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Abstract: With energy efficiencies close to two times higher than traditional photovoltaic (PV),
concentrated photovoltaic (CPV) systems represent a promising solution for solar power generation.
In the same way, the converging Levelized Cost of Energy (LCOE) of both technologies favors interest
toward CPV systems. In order to assess more clearly the potential of this technology, an up-to-date
evaluation of the power electronic conversion techniques used in CPV to increase the yielded energy
is crucial. This assessment not only sheds light on the latest advancements, but also provides insights
into design trade-offs, performance limitations, and potential areas for improvement in CPV systems.
This work focuses on the DC/DC converters used as an intermediary stage of conversion between
the panels and a central grid-tied inverter. Electrical and economical metrics are used to compare
actual converters developed and presented in a comprehensive literature review.

Keywords: CPV; DC/DC converters; partial power processing; PV; granularities

1. Introduction

Concentrating photovoltaic (CPV) technique stands as a dynamic field of improvement
focused on increasing the efficiency of photovoltaic conversion. At the panel level, proto-
types have achieved photoelectric efficiencies reaching as high as 38.9% [1]. This substantial
achievement significantly surpasses the capabilities of conventional single-junction silicon-
based photovoltaic (PV) panels [2]. In this regard, the primary technological trajectory
within CPV involves the integration of multi-junction (often three) III–V semiconductor
materials. Given the intricate manufacturing processes involved in creating such junctions,
CPV cell dimensions are minimized by typically incorporating lenses that concentrate solar
irradiance onto a smaller surface area. However, this lens-based approach restricts CPV
panels to operate under Direct Normal irradiance (DNI) exclusively. Consequently, the
deployment of a solar tracker, which continuously aligns the sun’s irradiance with the
lens’s focal point, becomes a mandatory prerequisite.

This particular configuration results in higher initial costs for CPV installations [3].
Consequently, in pursuit of cost reduction, industry stakeholders have opted to adapt
well-established electrical solutions commonly utilized in PV contexts to extract energy.
Indeed, the majority of CPV plants comprises panels arranged in series to form strings,
which are subsequently interconnected in parallel to a shared DC bus. This DC bus acts as
the input of a grid tied inverter.
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Electrical mismatch effects, arising when interconnected solar cells exhibit diverse
electrical behaviors at a given moment, are inherent to any photovoltaic system. Traditional
photovoltaic systems experience electrical mismatch due to manufacturing tolerances and
partial shading across arrays. The coexistence of solar cells with distinct I–V character-
istics at a specific point distorts the array’s I–V output. While Maximum Power Point
Tracking (MPPT) algorithms aim to alleviate this issue, electrical mismatch effects remain a
challenge, particularly in CPV systems due to the high concentration factor, the use of direct
normal irradiance only [4], and the high number of bypass diodes inside a module [5,6].
The latter factor makes the tracking of the effective maximum power point difficult. Indeed,
each bypass diode, depending on the irradiance condition, can potentially create a local
MPP. In return, each of the local maxima constitutes an additional difficulty for a classical
MPPT algorithm to find the global maximum point and thus to extract maximum energy
under the available operating point [7].

Because of these intrinsic drawbacks in the use of CPV technology, substantial research
efforts within its different fields have been made. For example, the use of a tracking
device to follow the trajectory of the sun is embedded at the cell or optical level [8,9]. It
allows the placing of the panels on a fixed support and relaxing the mounting tolerances
associated with accurate tracking. In addition, hybrid architectures with CPV and PV
inside the same cell is an extensive field of research [10,11], as it would allow the harnessing
of diffuse sunlight. Additionally, luminescence solar concentrators (LSC) seem to tackle
more specifically the challenges of building integrated CPV [12]. Lastly, micro-CPV seems
to decrease some losses associated with PV, and a better density of cell and overall use
of direct normal irradiance [13]. All of these research topics are still at an early stage of
development, reaching prototype level at best.

In parallel, existing CPV power plants are constructed all over the world, with 350
MW in current commercial exploitation [14], mainly under the form of fields of pedestal
two-axes trackers. To overcome the identified electrical mismatch effects, and in order to
keep the current setup as closely similar as possible for economic reasons, the addition of a
power electronic conversion stage has drawn interest over the last years. The conversion
stage (DC/DC or DC/AC) between the area of CPV panels and the grid plays a key role
in increasing electrical efficiency. A great number of studies based on the addition of
DC/AC converters (inverters) can be found in the literature, both at theoretical [15,16]
and experimental levels [17]. However, they all rely on the removal of a central grid-tied
inverter, which would imply changing drastically the setup of current CPV power plants.

The present work thus focuses on reviewing the literature on the work achieved in
DC/DC conversion, with a comprehensive overview of the DC/DC prototype developed
for CPV applications. In addition, this paper lays the groundwork for a global methodology
to assess the electrical and economical relevance of any added DC/DC conversion stage.
It takes into account the latest developments and trends in power electronics, such as the
partial power conversion principle, and includes it in its developed methodology.

The first section is dedicated to the presentation of the theoretical pedestal tracker
electrical layout in order to take into account, the specificities of current CPV installations
and technologies. The next section presents a technical and economic framework to analyze
the DC/DC converters. The last section is dedicated to comparing the existing structure of
DC/DC conversion developed for CPV requirements.

2. Theoretical Setup

As mentioned previously, a great amount of work has been conducted regarding
pedestal two-axis trackers for CPV, as they are the most popular solution installed through-
out the world. In consequence, a lot of data are available regarding their production,
economic impact, and reliability. To set a common electrical and economical bases for
the study, we consider a generic tracker, the power rating (28.5 kWp) of which has been
mainly discussed in different studies. This power-rated tracker can be found in [18] for a
ground-to-cover ratio analysis, in [4,16] for the impact of partial shading, in [19] for the
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sizing of DC-to-AC ratio, and in [17] for the impact of distributed inverter configurations.
The generic electrical characteristics of the considered setup are presented in Table 1.

Table 1. Ratings of the setup under study.

Number of Trackers 9

Installed power of each tracker 28.5 kWp

Number of panels per string 6

Number of cells per panels 33

Open circuit voltage of a string/panel/cell 600 V/100 V/3 V

Short circuit current of a string/panel/cell 4 A/4 A/4 A

Installed power for a string/panel/cell 2400 W/400 W/12 W

These characteristics are averaged from different existing setup characteristics to
provide a reference framework. The numbers of cells per panels and the short-circuit
currents used as a basis can be found in [2,20–22]. The short-circuit current value depends
on the size of the cell, and ranges from 2 A to 8 A. Nevertheless, the cell short-circuit current
is lower with increasing voltage [20], so that the value is set to 4 A. The open-circuit voltage,
on the other hand, is set given the fact that most installed CPV panels utilize three junctions
with III–V semiconductors.

The increase in yielded energy resulting in the addition of a DC/DC stage greatly relies
on the scale at which it is deployed, or, in other terms, the granularity of the converters. In
the case of DC/DC converters, this study presents the following granularities: string level,
panel level, and cell level. These granularities are depicted in Figure 1.
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3. Techno-Economic Framework

The aim of this part is to present classical metrics used to assess the relevance, both
energetic and economical, of conversion solutions. The LCOE (Levelized Cost Of Energy)
encapsulates efficiently the tradeoff between the cost of a proposed solution and its benefits
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in terms of energy gain. It is hence a well-used tool that can perfectly fit in any global
analysis requiring some of these parameters. In addition, the intermediary metrics used to
calculate the LCOE are also relevant to support different analysis regarding the DC/DC
stages reviewed in this paper.

3.1. Energetic Analysis

To quantify the relevance of a given diminution in granularity in the added DC/DC
stage, the global energy yielded by the plant has to be calculated. It is presented in the next
Formula (1):

ECPV = DNIa · P∗ · PR
DNICSOC

, (1)

where DNIa is the available energy per year under direct normal irradiance, P* is the power
evaluated at the CSOC (Concentrator Standard Operating Conditions) available in the
installation [2], DNICSOC the direct irradiance fixed at 0.9 kW/m2. Parameter PR stands for
Performance Ratio, and is calculated as follows:

PR =
I

∏
i=1

(100% − Li) , (2)

where Li are in %, representing any electrical or optical loss undergone by the real CPV
system. The study presented in [23] synthesizes the different Li parameters of interest
in the CPV domain. The most quantitively important ones are Shading, Cell temperature,
Lens temperature, DC wiring, Soiling, Mismatch, MPPT, Inverter, AC wiring, Transformer,
Auxiliary consumption and Unavailability. The reduction in any of the previous losses must
therefore translate into the reduction in the corresponding Li factors. An added DC/DC stage
acts on three of these factors: Shading losses, Mismatch losses, and Unavailability losses.

1. Shading losses: They encompass two concepts—losses resulting from a significant
reduction in received sunlight intensity and losses attributed to the disparity of the MPP
(Maximum Power Point) voltage between different panels placed of the same string.
These voltage variations are linked to the uneven distribution of shading patterns.

2. Mismatch losses: They are linked to the discrepancy in angles between a module and
its adjacent modules that are connected in a series arrangement. Indeed, when CPV
panels are installed on the tracker, it is required that they are as closely aligned with
one another.

3. Unavailability losses: They are the losses related to the unavailability of the trackers
while maintenance is performed. Currently, the maintenance of trackers is performed
“blindly”, meaning it is triggered by a decrease in its production without information
about neither the nature nor the location of the faulty panel(s).

Previous reference works [4,17,23,24] have discussed and calculated the impact of
granularity up to the panel level on these losses. The corresponding Li factors are shown
in Table 2. Each line in Table 2 presents the three main loss contributions affecting the
complete setup, occurring for a given granularity.

Table 2. Losses as function of granularity.

Granularity/Li Shading Losses
LShad Mism

Mismatch Losses
LMism

Unavailability Losses
LUnavail

Tracker (for reference) 3.2% 4% 1%

String 0.75% 3% 0.75%

Panel 0.1% 1% 0.5%

Cell 0% 1% 0.5%
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The shading losses at cell level are considered null because the degree of freedom
added by a cell-level conversion stage allows bypassing completely the discrepancy implied
by any partial shadowing. The mismatch losses are the same as for the panel because the
angular dispersion makes sense at the panel level, but not at the cell level. It implies that
the manufacturing tolerance and installation tolerance of the cells within the frame of the
panel are not significant enough to have an impact on the losses.

Implementing an additional stage of conversion comes necessarily with losses. The
latter can be translated into a supplementary Li factor: LDC. This factor depends on
the topology used, the level of power and numerous other parameters. For the sake of
simplification in this section, a range of DC/DC efficiency from 90% to 99% is presented.
This generic efficiency formulation allows the relevance of future conclusions in this section
beyond the scale of power electronics. However, an analysis more centered around power
electronic is found in the next sections.

With the figures presented in Table 2, the energy efficiency of the DC/DC stages, and
Equation (1) applied to the setup presented in introduction, we obtain the plots displayed
in Figure 2. For the calculation, we take a base PR value of 0.8 [23], and replace the value of
Lis displayed at tracker level by Lis of the corresponding granularity.
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Figure 2. Variation of the annual yielded energy for a CPV system as function of the energy efficiency
of the added DC/DC stage.

Figure 2 shows that, as expected, different levels of granularity yield different energy gains
as a function of the converter theoretical efficiency. Moreover, we can see that the sign of the
energy yield variation (positive for improvement, negative for decrease) changes for different
values of converter efficiency with respect to granularity. This detail is emphasized in Figure 3.

We can see that the level of granularity has a direct impact on the efficiency requirement
for the additional stage. With a diminishing scale of power, the efficiency requirements
are relaxed from 96.3% for the string-level converter to 92.8% for the cell-level one. On the
contrary, we can observe that the gap in requirement tolerance is higher when it moves
from string to panel levels compared to panel to cell levels.
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depending on granularities.

3.2. Economical Framework

The previous energetical analysis is then used as a basis for a cost analysis with the
mean of LCOE calculation. Equation (3) describes the LCOE calculation used in this article.

LCOE =
LCC

∑N
n=1

ECPV
(1−d)n

, (3)

where LCC is the CPV system cost (in USD) for a prospective life cycle N (in years), ECPV is
the annual energy obtained by the CPV system, previously calculated, and d is the annual
discount rate. The details for the calculation of the LCC (Life Cycle Cost) are given below (4):

LCC = CPVIN + PW[CPVOM(N)], (4)

where CPVIN is the initial cost of installation (in USD), and PW[CPVOM(N)] is the cost
of operation and maintenance of the installation for N predicted years of operation. All
the economic parameters are taken from [2], unless stated otherwise, and can be found in
Table 3. The initial cost of an installation is derived from [9] to lie between 2.0 USD/Wp
and 3.5 USD/Wp and is taken at 2.4 USD/Wp following [2].

Table 3. Economical parameters used for this study derived from [2].

Signification Symbol Value Unit

Life cycle of CPV central N 25 years

Installed power at concentrating
standard operation conditions (CSOC) P* 183, 112 W

Direct Normal Irradiance @CSOC DNICSOC 0.9 kW/m2

Performance ratio PR 0.8 unitless

Initial investement for CPV central CPVin 2.4 USD/Wpeak

Discount rate d 0.067 unitless

To perform a first analysis, we make a hypothesis of a costless added DC/DC stage
(the LCC encompasses only the cost of the tracker + inverter setup). This allows us the
assessment of the maximum range of economy achievable by the different solution, i.e.,
different levels of granularity. The effect of this costless assumption can be seen in Figure 4.
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ciency, for string-level converters (Top, green), panel-level converters (Middle, orange) and cell-level
converters (Bottom, blue). All cases display the reference case of tracker level inverter in black.

Figure 4 shows that for an annual direct normal irradiance of 2000 kWh/m2/year, a
cell-level added DC/DC conversion stage (in blue) with 99% efficiency allows a decrease
of 0.01 USD/kWh compared to the current industrial solution. With increasing irradiance,
an added stage with the same efficiency holds less savings potential. The same cell-level
stage at 3000 kWh/m2/year decreases the LCOE only by 0.008 USD/kWh.

As of 2020, the range of LCOE of PV is set between 0.027 USD/kWh and 0.048 $/kWh [25].
Regarding CPV during the same period, different studies place LCOE between 0.040 USD/kWh
and 0.080 USD/kWh [26], and between 0.065 USD/kWh and 0.075 USD/kWh [27]. It highlights
that LCOE of CPV is usually higher than LCOE of PV. However, the most recent worldwide
assessment on the disparity of LCOE between CPV and PV [28] states that these two technologies
are often found to be below 0.01 USD/kWh of LCOE difference. Formulating precise cost
evaluations proves challenging, as predictive LCOE calculations rely on a multitude of economic
assumptions and simplifications. Moreover, these estimations are greatly influenced by the
specific country under examination. Nonetheless, a substantially efficient system holds the
potential to make CPV installations advantageous across a wider set of countries and markets,
particularly when PV installations are already economically viable.

To assess more clearly the actual impact of adding a DC/DC efficiency stage, we
vary the input price of the stage in parameters CPVIN and PW[CPVOM(N)]. It allows us
determination of the maximal admissible price so that industrials can derive and quantify
Return On Investment (ROI) from these solutions. The results are presented in Figure 5.

To ensure economic benefits compared to the current industrial solutions, the system
installed should lie under the line corresponding to its chosen granularity in Figure 5.
For example, a string-level solution requires both high efficiency and very low cost. For
constant efficiency, we see that its corresponding price per Watt peak should be less than a
half of the ones for the other kind of conversion strategies.
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However, the cost of power electronics can greatly vary from one converter to an-
other. The difference between isolated and non-isolated topologies, the type and number
of switches implemented makes it difficult to put a predictive yet accurate price on a
solution. As it is obvious that the cost of the converters plays a key role in the acceptabil-
ity of the augmented solution, the next section presents a mean of comparing different
DC/DC topologies within a unified framework.

3.3. Cost Evaluation for Power Electronic Converters

The objective of this part is to derive a generic yet sufficiently accurate method for evaluating
the cost of the converters under study. This cost value is then fed into the LCC Equation (4).

There is no unified method to compare different topologies of DC/DC converters.
Such a comparison problem is often addressed in the literature considering at least the
number of active switches. As they are very often the most expensive part of the converter,
this metric makes sense to estimate roughly the price range of devices. This study takes a
step further by including all power devices present in the later compared topologies. To
achieve such a work, we rely on [29] to estimate a “complexity factor”. This is achieved by
using the prices of parts presented in the cited article as unitless coefficients. This method
allows us the statement of a quantitative index that can be crossed with other more general
studies regarding the price of power electronic. The cost value used as coefficients are
presented in Table 4.

Table 4. Complexity index names and values.

Part Complexity Indices Name Value (Unitless)

Power switch FC,Switch 2.4

Diode FC,Diode 1.3

Inductor FC,L 0.25

Capacitor FC,C 0.5

We then use these complexity indices to derive a complexity factor for the DC/DC
converter under study using Equation (5),

FC,DC/DC = FC,Switch · NSwitch + FC,Diode · NDiode + FC,L · NL + FC,C · NC, (5)
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where FC,Switch, FC,Diode, FC,L and FC,C are the complexity coefficient of power switches,
diodes, inductors and capacitors, respectively. NSwitch, NDiode, NL and NC are the number of
power switches, diodes, inductors, and capacitors, respectively. In the case of a coupled inductor
or a transformer, each unit consists of inductor complexity index multiplied by two.

It is useful to manipulate a normalized coefficient that equals one when the simplest
form of DC/DC conversion is evaluated. In this study, and, more globally, in power
electronics, the simplest topologies are buck and boost, which display the same number
of parts. We use them as a basis for normalizing the complexity factors of more complex
converters. Equation (6) displays the normalized coefficient used in this study:

FC,DC/DCN =
FC,DC/DC

FC,Buck/Boost
, (6)

where FC,Buck/Boost equals 4.95 using (5) with one power switch, one diode, one inductor and
two capacitors. We can note that this complexity factor does not consider the power rating
of the converter under study. In other words, a 4 kW buck exhibits the same FC factor as a
0.4 W one. The different granularities of conversion presented in this study call for a power-
related evaluation of price. Such a metric can be found in [30], with a work centered around
the economical behavior of power electronics for PV injection in commercial buildings.
The range of prices presented in this work for DC/DC converters for MPPT is between
100 USD/kW and 220 USD/kW. This range takes into account the component quality and
overall price volatility. One of the articles under study [31] assumes a price of 150 USD/kW,
falling within that range. We assume that the range of power ratings displayed in the next
section is compatible with the use of the latter price range.

4. Literature Review of DC/DC Converters for CPV

Numerous topologies have been developed to improve the efficiency and the scalabil-
ity of CPV power plants. To the best of the authors’ knowledge, a comprehensive list of
relevant publications can be found in Table 5. Panel-level conversion and cell-level conver-
sion have been mostly favored. The former can be explained by the will of transposition
of PV-based solutions, notably with the growing market of DC/DC optimizers. The latter
takes advantage of the relatively low voltages, currents and overall powers found for a
unique CPV cell. This reason makes the use of embedded power electronic possible. Hence,
each of the cell-level converters under review are CMOS based.

4.1. List of Reviewed Topologies

Simple topologies can be found, such as buck, boost or buck boost. The more com-
plicated ones represent attempts at answering some specificities of the CPV cells, and are
represented in Figure 6. For example, in [32], it consists of an interleaved buck topology.
Each of its input is directly linked to a junction of the CPV cell, mainly to overcome spec-
tral mismatch and the necessity of lattice-matched junctions [33]. Article [34] proposes a
high-gain DC/DC topology to directly feed one panel to the DC bus of a grid-tied inverter.

The topology presented in [35] is only a theoretical study based on the cascading of a
DPC buck boost present in [36] and a partial power flyback active clamp [21]. The efficiency
of each is used as a base to calculate the total efficiency of this cascaded stage.

The calculation presented in the previous section regarding a unified complexity factor
can be found in Line 7 of Table 5. To set a common ground for comparison, this factor
is further normalized with respect to the granularity of the topology it characterizes, for
display purposes only. In other words, the number of parts presented in the calculation
of the complexity factor is taken for a single converter attached to the cell, panel or string.
This allows mitigation of unfruitful comparisons between numbers whose difference
of magnitude would solely rely on the multiplicative nature of dealing with different
granularities. Later results naturally take into account the number of actual converters per
tracker to show real costs.
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Figure 6. Presentation of some of the topologies under study: (a) Interleaved buck [32], (b) Buck boost
in differential power processing [32,33], (c) Flyback active clamp with partial power processing [21],
(d) Mirror boost [34].

As designed, the buck and boost topologies exhibit a unitary complex factor, followed
closely by the buck boost topologies (which trades a diode for a switch compared to buck
or boost). The most complex topologies, namely [32,34], show complexities three times or
higher than the simplest ones.

It has to be noted that no global efficiency curve versus input power of the converter
presented in [34] has been found. Therefore, the efficiency curve from [37] is used instead
due to the very close nature of the two converters.

Table 5. List of the converters under review.

References [38] [31] [32] [36] [34] [21] [21,35]

Authors Neuhaus et al. Alonso et al. Zhang et al. Zaman et al. Petit et al. Camail et al. Camail et al.

Year 2018 2018 2020 2015 2018 2022 2023

Type FPP FPP FPP PPP (DPC) FPP PPP (S-PPC) PPP (DPC + S-PPC)

Topology Boost Buck Interleaved Buck DPC Buck Boost Mirror Boost Flyback Active Clamp FBAC + DPC BB

Granularity Cell Panel Cell Cell Panel String Panel

Complexity factor 1 1 3 1.2 3.4 1.5 1.5

Average efficiency
over clear sky day 88.9% 98.2% 92.9% 99.2% 94.2% 94.1% 93%

4.2. Partial Power Processing Concept

This study aims at comparing topologies with different kinds of power processing. For
a decade, partial power processing (PPP) has been of interest regarding the achievement of
high efficiencies and the diminution of power requirements. Indeed, in traditional power
converters (viewed as full power processing (FPP)), all of the input power is processed
by the converter. Losses can be then calculated as a fraction of this entire input power.
With PPP, only a proportion of the input power is processed by the converter, and only
this proportion is hence submitted to losses. This leads to lower overall losses, as further
explained in [39].

Among the converters under review, two types of PPPs can be distinguished: Serial
Partial Power converters (S-PPC) and Delta Power Converters (DPC). The first is a direct
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transposition of the principle of PPP, where the fraction of processed power depends on
the voltage gain between the input and output of the converter [21]. The DPC, on the
other hand, is used to perform multi-input power management. In this case, the converters
process only a mismatch fraction of the total power. If the two sources produce power at
the same voltage and current, the DPC does not perform any power processing.

4.3. Method of Comparison

To compare the converters, we base our work on the different powers provided in [17].
The total theoretical power during a clear-sky day scenario received by a pedestal 28.5 kWp
tracker is displayed in Figure 7 in red on the left axis. The figure also represents the
losses associated with the shading mismatch (in blue) and with the alignment mismatches
(in green), the values of which can be read on the right axis. In the case of a conventional
inverter-level-based MPPT, both the losses displayed in the figure must be subtracted from
the total available power to represent the actual yield of the system.
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Figure 7. Ideal produced power by a 28.5 kWp tracker during a typical clear sky day (red). Shading
mismatch losses (blue) and alignment mismatch losses (green). Produced power data from [17].

We can see that the main shading mismatches are present at dawn and twilight. This
is because in a CPV plant, inter-tracker shadowing (the shadow of a tracker projected to
another one) takes place during these periods. They are represented by the two grayed
rectangles. Compared to it, the alignment mismatch losses are much more regular and take
place during the whole period of irradiance. They are roughly proportional to the amount
of total power received by the tracker.

Because of the intrinsic difference of nature in the power flow inside of a traditional full
power converter and a partial power converter, a global way to calculate efficiency in this
scenario has to be defined. For the flyback active clamp in [21,35], the fact is that the actual
processed power is proportional to the total input power. Its efficiency curve in Figure 8 can
then be used without further modification. We can note that the factor of proportionality
of these two power levels may vary due to differences in voltage gain during the scenario.
However, in order to simplify the study, only a unique efficiency curve is used, taken from [21]
in a relatively high voltage gain case, so that the losses are not underestimated.
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Figure 8. Energy efficiency as function of input power (p.u.) for the considered DC/DC converters
(blue = cell-level conversion, orange = panel-level, green = string-level).

Regarding the DPC converter studied in [35,36], only the difference of power between the
connected sub-units is processed. Hence, the losses are only applied to this differential power.
We can estimate that, following [36], most of the differential power can be attributed to the
differential current, the VOC voltages of the cells being kept approximately constant. Hence,
we can link the differential power (i.e., the sum of the losses from Figure 7) to the differential
current and derive an efficiency for the scenario of interest as presented in Figure 9.
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4.4. Result and Analysis

The resulting efficiency analysis can be found in Figure 10. The averaged efficiency for
each converter is given at the bottom of Table 5.

Considering the cell-level converters (blue line), we can see a large disparity of effi-
ciencies, with a clear advantage for the differential power processing unit. It limits the low
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efficiency value due to the processing of low power at the very start and very end of the
day. All the other topologies exhibit the higher proportion of losses during this period.
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Figure 10. Results of energy efficiency for each converter under test under the ideal produced power
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For the panel-level granularity of conversion (orange line), a more regular pattern
can be seen between the different converters. In [31], with a simple buck topology, the
converter seems to hold the best efficiency within its granularity group.

The averaged efficiencies for this generic scenario also allow the analysis of the topolo-
gies against the economic requirements developed in the previous section. Figure 11 is the
same as Figure 5, with a logarithmic scale for the added cost. It includes the converters
presented in this section. The results include the range of price considered for the study:
between 100 USD/Wp and 220 USD/Wp.
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We can clearly see in this figure the three groups of converters corresponding to the
three level of granularities presented in this study. Cell-level converters exhibit prices per
Watt peak up to three orders of magnitude higher than the maximum admissible added
cost. Even extreme efficiency allowed by the differential power processing of [36] cannot
overcome the intrinsic over cost due to the numerous amounts of converters needed to
fully cover all of the cells. From these three converters, only the one in [38] does not meet
the requirements of minimum mandatory efficiency, the one in [32] being at the limit. It
has to be noted that to derive the efficiency curves in Figure 8, only the efficiency relative
to power electronic itself is considered. However, with this level of integration, the control
unit in charge of the MPPT and regulation must also be embedded, leading to further losses
to account for.

Concerning the panel-level converters, the price penalty reaches only one to two
orders of magnitudes above the maximum. The cost of the converter in [34] suffers from
its high complexity factor and is superior to the two other converters in the same category.
The converter in [31] is the closest to achieve both efficiency and added cost criteria, with a
simple and low loss buck.

Finally, the only converter working at string level is the one which has a price range
directly compatible with the calculated reference. The lack of sufficient efficiency leads how-
ever, this converter to lie under the minimum efficiency threshold. It has to be noted that
paper [21] presents a soft switching flyback active clamp that performs in hard switching
at the conditions from which the efficiency curve is derived. Later changes in component
sizing could improve the overall efficiency of this converter.

4.5. Discussion and Recommendation for Future Power Electronic Investigation

The literature reviewed in this article can be qualitatively discussed. The main goal is
the presentation of different and innovative topologies along more classical ones. With the
use of PPP and cell-level CMOS-based converters, the latest trends in developing power
electronics are presented.

A weakness in the analysis can be found at the string-level conversion. Only one reliable
and recent article could be found [21] that focused on the requirements intrinsic to CPV
challenges and voltage level. This can be partially explained by the fact that, as PV-rated
inverters are used for economic reasons, the requirements in terms of voltage for a string-level
DC/DC converter would be the same as the ones for a PV string. Hence, this granularity
presents the least specificity and is already extensively treated in the literature dedicated to
PV [40]. Additionally, the topologies are rarely tested against real-life irradiance scenarios or
patterns, so that only an averaged energetical analysis can be conducted.

Due to the early stages of development of the presented converters, the main drawback
of the current state of the art on DC/DC converters is their lack of real implementation.
In other words, though the hardware is tested and rated, no particular focus is placed
on the control and MPPT algorithms. Concerning the latter, three of the studies provide
no MPPT implementation [21,34,35]. The four other converters implement very simple
MPPT algorithms, mainly in order to validate their hardware: in refs. [31,32], a Perturb
and Observe algorithm is implemented, in [38], a hill climbing algorithm is implemented,
and in [36], a simple voltage equalization technique is employed. Hence, the focus of the
present overview is restricted to discussions related to hardware. It has to be noted that
more generally, in the field of CPV, and to the best of the authors’ knowledge, no significant
work on the MPPT algorithms comparison has been carried out. Due to the high number
of bypass diodes and specific irradiance patterns, this topic should be addressed by the
scientific community in light of the latest work already achieved on this matter by the PV
community [41] to assess the relevance of recent AI and non-linear control methods.

The development in the field of power electronics for CPV conversion brings the
opportunity to gather more data at finer power level. Indeed, with diminishing granulari-
ties, it is easier to collect in situ data on panel misalignment and ageing. This opportunity
allows tackling the unavailability losses defined previously. As the maintenance is currently
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performed without any previous knowledge of the panels that are underperforming, an ad-
ditional requirement for the DC/DC converter at the panel level can be added. This would
translate into the addition of data processing and communication that could eventually
lead to a trigger mechanism of more localized and overall quicker maintenance.

Finally, two main threats can be highlighted regarding the acceptability of additional
DC/DC stages. First, the physical and economic complexity of an added stage tends to
bring higher uncertainties regarding its wide development and standardization. With an
already expensive first investment [27], additional initial costs could encourage investors
toward a more classical and well-proven PV installation. Last, the efficiency improvement
caused by the important research efforts, when analyzed with metrics such as LCOE, can
be surpassed by economic efforts. For example, a reduction of one percent in discount rate
can lead to the same LCOE reduction as a 99% efficient DC/DC converter [42].

In light of these details, some general recommendations for future work in the field
can be drawn.

• We see that cell-level converters are currently too expensive and may not, in near
future, prove affordable to be scaled to the CPV grid-tied power plants. Given the
current and future work in the domain of embedded power electronic toward higher
power and higher efficiency, such a statement could be refuted within the next decade.

• Based on the complexity factor proposed in this work, we see that due to the high-
cost constraints, the use of more complex DC/DC topologies is unlikely. Indeed,
the addition of switches is usually proposed to gain efficiency locally or globally.
However, DC/DC converters with four active switches and above would reach a price
that would cancel the benefits of the added efficiency.

• No clear intrinsic superiority of the current implementation of partial power processing
structures is concluded regarding efficiency alone. Nevertheless, work including the
relatability of such structures [39] tends to make them still inherently pertinent. In
addition, the ability of this converters to be bypassed entirely and in a lossless fashion
is not further explored in this work and is not detailed in many works. Such an ability
could benefit the reduction in losses created by misalignment, as they induce virtually
no voltage discrepancies between strings.

5. Conclusions

The review of DC/DC converters for concentrated photovoltaic presented here high-
lights diverse topologies, with conversion at a panel level and a cell level gaining momen-
tum. A generic method is proposed to derive the techno-economical relevance of the added
DC/DC stages in the conversion process. The latter metrics are compatible with previous
work achieved regarding CPV.

The study compares various topologies, including partial power processing con-
verters, from the simplest buck and boost to more intricate designs tailored to CPV cell
characteristics. Panel-level converters, particularly using simpler topologies like buck,
demonstrate consistent energy efficiencies. It may be concluded that cost- effectiveness
may vary, with cell-level converters facing affordability challenges, panel-level converters
showing promise, and string-level conversion needing efficiency enhancements. Future
research suggestions include revisiting cell-level converter affordability, being cautious
with complexity, and exploring partial power management benefits further.
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CPV Concentrator Photovoltaic
CSOC Concentrated System Operating Conditions
DNI Direct Normal Irradiance
DPC Differential Power Converter
FPP Full Power Converter
LCC Life Cycle Cost
LCOE Levelized Cost of Energy
MPP Maximum Power Point
MPPT Maximum Power Point Tracking
PPP Partial Power Processing
PV Photovoltaic
S-PPC Series Partial Power Converter
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