[1]:

[2]:

[3]:

[3]:

An Evaluation Tool for Backbone Extraction Techniques in
Weighted Complex Networks

October 20, 2023

1 Requirements

netbone is available on Pypi. But make sure you have Python version 3.10 or higher and it’s a good
idea to use conda, virtualenv, or pyenv.

Ipip install netbone

Once installed, the netbone package can be imported simply

import netbone as nb

2 Toy Example

To cover all users needs we separated the calculation process from the filtering process in netbone.
Thus, the process of extracting the backbone follows: 1. Apply a backbone extraction method to
run the computation process 2. Apply a filter to extract the backbone

To illustrate the usage of metbone, we consider the high salience skeleton method with the Les
Misérables network. We chose this extraction technique because it can be associated with the three
filtering methods provided by netbone. The netbone package can handle two types of inputs: a
networkz graph or a DataFrame. In this example, we will load the Les Misérables network from
networkz and apply the high salience_ skeleton() method.

import networkx as nx
g = nx.les_miserables_graph()

b

nb.high_salience_skeleton(g)

The resulting scores can be examined using the to_ dataframe() function as shown below:

b.to_dataframe()

source target weight distance in_backbone salience
0 Napoleon Myriel 1 1.000000 True 1.000000
1 Myriel MlleBaptistine 8 0.125000 True 0.987013
2 Myriel MmeMagloire 10 0.100000 True 0.987013
3 Myriel CountessDeLo 1 1.000000 True 1.000000
4 Myriel Geborand 1 1.000000 True 1.000000

https://pypi.org/project/netbone

[4] :

[5]:

249 Babet Brujon 0.333333 False 0.025974

3
250 Claquesous Montparnasse 2 0.500000 False 0.025974
251 Claquesous Brujon 1 1.000000 False 0.000000
252 Montparnasse Brujon 1 1.000000 False 0.000000
2563 Child1l Child2 3 0.333333 False 0.025974

[254 rows x 6 columns]

The high salience skeleton method exhibits a bimodal distribution of scores centered around 0 and 1.
The default approach of this method is to keep only edges with scores greater than 0.8. In netbone,
it can be accomplished using the boolean filter(). However, in that case, two nodes are missing from
the extracted backbone in this particular example. To fix this issue, users can adjust the threshold
by using the threshold_ filter() function. One can use a threshold of 0.7 to retain all the network
nodes. Additionally, users can control the size of the backbone using the fraction_ filter(), such as
keeping 15% of the network. The following code shows how to do it in netbone:

from netbone.filters import boolean_filter, threshold_filter, fraction_filter

backbonel = boolean_filter(b)
backbone2 = threshold_filter(b, 0.7)
backbone3 = fraction_filter(b, 0.15)

High Salience Skeleton Filter
High Salience Skeleton Filter
High Salience Skeleton Filter

To illustrate the usage of the extracted backbones, we plot them using netowrkz.

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(18, 12),tight_layout=True)
rows = 2

columns = 3

node_scale = 10

edge_scale = 0.5

deg = nx.degree(g)
pos = nx.spiral_layout(g)

grid = plt.GridSpec(rows, columns, wspace = .025, hspace = .1)
sizes = [node_scale * deg[n] for n in g.nodes()]
weg = [edge_scale * gl[u] [v] ['weight'] for u,v in g.edges()]

ax = plt.subplot(grid[0,1:2])
ax.set_title('Les Misérables Original Network', fontsize=20)

nx.draw_networkx_nodes(g, pos=pos, nodelist=['Childl'], node_color='white',,
—node_size=[node_scale * deg[n] for n in ['Child1']], alpha=0.01)

nx.draw_networkx (g, ax=ax,
alpha=.5,
width=.6,
node_size=sizes,
width = weg,
node_color='k',
pos=pos,
with_labels=False,
font_size=50)
plt.legend([f'E: {len(g.edges())} \nN: {len(g.nodes())}'], handlelength=0,,
—handleheight=0)

titles = ['Boolean Filter', 'Threshold Filter', 'Fraction Filter']
for i, backbone in enumerate([backbonel, backbone2, backbone3]):
sizes = [node_scale * deg[n] for n in backbone.nodes()]
weg = [edge_scale * backbone[ul] [v] ['weight'] for u,v in backbone.edges()]

ax = plt.subplot(grid[1,i])

ax.set_title(titles[i], fontsize=20)
removed = g.nodes() - backbone.nodes()
nx.draw_networkx_nodes(g, pos=pos, nodelist=removed, node_color='white',,
—node_size=[node_scale * deg[n] for n in removed], alpha=0.0)
nx.draw_networkx_nodes(g, pos=pos, nodelist=['Childl'], node_color='white',
—node_size=[node_scale * deg[n] for n in ['Child1']], alpha=0.0)
nx.draw_networkx(backbone, ax=ax,
alpha=.5,
width=.6,
node_size=sizes,
width = weg,
node_color='k',
pos=pos,
with_labels=False)
plt.legend([r'\bf{N}' + f': {len(backbone.nodes())} \n' + r'\bf{E}' +,
—f': {len(backbone.edges())}'], handlelength=0, handleheight=0)
plt.legend([f'E: {len(backbone.edges())} \nN: {len(backbone.nodes())}'],
—handlelength=0, handleheight=0)

plt.savefig('./images/toy.pdf', dpi=300, bbox_inches='tight')
plt.savefig('./images/toy.png', dpi=300, bbox_inches='tight', transparent=True)
#

[6]:

[7]:

Les Misérables Original Network

Boolean Filter Fraction Filter

3 Experiment 1

In this experiment, we focus on assessing the connectivity of the structural backbone extraction
methods in the air transportation network using netbone’s comparison framework. The aim is to
have a connected filtered network when applying filters since connectivity is an essential property
in transportation networks. To accomplish this, first we define an instance of the Compare class
from the compare module.

from netbone.compare import Compare
framework = Compare()

After initialization, the first step is to add the original network to netbone’s comparison framework
using the set network() function. For this purpose, we must provide a networkz graph or an edge
list stored in a DataFrame object. In this experiment, we use a DataFrame object.

import pandas as pd
edge_list = pd.read_csv('./data/data.csv')
framework.set_network(edge_list)

The next step is to set up the filter in the comparison framework. It is done using the set filter()
function. It specifies the filter used to extract the backbones before computing the properties. In
this experiment, we choose to use the boolean filter(). Since the selected methods extract one
subgraph by there definition.

[8l:

[9]:

[10]:

[11]:

from netbone.filters import boolean_filter
framework.set_filter(boolean_filter)

After setting the original network and filter, the next step is to add the backbone extraction methods
to the comparison framework. This is done in two stages, first we apply the backbone extraction
method. Then we add them to the comparison framework using the add backbone() function.
Here we chose to use eight structural techniques. We recall that in netbone the computation process
is separated of the filtration process. Subsequently, the backbone extraction method in netbone
returns an instance of the Backbone Class.

import netbone as nb

ds = nb.doubly_stochastic(edge_list)
hb = nb.h_backbone(edge_list)
hss = nb.high_salience_skeleton(edge_list)

msp = nb.maximum_spanning_tree(edge_list)

mb = nb.metric_distance_backbone(edge_list)

umb = nb.ultrametric_distance_backbone(edge_list)
pmfg = nb.pmfg(edge_list)

pla =

framework.
framework.
framework.
framework.
framework.
framework.
framework.

nb.plam(edge_list)

add_backbone (ds)
add_backbone (hb)
add_backbone (hss)
add_backbone (msp)
add_backbone (mb)
add_backbone (umb)
add_backbone (pmfg)

framework.add_backbone (pla)

The final step is to add the properties used to evaluate the backbones. To add a property, users
can use the add_property() function by passing it a name and a property function. Here, we use
six predefined property functions from the measures module

from netbone.measures import node_fraction, edge_fraction, average_degree,,

—reachability, weight_fraction, density

framework.
framework.
framework.
framework.
framework.
framework.

add_property('Node Fraction', node_fraction)
add_property('Edge Fraction', edge_fraction)
add_property('Weight Fraction', weight_fraction)
add_property('Density', density)
add_property('Average Degree', average_degree)
add_property ('Reachability', reachability)

Now that everything is set up and added to the framework, we call the properties() function to
compute the added properties. This function returns a pandas DataFrame that can be inspected to
compare the computed properties of the backbones

results = framework.properties()
results

[11]: Node Fraction Edge Fraction \
Original 1.000000 1.000000

Doubly Stochastic Filter 0.926316 0.638045
H-Backbone Filter 0.805263 0.262244
High Salience Skeleton Filter 0.918421 0.033478
Maximum Spanning Tree 1.000000 0.039161
Metric Distance Filter 1.000000 0.069746
Ultrametric Distance Filter 1.000000 0.039161
Planar Maximally Filtered Graph 1.000000 0.099711
Primary Linkage Analysis 1.000000 0.038748

Weight Fraction Density Average Degree \

Original 1.000000 0.1344 50.936842

Doubly Stochastic Filter 0.834884 0.1000 35.085227

H-Backbone Filter 0.988625 0.0544 16.588235

High Salience Skeleton Filter 0.096433 0.0053 1.856734

Maximum Spanning Tree 0.186046 0.0053 1.994737

Metric Distance Filter 0.503583 0.0094 3.552632

Ultrametric Distance Filter 0.186046 0.0053 1.994737

Planar Maximally Filtered Graph 0.355704 0.0134 5.078947

Primary Linkage Analysis 0.177826 0.0052 1.973684
Reachability

Original 1.000000

Doubly Stochastic Filter 0.988669

H-Backbone Filter 1.000000

High Salience Skeleton Filter 0.100007

Maximum Spanning Tree 1.000000

Metric Distance Filter 1.000000

Ultrametric Distance Filter 1.000000

Planar Maximally Filtered Graph 1.000000

Primary Linkage Analysis 0.384294

To perform the comparative analysis of backbone extraction techniques visually, we plot the prop-
erties across various dimensions using a radar_plot() function from the visualize module. This
function takes two inputs: the results DataFrame and a String representing the title of the figure
and the name of the saved figure file.

[12]: from netbone.visualize import plot_radar
plot_radar(results, 'US Airports')

US Airports

Node Fraction

Reachability e 1 Edge Fraction

Original

Doubly Stochastic Filter
H-Backbone Filter

High Salience Skeleton Filter
Maximum Spanning Tree

Metric Distance Filter
Ultrametric Distance Filter
Planar Maximally Filtered Graph
Primary Linkage Analysis

EEXEEX

t

L0

Average Degree Weight Fraction

Density

4 Experiment 2

The Previous experiment focuses on the structural methods for backbone extraction. Some of these
methods can be adjusted using a threshold on scores or selecting the top fraction of scores. In this
experiment, our objective is to sparsify the network while preserving all the nodes, which is crucial in
the context of a transportation network. To achieve this, we use netbone’s comparison framework to
help us determine the appropriate fraction. We start by initiating an instance of the Compare class
from the compare module. Then we add the original network to netbone’s comparison framework
using the set network() function.

[13]: from netbone.compare import Compare
import pandas as pd

framework = Compare ()

edge_list = pd.read_csv('./data/data.csv')
framework.set_network(edge_list)

The next step is to set up the filter in the comparison framework. In this experiment, we choose
to use the fraction_filter() to evaluate the backbones at the fractions from 0.01 till 0.5. Thus, we
pass an array of these values while setting the filter.

[14]: from netbone.filters import fraction_filter

fractions = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]
framework.set_filter(fraction_filter, fractions)

Once the original network and filter are set, the following step is to add the backbone extraction
methods in the comparison framework.

[16]: import netbone as nb

gt =nb.global_threshold(edge_list)

hss = nb.high_salience_skeleton(edge_list)

ds = nb.doubly_stochastic(edge_list)

gspar = nb.gspar(edge_list)

bet = nb.betweenness(edge_list, weighted=True)

framework.add_backbone(gt)
framework.add_backbone (hss)
framework.add_backbone (ds)
framework.add_backbone (gspar)
framework.add_backbone (bet)

The last step is incorporating the properties to assess the backbones under varying fractions. In
this case, we use one property function, the node_ fraction() from the measures module.

[16]: from netbone.measures import node_fraction

framework.add_property('Node Fraction', node_fraction)

After configuring everything and adding it to the framework, the next step is to call the proper-
ties_progression() function to compute the properties for the backbone at each fraction. The output
of this function is a dictionary of DataFrames. One can use it to inspect the computed properties
of the backbones with respect to the fractions.

[17]: results= framework.properties_progression()
results['Node Fraction']

[17]: Global Threshold Filter High Salience Skeleton Filter \

Fraction of Edges

0.01 0.092105 0.3
0.05 0.226316 1.0
0.10 0.378947 1.0
0.15 0.526316 1.0
0.20 0.657895 1.0
0.25 0.773684 1.0
0.30 0.863158 1.0
0.35 0.915789 1.0
0.40 0.950000 1.0
0.45 0.971053 1.0

0.50 0.973684 1.0

Doubly Stochastic Filter Global Sparsification \
Fraction of Edges

0.01 0.310526 0.155263
0.05 0.784211 0.239474
0.10 0.836842 0.294737
0.15 0.850000 0.350000
0.20 0.855263 0.381579
0.25 0.863158 0.450000
0.30 0.868421 0.500000
0.35 0.871053 0.552632
0.40 0.878947 0.626316
0.45 0.886842 0.671053
0.50 0.886842 0.705263

Weighted Betweenness
Fraction of Edges

0.01 0.402632
0.05 0.771053
0.10 0.960526
0.15 0.994737
0.20 1.000000
0.25 1.000000
0.30 1.000000
0.35 1.000000
0.40 1.000000
0.45 1.000000
0.50 1.000000

To visualize the evolution of the properties versus the fraction values, we use the plot_progression()
function from the wisualize module. This function requires two arguments: the results dictionary
and a String that represents the title of the figure and the name of the saved figure file.

[18]: from netbone.visualize import plot_progression
plot_progression(results, 'US Airports')

US Airports

1.0 + H i ;._.—‘—Q—.—._._‘
¥ /.#.-—.
L
/ﬁ.—-!—-x——-l7§,£x—-x——x_x
0.8 y .
”.i
¢ " Global Threshold Filter

High Salience Skeleton Filter
Doubly Stochastic Filter
Global Sparsification
Weighted Betweenness

[
N
\
\
\
N\
ttite

0.2 f
&
é
T T

I 1
0.0 0.1 0.2 0.3 0.4 0.5
Fraction of Edges

5 Experiment 3

In this experiment, we use netbone’s comparison framework to assess the global threshold and
statistical methods to capture the weight and degree distributions. We start by initiating an instance
of the Compare class from the compare module. Then we add the original network to netbone’s
comparison framework using the set_network() function.

[19]: from netbone.compare import Compare
import pandas as pd

framework = Compare()

edge_list = pd.read_csv('./data/data.csv')
framework.set_network(edge_list)

Then we add the backbone extraction methods to the comparison framework. Here, the order is
important because we are going to use the order of the added backbones in the next step.

[20] : import netbone as nb
gt = nb.global_threshold(edge_list)
df = nb.disparity(edge_list)
mlf = nb.marginal_likelihood(edge_list)
nc = nb.noise_corrected(edge_list)

10

[21]:

[22]:

[23]:

[23]:

ecm = nb.ecm(edge_list)
lans = nb.lans(edge_list)

framework.add_backbone (gt)
framework.add_backbone (nc)
framework.add_backbone (df)
framework.add_backbone (ecm)
framework.add_backbone (lans)
framework.add_backbone (ml1f)

The next step is to set up the filter in the comparison framework. In this experiment, we choose to
use the threshold_filter() to evaluate the backbones. For the global threshold method, we set the
threshold value to the average weight of 7000. For the statistical methods, we use a significance
level of 0.05. Thus, we pass an array of these values while setting the filter taking into consideration
the order when we added the backbones.

from netbone.filters import threshold_filter

values = [7000] + [0.05]%*5
framework.set_filter (threshold_filter, values)

The last step is incorporating the property functions that will extract the values to assess the
distribution of the properties in the backbones. In this case, we use two property functions, the
weights() and degrees() from the measures module.

from netbone.measures import weights, degrees

framework.add_property('Weight', weights)
framework.add_property('Degree', degrees)

After configuring everything and adding it to the framework, the next step is to call the dis-
tribution_ ks _statistic() function to compute the KS statistic between the original and backbone
property distributions. The output of this function is a DataFrame and a dictionary. One can use
the DataFrame to inspect the computed KS statistic for each property, and the dictionary is used
later for visualization.

results, dist = framework.distribution_ks_statistic()
results

Weight Degree

Global Threshold Filter 0.805125 0.406337
Noise Corrected Filter 0.517305 0.542105
Disparity Filter 0.700747 0.494889
Enhanced Configuration Model Filter 0.325893 0.555263
Locally Adaptive Network Sparsification Filter 0.662704 0.665789
Marginal Likelihood Filter 0.553501 0.415789

To visualize the cumulative distribution of the properties, we use the plot distribution() function
from the visualize module. This function requires two arguments: the results dictionary and a

11

String that represents the title of the figure and the name of the saved figure file.

[24]: from netbone.visualize import plot_distribution
plot_distribution(dist, title='US Airports')

10°

107!

a 1072

1073

107

10°

107t

102

US Airports
EREH
] H
#
-
E L4
E o
4 Lo
EHIII LR | LRI | LB ERIL | LB RRRLL] LR RRAIL | LI
10° 10! 10? 103 10* 10°
Weight
UsS Airports

10°

12

Original

Global Threshold Filter

Noise Corrected Filter

Disparity Filter

Enhanced Configuration Model Filter

Locally Adaptive Network Sparsification Filter
Marginal Likelihood Filter

Original

Global Threshold Filter

Noise Corrected Filter

Disparity Filter

Enhanced Configuration Model Filter

Locally Adaptive Network Sparsification Filter
Marginal Likelihood Filter

[25] :

[26] :

[27]:

[28]:

6 Experiment 4

In this experiment, we use netbone’s comparison framework to extract the consensus backbone using
the statistical backbone extraction methods. We start by initiating an instance of the Compare class
from the compare module. Then we add the original network to netbone’s comparison framework
using the set network() function.

from netbone.compare import Compare
import pandas as pd

framework = Compare()

edge_list = pd.read_csv('./data/data.csv')
framework.set_network(edge_list)

Then we add the backbone extraction methods to the comparison framework. Similar to the previous
experiment, the order is important because we are going to use the order of the added backbones
in the next step.

import netbone as nb

df = nb.disparity(edge_list)

mlf = nb.marginal_likelihood(edge_list)
nc = nb.noise_corrected(edge_list)

ecm = nb.ecm(edge_list)

lans = nb.lans(edge_list)

framework.add_backbone(nc)
framework.add_backbone (df)
framework.add_backbone (ecm)
framework.add_backbone(lans)
framework.add_backbone (ml1f)

The next step is to set up the filter in the comparison framework. In this experiment, we choose
to use the threshold_filter() to evaluate the backbones. We set the threshold value to 0.05. Thus,
we pass an array of these values while setting the filter taking into consideration the order when we
added the backbones.

from netbone.filters import threshold_filter

values = [0.05]*5
framework.set_filter(threshold_filter, values)

Here we don’t need to add any property function we simply use the method consent(). By taking
the intersection of the extracted backbones, this method returns a netowrkz graph representing the
consensus backbone.

consensual = framework.consent ()

Next we extract the backbones similar to the toy example to prepare it for plotting later.

13

[29]:

[30]:

[31]:

mlf_backbone = threshold_filter(mlf, 0.05)
nc_backbone = threshold_filter(nc, 0.05)

df _backbone = threshold_filter(df, 0.05)
ecm_backbone = threshold_filter(ecm, 0.05)
lans_backbone = threshold_filter(lans, 0.05)

backbones = [mlf_backbone, nc_backbone, df_backbone, ecm_backbone,
<»lans_backbone, consensuall

b = [mlf.method_name, nc.method_name, df .method_name, ecm.method_name, lans.
—smethod_name, 'Consensual Backbone'l]

Marginal Likelihood Filter

Noise Corrected Filter

Disparity Filter

Enhanced Configuration Model Filter

Locally Adaptive Network Sparsification Filter

We extract the coordinates of the nodes and the degree of each node to plot the nodes in the right
position.

import pyreadr

import networkx as nx

result = pyreadr.read_r('./data/data.RData')

g = nx.from_pandas_adjacency(result['airport'])

positions = {index: tuple(row) for index, row in result['latlong'].iterrows()}
deg = nx.degree(g)

We plot the original network with the backbones using cartopy and networkx.

import cartopy.crs as ccrs

import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import seaborn as sns
sns.reset_defaults()

crs = ccrs.PlateCarree()

fig = plt.figure(figsize=(18, 20))
rows = 5

columns = 2

grid = plt.GridSpec(rows, columns, wspace = .025, hspace = .1)
sizes = [.5 * degl[iatal for iata in g.nodes()]
ax = plt.subplot(grid[0,:], projection=crs)

ax.coastlines(1lw=0.2)

ax.set_extent([-128, -62, 20, 50])
ax.add_feature(cfeature.BORDERS, color="k", 1lw=0.2)

14

ax.add_feature(cfeature.STATES, 1lw=0.1)
ax.set_title('Original Network', fontsize=20)
ax.set_aspect('equal')
nx.draw_networkx (g, ax=ax,
alpha=.5,
width=.3,
node_size=sizes,
node_color="'#8b0000"',
pos=positions,
cmap=plt.cm.autumn,
with_labels=False,
edge_color="'k')
ax.legend([f'N: {len(g.nodes())} \nE: {len(g.edges())}'], handlelength=0,
—handleheight=0, markerscale=0)

b = ['Marginal Likelihood', 'Noise Corrected', 'Disparity Filter', "ECM,
—Filter", "LANS Filter", 'Consensual Backbone', 'Global Threshold']
for i, ax in enumerate(backbones):
ax = plt.subplot(grid[int(i/2)+1,1i%2], projection=crs)

backbone = backbones[i]
sizes = [.5 * degl[iata] for iata in backbone.nodes()]

ax.coastlines(1w=0.2)

ax.set_extent([-128, -62, 20, 50])
ax.add_feature(cfeature.BORDERS, color="k", 1lw=0.2)
ax.add_feature(cfeature.STATES, 1w=0.1)

ax.set_title(b[i], fontsize=14)
ax.set_aspect('equal')
nx.draw_networkx(backbone, ax=ax,
alpha=.5,
width=.3,
node_size=sizes,
node_color="'#8b0000"',
pos=positions,
cmap=plt.cm.autumn,
with_labels=False,
edge_color="'k')
nx.draw_networkx_nodes(backbone, pos=positions, nodelist=backbone.
—nodes()['ALB'], node_color='white', alpha=0.0)
ax.legend([£f'N: {len(backbone.nodes())} \nE: {len(backbone.edges())}'],
—handlelength=0, handleheight=0, markerscale=0)

plt.show()
plt.savefig('networks+consenual.png', dpi=300, bbox_inches='tight')

15

Marginal Likelihood Filter Noise Corrected Filter

5

Disparity Filter Enhanced Configuration Model Filter

T
[SSY

7 Experiment 5

This experiment illustrates how users can integrate their custom backbone extraction method and
custom evaluation properties into netbone’s comparison framework. To illustrate this process, we
define the new_backbone_method() function. It generates random values and keeps them in a new
edge property named new _score. The function should return a new instance of the Backbone class.
To initialize an instance of the Backbone class, users should provide: 1. networkz graph containing
the new edge scores 2. The name of the new method 3. The edge property name 4. The ascending
parameter: It should be set to True if the edge property name represents a p-value. Otherwise, it
should be Fulse 5. An array of compatible filters. Here, the edge property is a numerical value then
the appropriate filters to use in this case are the threshold_ filter() and the fraction_filter() 6. The
filter_on parameter: should indicate whether the filter is applied to ‘Edges’ or ‘Nodes’.

16

[32]:

[33]:

[34]:

from netbone.filters import threshold_filter, fraction_filter
from netbone.backbone import Backbone
import random

def new_backbone_method(graph) :
for u,v in graph.edges():
graph[ul [v] ['new_score'] = round(random.uniform(0, 1), 2)
return Backbone(graph, method_name='New Backbone Method',
—property_name='new_score', ascending=False,
—compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')

netbone allows users to implement their new custom evaluation measure. To illustrate this, we
define the new_property method() method. This method will imitate the node_ fraction() method;
it returns the node fraction preserved in the backbone. The method should: 1. Take two inputs:
(the original and backbone networks) 2. Return the computed property value.

def new_property(original, backbone):
return len(backbone)/len(original)

Once the new backbone extraction method and evaluation measures are defined. One can easily
add integrate them into the comparison framework using the add_ backbone() and add_ property()
methods. The following example illustrates comparing the new defined method with the Disparity
filter in terms of the new defined property.

from netbone.filters import threshold_filter
from netbone.compare import Compare

from netbone.utils.utils import edge_properties
import pandas as pd

import netbone as nb

framework = Compare ()

edge_list = pd.read_csv('./data/data.csv')
graph = nx.from_pandas_edgelist(edge_list, edge_attr=edge_properties(edge_list))
framework.set_network(edge_list)

thresholds = [0.05, 0.9]
framework.set_filter(threshold_filter, thresholds)

df = nb.disparity(graph)
new = new_backbone_method (graph)

framework.add_backbone (df)
framework.add_backbone (new)

framework.add_property('New Property', new_property)
framework.properties()

17

[34]:

[35]:

[36]:

[36]:

New Property

Original 1.000000
Disparity Filter 0.913158
New Backbone Method 0.792105

Users also can compare different distributions. To illustrate this, we define a new method named
distribution_ property(). It will imitate the weights() method; it returns all the edge weights in the
backbone. The method should: 1. Take one inputs: the backbone network 2. Return and array of
the computed property values

def distribution_property(backbone) :
return list(nx.get_edge_attributes(backbone, 'weight').values())

One can easily add integrate them into the comparison framework using the add _property() method.
The following example illustrates comparing the new defined method with the Disparity filter in
terms of the new defined distribution property.

from netbone.filters import threshold_filter
from netbone.compare import Compare

import pandas as pd

import netbone as nb

from netbone.utils.utils import edge_properties
import networkx as nx

framework = Compare()

edge_list = pd.read_csv('./data/data.csv')
graph = nx.from_pandas_edgelist(edge_list, edge_attr=edge_properties(edge_list))

framework.set_network(edge_list)

thresholds = [0.05, 0.98]
framework.set_filter (threshold_filter, thresholds)

df = nb.disparity(graph)
new = new_backbone_method(graph)

framework.add_backbone (df)
framework.add_backbone (new)

framework.add_property('Distribution Property', distribution_property)

results, dist = framework.distribution_ks_statistic()

results

Distribution Property
Disparity Filter 0.700747
New Backbone Method 0.078684

18

	Requirements
	Toy Example
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

