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The purpose of this paper is to study the convergence of the quasi-maximum likelihood (QML) estimator for long memory linear processes. We first establish a correspondence between the long-memory linear process representation and the long-memory AR(∞) process representation. We then establish the almost sure consistency and asymptotic normality of the QML estimator. Numerical simulations illustrate the theoretical results and confirm the good performance of the estimator.

Introduction

Since Hurst's (1953) introduction of long-range dependent processes, much research has focused on estimating the long-range parameter, whether defined on the basis of the asymptotic power-law behavior of the correlogram at infinity or that of the spectral density at zero (see the monographs [START_REF] Beran | Statistics for Long-Memory Processes[END_REF] and [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF] for more details). Two estimation frameworks have been studied extensively. The first focused on the estimation of the long-memory parameter alone, but could be carried out in a semi-parametric framework, ı.e. if only the asymptotic behavior of the correlation or spectral density was specified. This led to the first methods proposed historically, such as those based on the R/S statistic, on quadratic variations, on the log-periodogram, or more recent methods such as wavelet or local Whittle (again, see [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF] for more details).

Here we are interested in a more parametric framework, and in estimating all the parameters of the process, not just the long memory parameter. The first notable results on the asymptotic behavior of such a parametric estimator were obtained in [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent Gaussian time series[END_REF] (see [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent Gaussian time series[END_REF]) in the special case of Gaussian long-memory processes, using the Whittle estimator. These results were extended to linear long-memory processes with a moment of order 4 by [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate[END_REF] (see [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate[END_REF]). In both settings, the asymptotic normality of the estimator was proved, while non-central limit theorems were obtained for functions of Gaussian processes in [START_REF] Giraitis | Whittle estimator for finite-variance non-Gaussian time series with long memory[END_REF] or for increments of the Rosenblatt process in [START_REF] Bardet | Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process[END_REF]. The asymptotic normality of the maximum likelihood estimator for Gaussian time series was also obtained by [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF], see [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF]) using that of the Whittle estimator obtained in [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent Gaussian time series[END_REF]. For weakly dependent time series, especially for conditionally heteroscedastic processes such as GARCH processes, the quasi-maximum likelihood (QML) estimator has become the benchmark for parametric estimation, providing very interesting convergence results where Whittle's estimator would not. This is true for GARCH or ARMA-GARCH processes (see [START_REF] Berkes | The efficiency of the estimators of the parameters in GARCH processes[END_REF] and [START_REF] Francq | Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes[END_REF]), but also for many others such as ARCH(∞), AR(∞), APARCH processes, etc. (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). We will also note convergence results for this modified estimator for long-memory squares processes, typically LARCH(∞) processes, see [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF], or quadratic autoregressive conditional heteroscedastic processes, see [START_REF] Doukhan | A nonlinear model for long-memory conditional heteroscedasticity[END_REF]. But for long-memory processes, such as those defined by a non-finite sum of their autocorrelations, to our knowledge only the paper by Boubacar Mainassara et al. (2021) (see [START_REF] Boubacar Maïnassara | Estimating FARIMA models with uncorrelated but non-independent error terms[END_REF]) has shown the normality of this QML estimator in the special case of a FARIMA(p, d, q) process with weak white noise. We therefore propose here to study the convergence of the QML estimator in the general framework of long-memory one-sided linear processes. The key point of our approach is to prove that longmemory one-sided linear processes can be written in autoregressive form with respect to their past values, which we can call long-memory linear AR(∞). This is perfectly suited to the use of QMLE, since this estimator is obtained from the conditional expectation and variance of the process. We then show the almost sure convergence of QMLE for these long-memory AR(∞) processes, which generalizes a result obtained in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] for weakly dependent AR(∞) processes. We also prove the asymptotic normality of this estimator, which provides an alternative to the asymptotic normality of Whittle's estimator obtained in [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate[END_REF]. Finally, we performed simulations of two long-memory time series and examined the performance of the QMLE as a function of the size of the observed trajectories. This showed that the behavior of the QMLE is consistent with theory as the size of the trajectories increases, and provides a very accurate alternative to Whittle's estimator. This article is organized as follows: the section 2 below presents the AR(∞) notation of an arbitrary long memory one-sided linear process, the section 3 is devoted to the presentation of the QMLE estimator and its asymptotic behavior, numerical applications are treated in the section 4, while all proofs of the various results can be found in the section 5.

Long-memory linear causal time series

Assume that ε = (ε t ) t∈Z is a sequence of centered independent random variables such as E[ε 2 0 ] = 1 and (a i ) i∈N is a sequence of real numbers such as:

a i = L a (i) i d-1 for i ∈ N * and a 0 > 0, (1) 
where d ∈ (0, 1/2) and with L a (•) a positive slow varying function satisfying for any t > 0, lim

x→∞ L a (xt) L a (x) = 1.
Now, define the causal linear process (X t ) t∈Z by

X t = ∞ i=0 a i ε t-i for any t ∈ Z. (2) 
Since 0 < d < 1/2, it is well know that (X t ) t∈Z is a second order stationary long-memory process. Indeed, its autocovariance is

r X (k) = Cov (X 0 , X k ) = ∞ i=0 a i a i+k ∼ C d L 2 a (k) k 2d-1 when k → ∞, (3) 
where

C d = ∞ 0 (u + u 2 ) d-1 du (see for instance Wu et al., 2010).
Then, it is always possible to provide a causal affine representation for (X t ) t∈Z , i.e . it is always possible to write (X t ) t∈Z as an AR(∞) process:

Proposition 2.1. Let (X t ) t∈Z be a causal linear process defined in [START_REF] Bardet | A new estimator for LARCH processes[END_REF] where (a i ) satisfies (1). Then, there exists a sequence of real number (u i ) i∈N * such as:

X t = a 0 ε t + ∞ i=1 u i X t-i for any t ∈ Z, (4) 
where

(u i ) i∈N * satisfies ∞ i=1 u i = 1 and u n ∼ n→∞ a 0 d Γ(d) Γ(1 -d) L -1 a (n) n -1-d = L u (n) n -1-d (5) 
where L u is a slow varying function.

Remark 2.1. Using [START_REF] Giraitis | Whittle estimator for finite-variance non-Gaussian time series with long memory[END_REF], the reciprocal implication of Proposition 2.1 is also true: if (X t ) satisfies the linear affine causal representation (4) where (u i ) i∈N satisfies (5), then (X t ) is a one-sided longmemory linear process satisfying [START_REF] Bardet | A new estimator for LARCH processes[END_REF] where (a i ) satisfies (1).

Remark 2.2. It is also known that Γ(d) Γ(1 -d) = π sin(π d)
for any d ∈ (0, 1), and this implies

u n ∼ n→∞ a 0 d sin(π d) π L a (n) n -1-d .
As a consequence, every long-memory one-sided linear process is a long-memory AR(∞) process with the special property that the sum of the autoregressive coefficients equals 1. This is the key point for the use of quasi-maximum likelihood estimation in the following section.

Example of the FARIMA process: Let (X t ) t∈Z be a standard FARIMA(0, d, 0) with d ∈ (0, 1/2), which means X = (I d -B) -d ε, where B is the usual backward linear operator on R Z . Then, using the power series of (1x) -d , it is known that

X t = ∞ i=0 a i ε t-i with a i = Γ(i + d) Γ(i + 1)Γ(d) for t ∈ Z.
Using the Stirling expansion of the Gamma function, i.e. Γ(x)

∼ x→∞ √ 2π e -x x x-1/2
, we obtain

a n ∼ n→∞ 1 Γ(d) n d-1 , which is (1) with L a (n) ∼ n→∞ 1 Γ(d) . Moreover, the decomposition X = ε + (I d -(I d -B) d ) X implies: X t = ε t + d ∞ i=1 Γ(i -d) Γ(1 -d) Γ(i + 1) X t-i for t ∈ Z.
The expansion

Γ(n -d) Γ(n + 1) ∼ n→∞ n -1-d provides X t = ε t + ∞ n=1 u n X t-n with u n ∼ n→∞ d Γ(1-d) n -1-d , which is equivalent to (5) when a 0 = 1 and L a (n) ∼ n→∞ 1 Γ(d) .
3 Asymptotic behavior of the Gaussian Quasi-Maximum Likelihood Estimator

Definition of the estimator

We will assume that (X t ) t∈Z is a long-memory one-sided linear process written as an AR(∞) process, i.e.

X t = σ * ε t + ∞ k=1 u k (θ * ) X t-k for any t ∈ Z, (6) where 
• (ε t ) t∈Z is a white noise, such that ε 0 has an absolutely continuous probability measure with respect to the Lebesgue measure and such that E[ε

2 0 ] = 1, E[ε 3 0 ] = 0 and µ 4 = E[ε 4 0 ] < ∞;
• for θ = t (γ, σ 2 ) ∈ Θ a compact subset of R p-1 × (0, ∞), (u n (θ)) n∈N is a sequence of real numbers satisfying for any θ ∈ Θ,

u n (θ) = L θ (n) n -d(θ)-1 for n ∈ N * and ∞ n=1 u n (θ) = 1. (7) 
with d(θ) ∈ (0, 1/2). We also assume that the sequence (u n (θ)) does not depend on σ 2 ;

• θ * = t (γ * , σ * 2 ), θ * is in the interior of Θ, with σ * > 0 an unknown real parameter and γ * ∈ R p-1 an unknown vector of parameters.

A simple example of such a sequence

(u n (θ)) is u n (θ) = (ζ(1 + d)) -1 n -1-d for n ∈ N * , with θ = (d, σ 2 ) ∈ (0, 1/2) × (0, ∞) where ζ(•) is the Riemann zeta function. Then Θ = [σ 2 m , σ 2 M ] × [d m , d M ], with 0 < σ 2 m < σ 2 M and 0 < d m < d M < 1/2.
For ease of reading, denote d * = d(θ * ) the long-memory parameter of (X t ). Denote also d * + = d * + ε where ε ∈ (0, 1/2d * ) is chosen as small as possible. Since (u n (θ)) n∈N satisfies [START_REF] Berkes | The efficiency of the estimators of the parameters in GARCH processes[END_REF], we know from Remark 2.1 that there exists C a such that for any t ∈ Z,

X t = ∞ i=0 a i (θ * ) ε t-i with |a i (θ * )| ≤ C a i 1-d * + for all i ∈ N * . ( 8 
)
We also deduce from (3) that there exists

C c > 0 satisfying |r X (k)| = Cov (X 0 , X k ) ≤ C c (1 + k) 1-2d * + for all k ∈ N. (9) 
In the sequel we will also denote for any θ ∈ Θ,

m t (θ) = ∞ k=1 u k (θ) X t-k for any t ∈ Z. (10) 
We want to estimate θ * from an observed trajectory (X 1 , . . . , X n ), where (X t ) is defined by [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF].

For such an autoregressive causal process, a Gaussian quasi-maximum likelihood estimator is really appropriate, since it is built on the assumption that (ε t ) is Gaussian white noise, and it is well known that an affine function of ε t is still a Gaussian random variable (see for example [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. It consists in considering the log-conditional density I n (θ) of (X 1 , . . . , X n ) when (ε t ) is a standard Gaussian white noise and with X t = σ ε t + m t (θ), i.e.

I n (θ) = n t=1 q t (θ) = - 1 2 n t=1 log σ 2 + X t -m t (θ) 2 σ 2 for any θ ∈ Θ. (11) 
However, such conditional log-likelihood is not a feasible statistic since m t (θ) depends on (X k ) k≤0 which is unobserved. Hence it is usual to replace m t (θ) by the following approximation:

m t (θ) = t-1 i=1 u i (θ) X t-i for any t ∈ N * , (12) 
with the convention 0 t=1 = 0. Then, a quasi conditional log-likelihood I n (θ) can be defined:

I n (θ) = - 1 2 n t=1 log σ 2 + X t -m t (θ) 2 σ 2 . ( 13 
)
If Θ is a subset of R p such as for all θ ∈ Θ there exists an almost surely stationary solution of the equation X t = σ ε t + m t (θ) for any t ∈ Z, we define the Gaussian quasi maximum likelihood estimator (QMLE) of θ by

θ n = Argmax θ∈Θ I n (θ). (14) 
Note that a direct implication of the assumption that (u n (θ)) does not depend on σ 2 is that if we denote θ n = t ( γ n , σ 2 n ) the QMLE, then:

γ n = Argmin (γ,σ 2 )∈Θ n t=1 X t - t-1 k=1 u k (γ) X t-k 2 and σ 2 n = 1 n n t=1 X t - t-1 k=1 u k ( γ n ) X t-k 2 ,
where by writing convention u n (θ) = u n (γ). Hence, in this case of long-memory AR(∞), γ n is also a non-linear least square estimator of the parameter γ.

Consistency and asymptotic normality of the estimator

The consistency of the QMLE is established under additional assumptions.

Theorem 3.1. Let (X t ) t∈Z be a process defined by ( 6) and its assumption. Assume also:

• for any n ∈ N * , θ ∈ Θ → u n (θ) is a continuous function on Θ; • If u n (θ) = u n (θ ′ ) for all n ∈ N * with θ = (γ, σ 2 ) and θ ′ = (γ ′ , σ 2 ), then θ = θ ′ .
Let θ n be the QMLE defined in [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF]. Then

θ n a.s. -→ n→∞ θ * .
This result extends the θ n consistency obtained in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] to short-memory time series models, including ARMA, GARCH, and APARCH, among others, including AR(∞) processes. It also applies to long memory AR(∞) processes.

Remark 3.1. Regarding the long-memory linear process example, θ * could also be estimated using Whittle's estimator, which is constructed from the spectral density and second-order moments of the process. The consistency and asymptotic normality of this estimator were shown by [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate[END_REF].

Having shown the consistency, we would like to show the asymptotic normality of the QML estimator in the case of the long-memory one-sided linear processes considered above. This amounts to proving it for linear processes whose linear filter depends on a vector of parameters. This will be the case, for example, for FARIMA(p, d, q) processes, for which Boubacar et al. (2021) have already shown asymptotic normality in the more general case where (ε t ) is weak white noise, i.e. in the case of weak FARIMA(p, d, q) processes.

As it is typical to establish the asymptotic normality of an M-estimator, we make assumptions about the differentiability of the sequence of functions (u n (θ)) n∈N * with respect to θ:

(A) Differentiability of (u n (θ)) n∈N * : for any n ∈ N * , the function u n (θ) is a C 2 (Θ) function and for any δ > 0, there exists C δ > 0 such that:

sup n∈N sup θ∈Θ n 1+d(θ)-δ u n (θ) + ∂ θ u n (θ) + ∂ 2 θ 2 u n (θ) ≤ C δ . (15) 
Moreover we assume that:

for v ∈ R p-1 , if for all k ∈ N * , t v ∂ γ u k (θ * ) = 0 =⇒ v = 0. ( 16 
)
Example (called LM in the numerical applications): For the simple example where

(u n (θ)) is such as u n (θ) = ζ(1 + d) -1 n -1-d for n ∈ N * with θ = (d, σ 2 ) ∈ (0, 1/2) × (0, ∞),
we have:

∂ d u n (θ) = - n -1-d ζ 2 (1 + d) ζ(1 + d) log(n) + ζ ′ (1 + d) ∂ 2 d 2 u n (θ) = n -1-d ζ 3 (1 + d) ζ 2 (1 + d) log 2 (n) + 2ζ ′ (1 + d)ζ(1 + d) log(n) + 2(ζ ′ (1 + d)) 2 -ζ ′′ (1 + d)ζ(1 + d) .
Therefore ( 15) of (A) is satisfied with d(θ) = d (note also that δ = 0 is not possible). Moreover ( 16) is also clearly satisfied.

Theorem 3.2. Consider the assumptions of Theorem 3.1 and also that E[ε 3 0 ] = 0 and µ 4 = ε 0 4 4 < ∞. Then with θ n defined in [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF], and if (A) holds, ,

√ n θ n -θ * = √ n γ n σ 2 n - γ * σ * 2 L -→ n→∞ N 0 , (M * ) -1 0 0 σ * 4 (µ * 4 -1) , (17) 
where

M * = 1 σ * 2 ∞ k=1 ∞ ℓ=1 ∂ γ u k ((γ * , 0)) t ∂ γ u ℓ ((γ * , 0)) r X (ℓ -k).
It is clear that θ n satisfies [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate[END_REF] in the case of the FARIMA processes or in the case of the LM processes example. It is also worth noting that the central limit theorem is written in exactly the same way as the one obtained in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], although the latter dealt only with weakly dependent AR(∞) processes.

Remark 3.2. Of course, in this specific context of linear long-memory processes, we would like to make a comparison between the asymptotic results for the convergence of the QMLE estimator and those obtained with Whittle's estimator in [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate[END_REF]. In this paper, more precisely in Theorem 4, the asymptotic covariance matrix of γ n is given by the spectral density f γ and is written as

(4π) -1 π -π ∂ γ log(f γ (λ)) t ∂ γ log(f γ (λ)) dλ.
However, Dahlhaus in [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF] has shown that this asymptotic covariance matrix is also that of the maximum likelihood estimator in the case of a Gaussian process, the latter also being (M * ) -1 if (ε t ) is Gaussian white noise. This means that asymptotically, the QML and Whittle estimators behave identically. However, we will see a slight numerical advantage due to the convergence of the QMLE in the case of observed trajectories whose size is not too large.

Numerical applications

In this section, we report the results of Monte Carlo experiments conducted with different longmemory causal linear processes. More specifically, we considered:

• Two different processes generated from Gaussian standard white noises:

1. A FARIMA(0, d, 0) process, denoted FARIMA, with parameters σ 2 = 4 and d = 0.1, 0.2, 0.3 and 0.4;

2. A long-memory causal affine process, denoted LM, defined by:

X t = a 0 ε t + ζ(1 + d) -1 ∞ k=1 k -1-d X t-k for any t ∈ Z,
with parameters σ 2 = 4 and d = 0.1, 0.2, 0.3 and 0.4.

• Several trajectory lengths: n = 300, 1000, 3000 and 10000.

• In the case of the FARIMA process, we compared the accuracy of the QMLE with the one of the Whittle estimator which also satisfies a central limit theorem (see [START_REF] Giraitis | A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate[END_REF]). We denote The results are presented in tables 1 and 2.

θ W = ( σ 2 W , d W ) this estimator. n σ 2 = 4, d = 0.1 σ 2 = 4, d = 0.2 σ 2 = 4, d = 0.3 σ 2 = 4, d = 0.4 300 θ n = ( σ 2 n , d n ) 0.
Conclusions of the simulations:

1. The results of the simulations show that the consistency of the QML estimator θ n is satisfied and also that its 1/ √ n convergence rate of the estimators almost occurs.

2. In the case of the FARIMA process, the comparison between the QML and Whittle estimators leads to very similar results for large n, but for n = 300 the QML estimator provides slightly more accurate estimates.

Proofs

Proofs of the main results

Proof of Proposition 2.1. Using B the lag or backshift linear operator on R Z , we can denote X = S(B) ε, where X = (X t ) t∈Z and ε = (ε t ) t∈Z and S(B) = ∞ i=0 a i B i . We know that there exists a linear operator denoted S -1 such as ε = S -1 (B) X. As a consequence, X = a 0 ε+(S(B)-

a 0 I d ) ε = a 0 ε + (S(B) -a 0 I d )S -1 (B) X = a 0 ε + (I d -a 0 S -1 (B)) X which is the affine causal representation of X. Let X t = a 0 ε t + ∞ i=1 u i X t-i .
Then, for any t ∈ Z,

X t = a 0 ε t + ∞ i=1 u i X t-i = a 0 ε t + ∞ i=1 ∞ j=0 u i a j ε t-i-j = a 0 ε t + ∞ k=1 k-1 j=0 u k-j a j ε t-k .
As a consequence, denoting

u 0 = -1, for any k ∈ N * , k-1 j=0 u k-j a j = a k =⇒ k i=0 u i k j=0 a j = 0. (18) 
Finally, since the convergence radius of the power series ∞ ℓ=0 a ℓ z ℓ is 1 from asymptotic expansion (1), we deduce that for any

z ∈ C, |z| < 1, ∞ k=0 u k z k ∞ ℓ=0 a ℓ z ℓ = -a 0 . (19) 
Now, we are going to use a Karamata Tauberian theorem as it is stated in Corollary 1. 

α k ∼ n→∞ L(n) n ρ ⇐⇒ A(s) ∼ Γ(1 + ρ) (1 -s) ρ L (1 -s) -1 as s → 1 -. ( 20 
)
Note that this result is also established if there exists N 0 ∈ N such as (α n ) n≥N 0 is a sequence of nonnegative real numbers. We first apply [START_REF] Parzen | Stochastic processes[END_REF] to (α n ) = (a n ). Indeed, from (1) and with ρ = d, there exists N 0 ∈ N such as (a n ) n≥N 0 is a sequence of nonnegative real numbers and

n k=0 a k ∼ n→∞ L(n) n ρ with L(•) = La(•) d . Therefore, we deduce that ∞ n=0 a n s n ∼ Γ(1 + d) d (1 -s) d L a (1 -s) -1 as s → 1 -. (21) 
Therefore, from [START_REF] Kounias | An inequality and almost sure convergence[END_REF], the following expansion can be deduced:

∞ n=0 u n s n ∼ - a 0 (1 -s) d Γ(d) L -1 a (1 -s) -1 as s → 1 -. ( 22 
)
On the other hand, if we consider [START_REF] Kounias | An inequality and almost sure convergence[END_REF] when

s → 1 -, ∞ ℓ=0 a ℓ s ℓ → ∞ since (a n ) satisfies (1). As a consequence, ∞ n=0 u n s n → 0 = ∞ n=0 u n when s → 1 -.
We deduce that u n -→ n→∞ 0 and the sequence (U n ) n∈N can be defined where we denote

U n = ∞ k=n+1 u k . But since ∞ n=0 u n = 0, for any s ∈ [0, 1], ∞ k=0 u k s k = (s -1) ∞ k=0 U k s k .
Using [START_REF] Wu | Covariance estimation for long-memory processes[END_REF], we deduce

∞ k=0 U k s k ∼ a 0 (1 -s) d-1 Γ(d) L -1 a (1 -s) -1 as s → 1 -.
From [START_REF] Giraitis | Whittle estimator for finite-variance non-Gaussian time series with long memory[END_REF], we also have for any

n ∈ N n k=0 u k n ℓ=0 a ℓ = -a 0 (23) 
Since (a n ) satisfies (1), we know that there exists N 0 such as a n > 0 and n ℓ=0 a ℓ > 0 for any n ≥ N 0 . Therefore we know from (23) that for any n ≥ N 0 , n k=0 u k < 0 and thus U n > 0 since ∞ k=0 u k = 0. Thus we can apply [START_REF] Parzen | Stochastic processes[END_REF] to

(α n ) = (U n ) with ρ = 1 -d and this induces n k=0 U k ∼ n→∞ a 0 Γ(d) Γ(2 -d) L -1 a (n) n 1-d .
Since for n ≥ N 0 , u n > 0, we deduce that (U n ) is a positive decreasing sequence for n ≥ N 0 . Using again [START_REF] Bingham | Regular variation[END_REF], we deduce that

U n ∼ n→∞ a 0 (1 -d) Γ(d) Γ(2 -d) L -1 a n n -d = a 0 Γ(d) Γ(1 -d) L -1 a n n -d .
To finish with, since (U n ) is a positive decreasing sequence for n ≥ N 0 , we deduce:

u n = a 0 d Γ(d) Γ(1 -d) L -1 a n n -1-d ,
and this achieves the proof.

Proof of Theorem 3.1. In the sequel, we will denote for any t ∈ N * and θ ∈ Θ,

m t (θ) = m t (θ) -m t (θ) = ∞ k=t u k (θ) X t-k . ( 24 
)
For a random variable Z and r ≥ 1, denote Z r = E |Z| r 1/r .

1. Firstly we prove some useful inequalities.

From the Cauchy-Schwarz Inequality, for any θ ∈ Θ and t ∈ Z,

m t (θ) 2 ≤ ∞ k=1 u k (θ) ∞ k=1 u k (θ) X 2 t-k ≤ sup θ∈Θ ∞ k=1 u k (θ) sup θ∈Θ ∞ k=1 u k (θ) X 2 t-k =⇒ sup θ∈Θ m t (θ) 2 2 ≤ sup θ∈Θ ∞ k=1 u k (θ) 2 X 0 2 2 < ∞, since (u k ) follows (7), Θ is a compact subset, θ ∈ Θ → u k (θ) is a continuous function for any k ≥ 1 and d(θ) ∈ (0, 1/2).
Using the same inequalities we also obtain that there exists C 2 > 0 such that for any t ≥ 1,

sup θ∈Θ m t (θ) 2 2 < ∞ and sup θ∈Θ m t (θ) 2 2 ≤ sup θ∈Θ ∞ k=t+1 u k (θ) 2 X 0 2 2 ≤ C 2 t -2 d , (25) 
with 0 < d < inf θ∈Θ d(θ) from the condition ( 7) on (u n (θ)).

Finally with

     q t (θ) = -1 2 log σ 2 + Xt-mt(θ) 2 σ 2 q t (θ) = -1 2 log σ 2 + Xt-mt(θ) 2 σ 2 , ( 26 
)
we obtain from the previous bounds and

σ 2 ∈ [σ 2 m , σ 2 M ] where 0 < σ 2 m < σ 2 M , sup θ∈Θ q t (θ) ≤ sup θ∈Θ 1 σ 2 m X 2 t + m 2 t (θ) + 1 2 log(σ 2 M ) =⇒ sup θ∈Θ q t (θ) 1 ≤ 1 σ 2 m X t 2 2 + sup θ∈Θ m t (θ) 2 2 + 1 2 log(σ 2 M ) < ∞. (27) 
And to conclude with these preliminary bounds, using Cauchy-Schwarz and the triangular inequality, there exists C > 0 such as for t ≥ 1, sup θ∈Θ q t (θ)q t (θ)

1 ≤ 1 2 sup θ∈Θ 2X t + m t (θ) + m t (θ) 2 sup θ∈Θ m t (θ) 2 ≤ 1 2 2 X 2 0 2 2 + sup θ∈Θ m t (θ) 2 2 + sup θ∈Θ m t (θ) 2 2 C 2 t -2 d 1/2 ≤ C t -d . (28) 
2. From its AR(∞) representation (1), and since X 0 2 < ∞, then (X t ) t∈Z is a second order ergodic stationary sequence (see Theorem 36.4 in [START_REF] Billingsley | Probability and Measure[END_REF]. But for any θ ∈ Θ, there exists

H q θ : R N → R such that q t (θ) = H q θ (ε t-j ) j≥0 ,
with also E q t (θ) < ∞ from (27). Then using Theorem 36.4 in Billingsley (1995), q t (θ) t∈Z is an ergodic stationary sequence for any θ ∈ Θ and therefore

I n (θ)
a.s.

-→ n→∞ E q 0 (θ) for any θ ∈ Θ, with I n (θ) defined in [START_REF] Boubacar Maïnassara | Estimating FARIMA models with uncorrelated but non-independent error terms[END_REF]. Moreover, since Θ is a compact set and since we have E sup θ∈Θ q t (θ) < ∞ from (27), using Theorem 2.2.1. in Straumann (2005), we deduce that q t (θ) t∈Z also follows a uniform ergodic theorem and we obtain

sup θ∈Θ I n (θ) -E q 0 (θ) a.s. -→ n→∞ 0. (29) 
Now, using I n (θ) defined in [START_REF] Doukhan | A nonlinear model for long-memory conditional heteroscedasticity[END_REF], we can write

sup θ∈Θ I n (θ) -I n (θ) ≤ 1 n n t=1 sup θ∈Θ q t (θ) -q t (θ) . (30) 
In Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF], it is established that for a L 1 sequence of r.v. (Z t ) t and a sequence of positive real numbers

(b n ) n∈N * such as b n -→ n→∞ ∞, then ∞ t=1 E |Zt| bt < ∞ implies 1 bn n t=1 Z t a.s.
-→ n→∞ 0.

Therefore, with b t = t and Z t = sup θ∈Θ q t (θ)q t (θ) for t ∈ N * , using the inequality (28),

∞ t=1 1 t E sup θ∈Θ q t (θ) -q t (θ) ≤ C ∞ t=1 t -d-1 < ∞ =⇒ 1 n n t=1 sup θ∈Θ q t (θ) -q t (θ) a.s.
-→ n→∞ 0.

Then, using ( 30) and ( 29), we deduce:

sup θ∈Θ I n (θ) -E q 0 (θ) a.s.
-→ n→∞ 0.

(31)

3. Finally, the same argument already detailed in the proof of Theorem 1 of Bardet and Wintenberger ( 2009) is used:

θ ∈ Θ → E q 0 (θ) has a unique maximum reached in θ = θ * ∈ Θ because it is assumed that if u n (θ) = u n (θ ′ ) for all n ∈ N * with θ = (γ, σ 2 ) and θ ′ = (γ ′ , σ 2 ), then θ = θ ′ .
This property and the uniform almost sure consistency (31) lead to θ n a.s.

-→ n→∞ θ * .

Proof of Theorem 3.2. As a preamble to this proof, since θ n a.s.

-→ n→∞ θ * by Theorem 3.1, we will be able to reduce the Θ domain. Let Θ ⊂ Θ be a compact set of R p such that:

Θ = θ ∈ Θ, 2d(θ * ) -1/2 < inf θ∈ Θ d(θ) < d(θ * ) .
Note that 2d(θ * ) -1/2 < d(θ * ), so it's still possible to determine Θ.

In the spirit of ( 14), let's define

θ n = Argmax θ∈ Θ I n (θ).
Using Theorem 3.1, it is clear that θ n a.s.

-→ n→∞ θ * . Moreover, for all x = (x 1 , . . . , x p ) ∈ R p ,

P √ n θ n -θ * p × j=1 (-∞, x j ] = P √ n θ n -θ * ∈ p × j=1 (-∞, x j ] θ n ∈ Θ P θ n ∈ Θ +P √ n θ n -θ * ∈ p × j=1 (-∞, x j ] θ n / ∈ Θ P θ n / ∈ Θ = P √ n θ n -θ * ∈ p × j=1 (-∞, x j ] P θ n ∈ Θ +P √ n θ n -θ * ∈ p × j=1 (-∞, x j ] P θ n / ∈ Θ Since θ n a.s.
-→ n→∞ θ * by Theorem 3.1 and therefore

P θ n / ∈ Θ -→ n→∞ 0 because θ * ∈ Θ, it is clear that the asymptotic distribution of √ n θ n -θ * is the same as the one of √ n θ n -θ * . Consequently,
throughout the rest of the proof, Θ will be replaced by Θ and θ n by θ n .

In the sequel, for θ ∈ Θ, we will denote d = d(θ)ε and d * + = d * + ε where d * = d(θ * ) is the unknown long-memory parameter, and we chose ε > 0 such as ε ≤ 1 6 1 -4d(θ) + 2d(θ * ) . Hence, from the definition of Θ, 1 -4d(θ) + 2d(θ * ) > 0 and And the same for ∂ θ m t (θ), ∂ θ m t (θ), ∂ 2 θ m t (θ) and ∂ 2 θ m t (θ). However, note that for any θ ∈ Θ, (m t (θ)) t , (∂ θ m t (θ)) t and (∂ 2 θ 2 m t (θ)) t are stationary processes while ( m t (θ)) t , ( m t (θ)) t and their derivatives are not.

Due to these results, for any θ ∈ Θ:

∂ θ q t (θ) = ∂ γ q t (θ) ∂ σ 2 q t (θ) = 1 σ 2 ∂ γ m t (θ) X t -m t (θ) 1 2 σ 4 X t -m t (θ) 2 -σ 2 , ( 33 
)
and the same for ∂ θ q t (θ) by replacing m t (θ) by m t (θ). Once again for any θ ∈ Θ, (∂ θ q t (θ)) t is a stationary process, while (∂ θ q t (θ)) t is not. Finally, for all θ ∈ Θ, define

∂ θ L n (θ) = 1 n n t=1 ∂ θ q t (θ) and ∂ θ L n (θ) = 1 n n t=1 ∂ θ q t (θ).
Following the same reasoning it can be shown that for any t ∈ Z, θ ∈ Θ → q t (θ) and θ ∈ Θ → q t (θ) are a.s. C 2 ( Θ) functions and therefore the random matrices ∂ 2 θ 2 L n (θ) and ∂ 2 θ 2 L n (θ) a.s. exist. The proof of Theorem 3.2 will be decomposed in 3 parts:

1. First, as it was already established in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], (∂ θ q t (θ * )) t is a stationary ergodic martingale difference since with the σ-algebra

F t = σ (X t-k ) k≥1 , E ∂ θ q t (θ * ) F t = 0, because (X t ) is a causal process and ε t is independent of F t and E ε 2 0 = 1. Now since E ∂ θ q 0 (θ * )
2 < ∞ from the same arguments as in the proof of the consistency of the estimator. Then the central limit for stationary ergodic martingale difference, Theorem 18.3 of Billingsley (1968) can be applied and

√ n ∂ θ L n (θ * ) L -→ n→∞ N 0 , G * , (34) 
since E ∂ θ q 0 (θ * ) = 0 and where G * := E ∂ θ q 0 (θ * ) × t ∂ θ q 0 (θ * ) .

2. We are going to prove that:

n E sup θ∈ Θ ∂ θ L n (θ) -∂ θ L n (θ) 2 -→ n→∞ 0. (35) 
Using a line of reasoning already used in Beran and Schützner (2009, Lemma 1 and 2) and Bardet (2023, Lemma 5.1 3.), and derived from Parzen (1995, Theorem 3.B), there exists C > 0 such that:

E sup θ∈ Θ ∂ θ L n (θ) -∂ θ L n (θ) 2 ≤ C sup θ∈ Θ E ∂ θ L n (θ) -∂ θ L n (θ) 2 , because we assumed that θ → u n (θ) is a C p+1 ( Θ) function and therefore ∂ θ L n (θ) -∂ θ L n (θ) is a C p ( Θ) function.
Then, for θ ∈ Θ,

∂ γ q t (θ) -∂ γ q t (θ) = 1 σ 2 ∂ γ m t (θ) X t -m t (θ) + ∂ γ m t (θ) m t (θ) .
As a consequence, for θ ∈ Θ,

n E ∂ θ L n (θ) -∂ θ L n (θ) 2 = 1 n σ 4 2 1≤s<t≤n E t ∂ γ m t (θ) X t -m t (θ) +∂ γ m t (θ) m t (θ) ∂ γ m s (θ) X s -m s (θ) +∂ γ m s (θ) m s (θ) + n t=1 E t ∂ γ m t (θ) X t -m t (θ) +∂ γ m t (θ) m t (θ) ∂ γ m t (θ) X t -m t (θ) +∂ γ m t (θ) m t (θ) = 1 n σ 4 I 1 + I 2 . (36)
Concerning I 1 , since X t = σ * ε t + m t (θ * ) and since ε t is independent to all the other terms because s < t, we deduce that X tm t (θ) can be replaced by n t (θ, θ * ) = m t (θ * )m t (θ) . As a consequence, after its expansion, I 1 can be written as a sum of 6 expectations of products of 4 linear combinations of (ε t ). Moreover, if for j = 1, . . . , 4, Y (j)

t j = ∞ k=0 β (j) k ξ t j -k , where t 1 ≤ t 2 ≤ t 3 ≤ t 4 , (β (j) n ) n∈N are 4 real sequences and (ξ t ) t∈Z is a white noise such as E[ξ 2 0 ] = 1 and E[ξ 4 0 ] = µ 4 < ∞, then: E 4 j=1 Y (j) t j = (µ 4 -3) ∞ k=0 β (1) k β 
(2)

t 2 -t 1 +k β (3) 
t 3 -t 1 +k β (4) t 4 -t 1 +k + E Y (1) 
t 1 Y (2) t 2 E Y (3) 
t 3 Y (4) t 4 + E Y (1) 
t 1 Y (3) t 3 E Y (2) 
t 2 Y (4) t 4 + E Y (1) 
t 1 Y (4) t 4 E Y (2) 
t 2 Y (3) 
t 3 .

Now, consider for example Y

(1)

t 1 = ∂ γ m s (θ), Y (2) 
t 2 = X s -m s (θ) , Y (3) t 3 
= ∂ γ m t (θ) and Y (4) t 4 = m t (θ). From Lemma 5.1 and for any used sequence (β (j) k ) k∈N , there exists C > 0 such as for any k ∈ N:

β (1) k ≤ C s d (k + 1) 1-d * + , β (4) k ≤ C t d (k + 1) 1-d * + and max β (2) k , β (3) k 
≤ C (k + 1) 1-d * + .
As a consequence, with s < t,

(µ 4 -3) ∞ k=0 β (1) k β (2) k β (3) t-s+k β (4) t-s+k ≤ C s d t d ∞ k=1 1 k 2-2d * + 1 (k + t -s) 2-2d * + ≤ C s d t d (t -s) 2-2d * + . (37)
And we obtain the same bound for any quadruple products appearing in I 1 .

Consider now the other terms of I 1 . Using Lemmas 5.3 and 5.4, we obtain for any θ ∈ Θ and s < t:

• E Y (1)
t 1 Y (2) t 2 E Y (3) t 3 Y (4) t 4 = E ∂ γ m s (θ) X s -m s (θ) E ∂ γ m t (θ) m t (θ) = E ∂ γ m s (θ) n s (θ, θ * ) E ∂ γ m t (θ) m t (θ) ≤ C 1 s 1+d-2d * + 1 t 1+d-2d * + ; • E Y (1) t 1 Y (3) t 3 E Y (2) t 2 Y (4) t 4 = E ∂ γ m s (θ) ∂ γ m t (θ) E X s -m s (θ) m t (θ) = E ∂ γ m s (θ) ∂ γ m t (θ) E n s (θ, θ * ) m t (θ) ≤ C 1 s d t 1-2d * + + 1 s 1+2d-2d * + 1 t 1+d s -2d * + + 1 t 1+2d-2d * + • E Y (1) t 1 Y (4) t 4 E Y (2) t 2 Y (3) t 3 = E ∂ γ m s (θ) m t (θ) E X s -m s (θ) ∂ γ m t (θ) = E ∂ γ m s (θ) m t (θ) E n s (θ, θ * ) ∂ γ m t (θ) ≤ C 1 s d t 1-2d * + +d 1 (t -s) 1-2d * +
Using these inequalities as well as (37), we deduce from classical comparisons between sums and integrals:

1≤s<t≤n E t ∂ γ m t (θ) X t -m t (θ) ∂ γ m s (θ) m s (θ) ≤ C 1≤s<t≤n µ 4 -3 s d t d (t -s) 2-2d * + + 1 s d t 1-2d * + + 1 s 1+2d-2d * + 1 t 1+d s -2d * + + 1 t 1+2d-2d * + + 1 s 1+d-2d * + 1 t 1+d-2d * + + 1 s d t 1-2d * + +d 1 (t -s) 1-2d * + ≤ C n 1 x 2d * + -1-2d dx + n 1 dx x 2+d-2d * + x 1 dy y d-2d * + + n 1 dx x 2+2d-4d * + x 1 dy y d + n 1 dx x 1+d x 1 dy y 1+2d-4d * + + n 1 dx x 1+2d-2d * + x 1 dy y 1+2d-2d * + + n 1 dx x 1+d-2d * + x 1 dy y 1+d-2d * + + n 1 dx x 1+d-2d * + x 1 dy y d (x -y) 1-2d * + ≤ C n 2d * + -2d + n 4d * + -2d + n 4d * + -3d + n 4d * + -3d + n 4d * + -4d + n 4d * + -2d + n 4d * + -2d ≤ C n 4d * + -2d .
We obtain exactly the same bounds if we consider the 3 others expectations, i.e.

E t ∂ γ m t (θ) X t -m t (θ) ∂ γ m s (θ) X s -m s (θ) , E t ∂ γ m t (θ) m t (θ) ∂ γ m s (θ) X s -m s (θ) or E t ∂ γ m t (θ) m t (θ) ∂ γ m s (θ) m s (θ) .
As a consequence, we finally obtain:

1 σ 4 n I 1 ≤ C n 4d * + -2d-1 for any n ∈ N * . (38) 
Now consider the term I 2 in (36) and therefore the case s = t. For Y

(1)

t 1 = ∂ γ m t (θ), Y (2) 
t 2 = X t -m t (θ) , Y (3) 
t 3 = ∂ γ m t (θ) and Y (4)
t 4 = m t (θ), and the coefficient (β (j) k ) defined previously, we obtain:

(µ 4 -3) ∞ k=0 β (1) k β (2) k β (3) k β (4) k ≤ C ∞ k=1 1 t 2d 1 k 4-4d * + ≤ C 1 t 2d . (39) 
Moreover, using the same inequalities as in the case s < t, we obtain:

• E Y (1)
t 1 Y (2) t 2 E Y (3) 
t 3 Y (4) t 4 ≤ C 1 t 2+2d-4d * + ; • E Y (1) t 1 Y (3) t 3 E Y (2) t 2 Y (4) t 4 ≤ C 1 t 2+2d-4d * + • E Y (1) t 1 Y (4) t 4 E Y (2) t 2 Y (3) t 3 ≤ C 1 t 1-2d * + +2d .
Therefore,

n t=1 E t ∂ γ m t (θ) X t -m t (θ) ∂ γ m t (θ) m t (θ) ≤ C n t=1 µ 4 -3 t 2d + 1 t 1-2d * + +2d ≤ C n 1-2d .
As a consequence, we finally obtain that there exists C > 0 such that:

1 σ 4 n I 2 ≤ C n -2d for any n ∈ N * . ( 40 
)
Therefore, from (38) and (40), we deduce that there exists C > 0 such that for any n ∈ N * :

n E ∂ θ L n (θ) -∂ θ L n (θ) 2 ≤ C n -2d + n 4d * + -2d-1 -→ n→∞ 0, (41) 
from (32).

3. For θ ∈ Θ and n ∈ N * , since ∂ 2 θ 2 L n (θ) is a.s. a C 2 ( Θ) function, the Taylor-Lagrange expansion implies:

√ n ∂ θ L n (θ * ) = √ n ∂ θ L n ( θ n ) + ∂ 2 L θ 2 ( θn ) × √ n (θ * -θ n ) where θn = c θ n + (1 -c) θ * and 0 < c < 1. But ∂ θ L n ( θ n ) = 0 because θ n is the unique local extremum of θ → L n (θ). Therefore, √ n ∂ θ L n (θ * ) = ∂ 2 θ 2 L n ( θn ) × √ n (θ * -θ n ). (42) 
Now, E ∂ 2 θ 2 q 0 (θ) < ∞ from the same arguments as in the proof of the consistency of the estimator, and using Theorem 36.4 in Billingsley (1995), ∂ 2 θ 2 q t (θ) t∈Z is an ergodic stationary sequence for any θ ∈ Θ. Moreover θn a.s.

-→ n→∞ θ * since θ n a.s.

-→ n→∞ θ * . Hence:

∂ 2 θ 2 L n ( θn ) a.s. -→ n→∞ E ∂ 2 θ 2 q 0 (θ) = F (θ * ).
Moreover, using the same arguments as in Lemma 4 of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], we have:

sup θ∈ Θ ∂ 2 θ 2 L n (θ) -∂ 2 θ 2 L n (θ) P -→ n→∞ 0 =⇒ ∂ 2 θ 2 L n ( θn ) P -→ n→∞ F (θ * ). (43) 
Usual calculations show that:

F (θ * ) = - M * 0 0 1 2 σ * 4 and G(θ * ) = M * 0 0 µ * 4 -1 4 σ * 4 , with M * = 1 σ * 2 ∞ k=1 ∞ ℓ=1 ∂ γ u k ((γ * , 0)) t ∂ γ u ℓ ((γ * , 0)) r X (ℓ -k)
where G(θ * ) = E ∂ θ q 0 (θ * ) t ∂ θ q 0 (θ * ) has already been defined in (34). Thanks to the formula for M * , we can deduce that F * is invertible. Indeed, M * is invertible if and only if E ∂ θ q 0 (θ * ) t ∂ θ q 0 (θ * ) is invertible and therefore if and only if for all

v ∈ R p-1 , t v E ∂ γ q 0 (θ * ) t ∂ θ q 0 (θ * ) v = E t v ∂ γ q 0 (θ * ) 2 = 0 or t v ∂ γ q 0 (θ * ) = 0 a.s. implies v = 0. Or, pour v ∈ R p-1 , t v ∂ γ q 0 (θ * ) = 0 a.s. =⇒ 1 σ * 2 ε 0 ∞ k=1 t v ∂ γ u k (θ * ) X -k = 0 a.s. =⇒ ∞ k=1 t v ∂ γ u k (θ * ) X -k = 0 a.s. (ε 0 is independent to F 0 ) =⇒ t v ∂ γ u k (θ * ) = 0 for all k ∈ N * =⇒ v = 0 from (16).
Now, from (34) and (41), we deduce that:

√ n ∂ θ L n (θ * ) L -→ n→∞ N 0 , G(θ * ) ,
and since F (θ * ) is a definite negative matrix, from (42) we deduce that

√ n θ n -θ * L -→ n→∞ N 0 , F (θ * ) -1 G(θ * ) F (θ * ) -1 . (44) 
Finally, from the previous computations of G(θ * ) and F (θ * ), we deduce (17).

Proofs of additional lemmas

Lemma 5.1. Under the assumptions of Theorem 3.1, for any θ ∈ Θ and t ∈ Z or t ∈ N * , with m t (θ), m t (θ) and m t (θ) respectively defined in (10), ( 12) and (24), we have:

m t (θ) = ∞ k=1 α k (θ, θ * ) ε t-k , m t (θ) = ∞ k=1 α k,t (θ, θ * ) ε t-k and m t (θ) = ∞ k=0 α k,t (θ, θ * ) ε -k ,
where there exists C > 0 such as for any k ≥ 1 and t ∈ N * ,

max α k (θ, θ * ) , α k,t (θ, θ * ) ≤ C k 1-d * + and α k,t (θ, θ * ) ≤ C t d k 1-d * + .
Moreover, under the assumptions of Theorem 3.2, the same properties also hold for ∂ θ m t (θ), ∂ θ m t (θ) and ∂ θ m t (θ).

Proof. We know that X t = ∞ ℓ=0 a ℓ (θ * ) ε t-ℓ for any t ∈ Z. Then,

m t (θ) = ∞ k=1 ∞ ℓ=0 u k (θ)a ℓ (θ * ) ε t-k-ℓ = ∞ j=1 j k=1 u k (θ)a j-k (θ * ) ε t-j = ∞ j=1 α j (θ, θ * ) ε t-j m t (θ) = t-1 k=1 ∞ ℓ=0 u k (θ)a ℓ (θ * ) ε t-k-ℓ = ∞ j=1 min(j , t-1) k=1 u k (θ)a j-k (θ * ) ε t-j = ∞ j=1 α j,t (θ, θ * ) ε t-j m t (θ) = ∞ k=t ∞ ℓ=0 u k (θ)a ℓ (θ * ) ε t-k-ℓ = ∞ j=0 j k=0 u t+k (θ)a j-k (θ * ) ε t-j = ∞ j=0 α j,t (θ, θ * ) ε t-j
As a consequence, using a ℓ (θ * ) ≤ C ℓ d * + -1 and u ℓ (θ) ≤ C ℓ -d-1 for any ℓ ∈ N * , we obtain:

α j (θ, θ * ) ≤ C j k=1 1 k 1+d 1 (1 + j -k) 1-d * + ≤ C 1 (j/2) 1-d * + j/2 k=1 1 k 1+d + 1 (j/2) 1+d j k=j/2 1 (1 + j -k) 1-d * + ≤ C j 1-d * + .
Using the same kind of decomposition, we obtain the other bounds. Proof. 

E m s (θ) m t (θ) = ∞ k=s ∞ ℓ=1 u k (θ) u ℓ (θ) r X (t -s + k -ℓ) ≤ C ∞ k=1 ∞ ℓ=1 1 (s + k) 1+d

  7.3 of Bingham et al. (1987): Fix ρ > 0 and let L a slow varying function. Then if (α n ) n∈N is a sequence of nonnegative real numbers and the power series A(s) = ∞ n=0 α n s n converges for any s ∈ [0, 1), then n k=0

Lemma 5 . 2 .b for any b ≥ 1 Lemma 5 . 3 . 1 ( 1 +

 5215311 For any α > 1, β ∈ (0, 1), there exists C > 0 such as for any 1 ≤ a,I α (a) = ∞ k=1 1 k α (k + a) α ≤ C a α I α (a, b) = ∞ k=1 1 (k + a) α (k + b) α ≤ C a α-1 b α for any b > a ≥ 1 J α,β (0, a) = ∞ k=1 1 (k + a) α k β ≤ C a α+β-1 J α,β (a, 0) = ∞ k=1 1 k α (k + a) β ≤ C a β J α,β (a, b) = ∞ k=1 1 (k + a) β (k + b) α ≤ C a β b α-1 min 1 ,a Under the assumptions of Theorem 3.1, there exists C > 0 such as for any θ ∈ Θ and1 ≤ s ≤ t ≤ n, E m s (θ) m t (θ) ≤ C s d t 1-2d * + +d . (45)Proof. Using the bounds of functions I 1+d and J 1+d,1-2d defined in Lemma 5.2, we obtainE m s (θ) m t (θ) = ∞ k=s ∞ ℓ=t u k (θ) u ℓ (θ) r X (ts + kℓ) s + j) 1+d (ℓ + t) 1+d + ∞ k=1 1 (k + s) 1+d (k + t) 1+d s) 1+d (k + t + j) 1+d≤ C I 1+d (s, t) + ∞ j=1 j)1-2d 

1 ℓ 1+d 1 ( 1 +

 111 |t + k -ℓ|) 1-2d * s + j) 1+d ℓ 1+d

  s) 1+d (k + j) 1+d ≤ C ∞ j=1 1 (t + j) 1-2d * + I 1+d (s + j, 0) + t j=1 1 j 1-2d * + I 1+d (s, tj) + ∞ j=1 1 j 1-2d

Table 1 :

 1 Square roots of the MSE computed for the QMLE θ n and the Whittle estimator in the case of a FARIMA process computed from 1000 independent replications.

			327	0.045	0.317	0.045	0.318	0.046	0.327	0.050
		θ W = ( σ 2 W , d W ) 0.327	0.050	0.318	0.050	0.319	0.051	0.332	0.053
	1000	θ n = ( σ 2 n , d n )	0.179	0.024	0.179	0.024	0.183	0.025	0.184	0.025
		θ W = ( σ 2 W , d W ) 0.179	0.026	0.179	0.026	0.183	0.026	0.185	0.026
	3000	θ n = ( σ 2 n , d n )	0.103	0.014	0.105	0.014	0.103	0.014	0.100	0.015
		θ W = ( σ 2 W , d W ) 0.103	0.014	0.106	0.015	0.103	0.014	0.100	0.015
	10000	θ n = ( σ 2 n , d n )	0.056	0.007	0.056	0.007	0.056	0.008	0.052	0.008
		θ W = ( σ 2 W , d W ) 0.056	0.007	0.056	0.007	0.057	0.008	0.052	0.008
										0.4
	300	θ n = ( σ 2 n , d n ) 0.082	0.048	0.083	0.054	0.080	0.059	0.080	0.065
	1000	θ n = ( σ 2 n , d n ) 0.045	0.025	0.047	0.032	0.045	0.032	0.046	0.038
	3000	θ n = ( σ 2 n , d n ) 0.025	0.014	0.027	0.017	0.024	0.018	0.026	0.020
	10000 θ n = ( σ 2 n , d n ) 0.013	0.008	0.013	0.010	0.015	0.011	0.014	0.012

n σ 2 = 4, d = 0.1 σ 2 = 4, d = 0.2 σ 2 = 4, d = 0.3 σ 2 = 4, d =

Table 2 :

 2 Square roots of the MSE computed for the QMLE θ n in the case of the LRD process computed from 1000 independent replications.

+

  I 1+d (s + j, t) + I 1+d (s, t + j)

	≤ C	1 s d t 1+d +	1 s d J 1+d,1-2d * + (0, t) +	1 t d+1	t-s j=1	1 (1 + j) 1-2d * +	1 (s + j) d
			+	1 t d	∞ j=t-s	1 (1 + j) 1-2d * +	1 (s + j) 1+d
	≤ C	1 s d t 1+d +	1 s d t 1-2d * + +d +	1 s d t d+1 (t -s + 1) 2d * + +	1 t d J 1+d,1-2d * + (t -s, t)
	≤ C	1 s d t 1+d +	1 s d t 1-2d * + +d + J 1+d,1-2d  1 s d t 1-2d * + +d + 1 t       C 1 s d t 1-2d * + + + (1 + t -s) 2d * s 1+2d if s ≤ t C t 2d * + s 1+d + s 1+d t d if s ≥ t (1 + s -t) 2d * +	.	(46)

* * + (ts, t) ≤ C s d t 1-2d * + +d .

Lemma 5.4. Under the assumptions of Theorem 3.1, there exists C > 0 such as for any θ ∈ Θ and any 1 ≤ s and 1 ≤ t, E m s (θ) m t (θ) ≤

+

  I 1+d (s, j + t) .

	Then, if s ≤ t,								
	E m s (θ) m t (θ)	≤ C J 1+d,1-2d * + (t, s) +	1 s d	t-s j=1	1 j 1-2d * +	1 (t -j) 1+d
		≤ C	+ + s d t 1-2d * 1 + s 1+d 1 s 2d t 1-2d * s j=1 (t -j) 1-2d * 1 + 1 + + 1 s 1+2d-2d * (s -j) 1+d + 1 + 1 + s d t 1+d-2d * 1 s d J 1+d,1-2d * + (0, t) +
		≤ C	1 s d t 1-2d * +	+	1 s 1+2d-2d * +	.
	And if s > t,								
	E m s (θ) m t (θ)	≤ C J 1+d,1-2d * + (t, s) +	1 s 1+d	t j=1	1 j 1-2d * +	1 (t -j) 1+d
				+	1 s 1+d	s-t j=1	1 j 1-2d * +	1 (t + j) d +	1 s d	∞ j=s-t	1 j 1-2d * +	1 (t + j) 1+d
		≤ C	1 s 1+d t -2d * +	+	1 s 1+d t 1-2d * +	+	1 s 1+2d-2d * +	+	1 s 1+2d-2d * +
		≤ C	1 s 1+d t -2d * +	+	1 s 1+2d-2d *

* + .