) lead to θ̂n

a.s.−→
n→∞

θ∗.

Proof of Theorem 3.2. As a preamble to this proof, since θ̂n
a.s.−→

n→∞
θ∗ by Theorem 3.1,

we will be able to reduce the Θ domain. Let Θ̃ ⊂ Θ be a compact set of Rp such that:

Θ̃ =
{
θ ∈ Θ, 2d(θ∗)− 1/2 < inf

θ∈Θ̃
d(θ) < d(θ∗)

}
.

Note that 2d(θ∗)− 1/2 < d(θ∗), so it’s still possible to determine Θ̃.
In the spirit of (3.9), let’s define

θ̃n = Argmax
θ∈Θ̃

În(θ).

Using Theorem 3.1, it is clear that θ̃n
a.s.−→

n→∞
θ∗. Moreover, for all x = (x1, . . . , xp) ∈ Rp,

P
(√

n
(
θ̂n − θ∗

) p
×
j=1

(−∞, xj ]
)

= P
(√

n
(
θ̂n − θ∗

)
∈

p
×
j=1

(−∞, xj ]
∣∣ θ̂n ∈ Θ̃

)
P
(
θ̂n ∈ Θ̃

)
+P
(√

n
(
θ̂n − θ∗

)
∈

p
×
j=1

(−∞, xj ]
∣∣ θ̂n /∈ Θ̃

)
P
(
θ̂n /∈ Θ̃

)
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= P
(√

n
(
θ̃n − θ∗

)
∈

p
×
j=1

(−∞, xj ]
)
P
(
θ̂n ∈ Θ̃

)
+P
(√

n
(
θ̃n − θ∗

)
∈

p
×
j=1

(−∞, xj ]
)
P
(
θ̂n /∈ Θ̃

)
Since θ̂n

a.s.−→
n→∞

θ∗ by Theorem 3.1 and therefore P
(
θ̂n /∈ Θ̃

)
−→
n→∞

0 because θ∗ ∈ Θ̃, it

is clear that the asymptotic distribution of
√
n
(
θ̂n − θ∗

)
is the same as the one of

√
n
(
θ̃n − θ∗

)
. Consequently, throughout the rest of the proof, Θ will be replaced by

Θ̃ and θ̂n by θ̃n.

In the sequel, for θ ∈ Θ̃, we will denote d = d(θ) − ε and d∗+ = d∗ + ε where
d∗ = d(θ∗) is the unknown long-memory parameter, and we chose ε > 0 such as
ε ≤ 1

6

(
1−4d(θ)+2d(θ∗)

)
. Hence, from the definition of Θ̃, 1−4d(θ)+2d(θ∗) > 0 and

4 d∗+ − 2 d− 1 < 0. (6.15)

From Assumption (A), for any θ ∈ Θ̃ and t ∈ Z, ∂θmt(θ) and ∂2
θmt(θ) a.s. exist with

∂θmt(θ) =

∞∑
k=1

∂θuk(θ)Xt−k and ∂2
θ2mt(θ) =

∞∑
k=1

∂2
θ2uk(θ)Xt−k.

And the same for ∂θm̂t(θ), ∂θm̃t(θ), ∂2
θm̂t(θ) and ∂2

θm̃t(θ). However, note that for any
θ ∈ Θ̃, (mt(θ))t, (∂θmt(θ))t and (∂2

θ2mt(θ))t are stationary processes while (m̂t(θ))t,
(m̃t(θ))t and their derivatives are not.

Due to these results, for any θ ∈ Θ̃:

∂θqt(θ) =
(

∂γqt(θ)
∂σ2qt(θ)

)
=

( 1
σ2 ∂γmt(θ)

(
Xt −mt(θ)

)
1

2σ4

((
Xt −mt(θ)

)2 − σ2
) ) , (6.16)

and the same for ∂θ q̂t(θ) by replacing mt(θ) by m̂t(θ). Once again for any θ ∈ Θ̃,
(∂θqt(θ))t is a stationary process, while (∂θ q̂t(θ))t is not. Finally, for all θ ∈ Θ̃, define

∂θLn(θ) =
1

n

n∑
t=1

∂θqt(θ) and ∂θL̂n(θ) =
1

n

n∑
t=1

∂θ q̂t(θ).

Following the same reasoning it can be shown that for any t ∈ Z, θ ∈ Θ̃ 7→ qt(θ) and
θ ∈ Θ̃ 7→ q̂t(θ) are a.s. C2(Θ̃) functions and therefore the random matrices ∂2

θ2Ln(θ)

and ∂2
θ2L̂n(θ) a.s. exist.

The proof of Theorem 3.2 will be decomposed in 3 parts:
1. First, as it was already established in Bardet and Wintenberger (2009), (∂θqt(θ∗))t

is a stationary ergodic martingale difference since with the σ-algebra Ft =
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σ
{
(Xt−k)k≥1

}
,

E
[
∂θqt(θ

∗)
∣∣Ft

]
= 0,

because (Xt) is a causal process and εt is independent of Ft and E
[
ε20
]
= 1.

Now since E
[∥∥∂θq0(θ∗)∥∥2] < ∞ from the same arguments as in the proof of

the consistency of the estimator. Then the central limit for stationary ergodic
martingale difference, Theorem 18.3 of Billingsley (1968) can be applied and

√
n∂θLn(θ

∗)
L−→

n→∞
N
(
0 , G∗), (6.17)

since E
[
∂θq0(θ

∗)
]
= 0 and where G∗ := E

[
∂θq0(θ

∗)× t
(
∂θq0(θ

∗)
)]

.
2. We are going to prove that:

nE
[
sup
θ∈Θ̃

∥∥∂θL̂n(θ)− ∂θLn(θ)
∥∥2] −→

n→∞
0. (6.18)

Using a line of reasoning already used in Beran and Schützner (2009, Lemma 1
and 2) and Bardet (2023, Lemma 5.1 3.), and derived from Parzen (1995, Theorem
3.B), there exists C > 0 such that:

E
[
sup
θ∈Θ̃

∥∥∂θL̂n(θ)− ∂θLn(θ)
∥∥2] ≤ C sup

θ∈Θ̃

E
[∥∥∂θL̂n(θ)− ∂θLn(θ)

∥∥2],
because we assumed that θ → un(θ) is a Cp+1(Θ̃) function and therefore ∂θL̂n(θ)−
∂θLn(θ) is a Cp(Θ̃) function.
Then, for θ ∈ Θ̃,

∂γqt(θ)− ∂γ q̂t(θ) =
1

σ2

(
∂γm̃t(θ)

(
Xt −mt(θ)

)
+ ∂γm̂t(θ) m̃t(θ)

)
.

As a consequence, for θ ∈ Θ̃,

nE
[∥∥∂θL̂n(θ)− ∂θLn(θ)

∥∥2]
=

1

nσ4

(
2
∑

1≤s<t≤n

E
[
t
(
∂γm̃t(θ)

(
Xt −mt(θ)

)
+ ∂γm̂t(θ) m̃t(θ)

)
×
(
∂γm̃s(θ)

(
Xs −ms(θ)

)
+ ∂γm̂s(θ) m̃s(θ)

)]
+

n∑
t=1

E
[
t
(
∂γm̃t(θ)

(
Xt −mt(θ)

)
+ ∂γm̂t(θ) m̃t(θ)

)
×
(
∂γm̃t(θ)

(
Xt −mt(θ)

)
+ ∂γm̂t(θ) m̃t(θ)

)])
=

1

nσ4

(
I1 + I2

)
. (6.19)
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Concerning I1, since Xt = σ∗ εt +mt(θ
∗) and since εt is independent to all the

other terms because s < t, we deduce that
(
Xt − mt(θ)

)
can be replaced by

nt(θ, θ
∗) =

(
mt(θ

∗) − mt(θ)
)
. As a consequence, after its expansion, I1 can be

written as a sum of 6 expectations of products of 4 linear combinations of (εt).
Moreover, if for j = 1, . . . , 4, Y (j)

tj =
∑∞

k=0 β
(j)
k ξtj−k, where t1 ≤ t2 ≤ t3 ≤ t4,

(β
(j)
n )n∈N are 4 real sequences and (ξt)t∈Z is a white noise such as E[ξ20 ] = 1 and

E[ξ40 ] = µ4 < ∞, then:

E
[ 4∏
j=1

Y
(j)
tj

]
= (µ4 − 3)

∞∑
k=0

β
(1)
k β

(2)
t2−t1+kβ

(3)
t3−t1+kβ

(4)
t4−t1+k

+ E
[
Y

(1)
t1 Y

(2)
t2

]
E
[
Y

(3)
t3 Y

(4)
t4

]
+ E

[
Y

(1)
t1 Y

(3)
t3

]
E
[
Y

(2)
t2 Y

(4)
t4

]
+ E

[
Y

(1)
t1 Y

(4)
t4

]
E
[
Y

(2)
t2 Y

(3)
t3

]
.

Now, consider for example Y (1)
t1 = ∂γm̃s(θ), Y

(2)
t2 =

(
Xs−ms(θ)

)
, Y (3)

t3 = ∂γm̂t(θ)

and Y
(4)
t4 = m̃t(θ). From Lemma 6.1 and for any used sequence (β

(j)
k )k∈N, there

exists C > 0 such as for any k ∈ N:

∣∣β(1)
k

∣∣ ≤ C

sd (k + 1)1−d∗
+
,
∣∣β(4)

k

∣∣ ≤ C

td (k + 1)1−d∗
+

and max
(∣∣β(2)

k ,
∣∣β(3)

k

∣∣) ≤ C

(k + 1)1−d∗
+
.

As a consequence, with s < t,

∣∣∣(µ4 − 3)

∞∑
k=0

β
(1)
k β

(2)
k β

(3)
t−s+kβ

(4)
t−s+k

∣∣∣ ≤ C

sdtd

∞∑
k=1

1

k2−2d∗
+

1

(k + t− s)2−2d∗
+

≤ C

sdtd(t− s)2−2d∗
+
. (6.20)

And we obtain the same bound for any quadruple products appearing in I1.

Consider now the other terms of I1. Using Lemmas 6.3 and 6.4, we obtain for
any θ ∈ Θ̃ and s < t:

•
∣∣∣E[Y (1)

t1 Y
(2)
t2

]
E
[
Y

(3)
t3 Y

(4)
t4

]∣∣∣ = ∣∣∣E[∂γm̃s(θ)
(
Xs −ms(θ)

)]
E
[
∂γm̂t(θ) m̃t(θ)

]∣∣∣
=
∣∣∣E[∂γm̃s(θ)ns(θ, θ

∗)
)]∣∣∣ ∣∣∣E[∂γm̂t(θ) m̃t(θ)

]∣∣∣
≤ C

1

s1+d−2d∗
+

1

t1+d−2d∗
+
;

•
∣∣∣E[Y (1)

t1 Y
(3)
t3

]
E
[
Y

(2)
t2 Y

(4)
t4

]∣∣∣ = ∣∣∣E[∂γm̃s(θ) ∂γm̂t(θ)
]
E
[(
Xs −ms(θ)

)
m̃t(θ)

]∣∣∣
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=
∣∣∣E[∂γm̃s(θ) ∂γm̂t(θ)

)]∣∣∣ ∣∣∣E[ns(θ, θ
∗) m̃t(θ)

]∣∣∣
≤ C

( 1

sdt1−2d∗
+
+

1

s1+2d−2d∗
+

)( 1

t1+ds−2d∗
+
+

1

t1+2d−2d∗
+

)
•
∣∣∣E[Y (1)

t1 Y
(4)
t4

]
E
[
Y

(2)
t2 Y

(3)
t3

]∣∣∣ = ∣∣∣E[∂γm̃s(θ) m̃t(θ)
]
E
[(
Xs −ms(θ)

)
∂γm̂t(θ)

]∣∣∣
=
∣∣∣E[∂γm̃s(θ) m̃t(θ)

]∣∣∣ ∣∣∣E[ns(θ, θ
∗) ∂γm̂t(θ)

]∣∣∣
≤ C

1

sdt1−2d∗
++d

1

(t− s)1−2d∗
+

Using these inequalities as well as (6.20), we deduce from classical comparisons
between sums and integrals:∑

1≤s<t≤n

E
[
t
(
∂γm̃t(θ)

(
Xt −mt(θ)

)
∂γm̂s(θ) m̃s(θ)

)]
≤ C

∑
1≤s<t≤n

µ4 − 3

sdtd(t− s)2−2d∗
+
+
( 1

sdt1−2d∗
+
+

1

s1+2d−2d∗
+

)( 1

t1+ds−2d∗
+
+

1

t1+2d−2d∗
+

)
+

1

s1+d−2d∗
+

1

t1+d−2d∗
+
+

1

sdt1−2d∗
++d

1

(t− s)1−2d∗
+

≤ C
(∫ n

1

x2d∗
+−1−2ddx+

∫ n

1

dx

x2+d−2d∗
+

∫ x

1

dy

yd−2d∗
+

+

∫ n

1

dx

x2+2d−4d∗
+

∫ x

1

dy

yd
+

∫ n

1

dx

x1+d

∫ x

1

dy

y1+2d−4d∗
+

+

∫ n

1

dx

x1+2d−2d∗
+

∫ x

1

dy

y1+2d−2d∗
+
+

∫ n

1

dx

x1+d−2d∗
+

∫ x

1

dy

y1+d−2d∗
+

+

∫ n

1

dx

x1+d−2d∗
+

∫ x

1

dy

yd(x− y)1−2d∗
+

)
≤ C

(
n2d∗

+−2d + n4d∗
+−2d + n4d∗

+−3d + n4d∗
+−3d + n4d∗

+−4d + n4d∗
+−2d + n4d∗

+−2d
)

≤ C n4d∗
+−2d.

We obtain exactly the same bounds if we consider the 3 others expectations, i.e.
E
[
t
(
∂γm̃t(θ)

(
Xt −mt(θ)

))
∂γm̃s(θ)

(
Xs −ms(θ)

)]
,

E
[
t
(
∂γm̂t(θ) m̃t(θ)

)
∂γm̃s(θ)

(
Xs − ms(θ)

))]
or

E
[
t
(
∂γm̂t(θ) m̃t(θ)

)
∂γm̂s(θ) m̃s(θ)

)]
. As a consequence, we finally obtain:

1

σ4 n
I1 ≤ C n4d∗

+−2d−1 for any n ∈ N∗. (6.21)

Now consider the term I2 in (6.19) and therefore the case s = t. For Y
(1)
t1 =

∂γm̃t(θ), Y
(2)
t2 =

(
Xt − mt(θ)

)
, Y

(3)
t3 = ∂γm̂t(θ) and Y

(4)
t4 = m̃t(θ), and the
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coefficient (β
(j)
k ) defined previously, we obtain:

∣∣∣(µ4 − 3)

∞∑
k=0

β
(1)
k β

(2)
k β

(3)
k β

(4)
k

∣∣∣ ≤ C

∞∑
k=1

1

t2d
1

k4−4d∗
+

≤ C
1

t2d
. (6.22)

Moreover, using the same inequalities as in the case s < t, we obtain:

•
∣∣∣E[Y (1)

t1 Y
(2)
t2

]
E
[
Y

(3)
t3 Y

(4)
t4

]∣∣∣ ≤ C
1

t2+2d−4d∗
+
;

•
∣∣∣E[Y (1)

t1 Y
(3)
t3

]
E
[
Y

(2)
t2 Y

(4)
t4

]∣∣∣ ≤ C
1

t2+2d−4d∗
+

•
∣∣∣E[Y (1)

t1 Y
(4)
t4

]
E
[
Y

(2)
t2 Y

(3)
t3

]∣∣∣ ≤ C
1

t1−2d∗
++2d

.

Therefore,

n∑
t=1

E
[
t
(
∂γm̃t(θ)

(
Xt −mt(θ)

)
∂γm̂t(θ) m̃t(θ)

)]
≤ C

n∑
t=1

µ4 − 3

t2d
+

1

t1−2d∗
++2d

≤ C n1−2d.

As a consequence, we finally obtain that there exists C > 0 such that:

1

σ4 n
I2 ≤ C n−2d for any n ∈ N∗. (6.23)

Therefore, from (6.21) and (6.23), we deduce that there exists C > 0 such that
for any n ∈ N∗:

nE
[∥∥∂θL̂n(θ)− ∂θLn(θ)

∥∥2] ≤ C
(
n−2d + n4d∗

+−2d−1
)
−→
n→∞

0, (6.24)

from (6.15).
3. For θ ∈ Θ̃ and n ∈ N∗, since ∂2

θ2L̂n(θ) is a.s. a C2(Θ̃) function, the Taylor-
Lagrange expansion implies:

√
n∂θL̂n(θ

∗) =
√
n∂θL̂n(θ̃n) + ∂2

θ2L̂n(θ̄n)×
√
n (θ∗ − θ̃n)

where θ̄n = c θ̃n + (1− c) θ∗ and 0 < c < 1. But ∂θL̂n(θ̃n) = 0 because θ̃n is the
unique local extremum of θ → L̂n(θ). Therefore,

√
n∂θL̂n(θ

∗) = ∂2
θ2L̂n(θ̄n)×

√
n (θ∗ − θ̃n). (6.25)

Now, E
[∥∥∂2

θ2q0(θ)
∥∥] < ∞ from the same arguments as in the proof of the

consistency of the estimator, and using Theorem 36.4 in Billingsley (1995),
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(
∂2
θ2qt(θ)

))
t∈Z is an ergodic stationary sequence for any θ ∈ Θ̃. Moreover

θ̄n
a.s.−→

n→∞
θ∗ since θ̃n

a.s.−→
n→∞

θ∗. Hence:

∂2
θ2Ln(θ̄n)

a.s.−→
n→∞

E
[
∂2
θ2q0(θ)

]
= F (θ∗).

Moreover, using the same arguments as in Lemma 4 of [5], we have:

sup
θ∈Θ̃

∥∥∥∂2
θ2Ln(θ)− ∂2

θ2L̂n(θ)
∥∥∥ P−→

n→∞
0 =⇒ ∂2

θ2L̂n(θ̄n)
P−→

n→∞
F (θ∗). (6.26)

Usual calculations show that:

F (θ∗) = −
(
M∗ 0
0 1

2σ∗4

)
and G(θ∗) =

(
M∗ 0

0
µ∗
4−1

4σ∗4

)
,

with M∗ =
1

σ∗2

∞∑
k=1

∞∑
ℓ=1

∂γuk((γ
∗, 0)) t

(
∂γuℓ((γ

∗, 0))
)
rX(ℓ− k)

where G(θ∗) = E [∂θq0(θ
∗) t∂θq0(θ

∗)] has already been defined in (6.17).
Thanks to the formula for M∗, we can deduce that F ∗ is invertible. Indeed, M∗

is invertible if and only if E [∂θq0(θ
∗) t∂θq0(θ

∗)] is invertible and therefore if and
only if for all v ∈ Rp−1, tv E [∂γq0(θ

∗) t∂θq0(θ
∗)] v = E

[(
tv ∂γq0(θ

∗)
)2]

= 0 or
tv ∂γq0(θ

∗) = 0 a.s. implies v = 0. Or, pour v ∈ Rp−1,

tv ∂γq0(θ
∗) = 0 a.s. =⇒ 1

σ∗2 ε0

∞∑
k=1

tv ∂γuk(θ
∗)X−k = 0 a.s.

=⇒
∞∑
k=1

tv ∂γuk(θ
∗)X−k = 0 a.s. (ε0 is independent to F0)

=⇒ tv ∂γuk(θ
∗) = 0 for all k ∈ N∗

=⇒ v = 0 from (3.11).

Now, from (6.17) and (6.24), we deduce that:

√
n∂θL̂n(θ

∗)
L−→

n→∞
N
(
0 , G(θ∗)

)
,

and since F (θ∗) is a definite negative matrix, from (6.25) we deduce that

√
n
(
θ̃n − θ∗

) L−→
n→∞

N
(
0 , F (θ∗)−1 G(θ∗)F (θ∗)−1

)
. (6.27)

Finally, from the previous computations of G(θ∗) and F (θ∗), we deduce (3.12).
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6.2 Proofs of additional lemmas
Lemma 6.1. Under the assumptions of Theorem 3.1, for any θ ∈ Θ and t ∈ Z or t ∈ N∗,
with mt(θ), m̂t(θ) and m̃t(θ) respectively defined in (3.5), (3.7) and (6.7), we have:

mt(θ) =

∞∑
k=1

αk(θ, θ
∗) εt−k, m̂t(θ) =

∞∑
k=1

α̂k,t(θ, θ
∗) εt−k and m̃t(θ) =

∞∑
k=0

α̃k,t(θ, θ
∗) ε−k,

where there exists C > 0 such as for any k ≥ 1 and t ∈ N∗,

max
(∣∣αk(θ, θ

∗)
∣∣ , ∣∣α̂k,t(θ, θ

∗)
∣∣) ≤ C

k1−d∗
+

and
∣∣α̃k,t(θ, θ

∗)
∣∣ ≤ C

td k1−d∗
+
.

Moreover, under the assumptions of Theorem 3.2, the same properties also hold for
∂θmt(θ), ∂θm̂t(θ) and ∂θm̃t(θ).

Proof. We know that Xt =
∑∞

ℓ=0 aℓ(θ
∗) εt−ℓ for any t ∈ Z. Then,

mt(θ) =

∞∑
k=1

∞∑
ℓ=0

uk(θ)aℓ(θ
∗) εt−k−ℓ =

∞∑
j=1

( j∑
k=1

uk(θ)aj−k(θ
∗)
)
εt−j

=

∞∑
j=1

αj(θ, θ
∗) εt−j

m̂t(θ) =

t−1∑
k=1

∞∑
ℓ=0

uk(θ)aℓ(θ
∗) εt−k−ℓ =

∞∑
j=1

(min(j , t−1)∑
k=1

uk(θ)aj−k(θ
∗)
)
εt−j

=

∞∑
j=1

α̂j,t(θ, θ
∗) εt−j

m̃t(θ) =

∞∑
k=t

∞∑
ℓ=0

uk(θ)aℓ(θ
∗) εt−k−ℓ =

∞∑
j=0

( j∑
k=0

ut+k(θ)aj−k(θ
∗)
)
εt−j

=

∞∑
j=0

α̃j,t(θ, θ
∗) εt−j

As a consequence, using
∣∣aℓ(θ∗)∣∣ ≤ C ℓd

∗
+−1 and

∣∣uℓ(θ)
∣∣ ≤ C ℓ−d−1 for any ℓ ∈ N∗, we

obtain:

∣∣αj(θ, θ
∗)
∣∣ ≤ C

j∑
k=1

1

k1+d

1

(1 + j − k)1−d∗
+

≤ C
( 1

(j/2)1−d∗
+

j/2∑
k=1

1

k1+d
+

1

(j/2)1+d

j∑
k=j/2

1

(1 + j − k)1−d∗
+

)
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≤ C

j1−d∗
+
.

Using the same kind of decomposition, we obtain the other bounds.

Lemma 6.2. For any α > 1, β ∈ (0, 1), there exists C > 0 such as for any 1 ≤ a,

Iα(a) =

∞∑
k=1

1

kα (k + a)α
≤ C

aα

Iα(a, b) =

∞∑
k=1

1

(k + a)α (k + b)α
≤ C

aα−1 bα
for any b > a ≥ 1

Jα,β(0, a) =

∞∑
k=1

1

(k + a)α kβ
≤ C

aα+β−1

Jα,β(a, 0) =

∞∑
k=1

1

kα (k + a)β
≤ C

aβ

Jα,β(a, b) =

∞∑
k=1

1

(k + a)β (k + b)α
≤ C

aβbα−1
min

(
1 ,

a

b

)
for any b ≥ 1

Lemma 6.3. Under the assumptions of Theorem 3.1, there exists C > 0 such as for
any θ ∈ Θ and 1 ≤ s ≤ t ≤ n,

∣∣E[m̃s(θ) m̃t(θ)
]∣∣ ≤ C

sdt1−2d∗
++d

. (6.28)

Proof. Using the bounds of functions I1+d and J1+d,1−2d defined in Lemma 6.2, we
obtain

E
[
m̃s(θ) m̃t(θ)

]
=

∞∑
k=s

∞∑
ℓ=t

uk(θ)uℓ(θ) rX(t− s+ k − ℓ)

≤ C

∞∑
k=1

∞∑
ℓ=1

1

(s+ k)1+d

1

(t+ ℓ)1+d

1

(1 + |k − ℓ|)1−2d∗
+

≤ C
( ∞∑

j=1

1

(1 + j)1−2d∗
+

∞∑
ℓ=1

1

(ℓ+ s+ j)1+d(ℓ+ t)1+d
+

∞∑
k=1

1

(k + s)1+d(k + t)1+d

)
+

∞∑
j=1

1

(1 + j)1−2d∗
+

∞∑
k=1

1

(k + s)1+d(k + t+ j)1+d

)
≤ C

(
I1+d(s, t) +

∞∑
j=1

1

(1 + j)1−2d∗
+

(
I1+d(s+ j, t) + I1+d(s, t+ j)

))

≤ C
( 1

sdt1+d
+

1

sd
J1+d,1−2d∗

+
(0, t) +

1

td+1

t−s∑
j=1

1

(1 + j)1−2d∗
+

1

(s+ j)d
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+
1

td

∞∑
j=t−s

1

(1 + j)1−2d∗
+

1

(s+ j)1+d

)
≤ C

( 1

sdt1+d
+

1

sdt1−2d∗
++d

+
1

sdtd+1
(t− s+ 1)2d

∗
+ +

1

td
J1+d,1−2d∗

+
(t− s, t)

)
≤ C

( 1

sdt1+d
+

1

sdt1−2d∗
++d

+
1

sdt1−2d∗
++d

+
1

t
J1+d,1−2d∗

+
(t− s, t)

)
≤ C

sdt1−2d∗
++d

.

Lemma 6.4. Under the assumptions of Theorem 3.1, there exists C > 0 such as for
any θ ∈ Θ and any 1 ≤ s and 1 ≤ t,

∣∣E[m̃s(θ)mt(θ)
]∣∣ ≤


C
( 1

sdt1−2d∗
+
+

(1 + t− s)2d
∗
+

s1+2d

)
if s ≤ t

C
( t2d∗

+

s1+d
+

(1 + s− t)2d
∗
+

s1+dtd

)
if s ≥ t

. (6.29)

Proof.

E
[
m̃s(θ)mt(θ)

]
=

∞∑
k=s

∞∑
ℓ=1

uk(θ)uℓ(θ) rX(t− s+ k − ℓ)

≤ C

∞∑
k=1

∞∑
ℓ=1

1

(s+ k)1+d

1

ℓ1+d

1

(1 + |t+ k − ℓ|)1−2d∗
+

≤ C
( ∞∑

j=1

1

(1 + t+ j)1−2d∗
+

∞∑
ℓ=1

1

(ℓ+ s+ j)1+dℓ1+d

+

t∑
j=1

1

(1 + t− j)1−2d∗
+

∞∑
k=1

1

(k + s)1+d(k + j)1+d

+

∞∑
j=t

1

(1 + j − t)1−2d∗
+

∞∑
k=1

1

(k + s)1+d(k + j)1+d

)

≤ C
( ∞∑

j=1

1

(t+ j)1−2d∗
+
I1+d(s+ j, 0) +

t∑
j=1

1

j1−2d∗
+
I1+d(s, t− j)

+

∞∑
j=1

1

j1−2d∗
+
I1+d(s, j + t)

)
.
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Then, if s ≤ t,

∣∣E[m̃s(θ)mt(θ)
]∣∣ ≤ C

(
J1+d,1−2d∗

+
(t, s) +

1

sd

t−s∑
j=1

1

j1−2d∗
+

1

(t− j)1+d

+
1

s1+d

s∑
j=1

1

(t− j)1−2d∗
+

1

(s− j)1+d
+

1

sd
J1+d,1−2d∗

+
(0, t)

)
≤ C

( 1

sdt1−2d∗
+
+

1

s2dt1−2d∗
+
+

1

s1+2d−2d∗
+
+

1

sdt1+d−2d∗
+

)
≤ C

( 1

sdt1−2d∗
+
+

1

s1+2d−2d∗
+

)
.

And if s > t,

∣∣E[m̃s(θ)mt(θ)
]∣∣ ≤ C

(
J1+d,1−2d∗

+
(t, s) +

1

s1+d

t∑
j=1

1

j1−2d∗
+

1

(t− j)1+d

+
1

s1+d

s−t∑
j=1

1

j1−2d∗
+

1

(t+ j)d
+

1

sd

∞∑
j=s−t

1

j1−2d∗
+

1

(t+ j)1+d

)
≤ C

( 1

s1+dt−2d∗
+
+

1

s1+dt1−2d∗
+
+

1

s1+2d−2d∗
+
+

1

s1+2d−2d∗
+

)
≤ C

( 1

s1+dt−2d∗
+
+

1

s1+2d−2d∗
+

)
.
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