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Abstract

The purpose of this paper is to study the convergence of the quasi-maximum likelihood

(QML) estimator for long memory linear processes. We first establish a correspondence be-

tween the long-memory linear process representation and the long-memory AR(∞) process rep-

resentation. We then establish the almost sure consistency and asymptotic normality of the

QML estimator. Numerical simulations illustrate the theoretical results and confirm the good

performance of the estimator.
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1 Introduction

Since Hurst’s (1953) introduction of long-range dependent processes, much research has focused

on estimating the long-range parameter, whether defined on the basis of the asymptotic power-law

behavior of the correlogram at infinity or that of the spectral density at zero (see the monographs

[5] and [14] for more details).

Two estimation frameworks have been studied extensively. The first focused on the estimation of

the long-memory parameter alone, but could be carried out in a semi-parametric framework, ı.e. if

only the asymptotic behavior of the correlation or spectral density was specified. This led to the first

methods proposed historically, such as those based on the R/S statistic, on quadratic variations, on

the log-periodogram, or more recent methods such as wavelet or local Whittle (again, see [14] for

more details).

Here we are interested in a more parametric framework, and in estimating all the parameters of the

process, not just the long memory parameter. The first notable results on the asymptotic behavior

of such a parametric estimator were obtained in Fox and Taqqu (1986) (see [16]) in the special case

of Gaussian long-memory processes, using the Whittle estimator. These results were extended to

linear long-memory processes with a moment of order 4 by Giraitis and Surgailis (1990) (see [17]).

In both settings, the asymptotic normality of the estimator was proved, while non-central limit the-

orems were obtained for functions of Gaussian processes in [18] or for increments of the Rosenblatt

process in [3]. The asymptotic normality of the maximum likelihood estimator for Gaussian time
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series was also obtained by Dahlhaus (1989, see [12]) using that of the Whittle estimator obtained

in Fox and Taqqu (1986).

For weakly dependent time series, especially for conditionally heteroscedastic processes such as

GARCH processes, the quasi-maximum likelihood (QML) estimator has become the benchmark

for parametric estimation, providing very interesting convergence results where Whittle’s estima-

tor would not. This is true for GARCH or ARMA-GARCH processes (see [7] and [15]), but also

for many others such as ARCH(∞), AR(∞), APARCH processes, etc. (see [4]). We will also

note convergence results for this modified estimator for long-memory squares processes, typically

LARCH(∞) processes, see [6], or quadratic autoregressive conditional heteroscedastic processes, see

[13]. But for long-memory processes, such as those defined by a non-finite sum of their autocorrela-

tions, to our knowledge only the paper by Boubacar Mainassara et al. (2021) (see [11]) has shown

the normality of this QML estimator in the special case of a FARIMA(p, d, q) process with weak

white noise.

We therefore propose here to study the convergence of the QML estimator in the general framework

of long-memory one-sided linear processes. The key point of our approach is to prove that long-

memory one-sided linear processes can be written in autoregressive form with respect to their past

values, which we can call long-memory linear AR(∞). This is perfectly suited to the use of QMLE,

since this estimator is obtained from the conditional expectation and variance of the process. We

then show the almost sure convergence of QMLE for these long-memory AR(∞) processes, which

generalizes a result obtained in [4] for weakly dependent AR(∞) processes. We also prove the

asymptotic normality of this estimator, which provides an alternative to the asymptotic normality

of Whittle’s estimator obtained in [17].

Finally, we performed simulations of two long-memory time series and examined the performance

of the QMLE as a function of the size of the observed trajectories. This showed that the behavior

of the QMLE is consistent with theory as the size of the trajectories increases, and provides a very

accurate alternative to Whittle’s estimator.

This article is organized as follows: the section 2 below presents the AR(∞) notation of an ar-

bitrary long memory one-sided linear process, the section 3 is devoted to the presentation of the

QMLE estimator and its asymptotic behavior, numerical applications are treated in the section 4,

while all proofs of the various results can be found in the section 5.

2 Long-memory linear causal time series

Assume that ε = (εt)t∈Z is a sequence of centered independent random variables such as E[ε20] = 1

and (ai)i∈N is a sequence of real numbers such as:

ai = La(i) i
d−1 for i ∈ N

∗ and a0 > 0, (1)

where d ∈ (0, 1/2) and with La(·) a positive slow varying function satisfying

for any t > 0, lim
x→∞

La(xt)

La(x)
= 1.
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Now, define the causal linear process (Xt)t∈Z by

Xt =
∞∑

i=0

ai εt−i for any t ∈ Z. (2)

Since 0 < d < 1/2, it is well know that (Xt)t∈Z is a second order stationary long-memory process.

Indeed, its autocovariance is

rX(k) = Cov (X0,Xk) =
∞∑

i=0

ai ai+k ∼ Cd L
2
a(k) k

2d−1 when k → ∞, (3)

where Cd =
∫∞
0 (u+ u2)d−1 du (see for instance Wu et al., 2010).

Then, it is always possible to provide a causal affine representation for (Xt)t∈Z, i.e . it is al-

ways possible to write (Xt)t∈Z as an AR(∞) process:

Proposition 2.1. Let (Xt)t∈Z be a causal linear process defined in (2) where (ai) satisfies (1). Then,

there exists a sequence of real number (ui)i∈N∗ such as:

Xt = a0 εt +
∞∑

i=1

uiXt−i for any t ∈ Z, (4)

where (ui)i∈N∗ satisfies

∞∑

i=1

ui = 1 and un ∼
n→∞

a0 d

Γ(d) Γ(1 − d)
L−1
a (n)n−1−d = Lu(n)n

−1−d (5)

where Lu is a slow varying function.

Remark 2.1. Using (18), the reciprocal implication of Proposition 2.1 is also true: if (Xt) satisfies

the linear affine causal representation (4) where (ui)i∈N satisfies (5), then (Xt) is a one-sided long-

memory linear process satisfying (2) where (ai) satisfies (1).

Remark 2.2. It is also known that Γ(d) Γ(1 − d) =
π

sin(π d)
for any d ∈ (0, 1), and this implies

un ∼
n→∞

a0 d sin(π d)

π La(n)
n−1−d.

As a consequence, every long-memory one-sided linear process is a long-memory AR(∞) process

with the special property that the sum of the autoregressive coefficients equals 1. This is the key

point for the use of quasi-maximum likelihood estimation in the following section.

Example of the FARIMA process: Let (Xt)t∈Z be a standard FARIMA(0, d, 0) with d ∈ (0, 1/2),

which means X = (Id −B)−dε, where B is the usual backward linear operator on R
Z. Then, using

the power series of (1− x)−d, it is known that

Xt =

∞∑

i=0

aiεt−i with ai =
Γ(i+ d)

Γ(i+ 1)Γ(d)
for t ∈ Z.
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Using the Stirling expansion of the Gamma function, i.e. Γ(x) ∼
x→∞

√
2π e−xxx−1/2, we obtain

an ∼
n→∞

1
Γ(d) n

d−1, which is (1) with La(n) ∼
n→∞

1
Γ(d) .

Moreover, the decomposition X = ε+ (Id − (Id −B)d)X implies:

Xt = εt + d

∞∑

i=1

Γ(i− d)

Γ(1− d) Γ(i + 1)
Xt−i for t ∈ Z.

The expansion
Γ(n− d)

Γ(n+ 1)
∼

n→∞
n−1−d provides Xt = εt+

∑∞
n=1 un Xt−n with un ∼

n→∞

d
Γ(1−d) n

−1−d,

which is equivalent to (5) when a0 = 1 and La(n) ∼
n→∞

1
Γ(d) .

3 Asymptotic behavior of the Gaussian Quasi-Maximum Likelihood

Estimator

3.1 Definition of the estimator

We will assume that (Xt)t∈Z is a long-memory one-sided linear process written as an AR(∞) process,

i.e.

Xt = σ∗ εt +
∞∑

k=1

uk(θ
∗)Xt−k for any t ∈ Z, (6)

where

• (εt)t∈Z is a white noise, such that ε0 has an absolutely continuous probability measure with

respect to the Lebesgue measure and such that E[ε20] = 1, E[ε30] = 0 and µ4 = E[ε40] < ∞;

• for θ = t(γ, σ2) ∈ Θ a compact subset of R
p−1 × (0,∞), (un(θ))n∈N is a sequence of real

numbers satisfying for any θ ∈ Θ,

un(θ) = Lθ(n)n
−d(θ)−1 for n ∈ N

∗ and
∞∑

n=1

un(θ) = 1. (7)

with d(θ) ∈ (0, 1/2). We also assume that the sequence (un(θ)) does not depend on σ2;

• θ∗ = t(γ∗, σ∗2), θ∗ is in the interior of Θ, with σ∗ > 0 an unknown real parameter and

γ∗ ∈ R
p−1 an unknown vector of parameters.

A simple example of such a sequence (un(θ)) is un(θ) = (ζ(1 + d))−1 n−1−d for n ∈ N
∗, with θ =

(d, σ2) ∈ (0, 1/2)× (0,∞) where ζ(·) is the Riemann zeta function. Then Θ = [σ2
m, σ2

M ]× [dm, dM ],

with 0 < σ2
m < σ2

M and 0 < dm < dM < 1/2.

For ease of reading, denote d∗ = d(θ∗) the long-memory parameter of (Xt). Denote also d∗+ = d∗+ε

where ε ∈ (0, 1/2 − d∗) is chosen as small as possible. Since (un(θ))n∈N satisfies (7), we know from

Remark 2.1 that there exists Ca such that for any t ∈ Z,

Xt =

∞∑

i=0

ai(θ
∗) εt−i with |ai(θ∗)| ≤

Ca

i1−d∗
+

for all i ∈ N
∗. (8)
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We also deduce from (3) that there exists Cc > 0 satisfying

|rX(k)| =
∣∣Cov (X0,Xk)

∣∣ ≤ Cc

(1 + k)1−2d∗
+

for all k ∈ N. (9)

In the sequel we will also denote for any θ ∈ Θ,

mt(θ) =
∞∑

k=1

uk(θ)Xt−k for any t ∈ Z. (10)

We want to estimate θ∗ from an observed trajectory (X1, . . . ,Xn), where (Xt) is defined by (6).

For such an autoregressive causal process, a Gaussian quasi-maximum likelihood estimator is really

appropriate, since it is built on the assumption that (εt) is Gaussian white noise, and it is well

known that an affine function of εt is still a Gaussian random variable (see for example Bardet and

Wintenberger, 2009). It consists in considering the log-conditional density In(θ) of (X1, . . . ,Xn)

when (εt) is a standard Gaussian white noise and with Xt = σ εt +mt(θ), i.e.

In(θ) =
n∑

t=1

qt(θ) = −1

2

n∑

t=1

(
log
(
σ2
)
+

(
Xt −mt(θ)

)2

σ2

)
for any θ ∈ Θ. (11)

However, such conditional log-likelihood is not a feasible statistic since mt(θ) depends on (Xk)k≤0

which is unobserved. Hence it is usual to replace mt(θ) by the following approximation:

m̂t(θ) =
t−1∑

i=1

ui(θ)Xt−i for any t ∈ N
∗, (12)

with the convention
∑0

t=1 = 0. Then, a quasi conditional log-likelihood În(θ) can be defined:

În(θ) = −1

2

n∑

t=1

(
log
(
σ2
)
+

(
Xt − m̂t(θ)

)2

σ2

)
. (13)

If Θ is a subset of R
p such as for all θ ∈ Θ there exists an almost surely stationary solution of

the equation Xt = σ εt + mt(θ) for any t ∈ Z, we define the Gaussian quasi maximum likelihood

estimator (QMLE) of θ by

θ̂n = Argmax
θ∈Θ

În(θ). (14)

Note that a direct implication of the assumption that (un(θ)) does not depend on σ2 is that if we

denote θ̂n = t(γ̂n, σ̂
2
n) the QMLE, then:

γ̂n = Argmin
(γ,σ2)∈Θ

n∑

t=1

(
Xt −

t−1∑

k=1

uk(γ)Xt−k

)2
and σ̂2

n =
1

n

n∑

t=1

(
Xt −

t−1∑

k=1

uk(γ̂n)Xt−k

)2
,

where by writing convention un(θ) = un(γ). Hence, in this case of long-memory AR(∞), γ̂n is also

a non-linear least square estimator of the parameter γ.

3.2 Consistency and asymptotic normality of the estimator

The consistency of the QMLE is established under additional assumptions.

Theorem 3.1. Let (Xt)t∈Z be a process defined by (6) and its assumption. Assume also:
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• for any n ∈ N
∗, θ ∈ Θ 7→ un(θ) is a continuous function on Θ;

• If un(θ) = un(θ
′) for all n ∈ N

∗ with θ = (γ, σ2) and θ′ = (γ′, σ2), then θ = θ′.

Let θ̂n be the QMLE defined in (14). Then

θ̂n
a.s.−→

n→∞
θ∗.

This result extends the θ̂n consistency obtained in Bardet and Wintenberger (2009) to short-memory

time series models, including ARMA, GARCH, and APARCH, among others, including AR(∞)

processes. It also applies to long memory AR(∞) processes.

Remark 3.1. Regarding the long-memory linear process example, θ∗ could also be estimated using

Whittle’s estimator, which is constructed from the spectral density and second-order moments of

the process. The consistency and asymptotic normality of this estimator were shown by Giraitis

and Surgailis (1990).

Having shown the consistency, we would like to show the asymptotic normality of the QML esti-

mator in the case of the long-memory one-sided linear processes considered above. This amounts

to proving it for linear processes whose linear filter depends on a vector of parameters. This will be

the case, for example, for FARIMA(p, d, q) processes, for which Boubacar et al. (2021) have already

shown asymptotic normality in the more general case where (εt) is weak white noise, i.e. in the

case of weak FARIMA(p, d, q) processes.

As it is typical to establish the asymptotic normality of an M-estimator, we make assumptions

about the differentiability of the sequence of functions (un(θ))n∈N∗ with respect to θ:

(A) Differentiability of (un(θ))n∈N∗ : for any n ∈ N
∗, the function un(θ) is a C2(Θ) function and

for any δ > 0, there exists Cδ > 0 such that:

sup
n∈N

sup
θ∈Θ

{
n1+d(θ)−δ

(∣∣un(θ)
∣∣+
∥∥∂θun(θ)

∥∥+
∥∥∂2

θ2un(θ)
∥∥
)}

≤ Cδ. (15)

Moreover we assume that:

for v ∈ R
p−1, if for all k ∈ N

∗, tv ∂γuk(θ
∗) = 0 =⇒ v = 0. (16)

Example (called LM in the numerical applications): For the simple example where (un(θ)) is such

as un(θ) = ζ(1 + d)−1n−1−d for n ∈ N
∗ with θ = (d, σ2) ∈ (0, 1/2) × (0,∞), we have:

∂dun(θ) = − n−1−d

ζ2(1 + d)

(
ζ(1 + d) log(n) + ζ ′(1 + d)

)

∂2
d2un(θ) =

n−1−d

ζ3(1 + d)

(
ζ2(1 + d) log2(n) + 2ζ ′(1 + d)ζ(1 + d) log(n) + 2(ζ ′(1 + d))2 − ζ ′′(1 + d)ζ(1 + d)

)
.

Therefore (15) of (A) is satisfied with d(θ) = d (note also that δ = 0 is not possible). Moreover

(16) is also clearly satisfied.
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Theorem 3.2. Consider the assumptions of Theorem 3.1 and also that E[ε30] = 0 and µ4 = ‖ε0‖44 < ∞.

Then with θ̂n defined in (14), and if (A) holds, ,

√
n
(
θ̂n − θ∗

)
=

√
n

(( γ̂n

σ̂2
n

)
−
( γ∗

σ∗2

))
L−→

n→∞
N
(
0 ,
( (M∗)−1 0

0 σ∗4 (µ∗
4 − 1)

))
, (17)

where M∗ = 1
σ∗2

∑∞
k=1

∑∞
ℓ=1 ∂γuk((γ

∗, 0)) t
(
∂γuℓ((γ

∗, 0))
)
rX(ℓ− k).

It is clear that θ̂n satisfies (17) in the case of the FARIMA processes or in the case of the LM

processes example. It is also worth noting that the central limit theorem is written in exactly the

same way as the one obtained in [4], although the latter dealt only with weakly dependent AR(∞)

processes.

Remark 3.2. Of course, in this specific context of linear long-memory processes, we would like

to make a comparison between the asymptotic results for the convergence of the QMLE estima-

tor and those obtained with Whittle’s estimator in [17]. In this paper, more precisely in Theo-

rem 4, the asymptotic covariance matrix of γ̂n is given by the spectral density fγ and is written

as (4π)−1
∫ π
−π

(
∂γ log(fγ(λ))

)
t
(
∂γ log(fγ(λ))

)
dλ. However, Dahlhaus in [12] has shown that this

asymptotic covariance matrix is also that of the maximum likelihood estimator in the case of a

Gaussian process, the latter also being (M∗)−1 if (εt) is Gaussian white noise. This means that

asymptotically, the QML and Whittle estimators behave identically. However, we will see a slight

numerical advantage due to the convergence of the QMLE in the case of observed trajectories whose

size is not too large.

4 Numerical applications

In this section, we report the results of Monte Carlo experiments conducted with different long-

memory causal linear processes. More specifically, we considered:

• Two different processes generated from Gaussian standard white noises:

1. A FARIMA(0, d, 0) process, denoted FARIMA, with parameters σ2 = 4 and d = 0.1,

0.2, 0.3 and 0.4;

2. A long-memory causal affine process, denoted LM, defined by:

Xt = a0 εt + ζ(1 + d)−1
∞∑

k=1

k−1−d Xt−k for any t ∈ Z,

with parameters σ2 = 4 and d = 0.1, 0.2, 0.3 and 0.4.

• Several trajectory lengths: n = 300, 1000, 3000 and 10000.

• In the case of the FARIMA process, we compared the accuracy of the QMLE with the one

of the Whittle estimator which also satisfies a central limit theorem (see [17]). We denote

θ̂W = (σ̂2
W , d̂W ) this estimator.
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n σ2 = 4, d = 0.1 σ2 = 4, d = 0.2 σ2 = 4, d = 0.3 σ2 = 4, d = 0.4

300 θ̂n = (σ̂2
n, d̂n) 0.327 0.045 0.317 0.045 0.318 0.046 0.327 0.050

θ̂W = (σ̂2
W , d̂W ) 0.327 0.050 0.318 0.050 0.319 0.051 0.332 0.053

1000 θ̂n = (σ̂2
n, d̂n) 0.179 0.024 0.179 0.024 0.183 0.025 0.184 0.025

θ̂W = (σ̂2
W , d̂W ) 0.179 0.026 0.179 0.026 0.183 0.026 0.185 0.026

3000 θ̂n = (σ̂2
n, d̂n) 0.103 0.014 0.105 0.014 0.103 0.014 0.100 0.015

θ̂W = (σ̂2
W , d̂W ) 0.103 0.014 0.106 0.015 0.103 0.014 0.100 0.015

10000 θ̂n = (σ̂2
n, d̂n) 0.056 0.007 0.056 0.007 0.056 0.008 0.052 0.008

θ̂W = (σ̂2
W , d̂W ) 0.056 0.007 0.056 0.007 0.057 0.008 0.052 0.008

Table 1: Square roots of the MSE computed for the QMLE θ̂n and the Whittle estimator in the

case of a FARIMA process computed from 1000 independent replications.

n σ2 = 4, d = 0.1 σ2 = 4, d = 0.2 σ2 = 4, d = 0.3 σ2 = 4, d = 0.4

300 θ̂n = (σ̂2
n, d̂n) 0.082 0.048 0.083 0.054 0.080 0.059 0.080 0.065

1000 θ̂n = (σ̂2
n, d̂n) 0.045 0.025 0.047 0.032 0.045 0.032 0.046 0.038

3000 θ̂n = (σ̂2
n, d̂n) 0.025 0.014 0.027 0.017 0.024 0.018 0.026 0.020

10000 θ̂n = (σ̂2
n, d̂n) 0.013 0.008 0.013 0.010 0.015 0.011 0.014 0.012

Table 2: Square roots of the MSE computed for the QMLE θ̂n in the case of the LRD process

computed from 1000 independent replications.

The results are presented in tables 1 and 2.

Conclusions of the simulations:

1. The results of the simulations show that the consistency of the QML estimator θ̂n is satisfied

and also that its 1/
√
n convergence rate of the estimators almost occurs.

2. In the case of the FARIMA process, the comparison between the QML and Whittle estimators

leads to very similar results for large n, but for n = 300 the QML estimator provides slightly

more accurate estimates.

5 Proofs

5.1 Proofs of the main results

Proof of Proposition 2.1. Using B the lag or backshift linear operator on R
Z, we can denote X =

S(B) ε, where X = (Xt)t∈Z and ε = (εt)t∈Z and S(B) =
∑∞

i=0 aiB
i. We know that there exists a

linear operator denoted S−1 such as ε = S−1(B)X. As a consequence, X = a0 ε+(S(B)−a0 Id) ε =

a0 ε+(S(B)−a0 Id)S
−1(B)X = a0 ε+(Id−a0 S

−1(B))X which is the affine causal representation

of X.
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Let Xt = a0 εt +
∑∞

i=1 uiXt−i. Then, for any t ∈ Z,

Xt = a0 εt +
∞∑

i=1

uiXt−i

= a0 εt +
∞∑

i=1

∞∑

j=0

ui aj εt−i−j

= a0 εt +
∞∑

k=1

( k−1∑

j=0

uk−j aj

)
εt−k.

As a consequence, denoting u0 = −1, for any k ∈ N
∗,

k−1∑

j=0

uk−j aj = ak =⇒
( k∑

i=0

ui

)( k∑

j=0

aj

)
= 0. (18)

Finally, since the convergence radius of the power series
∑∞

ℓ=0 aℓ z
ℓ is 1 from asymptotic expansion

(1), we deduce that for any z ∈ C, |z| < 1,

( ∞∑

k=0

uk z
k
)( ∞∑

ℓ=0

aℓ z
ℓ
)
= −a0. (19)

Now, we are going to use a Karamata Tauberian theorem as it is stated in Corollary 1.7.3 of Bing-

ham et al. (1987):

Fix ρ > 0 and let L a slow varying function. Then if (αn)n∈N is a sequence of nonnegative real

numbers and the power series A(s) =
∑∞

n=0 αn s
n converges for any s ∈ [0, 1), then

n∑

k=0

αk ∼
n→∞

L(n)nρ ⇐⇒ A(s) ∼ Γ(1 + ρ)

(1 − s)ρ
L
(
(1− s)−1

)
as s → 1−. (20)

Note that this result is also established if there exists N0 ∈ N such as (αn)n≥N0
is a sequence

of nonnegative real numbers. We first apply (20) to (αn) = (an). Indeed, from (1) and with

ρ = d, there exists N0 ∈ N such as (an)n≥N0
is a sequence of nonnegative real numbers and∑n

k=0 ak ∼
n→∞

L(n)nρ with L(·) = La(·)
d . Therefore, we deduce that

∞∑

n=0

an s
n ∼ Γ(1 + d)

d (1− s)d
La

(
(1− s)−1

)
as s → 1−. (21)

Therefore, from (19), the following expansion can be deduced:

∞∑

n=0

un s
n ∼ −a0 (1− s)d

Γ(d)
L−1
a

(
(1− s)−1

)
as s → 1−. (22)

On the other hand, if we consider (19) when s → 1−,
∑∞

ℓ=0 aℓ s
ℓ → ∞ since (an) satisfies (1). As a

consequence,
∞∑

n=0

un s
n → 0 =

∞∑

n=0

un when s → 1−.
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We deduce that un −→
n→∞

0 and the sequence (Un)n∈N can be defined where we denote Un =
∑∞

k=n+1 uk. But since
∑∞

n=0 un = 0, for any s ∈ [0, 1],

∞∑

k=0

uk s
k = (s − 1)

∞∑

k=0

Uk s
k.

Using (22), we deduce

∞∑

k=0

Uk s
k ∼ a0 (1− s)d−1

Γ(d)
L−1
a

(
(1− s)−1

)
as s → 1−.

From (18), we also have for any n ∈ N

( n∑

k=0

uk

)( n∑

ℓ=0

aℓ

)
= −a0 (23)

Since (an) satisfies (1), we know that there exists N0 such as an > 0 and
∑n

ℓ=0 aℓ > 0 for any

n ≥ N0. Therefore we know from (23) that for any n ≥ N0,
∑n

k=0 uk < 0 and thus Un > 0 since
∑∞

k=0 uk = 0. Thus we can apply (20) to (αn) = (Un) with ρ = 1− d and this induces

n∑

k=0

Uk ∼
n→∞

a0
Γ(d) Γ(2 − d)

L−1
a (n)n1−d.

Since for n ≥ N0, un > 0, we deduce that (Un) is a positive decreasing sequence for n ≥ N0. Using

again Bingham et al. (1987), we deduce that

Un ∼
n→∞

a0 (1− d)

Γ(d) Γ(2− d)
L−1
a

(
n
)
n−d =

a0
Γ(d) Γ(1 − d)

L−1
a

(
n
)
n−d.

To finish with, since (Un) is a positive decreasing sequence for n ≥ N0, we deduce:

un =
a0 d

Γ(d) Γ(1 − d)
L−1
a

(
n
)
n−1−d,

and this achieves the proof.

Proof of Theorem 3.1. In the sequel, we will denote for any t ∈ N
∗ and θ ∈ Θ,

m̃t(θ) = mt(θ)− m̂t(θ) =

∞∑

k=t

uk(θ)Xt−k. (24)

For a random variable Z and r ≥ 1, denote ‖Z‖r =
(
E
[
|Z|r

])1/r
.

1. Firstly we prove some useful inequalities.

From the Cauchy-Schwarz Inequality, for any θ ∈ Θ and t ∈ Z,

(
mt(θ)

)2 ≤
( ∞∑

k=1

∣∣uk(θ)
∣∣
) ( ∞∑

k=1

∣∣uk(θ)
∣∣X2

t−k

)

≤ sup
θ∈Θ

{ ∞∑

k=1

∣∣uk(θ)
∣∣
}

sup
θ∈Θ

{ ∞∑

k=1

∣∣uk(θ)
∣∣X2

t−k

}

=⇒
∥∥ sup
θ∈Θ

∣∣mt(θ)
∣∣∥∥2

2
≤

(
sup
θ∈Θ

{ ∞∑

k=1

∣∣uk(θ)
∣∣
})2 ∥∥X0

∥∥2
2
< ∞,



11

since (uk) follows (7), Θ is a compact subset, θ ∈ Θ 7→ uk(θ) is a continuous function for any k ≥ 1

and d(θ) ∈ (0, 1/2).

Using the same inequalities we also obtain that there exists C2 > 0 such that for any t ≥ 1,

∥∥ sup
θ∈Θ

∣∣m̂t(θ)
∣∣∥∥2

2
< ∞ and

∥∥ sup
θ∈Θ

∣∣m̃t(θ)
∣∣∥∥2

2
≤
(
sup
θ∈Θ

{ ∞∑

k=t+1

∣∣uk(θ)
∣∣
})2 ∥∥X0

∥∥2
2
≤ C2 t

−2 d, (25)

with 0 < d < infθ∈Θ d(θ) from the condition (7) on (un(θ)).

Finally with 



qt(θ) = −1
2

(
log
(
σ2
)
+

(
Xt−mt(θ)

)2
σ2

)

q̂t(θ) = −1
2

(
log
(
σ̂2
)
+

(
Xt−m̂t(θ)

)2
σ2

) , (26)

we obtain from the previous bounds and σ2 ∈ [σ2
m, σ2

M ] where 0 < σ2
m < σ2

M ,

sup
θ∈Θ

∣∣qt(θ)
∣∣ ≤ sup

θ∈Θ

{ 1

σ2
m

(
X2

t +m2
t (θ)

)
+

1

2

∣∣ log(σ2
M )
∣∣
}

=⇒
∥∥∥ sup
θ∈Θ

∣∣qt(θ)
∣∣
∥∥∥
1

≤ 1

σ2
m

(
‖Xt‖22 +

∥∥ sup
θ∈Θ

∣∣mt(θ)
∣∣∥∥2

2

)
+

1

2

∣∣ log(σ2
M )
∣∣

< ∞. (27)

And to conclude with these preliminary bounds, using Cauchy-Schwarz and the triangular inequality,

there exists C > 0 such as for t ≥ 1,

∥∥∥ sup
θ∈Θ

∣∣qt(θ)− q̂t(θ)
∣∣
∥∥∥
1

≤ 1

2

∥∥∥ sup
θ∈Θ

∣∣2Xt +mt(θ) + m̂t(θ)
∣∣
∥∥∥
2

∥∥∥ sup
θ∈Θ

∣∣m̃t(θ)
∣∣
∥∥∥
2

≤ 1

2

(
2 ‖X2

0‖22 +
∥∥ sup
θ∈Θ

∣∣mt(θ)
∣∣∥∥2

2
+
∥∥ sup
θ∈Θ

∣∣m̂t(θ)
∣∣∥∥2

2

) (
C2 t

−2 d
)1/2

≤ C t−d. (28)

2. From its AR(∞) representation (1), and since ‖X0‖2 < ∞, then (Xt)t∈Z is a second order

ergodic stationary sequence (see Theorem 36.4 in Billingsley, 1995). But for any θ ∈ Θ, there exists

Hq
θ : RN → R such that

qt(θ) = Hq
θ

(
(εt−j)j≥0

)
,

with also E
[∣∣qt(θ)

∣∣] < ∞ from (27). Then using Theorem 36.4 in Billingsley (1995),
(
qt(θ)

))
t∈Z

is

an ergodic stationary sequence for any θ ∈ Θ and therefore

In(θ)
a.s.−→

n→∞
E
[
q0(θ)

]
for any θ ∈ Θ,

with In(θ) defined in (11). Moreover, since Θ is a compact set and since we have E
[
supθ∈Θ

∣∣qt(θ)
∣∣] <

∞ from (27), using Theorem 2.2.1. in Straumann (2005), we deduce that
(
qt(θ)

))
t∈Z

also follows a

uniform ergodic theorem and we obtain

sup
θ∈Θ

∣∣In(θ)− E
[
q0(θ)

]∣∣ a.s.−→
n→∞

0. (29)
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Now, using În(θ) defined in (13), we can write

sup
θ∈Θ

∣∣In(θ)− În(θ)
∣∣ ≤ 1

n

n∑

t=1

sup
θ∈Θ

∣∣qt(θ)− q̂t(θ)
∣∣. (30)

In Corollary 1 of Kounias and Weng (1969), it is established that for a L
1 sequence of r.v. (Zt)t and

a sequence of positive real numbers (bn)n∈N∗ such as bn −→
n→∞

∞, then
∑∞

t=1

E

[
|Zt|
]

bt
< ∞ implies

1
bn

∑n
t=1 Zt

a.s.−→
n→∞

0.

Therefore, with bt = t and Zt = supθ∈Θ
∣∣qt(θ)− q̂t(θ)

∣∣ for t ∈ N
∗, using the inequality (28),

∞∑

t=1

1

t
E
[
sup
θ∈Θ

∣∣qt(θ) − q̂t(θ)
∣∣] ≤ C

∞∑

t=1

t−d−1 < ∞ =⇒ 1

n

n∑

t=1

sup
θ∈Θ

∣∣qt(θ) − q̂t(θ)
∣∣ a.s.−→

n→∞
0.

Then, using (30) and (29), we deduce:

sup
θ∈Θ

∣∣În(θ)− E
[
q0(θ)

]∣∣ a.s.−→
n→∞

0. (31)

3. Finally, the same argument already detailed in the proof of Theorem 1 of Bardet and Winten-

berger (2009) is used: θ ∈ Θ 7→ E
[
q0(θ)

]
has a unique maximum reached in θ = θ∗ ∈ Θ because

it is assumed that if un(θ) = un(θ
′) for all n ∈ N

∗ with θ = (γ, σ2) and θ′ = (γ′, σ2), then θ = θ′.

This property and the uniform almost sure consistency (31) lead to θ̂n
a.s.−→

n→∞
θ∗.

Proof of Theorem 3.2. As a preamble to this proof, since θ̂n
a.s.−→

n→∞
θ∗ by Theorem 3.1, we will be

able to reduce the Θ domain. Let Θ̃ ⊂ Θ be a compact set of Rp such that:

Θ̃ =
{
θ ∈ Θ, 2d(θ∗)− 1/2 < inf

θ∈Θ̃
d(θ) < d(θ∗)

}
.

Note that 2d(θ∗)− 1/2 < d(θ∗), so it’s still possible to determine Θ̃.

In the spirit of (14), let’s define

θ̃n = Argmax
θ∈Θ̃

În(θ).

Using Theorem 3.1, it is clear that θ̃n
a.s.−→

n→∞
θ∗. Moreover, for all x = (x1, . . . , xp) ∈ R

p,

P

(√
n
(
θ̂n − θ∗

) p
×
j=1

(−∞, xj ]
)

= P

(√
n
(
θ̂n − θ∗

)
∈

p
×
j=1

(−∞, xj ]
∣∣ θ̂n ∈ Θ̃

)
P
(
θ̂n ∈ Θ̃

)

+P

(√
n
(
θ̂n − θ∗

)
∈

p
×
j=1

(−∞, xj]
∣∣ θ̂n /∈ Θ̃

)
P
(
θ̂n /∈ Θ̃

)

= P

(√
n
(
θ̃n − θ∗

)
∈

p
×
j=1

(−∞, xj ]
)
P
(
θ̂n ∈ Θ̃

)

+P

(√
n
(
θ̃n − θ∗

)
∈

p
×
j=1

(−∞, xj]
)
P
(
θ̂n /∈ Θ̃

)

Since θ̂n
a.s.−→

n→∞
θ∗ by Theorem 3.1 and therefore P

(
θ̂n /∈ Θ̃

)
−→
n→∞

0 because θ∗ ∈ Θ̃, it is clear that

the asymptotic distribution of
√
n
(
θ̂n − θ∗

)
is the same as the one of

√
n
(
θ̃n − θ∗

)
. Consequently,
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throughout the rest of the proof, Θ will be replaced by Θ̃ and θ̂n by θ̃n.

In the sequel, for θ ∈ Θ̃, we will denote d = d(θ) − ε and d∗+ = d∗ + ε where d∗ = d(θ∗) is

the unknown long-memory parameter, and we chose ε > 0 such as ε ≤ 1
6

(
1 − 4d(θ) + 2d(θ∗)

)
.

Hence, from the definition of Θ̃, 1− 4d(θ) + 2d(θ∗) > 0 and

4 d∗+ − 2 d− 1 < 0. (32)

From Assumption (A), for any θ ∈ Θ̃ and t ∈ Z, ∂θmt(θ) and ∂2
θmt(θ) a.s. exist with

∂θmt(θ) =

∞∑

k=1

∂θuk(θ)Xt−k and ∂2
θ2mt(θ) =

∞∑

k=1

∂2
θ2uk(θ)Xt−k.

And the same for ∂θm̂t(θ), ∂θm̃t(θ), ∂2
θ m̂t(θ) and ∂2

θ m̃t(θ). However, note that for any θ ∈ Θ̃,

(mt(θ))t, (∂θmt(θ))t and (∂2
θ2mt(θ))t are stationary processes while (m̂t(θ))t, (m̃t(θ))t and their

derivatives are not.

Due to these results, for any θ ∈ Θ̃:

∂θqt(θ) =
( ∂γqt(θ)

∂σ2qt(θ)

)
=

(
1
σ2 ∂γmt(θ)

(
Xt −mt(θ)

)

1
2σ4

((
Xt −mt(θ)

)2 − σ2
)
)
, (33)

and the same for ∂θ q̂t(θ) by replacing mt(θ) by m̂t(θ). Once again for any θ ∈ Θ̃, (∂θqt(θ))t is a

stationary process, while (∂θ q̂t(θ))t is not. Finally, for all θ ∈ Θ̃, define

∂θLn(θ) =
1

n

n∑

t=1

∂θqt(θ) and ∂θL̂n(θ) =
1

n

n∑

t=1

∂θ q̂t(θ).

Following the same reasoning it can be shown that for any t ∈ Z, θ ∈ Θ̃ 7→ qt(θ) and θ ∈ Θ̃ 7→ q̂t(θ)

are a.s. C2(Θ̃) functions and therefore the random matrices ∂2
θ2Ln(θ) and ∂2

θ2L̂n(θ) a.s. exist.

The proof of Theorem 3.2 will be decomposed in 3 parts:

1. First, as it was already established in Bardet and Wintenberger (2009), (∂θqt(θ
∗))t is a sta-

tionary ergodic martingale difference since with the σ-algebra Ft = σ
{
(Xt−k)k≥1

}
,

E

[
∂θqt(θ

∗)
∣∣Ft

]
= 0,

because (Xt) is a causal process and εt is independent of Ft and E
[
ε20
]
= 1.

Now since E
[∥∥∂θq0(θ∗)

∥∥2] < ∞ from the same arguments as in the proof of the consistency of

the estimator. Then the central limit for stationary ergodic martingale difference, Theorem

18.3 of Billingsley (1968) can be applied and

√
n ∂θLn(θ

∗)
L−→

n→∞
N
(
0 , G∗

)
, (34)

since E
[
∂θq0(θ

∗)
]
= 0 and where G∗ := E

[
∂θq0(θ

∗)× t
(
∂θq0(θ

∗)
)]

.
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2. We are going to prove that:

nE

[
sup
θ∈Θ̃

∥∥∂θL̂n(θ)− ∂θLn(θ)
∥∥2
]

−→
n→∞

0. (35)

Using a line of reasoning already used in Beran and Schützner (2009, Lemma 1 and 2) and

Bardet (2023, Lemma 5.1 3.), and derived from Parzen (1995, Theorem 3.B), there exists

C > 0 such that:

E

[
sup
θ∈Θ̃

∥∥∂θL̂n(θ)− ∂θLn(θ)
∥∥2
]
≤ C sup

θ∈Θ̃

E

[∥∥∂θL̂n(θ)− ∂θLn(θ)
∥∥2
]
,

because we assumed that θ → un(θ) is a Cp+1(Θ̃) function and therefore ∂θL̂n(θ) − ∂θLn(θ)

is a Cp(Θ̃) function.

Then, for θ ∈ Θ̃,

∂γqt(θ)− ∂γ q̂t(θ) =
1

σ2

(
∂γm̃t(θ)

(
Xt −mt(θ)

)
+ ∂γm̂t(θ) m̃t(θ)

)
.

As a consequence, for θ ∈ Θ̃,

nE
[∥∥∂θL̂n(θ)− ∂θLn(θ)

∥∥2]

=
1

nσ4

(
2
∑

1≤s<t≤n

E

[
t
(
∂γm̃t(θ)

(
Xt−mt(θ)

)
+∂γm̂t(θ) m̃t(θ)

)(
∂γm̃s(θ)

(
Xs−ms(θ)

)
+∂γm̂s(θ) m̃s(θ)

)]

+
n∑

t=1

E

[
t
(
∂γm̃t(θ)

(
Xt−mt(θ)

)
+∂γm̂t(θ) m̃t(θ)

)(
∂γm̃t(θ)

(
Xt−mt(θ)

)
+∂γm̂t(θ) m̃t(θ)

)])

=
1

nσ4

(
I1 + I2

)
. (36)

Concerning I1, since Xt = σ∗ εt + mt(θ
∗) and since εt is independent to all the other terms

because s < t, we deduce that
(
Xt −mt(θ)

)
can be replaced by nt(θ, θ

∗) =
(
mt(θ

∗)−mt(θ)
)
.

As a consequence, after its expansion, I1 can be written as a sum of 6 expectations of products

of 4 linear combinations of (εt). Moreover, if for j = 1, . . . , 4, Y
(j)
tj

=
∑∞

k=0 β
(j)
k ξtj−k, where

t1 ≤ t2 ≤ t3 ≤ t4, (β
(j)
n )n∈N are 4 real sequences and (ξt)t∈Z is a white noise such as E[ξ20 ] = 1

and E[ξ40 ] = µ4 < ∞, then:

E
[ 4∏

j=1

Y
(j)
tj

]
= (µ4 − 3)

∞∑

k=0

β
(1)
k β

(2)
t2−t1+kβ

(3)
t3−t1+kβ

(4)
t4−t1+k + E

[
Y

(1)
t1 Y

(2)
t2

]
E
[
Y

(3)
t3 Y

(4)
t4

]

+ E
[
Y

(1)
t1 Y

(3)
t3

]
E
[
Y

(2)
t2 Y

(4)
t4

]
+ E

[
Y

(1)
t1 Y

(4)
t4

]
E
[
Y

(2)
t2 Y

(3)
t3

]
.

Now, consider for example Y
(1)
t1 = ∂γm̃s(θ), Y

(2)
t2 =

(
Xs − ms(θ)

)
, Y

(3)
t3 = ∂γm̂t(θ) and

Y
(4)
t4 = m̃t(θ). From Lemma 5.1 and for any used sequence (β

(j)
k )k∈N, there exists C > 0 such

as for any k ∈ N:

∣∣β(1)
k

∣∣ ≤ C

sd (k + 1)1−d∗
+

,
∣∣β(4)

k

∣∣ ≤ C

td (k + 1)1−d∗
+

and max
(∣∣β(2)

k ,
∣∣β(3)

k

∣∣) ≤ C

(k + 1)1−d∗
+

.
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As a consequence, with s < t,

∣∣∣(µ4 − 3)

∞∑

k=0

β
(1)
k β

(2)
k β

(3)
t−s+kβ

(4)
t−s+k

∣∣∣ ≤ C

sdtd

∞∑

k=1

1

k2−2d∗
+

1

(k + t− s)2−2d∗
+

≤ C

sdtd(t− s)2−2d∗
+

. (37)

And we obtain the same bound for any quadruple products appearing in I1.

Consider now the other terms of I1. Using Lemmas 5.3 and 5.4, we obtain for any θ ∈ Θ̃ and

s < t:

•
∣∣∣E
[
Y

(1)
t1 Y

(2)
t2

]
E
[
Y

(3)
t3 Y

(4)
t4

]∣∣∣ =
∣∣∣E
[
∂γm̃s(θ)

(
Xs −ms(θ)

)]
E
[
∂γm̂t(θ) m̃t(θ)

]∣∣∣

=
∣∣∣E
[
∂γm̃s(θ)ns(θ, θ

∗)
)]∣∣∣
∣∣∣E
[
∂γm̂t(θ) m̃t(θ)

]∣∣∣

≤ C
1

s1+d−2d∗
+

1

t1+d−2d∗
+

;

•
∣∣∣E
[
Y

(1)
t1 Y

(3)
t3

]
E
[
Y

(2)
t2 Y

(4)
t4

]∣∣∣ =
∣∣∣E
[
∂γm̃s(θ) ∂γm̂t(θ)

]
E
[(
Xs −ms(θ)

)
m̃t(θ)

]∣∣∣

=
∣∣∣E
[
∂γm̃s(θ) ∂γm̂t(θ)

)]∣∣∣
∣∣∣E
[
ns(θ, θ

∗) m̃t(θ)
]∣∣∣

≤ C
( 1

sdt1−2d∗
+

+
1

s1+2d−2d∗
+

)( 1

t1+ds−2d∗
+

+
1

t1+2d−2d∗
+

)

•
∣∣∣E
[
Y

(1)
t1 Y

(4)
t4

]
E
[
Y

(2)
t2 Y

(3)
t3

]∣∣∣ =
∣∣∣E
[
∂γm̃s(θ) m̃t(θ)

]
E
[(
Xs −ms(θ)

)
∂γm̂t(θ)

]∣∣∣

=
∣∣∣E
[
∂γm̃s(θ) m̃t(θ)

]∣∣∣
∣∣∣E
[
ns(θ, θ

∗) ∂γm̂t(θ)
]∣∣∣

≤ C
1

sdt1−2d∗
+
+d

1

(t− s)1−2d∗
+

Using these inequalities as well as (37), we deduce from classical comparisons between sums

and integrals:

∑

1≤s<t≤n

E

[
t
(
∂γm̃t(θ)

(
Xt −mt(θ)

)
∂γm̂s(θ) m̃s(θ)

)]

≤ C
∑

1≤s<t≤n

µ4 − 3

sdtd(t− s)2−2d∗
+

+
( 1

sdt1−2d∗
+

+
1

s1+2d−2d∗
+

)( 1

t1+ds−2d∗
+

+
1

t1+2d−2d∗
+

)

+
1

s1+d−2d∗
+

1

t1+d−2d∗
+

+
1

sdt1−2d∗
+
+d

1

(t− s)1−2d∗
+

≤ C
(∫ n

1
x2d

∗

+−1−2ddx+

∫ n

1

dx

x2+d−2d∗
+

∫ x

1

dy

yd−2d∗
+

+

∫ n

1

dx

x2+2d−4d∗
+

∫ x

1

dy

yd
+

∫ n

1

dx

x1+d

∫ x

1

dy

y1+2d−4d∗
+

+

∫ n

1

dx

x1+2d−2d∗
+

∫ x

1

dy

y1+2d−2d∗
+

+

∫ n

1

dx

x1+d−2d∗
+

∫ x

1

dy

y1+d−2d∗
+

+

∫ n

1

dx

x1+d−2d∗
+

∫ x

1

dy

yd(x− y)1−2d∗
+

)

≤ C
(
n2d∗

+
−2d + n4d∗

+
−2d + n4d∗

+
−3d + n4d∗

+
−3d + n4d∗

+
−4d + n4d∗

+
−2d + n4d∗

+
−2d
)

≤ C n4d∗+−2d.

We obtain exactly the same bounds if we consider the 3 others expectations, i.e.

E

[
t
(
∂γm̃t(θ)

(
Xt−mt(θ)

))
∂γm̃s(θ)

(
Xs−ms(θ)

)]
, E
[
t
(
∂γm̂t(θ) m̃t(θ)

)
∂γm̃s(θ)

(
Xs−ms(θ)

))]
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or E

[
t
(
∂γm̂t(θ) m̃t(θ)

)
∂γm̂s(θ) m̃s(θ)

)]
. As a consequence, we finally obtain:

1

σ4 n
I1 ≤ C n4d∗+−2d−1 for any n ∈ N

∗. (38)

Now consider the term I2 in (36) and therefore the case s = t. For Y
(1)
t1 = ∂γm̃t(θ), Y

(2)
t2 =(

Xt −mt(θ)
)
, Y

(3)
t3 = ∂γm̂t(θ) and Y

(4)
t4 = m̃t(θ), and the coefficient (β

(j)
k ) defined previously,

we obtain: ∣∣∣(µ4 − 3)

∞∑

k=0

β
(1)
k β

(2)
k β

(3)
k β

(4)
k

∣∣∣ ≤ C

∞∑

k=1

1

t2d
1

k4−4d∗
+

≤ C
1

t2d
. (39)

Moreover, using the same inequalities as in the case s < t, we obtain:

•
∣∣∣E
[
Y

(1)
t1 Y

(2)
t2

]
E
[
Y

(3)
t3 Y

(4)
t4

]∣∣∣ ≤ C
1

t2+2d−4d∗
+

;

•
∣∣∣E
[
Y

(1)
t1 Y

(3)
t3

]
E
[
Y

(2)
t2 Y

(4)
t4

]∣∣∣ ≤ C
1

t2+2d−4d∗
+

•
∣∣∣E
[
Y

(1)
t1 Y

(4)
t4

]
E
[
Y

(2)
t2 Y

(3)
t3

]∣∣∣ ≤ C
1

t1−2d∗
+
+2d

.

Therefore,

n∑

t=1

E

[
t
(
∂γm̃t(θ)

(
Xt − mt(θ)

)
∂γm̂t(θ) m̃t(θ)

)]
≤ C

n∑

t=1

µ4 − 3

t2d
+

1

t1−2d∗
+
+2d

≤ C n1−2d.

As a consequence, we finally obtain that there exists C > 0 such that:

1

σ4 n
I2 ≤ C n−2d for any n ∈ N

∗. (40)

Therefore, from (38) and (40), we deduce that there exists C > 0 such that for any n ∈ N
∗:

nE
[∥∥∂θL̂n(θ)− ∂θLn(θ)

∥∥2] ≤ C
(
n−2d + n4d∗+−2d−1

)
−→
n→∞

0, (41)

from (32).

3. For θ ∈ Θ̃ and n ∈ N
∗, since ∂2

θ2L̂n(θ) is a.s. a C2(Θ̃) function, the Taylor-Lagrange expansion

implies: √
n∂θL̂n(θ

∗) =
√
n ∂θL̂n(θ̃n) + ∂2L̂θ2(θ̄n)×

√
n (θ∗ − θ̃n)

where θ̄n = c θ̃n + (1 − c) θ∗ and 0 < c < 1. But ∂θL̂n(θ̃n) = 0 because θ̃n is the unique local

extremum of θ → L̂n(θ). Therefore,

√
n ∂θL̂n(θ

∗) = ∂2
θ2L̂n(θ̄n)×

√
n (θ∗ − θ̃n). (42)

Now, E
[∥∥∂2

θ2q0(θ)
∥∥] < ∞ from the same arguments as in the proof of the consistency of the

estimator, and using Theorem 36.4 in Billingsley (1995),
(
∂2
θ2qt(θ)

))
t∈Z

is an ergodic stationary

sequence for any θ ∈ Θ̃. Moreover θ̄n
a.s.−→

n→∞
θ∗ since θ̃n

a.s.−→
n→∞

θ∗. Hence:

∂2
θ2Ln(θ̄n)

a.s.−→
n→∞

E
[
∂2
θ2q0(θ)

]
= F (θ∗).
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Moreover, using the same arguments as in Lemma 4 of [4], we have:

sup
θ∈Θ̃

∥∥∥∂2
θ2Ln(θ)− ∂2

θ2L̂n(θ)
∥∥∥ P−→

n→∞
0 =⇒ ∂2

θ2L̂n(θ̄n)
P−→

n→∞
F (θ∗). (43)

Usual calculations show that:

F (θ∗) = −
(

M∗ 0

0 1
2σ∗4

)
and G(θ∗) =

(
M∗ 0

0
µ∗

4
−1

4σ∗4

)
,

with M∗ =
1

σ∗2

∞∑

k=1

∞∑

ℓ=1

∂γuk((γ
∗, 0)) t

(
∂γuℓ((γ

∗, 0))
)
rX(ℓ− k)

where G(θ∗) = E
[
∂θq0(θ

∗) t∂θq0(θ
∗)
]

has already been defined in (34).

Thanks to the formula for M∗, we can deduce that F ∗ is invertible. Indeed, M∗ is invertible

if and only if E
[
∂θq0(θ

∗) t∂θq0(θ
∗)
]

is invertible and therefore if and only if for all v ∈ R
p−1,

tv E
[
∂γq0(θ

∗) t∂θq0(θ
∗)
]
v = E

[(
tv ∂γq0(θ

∗)
)2]

= 0 or tv ∂γq0(θ
∗) = 0 a.s. implies v = 0. Or,

pour v ∈ R
p−1,

tv ∂γq0(θ
∗) = 0 a.s. =⇒ 1

σ∗2
ε0

∞∑

k=1

tv ∂γuk(θ
∗)X−k = 0 a.s.

=⇒
∞∑

k=1

tv ∂γuk(θ
∗)X−k = 0 a.s. (ε0 is independent to F0)

=⇒ tv ∂γuk(θ
∗) = 0 for all k ∈ N

∗

=⇒ v = 0 from (16).

Now, from (34) and (41), we deduce that:

√
n ∂θL̂n(θ

∗)
L−→

n→∞
N
(
0 , G(θ∗)

)
,

and since F (θ∗) is a definite negative matrix, from (42) we deduce that

√
n
(
θ̃n − θ∗

) L−→
n→∞

N
(
0 , F (θ∗)−1 G(θ∗)F (θ∗)−1

)
. (44)

Finally, from the previous computations of G(θ∗) and F (θ∗), we deduce (17).

5.2 Proofs of additional lemmas

Lemma 5.1. Under the assumptions of Theorem 3.1, for any θ ∈ Θ and t ∈ Z or t ∈ N
∗, with mt(θ),

m̂t(θ) and m̃t(θ) respectively defined in (10), (12) and (24), we have:

mt(θ) =

∞∑

k=1

αk(θ, θ
∗) εt−k, m̂t(θ) =

∞∑

k=1

α̂k,t(θ, θ
∗) εt−k and m̃t(θ) =

∞∑

k=0

α̃k,t(θ, θ
∗) ε−k,

where there exists C > 0 such as for any k ≥ 1 and t ∈ N
∗,

max
(∣∣αk(θ, θ

∗)
∣∣ ,
∣∣α̂k,t(θ, θ

∗)
∣∣) ≤ C

k1−d∗
+

and
∣∣α̃k,t(θ, θ

∗)
∣∣ ≤ C

td k1−d∗
+

.

Moreover, under the assumptions of Theorem 3.2, the same properties also hold for ∂θmt(θ), ∂θm̂t(θ)

and ∂θm̃t(θ).
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Proof. We know that Xt =
∑∞

ℓ=0 aℓ(θ
∗) εt−ℓ for any t ∈ Z. Then,

mt(θ) =

∞∑

k=1

∞∑

ℓ=0

uk(θ)aℓ(θ
∗) εt−k−ℓ =

∞∑

j=1

( j∑

k=1

uk(θ)aj−k(θ
∗)
)
εt−j =

∞∑

j=1

αj(θ, θ
∗) εt−j

m̂t(θ) =

t−1∑

k=1

∞∑

ℓ=0

uk(θ)aℓ(θ
∗) εt−k−ℓ =

∞∑

j=1

(min(j , t−1)∑

k=1

uk(θ)aj−k(θ
∗)
)
εt−j =

∞∑

j=1

α̂j,t(θ, θ
∗) εt−j

m̃t(θ) =

∞∑

k=t

∞∑

ℓ=0

uk(θ)aℓ(θ
∗) εt−k−ℓ =

∞∑

j=0

( j∑

k=0

ut+k(θ)aj−k(θ
∗)
)
εt−j =

∞∑

j=0

α̃j,t(θ, θ
∗) εt−j

As a consequence, using
∣∣aℓ(θ∗)

∣∣ ≤ C ℓd
∗

+−1 and
∣∣uℓ(θ)

∣∣ ≤ C ℓ−d−1 for any ℓ ∈ N
∗, we obtain:

∣∣αj(θ, θ
∗)
∣∣ ≤ C

j∑

k=1

1

k1+d

1

(1 + j − k)1−d∗
+

≤ C
( 1

(j/2)1−d∗
+

j/2∑

k=1

1

k1+d
+

1

(j/2)1+d

j∑

k=j/2

1

(1 + j − k)1−d∗
+

)

≤ C

j1−d∗
+

.

Using the same kind of decomposition, we obtain the other bounds.

Lemma 5.2. For any α > 1, β ∈ (0, 1), there exists C > 0 such as for any 1 ≤ a,

Iα(a) =

∞∑

k=1

1

kα (k + a)α
≤ C

aα

Iα(a, b) =
∞∑

k=1

1

(k + a)α (k + b)α
≤ C

aα−1 bα
for any b > a ≥ 1

Jα,β(0, a) =
∞∑

k=1

1

(k + a)α kβ
≤ C

aα+β−1

Jα,β(a, 0) =
∞∑

k=1

1

kα (k + a)β
≤ C

aβ

Jα,β(a, b) =
∞∑

k=1

1

(k + a)β (k + b)α
≤ C

aβbα−1
min

(
1 ,

a

b

)
for any b ≥ 1

Lemma 5.3. Under the assumptions of Theorem 3.1, there exists C > 0 such as for any θ ∈ Θ and

1 ≤ s ≤ t ≤ n,
∣∣E
[
m̃s(θ) m̃t(θ)

]∣∣ ≤ C

sdt1−2d∗
+
+d

. (45)
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Proof. Using the bounds of functions I1+d and J1+d,1−2d defined in Lemma 5.2, we obtain

E
[
m̃s(θ) m̃t(θ)

]
=

∞∑

k=s

∞∑

ℓ=t

uk(θ)uℓ(θ) rX(t− s+ k − ℓ)

≤ C
∞∑

k=1

∞∑

ℓ=1

1

(s+ k)1+d

1

(t+ ℓ)1+d

1

(1 + |k − ℓ|)1−2d∗
+

≤ C
( ∞∑

j=1

1

(1 + j)1−2d∗
+

∞∑

ℓ=1

1

(ℓ+ s+ j)1+d(ℓ+ t)1+d
+

∞∑

k=1

1

(k + s)1+d(k + t)1+d

)

+

∞∑

j=1

1

(1 + j)1−2d∗
+

∞∑

k=1

1

(k + s)1+d(k + t+ j)1+d

)

≤ C
(
I1+d(s, t) +

∞∑

j=1

1

(1 + j)1−2d∗
+

(
I1+d(s+ j, t) + I1+d(s, t+ j)

))

≤ C
( 1

sdt1+d
+

1

sd
J1+d,1−2d∗

+
(0, t) +

1

td+1

t−s∑

j=1

1

(1 + j)1−2d∗
+

1

(s+ j)d

+
1

td

∞∑

j=t−s

1

(1 + j)1−2d∗
+

1

(s+ j)1+d

)

≤ C
( 1

sdt1+d
+

1

sdt1−2d∗
+
+d

+
1

sdtd+1
(t− s+ 1)2d

∗

+ +
1

td
J1+d,1−2d∗

+
(t− s, t)

)

≤ C
( 1

sdt1+d
+

1

sdt1−2d∗
+
+d

+
1

sdt1−2d∗
+
+d

+
1

t
J1+d,1−2d∗+

(t− s, t)
)
≤ C

sdt1−2d∗
+
+d

.

Lemma 5.4. Under the assumptions of Theorem 3.1, there exists C > 0 such as for any θ ∈ Θ and

any 1 ≤ s and 1 ≤ t,

∣∣E
[
m̃s(θ)mt(θ)

]∣∣ ≤





C
( 1

sdt1−2d∗
+

+
(1 + t− s)2d

∗

+

s1+2d

)
if s ≤ t

C
( t2d∗+
s1+d

+
(1 + s− t)2d

∗

+

s1+dtd

)
if s ≥ t

. (46)
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Proof.

E
[
m̃s(θ)mt(θ)

]
=

∞∑

k=s

∞∑

ℓ=1

uk(θ)uℓ(θ) rX(t− s+ k − ℓ)

≤ C

∞∑

k=1

∞∑

ℓ=1

1

(s+ k)1+d

1

ℓ1+d

1

(1 + |t+ k − ℓ|)1−2d∗
+

≤ C
( ∞∑

j=1

1

(1 + t+ j)1−2d∗
+

∞∑

ℓ=1

1

(ℓ+ s+ j)1+dℓ1+d

+

t∑

j=1

1

(1 + t− j)1−2d∗
+

∞∑

k=1

1

(k + s)1+d(k + j)1+d

+
∞∑

j=t

1

(1 + j − t)1−2d∗+

∞∑

k=1

1

(k + s)1+d(k + j)1+d

)

≤ C
( ∞∑

j=1

1

(t+ j)1−2d∗
+

I1+d(s+ j, 0) +
t∑

j=1

1

j1−2d∗
+

I1+d(s, t− j) +
∞∑

j=1

1

j1−2d∗
+

I1+d(s, j + t)
)
.

Then, if s ≤ t,

∣∣E
[
m̃s(θ)mt(θ)

]∣∣ ≤ C
(
J1+d,1−2d∗

+
(t, s) +

1

sd

t−s∑

j=1

1

j1−2d∗
+

1

(t− j)1+d

+
1

s1+d

s∑

j=1

1

(t− j)1−2d∗
+

1

(s− j)1+d
+

1

sd
J1+d,1−2d∗

+
(0, t)

)

≤ C
( 1

sdt1−2d∗+
+

1

s2dt1−2d∗+
+

1

s1+2d−2d∗+
+

1

sdt1+d−2d∗+

)

≤ C
( 1

sdt1−2d∗+
+

1

s1+2d−2d∗+

)
.

And if s > t,

∣∣E
[
m̃s(θ)mt(θ)

]∣∣ ≤ C
(
J1+d,1−2d∗

+
(t, s) +

1

s1+d

t∑

j=1

1

j1−2d∗
+

1

(t− j)1+d

+
1

s1+d

s−t∑

j=1

1

j1−2d∗
+

1

(t+ j)d
+

1

sd

∞∑

j=s−t

1

j1−2d∗
+

1

(t+ j)1+d

)

≤ C
( 1

s1+dt−2d∗
+

+
1

s1+dt1−2d∗
+

+
1

s1+2d−2d∗
+

+
1

s1+2d−2d∗
+

)

≤ C
( 1

s1+dt−2d∗
+

+
1

s1+2d−2d∗
+

)
.
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