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Abstract: Purpose: Infiltration of fat into lower limb muscles is one of the key markers for the severity
of muscle pathologies. The level of fat infiltration varies in its severity across and within patients, and
it is traditionally estimated using visual radiologic inspection. Precise quantification of the severity
and spatial distribution of this pathological process requires accurate segmentation of lower limb
anatomy into muscle and fat. Methods: Quantitative magnetic resonance imaging (qMRI) of the calf
and thigh muscles is one of the most effective techniques for estimating pathological accumulation
of intra-muscular adipose tissue (IMAT) in muscular dystrophies. In this work, we present a new
deep learning (DL) network tool for automated and robust segmentation of lower limb anatomy that
is based on the quantification of MRI’s transverse (T2) relaxation time. The network was used to
segment calf and thigh anatomies into viable muscle areas and IMAT using a weakly supervised
learning process. A new disease biomarker was calculated, reflecting the level of abnormal fat
infiltration and disease state. A biomarker was then applied on two patient populations suffering
from dysferlinopathy and Charcot–Marie–Tooth (CMT) diseases. Results: Comparison of manual vs.
automated segmentation of muscle anatomy, viable muscle areas, and intermuscular adipose tissue
(IMAT) produced high Dice similarity coefficients (DSCs) of 96.4%, 91.7%, and 93.3%, respectively.
Linear regression between the biomarker value calculated based on the ground truth segmentation
and based on automatic segmentation produced high correlation coefficients of 97.7% and 95.9% for
the dysferlinopathy and CMT patients, respectively. Conclusions: Using a combination of qMRI and
DL-based segmentation, we present a new quantitative biomarker of disease severity. This biomarker
is automatically calculated and, most importantly, provides a spatially global indication for the state
of the disease across the entire thigh or calf.

Keywords: muscle segmentation; MRI; quantitative MRI; qMRI; T2 mapping; deep learning

1. Introduction

Muscle dystrophies (MDs) are an inherited class of disorders characterized by pro-
gressive muscle weakness that affects the upper and lower limbs, the axial muscles, and the
facial muscles at variable levels of severity. Fat infiltration into muscles of the lower limbs
is one of the hallmarks of these diseases’ progression and can be easily seen in MRI images.
MDs lead to a loss of muscle mass and a weakening of muscle strength [1]. The infiltrated
fat is usually referred to as intermuscular adipose tissue (IMAT) and is separated from the
subcutaneous adipose tissue (SAT), which surrounds the muscle. The two fat tissues are
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separated by a boundary layer called “fascia lata”, used in many studies to achieve reliable
segmentation of the lower limb anatomy (see Figure 1).

1 
 

 
  Figure 1. Axial MR image of the thigh. Red: fascia lata boundary; blue, green, and yellow arrows

mark the subcutaneous fat, a region of viable muscle, and IMAT pixels.

Several MRI modalities have been evaluated for the quantification and assessment
of fat infiltration in MD patients [2,3]. These show that MRI-based quantification has
a strong correlation with a disease’s progression and can therefore act as an accurate
biomarker of disease state and severity as well as improve the prognosis of patients [4,5].
Providing physicians with such a biomarker, however, requires accurate segmentation of
muscle tissue, the subcutaneous fat, and the IMAT. This will enable physicians (as well as
automated tools) to provide focused assessment of the viability of remaining muscle tissue
across the entire calf and thigh anatomies.

IMAT tissue may have a similar image intensity as subcutaneous fat and, hence, so-
phisticated methods are required to effectively differentiate between these two tissues. The
“fascia lata” can also be obscured and hard to find. Other challenges of segmentation tech-
niques include MRI artifacts caused by nonideal hardware, natural tissue heterogeneities,
spatial bias of images’ intensity, and motion artifacts, to name but a few [6].

In this work, we introduce a new muscle-specific index (or biomarker), reflecting the
pathological stage of the muscle and, specifically, the ratio between the IMAT area and the
entire muscle region. The study presents two main contributions: the first is a new neural
network that can automatically identify and discard the SAT, the calf and thigh bones, and
the bone marrow pixels, leaving only the muscle region. We then show that the muscle
region segmented by the network can be further classified into viable muscle pixels and
IMAT pixels based on a quantitative measurement of MRI’s transverse (T2) relaxation times.
Application of the new pipeline and quantitative biomarker is presented for two muscle
dystrophies: dysferlinopathy and Charcot–Marie–Tooth (CMT), exhibiting similar patterns
of fat infiltration.

1.1. Related Work

In this section, several works related to the aims of this study are reviewed. These
include traditional tools for segmentation of calf and thigh anatomies, weakly supervised
learning, and deep convolutional auto-encoders with clustering.

1.1.1. Segmentation and Quantification of Epicardial Adipose Tissues (EAT)

Adipose tissues play an important role in human function. The literature has shown
correlations between epicardial tissue and obesity as well as other diseases such as coronary
atherothrombotic diseases. Several works utilizing semi-automated [7] and deep-learning-
based automated schemes [8] can be found that segment the EAT from coronary computed
tomography angiography (CCTA). In addition to segmentation of EAT regions, quantifi-
cation of information is shown, with several important measures extracted, including fat
densities distribution, enabling in-depth study towards a possible correlation between fat
amounts, fat distribution, and heart diseases.
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1.1.2. Calf and Thigh Segmentation

Several works have been published for segmentation of thigh and calf anatomies. Most
studies utilized conventional unsupervised methods including k-means, fuzzy c-means,
active contours, and Gaussian mixture model-expectation maximization (GMM-EM) to
segment subcutaneous fat, muscle, intermuscular fat, and bones [9–11]. The main problem
facing these approaches is that segmentation using active contour-based methods yields
unreliable results when the “fascia lata” is obscured, which usually is the case in moderate
to severe disease diagnoses. Other works introduced a muscle region segmentation method
by detecting the facia lata contour [12–14]. Advancements have also been shown using
deep learning convolutional neural networks (CNNs), used for automatic segmentation
of IMAT in thigh and calf MR images. Yao et al. [15] integrated deep-learning logic with
traditional models, proposing a holistic CNN and dual active contour model for detection
of fascia lata and classification into muscle and IMAT. In the current work, we addressed
the task of finding contours in pathological cases by generating muscles’ masks using a
convolutional network, thus assuring that the anatomical and textual information were
learned for both viable muscle and for tissue that underwent fat infiltration.

1.1.3. Weakly Supervised Learning

Many works have been published on limited data annotations. Weakly supervised
learning was used for object detection and classification in optical remote sensing and
satellite images through features learning and image-level labels [16–18]. Weakly super-
vised learning has also attracted researchers in the medical image domain. Such methods
have been used for multiple tasks in medical images such as image classification, semantic
segmentation, and patch-level clustering [19–21]. Weak learning is performed using image
scribbles, image-level labels, partial training data annotations, and recursive training. In
this work, weak supervision is utilized in order to solve the uncertainty problem in labeling
of muscle tissue in muscle dystrophy patients for the task of patches clustering.

1.1.4. Clustering with Convolutional Auto-Encoder

Convolutional neural networks have been widely used for classifying medical images
into normal and diseased conditions [22,23] using annotated images. The lack or sparse
annotations of data, however, raises the need for unsupervised methods such as convolu-
tional auto-encoders. Masci et al. [24] presented the convolutional auto-encoder for the
first time. The convolutional auto-encoder is an unsupervised method for hierarchical
feature extraction. The extracted features can be exploited for clustering by simply ap-
plying k-means or other clustering methods on the extracted features [25]. Recent results
demonstrated that combining the separated stages in a unified framework and training
them jointly in an end-to-end way can achieve better performance [26,27]. In this work, a
convolutional auto-encoder was trained to extract features from patches cropped from fat
and viable muscle tissues, followed by applying k-means in the embedded space to find
two clusters. Our results were also compared to a technique that trains a convolutional
auto-encoder and clustering layer in an end-to-end way.

2. Methods

The overall processing pipeline presented in this work is depicted in Figure 2. We start
with a description of the two main processing stages of the proposed solution.
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  Figure 2. Schematic overview of data preparation (top) and segmentation and classification pipeline
(bottom). The muscle segmentation (stage 1) and muscle classification (stage 2) are also described
in the Supplementary Materials. The biomarker is defined by Equation (4). GT: ground truth; PD:
proton density.

In the first stage we detect and discard the SAT, the calf and thigh bones, and the
bone marrow pixels, leaving only the muscle region. The fascia lata serves as a visual
separator, creating a reliable ground truth (GT) that enables supervised learning methods to
accomplish this task precisely. Encouraged by its high efficiency in semantic segmentation
of small datasets, a U-net architecture was thus employed for segmenting the muscle
region at this stage. A good performance was achieved for various levels of pathology and,
especially, for severe cases of fat infiltration, which are the most challenging to segment.

The second stage of analysis discriminated between viable muscle pixels and IMAT
pixels residing within this muscle region. Pixels were classified into these two categories
based on their quantitative T2 relaxation times and sub-pixel fat fraction. The uncertainty
in the ground truth labeling for this task motivated us to use a weakly supervised approach.
Pixels with fat infiltration can be randomly dispersed over the entire muscle tissue with
variable levels of infiltration. Consequently, the border between viable muscle and IMAT
pixels becomes blurry and less defined, making manual segmentation difficult and un-
certain. Hence, a weakly supervised method constitutes a more natural choice for this
stage. Inspired by [28], a patch-based deep convolutional auto-encoder with a triplet loss
constraint was implemented to learn an interpretable latent feature representation and
apply k-means in the embedded space in order to classify image pixels into two clusters.
This integration of patches helps overcome the problem of small data, while exploiting
the contextual information among pixels and maintaining the relationship to adjacent
pixels. The presented results demonstrate the key role of clustering in our task and the
effectiveness of the overall system in predicting the fat infiltration levels.

Figure 2 provides a schematic illustration of the presented segmentation pipeline.
Data are first preprocessed: the receiver coil bias field (B1

−) is corrected for a series of input
T2 weighted images, followed by generation of quantitative T2 and proton density (PD)
maps using the EMC algorithm [29]. Next (bottom panel), the muscle region is segmented
using a supervised method (stage 1) and classification of muscle pixels is made into viable
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muscle and IMAT using a weakly supervised approach (stage 2). Finally, the infiltrated fat
index is calculated, serving as the output biomarker.

2.1. MRI Scans

The first dataset included MRI scans of the lower limbs (thigh and calf) from 17 dysfer-
linopathy patients (36 ± 4 years old). This dataset was used for training the networks and
evaluation of stage 1 and stage 2 of the segmentation procedure. Each scan included 5 axial
slices, each of which included a time series of 17 T2-weighted images, sampled at increasing
echo times (TEs). Two additional datasets of dysferlinopathy and Charcot–Marie–Tooth
disease (CMT) patients were used for testing. These datasets included nine dysferlinopathy
patients and 15 CMT patients, each containing 10 slices and 17 echo times. MRI scans
were performed on a whole-body Siemens Prisma 3T scanner after signing an informed
consent and under the approval of the local Helsinki and IRB committees. Quantitative T2
maps were generated from a multi-echo spin-echo (MESE) protocol using the following
parameters: TR/TE = 1479/8.7 ms, Nechoes = 17, in-plane resolution = 1.5× 1.5 mm2, matrix
size of 128 × 128, Nslices = 5, slice thickness = 10 mm, and acquisition time = 5 min 7 s.

2.2. Data Preparation

In this section, we describe the preprocessing steps performed for bias field removal,
generation of T2 and PD maps, and the generation of GT labeling.

2.2.1. Bias Field Removal

MRI receiver coils have an inherently inhomogeneous spatial sensitivity profiles,
causing a bias field (B1

−) in the images. This effect was corrected by using the N4ITK
method [30]. The input to this step is a series of T2 weighted images, sampled at increasing
echo times and for different slice locations, while the correction was applied separately for
each slice. The method was implemented in 3D Slicer (http://www.slicer.org accessed on
1 February 2022) [31]. Figure 3 shows an input image (left) that was contaminated with
an inhomogeneous bias field (middle) causing a nonphysiological variation in the signal
intensity to appear at the bottom of the image. The right panel demonstrates how this bias
field can be effectively removed, resulting in a more homogeneous depiction of the imaged
anatomy.

Figure 3. Correcting receiver gain bias in an axial MRI of the calf. Left: Image affected by inhomoge-
neous B1

– intensity bias; Middle: bias field, estimated using the N4ITK method; Right: image after
intensity correction.

2.2.2. Construction of T2 and PD Maps

Generation of T2 and PD maps was conducted using the echo modulation curve (EMC)
algorithm described in [29,32]. Reliable quantification of single T2 values is a challenging
task due to the contamination of fast multi-echo spin echo (MESE) protocols by stimulated
echoes [33]. The EMC algorithm can overcome this limitation and deliver accurate and
reproducible T2 maps. Briefly described, this algorithm consists of two steps. First, a
precalculated dictionary of theoretical EMC’s is simulated using the time-dependent Bloch

http://www.slicer.org
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equation. Each simulation generates a single EMC, designating the intensity of the MESE
decay curve for a specific pair of T2 and transmit field (B1

+) values. A full dictionary is
then constructed by repeating the simulations for a range of T2 and B1

+ values. Once a
dictionary is prepared, quantitative T2 values of the tissue are extracted on a pixel-by-pixel
basis by matching the experimental decay curve at each imaged pixel to the precalculated
dictionary of simulated EMCs. Matching is performed by searching for the dictionary entry
that yields minimal l2-norm of the difference between experimental and simulated curves.
Following this procedure, a unique T2 value is assigned to each pixel, yielding the desired
parametric map. Finally, a proton density (PD) map is calculated by back-projecting the
intensity of each pixel in the image from the first echo-time (t = TE) to the time point
t = 0 using the fitted T2 map, seeing as a pure exponential decay takes place between the
excitation event and the first acquired echo [34].

2.2.3. Preparation of Ground Truth (GT) Data

GT labeling of muscle regions that were utilized for stage 1 training were delineated
by a musculoskeletal radiologist with 10 years of experience. GT labeling of IMAT and
viable muscle for stage 2 were performed on a pixel-by-pixel basis. In peripheral muscle
disorders, the infiltration of fat into the diseased muscle region causes a mixture of two
T2 components to appear in each imaged pixel. An extension of the EMC algorithm was
recently introduced [35], providing a measure of “disease severity” in neuromuscular
dystrophies, based on a two T2 component fit of the MRI signal. This offers simultaneous
estimation of fat and of water fractions at a sub-pixel level. A threshold was thus set,
where pixels with fat fraction >50% were labeled as “fat” (i.e., diseased muscle), while the
remaining pixels were labeled as viable muscle. The fraction between IMAT and the entire
muscle region was then used as a ground truth measure of disease severity.

2.3. Stage 1: Muscle Region Semantic Segmentation

In the first analysis stage, a neural network was trained to segment the region inside
the “fascia lata”. The subcutaneous adipose tissue (SAT), bone, and bone marrow were
automatically masked out in this method.

2.3.1. Network Architecture

A common fully convolutional network (FCN)-based deep learning U-net architecture
was employed for the segmentation of the muscle region [36]. This U-net has been shown
to perform well on medical images with very few learning samples and strong use of data
augmentation. The encoder part of the network is a contracting path, while the decoder
part is a symmetrical expanding path that decompresses the features back to their original
size. The concatenating path consists of five levels with different resolution feature maps.
Each level consists of two layers of 3 × 3 nonpadded convolutions followed by a rectified
linear unit (ReLU). Following the two convolution layers, a 2 × 2 max pooling operation
is applied with stride 2 for down-sampling. After each down-sampling step, the number
of feature channels is doubled in the next two convolution layers. The expansion path
consists of five levels in which the number of feature channels is repeatedly halved. In each
level, a transposed convolution (i.e., deconvolution) is used, with a 2 × 2 kernel size and
stride of 2. The transposed convolution optimally learns the up-sampling, which helps
restore the image more precisely than using interpolation for up-sampling. Next, the maps
are concatenated with the corresponding feature maps from the contracting path and then
two 3 × 3 convolutions are applied, each followed by a ReLU. At the final layer, a 1 × 1
convolution is used to map the feature vector to the desired number of classes.

2.3.2. Network Inputs

Seven types of inputs into the FCN were considered in this work. In two cases, inputs
were comprised of T2 and PD maps (2 channels)—once without preprocessing and once
after correcting the map’s inhomogeneous intensity and cropping the images around the
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anatomy boundary. Four additional inputs included the use of unprocessed or processed
T2 maps only, or the use of unprocessed or processed PD maps only. A seventh FCN was
trained on a series of 17 raw T2-weighted images that were acquired at increasing echo
times and then used to generate the T2 and PD maps. The purpose of these experiments was
to explore the FCNs’ ability to produce sufficient results in the existence of MRI artifacts and
in the absence of inhomogeneity correction methods, and, secondly, to test the hypothesis
that training a network using quantitative maps is equivalent to training it using raw data,
on which these maps are based.

2.3.3. Training Procedure

The training set included data from 14 patients along with their corresponding binary
segmentation maps. The thigh/calf anatomies were first separated from the images’ back-
ground using a canny edge detector, enabling accurate delineation of the tissue’s outer
edge. Then, images were cropped around the region of interest and resized to 128 × 128.
Suspected outlier values in individual pixels were corrected in the T2 maps by taking
the 98% percentile of the image’s dynamic range and clipping pixels above this value.
Finally, each image was normalized to have a zero mean and unit variance before training
the network. Adam optimizer [37] was used in the model training, with the parameters:
lr = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. The optimized loss function was a soft Dice
coefficient loss. A size of 8 was selected for the batch size. Training was conducted for
100 epochs. Augmentation of the original training data was conducted, increasing the
number of images by a factor of 10 and improving the model’s robustness in the presence
of data variance. Several augmentations strategies were used including a shift (0.2 of image
height and width), zoom (between 0.9 and 1.3 of image size), rotation (0◦–30◦), and flip
(vertical/horizontal). The proposed method was implemented in Python and the keras
library. The training process was performed on a desktop PC with an NVIDIA GeForce
GTX 1080 Ti GPU.

2.4. Stage 2: Classification into Viable Muscle and IMAT

In this stage, we further classified the muscle pixels into two types: viable muscle
pixels and IMAT pixels. A patch-based deep convolutional auto-encoder (DCAE) was
employed to learn semantic feature representation incorporating deep metric learning. The
goal we set forth was to learn an embedding for the patch-level feature representation to
enable tissue clustering using an unsupervised scheme. The constraint we applied was that
different tissue patches would be represented as nonsimilar, while same tissue patches will
be similar in the selected space.

A general description of the proposed method is illustrated in Figure 4. Three pairs
of patches were used as input to the network: (i) two patches cropped from the proton
density and T2 maps; (ii) two inputs sampled from one type of tissue (e.g., IMAT); (iii)
one sample from the second tissue (e.g., viable muscle). The encoder transforms these
patches into feature representation, while the decoder reconstructs the original patches from
the feature vectors. The objective function consisted of two terms: regularization of the
mean squared error (MSE) loss in order to penalize the autoencoder on the reconstructed
patches and avoid data collapse; triplet loss that is computed on the feature vectors and
imposes similarity between patches of the same tissue and dissimilarity between patches
of different tissues. Once the network was trained, the features space was constructed
using the training data, followed by applying k-means to obtain two clusters. A label was
assigned to each pixel, followed by labeling the entire cluster based on the labeling of the
majority of pixels in that cluster. In the test phase, the input patch was classified to the
closest cluster.
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  Figure 4. Integration of deep convolutional auto-encoder and triplet loss with k-means. See text for a

more elaborate description of the network architecture.

2.4.1. Patch Cropping

The network input was composed of two maps, T2 and PD, which were multiplied
by the muscle region mask generated from the first stage to produce muscle-only regions.
The classification was performed on patches cropped around each pixel that had the same
label as the central pixel. The patches were cropped from both T2 and PD maps and
concatenated into 2 channels. The size of each patch was 16 × 16. A challenging issue in
this stage was the boundary of the muscle region: patches cropped from the boundary
can have different features than patches cropped from the center of the muscle region and
may be clustered into a distinct cluster. To overcome this issue, morphological erosion
with a 16 × 16 kernel size was applied to the muscle region mask and the coordinates of
the positive pixels in the eroded mask were calculated; then, the patches around these
coordinates were cropped from the T2 and PD maps (that were multiplied by the uneroded
mask) to avoid boundary-region patches altogether. Following classification, the mask was
dilated with the same kernel to include the pixels that were removed.

2.4.2. Deep Convolutional Auto-Encoder and Triplet Loss (DCAETL)

Figure 5 shows schematics of the deep convolutional auto-encoder architecture and
the loss terms used for the automatic classification of muscle tissues. DCAE, consisting
of an encoder and a decoder, was trained on patches of 16 × 16 × 2 in size extracted
around each pixel from the T2 and PD images of the muscle region. The encoder consisted
of two blocks having 32 and 64 feature maps. Each block is built of 3 × 3 convolutions
followed by ReLU, 2 × 2 max pooling, and batch-normalization. The output of the two
fully convolution blocks was then flattened into 1024 units and followed by a dense layer
that encoded the features in the embedded space. A normalization step followed (L2) to
constrain the embedding to a hypersphere. The decoder structure was composed of a
dense layer of 1024 reshaped to size 4 × 4 × 64, followed by 3 × 3 transposed convolution
layer with 32 filters and stride 2, and another 3 × 3 transposed convolution layer that
reconstructs the input patch. The DCAE was trained with Adam optimizer with default
settings and a batch size of 256 for 100 epochs.

Two components comprised the loss function: a reconstruction loss and a triplet loss.
The reconstruction loss is the mean squared error (MSE) expressed in Equation (1). To train,
the input patch triplet (i.e., xi

a, xi
p, and xi

n) was randomly selected from the training set, and
the anchor was randomly selected from all the cropped patches in the training set. The label
of the anchor was then checked, and the positive and negative patches were determined
according to the label of the anchor. If the label of the anchor was 1 (i.e., viable muscle),
then the positive patch was randomly selected from the patches with label 1 (viable muscle
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patches); otherwise, the negative patch from the patches with label 0 (IMAT patches) was
selected. If the anchor had a label of 0 (IMAT), then the positive and negative patches
were selected accordingly (i.e., positive—IMAT, negative—viable muscle). The distance of
the anchor patch (xi

a) from the positive patch (xi
p) that roughly matched the anchor patch

was smaller than the distance from the negative patch (xi
n). The auto-encoder was trained

simultaneously on the three patches, transforming them into latent vectors, f
(
xi

a
)
, f (xi

p),
and f

(
xi

n
)
, and reconstructing each one into the original image (i.e., x̂i

a, x̂i
p, and x̂i

n). The
latent vectors were used for the calculation of the triplet loss (Ltriplet). The triplet loss over
a batch N can be expressed as follows:

LMSE(x, x̂) =
1
N

N

∑
i=1

(
xi − x̂i

)2
(1)

Ltriplet =
N

∑
i=1

max
{

0, ‖ f
(

xi
a

)
− f

(
xi

p

)
‖

2

2
− f

(
xi

a

)
− f

(
xi

n

)
‖

2

2
+ α

}
(2)

where α is a margin enforced between positive and negative pairs and set to 1 in our
experiments. The combined loss is defined in Equation (3):

Ltotal = βLtriplet + λ(LMSE (xa, x̂a) + LMSE
(

xp, x̂p
)
+ LMSE (xn, x̂n) (3)

Here, β and λ denote loss weights, which were experimentally set to one-half and
one-sixth, respectively.

 

5 

 

  

Figure 5. Schematics of the deep convolutional auto-encoder architecture and the loss terms used for
the automatic classification of muscle tissues.

2.5. Quantification of IMAT Biomarker

To quantify the fraction of infiltrated fat, the muscle region was segmented from
thigh/calf MR images in stage 1; then, muscle region pixels were classified to viable tissue
and IMAT in stage 2. The IMAT fraction was computed based on the muscle region area,
which was the pixels’ sum (Areawhole−muscle) and the sum of IMAT pixels (AreaIMAT), using
the following equation:

IMAT f raction =
AreaIMAT

Areawhole−muscle
(4)

This biomarker was calculated for each image and indicated the relative fraction of
nonviable tissue (in our case, where pixels contained more than 50% fat).
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2.6. Performance Evaluation

Performance evaluation was performed by comparing the different stages of the
proposed system to corresponding schemes in the literature. The results from stage 1
were compared with the ASeg method described in [38]. The ASeg method can briefly
be described as follows: k-means clustering is applied to the intensity values in order to
segment the image to background, muscle tissue, and adipose tissue. In a second step, ASeg
performs morphological closing to eliminate noise and merge muscle and adipose tissues.
Next, a polygonal active contour is constructed in order to define the boundaries between
the muscle, bone, and SAT.

The DCAETL method in Section 2.4.2 was compared to the following methods: in-
tensity based k-means, where the simple k-means algorithm was applied to the intensity
values of each pixel in the T2 and PD maps; deep convolutional auto-encoder followed by
k-means; deep convolutional auto-encoder with deep clustering. A detailed description of
each of these methods is described below.

2.6.1. Deep Convolutional Auto-Encoder Followed by k-Means (DCAE + k-Means)

The deep convolutional auto-encoder had the same architecture as described in Figure 4.
The encoder, decoder, and latent vector shared the same number of layers and filters. The
difference was in the input and objective functions. The input to the DCAE was one patch
cropped randomly from the T2 and PD maps. The DCAE was trained on the patches with
the MSE loss only. The embedded feature space was constructed from the feature vectors,
and k-means was applied to the embedded space to obtain two clusters (i.e., infiltrated fat
and viable muscle). The DCAE was trained with the Adam optimizer using default settings
and a batch size of 256 for 100 epochs.

2.6.2. Deep Convolutional Auto-Encoder with Deep Clustering (DCAE_DC)

Here, we followed a widely used training scenario, i.e., the DCAE was first pretrained
and then fine-tuned with clustering-oriented loss. The method was motivated from [26],
with the training paradigm conducted in two steps:

(1) Initialization of the DCAE

The parameters of the network were initialized by training the DCAE depicted in
Figure 4 on patches cropped from T2 and PD maps. Prior to training the network end-to-
end, k-means was performed on the outputs of the bottleneck layer of the pretrained DCAE
to obtain initial values of the clusters’ centers. The DCAE was pretrained with the Adam
optimizer using default settings and a batch size of 256 for 1 epoch.

(2) Deep convolutional auto-encoder embedded clustering

The structure of the network is shown in Figure 6. The encoder, decoder, and feature
vector had the same number of layers and parameters as in Figure 5, while the clustering
layer maps each embedded vector, z, of input patch, x, into a soft label, q. Then, the
clustering loss, Lc, was defined as the Kullback–Leibler divergence (KL divergence) between
the distribution of soft labels, q, and the predefined target distribution, p. The objective of
the network is:

L = Lr (x, x̂) + γLc (q) (5)

where Lr and Lc are the reconstruction loss and clustering loss, respectively, and γ > 0 is a
coefficient that controls the degree of the embedded space distortion. The clustering layer
maintains cluster centers

{
µj
}K

1 as trainable weights and maps each embedded point zi
into soft label qi using the Student’s t-distribution [39]:

qij =
(1 + ‖zi − µj‖2)

−1

∑j (1 + ‖zi − µj‖2)−1 (6)
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where qij is the jth entry of qi, representing the probability of zi belonging to cluster j. The
clustering loss is defined as:

Lc = KL(P||Q) = ∑
i

∑
j

pijlog
pij

qij
(7)

where P is the target distribution, defined as

pij =
q2

ij/ ∑i qij

∑j(q2
ij/ ∑i qij)

(8)
 

6 

 
  Figure 6. Structure of deep convolutional embedded clustering. The architecture consists of convolu-

tional auto-encoders and a clustering layer connected to the embedded layer of the auto-encoders.

The γ = 0.1 parameter was set, and the DCAE’s weights, cluster centers, and target
distribution, P, were fine-tuned. The target distribution, P, serves as the GT soft label but
also depends on the predicted soft label. Therefore, to avoid instability, P should not be
updated at each iteration using only a batch of data. The target distribution was updated
using all embedded points every T = 200 iterations. The training process was terminated if
the change of label assignments between two consecutive updates for target distribution
was less than a threshold of δ = 0.0001.

2.6.3. Metrics

The segmentation performance was evaluated using the Dice similarity coefficient
(DSC) of the predicted delineation to the GT annotation.

DSC =
2|X ∩Y|
|X|+ |Y| (9)

Three scores were utilized to assess the clustering results: normalized mutual infor-
mation (NMI), accuracy of clustering (ACC), and adjusted Rand index (ARI). NMI is an
information theoretic similarity score that assesses the mutual information of the clusters
with the ground-truth classes, with per-class normalization. Given a set of true clusters and
the set of clusters found by an algorithm, these sets of clusters must be compared to see
how similar or different the sets are. A normalized measure is desirable in many contexts,
for example, assigning a value of 0 where the two sets were totally dissimilar, and 1 where
they were identical. ARI is a variant index, adjusted for the chance grouping of elements.
This index reflects a similarity measure between two clusterings by considering all pairs
of samples and by counting pairs that are assigned in the same or different clusters in the
predicted and true clusterings. The adjusted Rand index was thus ensured to have a value
close to 0.0 for random labeling, independently of the number of clusters and samples, and
exactly 1.0 when the clusterings were identical (up to a permutation). ACC was estimated
as the ratio between accurate predictions to the total number of predictions conducted by
the network:

ACC =
TN + TP

TN + TP + FN + FP
(10)

where TN is true negative; TP is true positive; FN is false negative; FP is false positive.
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3. Results

The proposed method was evaluated on the first dataset, which included 17 dysfer-
linopathy patients, with three test patients exhibiting mild, moderate, and severe levels
of fat infiltration. Severity was evaluated on a slice-by-slice basis, where the pathology in
each slice was considered mild, moderate, or severe according to whether IMAT was in the
range 0–33%, 34–66%, or 67–100% of the entire muscle region, respectively. The results for
the muscle region segmentation (stage 1) are presented in Table 1 and show a very high
performance for the variety of inputs, proving the reliability and robustness of the method.
The results are presented for mild, moderate, and severe patients as well as averaged over
entire patient set. The results were also introduced using the leave-one-patient-out (LOPO)
method on the 17 patients and demonstrated the generality and robustness of the method.
The results in Table 1 show that the suggested method surpassed the ASeg technique at
all disease severity levels, while the ASeg method performance deteriorated as the disease
severity progresses, and our method preserved a high dice coefficient. Figure 7 shows the
segmentation results where the muscle region was correctly segmented, even around the
fascia lata, with a very small number of pixels that were wrongly classified (i.e., FPs and
FNs). Accurate results were achieved, even in cases of strong fat infiltration.

Table 1. Evaluation of the FCN muscle segmentation dice metric across different types of input
data for three disease severity levels: mild, moderate, and severe. An overall Dice score was also
calculated by combining all severity levels (combined) and by using a leave-one-patient-out (LOPO)
procedure (pp: preprocessing; w/: with; w/o: without).

Input

Dice Coefficient [%]

T2 + PD T2 PD
Raw Data Aseg [36]

w/ pp w/o pp w/ pp w/o pp w/ pp w/o pp

Mild 97.1 97.3 96.2 95.8 97.4 97.0 96.0 75.3
Moderate 92.6 95.9 88.3 95.9 96.2 96.0 97.5 65.0

Severe 96.4 94.9 94.0 93.8 96.2 96.0 95.8 57.5

Combined 95.6 95.8 93.1 94.8 96.4 96.2 96.3 64.4

LOPO 95.9 95.7 95.0 95.3 95.2 94.3 – –

The results of the different clustering methods explored are presented in Table 2 (stage 2 of
the postprocessing pipeline). The proposed method—DCAETL with k-means—outperformed
the competing methods in viable muscle Dice, IMAT Dice, accuracy, NMI, and ARI. In
Figure 8, the visualization results of the clustering of viable muscle and IMAT are shown,
the classification was shown only on the muscle region that was segmented in stage 1.

Table 2. Evaluation of the suggested FCN classification into viable muscle and IMAT in comparison to
other common clustering approaches. As can be seen, our DCAETL + k-means approach produced the
most accurate segmentation results—both in identifying viable muscle and IMAT. ACC was calculated
based on Equation (10). See Section 2.6.3 for more detailed information on each evaluation metric.

Method Viable Muscle
Dice [%]

IMATDice
[%] ACC [%] NMI [%] ARI [%]

k-means 87.7 90.6 90.6 56.5 65.4
DCAE + k-means 89.5 91.5 91.7 58.6 69.2

DCAEDC 90.5 92.3 92.6 61.6 72.1
DCAETL + k-means 91.1 93.3 93.3 62.7 74.6
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7 

 
  Figure 7. Three examples of segmentation of a calf anatomy. Left to right: mild, moderate, and severe

levels of fat infiltration. Top: With bias field correction; bottom: without bias field correction. Manual
segmentation contours are shown in red. Overlap between ground truth and the output of the fully
convolutional network is color-coded to indicate regions of true positive, false positive, and false
negative segmentation. 

8 

 

  
Figure 8. Three examples of FCN-based classification of thigh anatomy: (a) axial MR images of
three different patients after applying the first stage of the proposed method and segmenting the
muscle region; (b) ground truth of the intermuscular adipose tissue (IMAT) and viable muscle pixels
within the muscle region (white: viable muscle: gray: IMAT pixels); (c) tissue classification using the
suggested FCN processing.
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To validate the quantification of infiltrated fat, the method was also tested on larger
datasets of 9 dysferlinopathy and 15 CMT patients, with 10 slices per patient. Dysfer-
linopathy patients exhibited mild, moderate, and severe conditions, while the CMT dataset
contained only mild and moderate disease states. The biomarker was computed from the
GT masks and the masks segmented by the network according to Equation (4). Table 3
shows the comparison of the average calculated biomarker between GT and predicted val-
ues for each disease and severity level. Very close ranges were produced for each biomarker.
Figure 9 shows results of linear regression fit on the dysferlinopathy and CMT patients. The
high correlation coefficients of 97.7% and 95.9% demonstrate that our calculated biomarker
was strongly correlated with the GT, proving that the proposed method is very efficient in
quantifying the disease state.

Table 3. Evaluation of ground-truth vs. FCN-based quantification fat infiltration for patients suffering
from mild, moderate, and severe dysferlinopathy and CMT diseases.

Pathology Disease Severity GT [%] Prediction [%]

Dyspherlinopathy
Mild 16.5 ± 6.4 19.5 ± 5.2

Moderate 43.7 ± 8.1 36.7 ± 7.5
Severe 87.1 ± 9.8 74.1 ± 7.6

CMT
Mild 15.2 ± 6.8 17.5 ± 5.7

Moderate 45.5 ± 9.4 39.9 ± 8.6
Severe – – 

9 

 
  Figure 9. Linear regression of the IMAT fraction biomarker estimated from ground truth and using

the suggested FCN technique: (a) dysferlinopathy patients’ data; (b) Charcot–Marie–Tooth (CMT)
patients’ data.

4. Discussion

This work presents a deep-learning-based approach for segmentation and classification
of muscle and adipose tissues in the calf and thigh anatomy of dysferlinopathy and CMT
patients based on quantitative MRI data. This allows for the assessment of disease severity
by quantifying the level of fat infiltration in an automated way and across the entire scanned
anatomy. The quantification of fat infiltration was performed in two stages: the muscle
region was first segmented followed by classification of muscle pixels into viable muscle
and fat infiltrated tissues. The well-known U-net architecture was utilized for the muscle
segmentation task, and a variation of the convolutional auto-encoder was used to learn
semantic features that enabled classification of the muscle tissue.

The quantitative results showed a high segmentation accuracy for dysferlinopathy
and CMT patients. A linear regression fit demonstrated high agreement between ground
truth and the predicted biomarker with correlation coefficients of 97.7% and 95.9% for the
dysferlinopathy and CMT patients, respectively. The separate performance of stages 1 and
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2 were also evaluated. Stage 1 achieved a Dice score of 96.4%, and stage 2 achieved scores
of 91.7% and 93.3% for classification of the viable muscle area and intermuscular adipose
tissue, respectively. A high Dice score of 96.2% was achieved even on patients with high
disease severity, demonstrating that the network can detect the fine line (i.e., the “fascia
lata”) between subcutaneous fat and infiltrated fat and, consequently, to accurately segment
the diseased muscle region. Multiple experiments with different inputs also provide strong
support for the U-net’s relevance to the task. An analogous experiment with an original
set of raw T2-weighted images was meant to justify our selection of quantitative T2 and
PD maps. Networks that were fed with one or both quantitative maps were as effective
as the network that was fed with raw data. This proves that the compression of the raw
data into two maps was efficient, and that most of the information needed for our task was
preserved.

Training a deep learning model requires many labeled examples, while in our study a
relatively small MRI dataset was used. Increased performance was demonstrated using
combinations of known principles such as the use of patch-based methods and standard
geometric data augmentation that enriched the dataset. Using patches instead of entire
images for training greatly increases the variability of the data. This compensates for the
relatively small amount of data while still allowing the method to be generalized on external
data. This was demonstrated in this study, where we showed the efficiency of the patch-
based approach on data from CMT patients. The use of geometric data augmentations
was crucial in this work. Standard augmentation techniques, on the other hand, such
as color and brightness modifications were not considered, since muscle dystrophies are
mainly identified based on image contrast, while contrast augmentations might confuse
the networks leading to false predictions.

The second stage was intended for splitting the muscle region into viable muscle and
infiltrated fat. The lack of accurate segmentation urged us to look for a weakly supervised
method. The selection of a patch-based approach was essential considering the small
amount of available data. The selection of architecture and loss function, which incorpo-
rated a triplet loss constraint, demonstrated its superiority compared with other clustering
methods that were investigated in this work, especially DCAEDC which uses clustering
loss. The results showed that the triplet loss boosts the results of classification and surpasses
the deep convolutional auto-encoder with the embedding clustering that is widely used.
To wrap the two stages together, an application of disease quantification and clustering
to three disease states was demonstrated. Linear regression analysis demonstrated the
agreement between our quantification score and the GT. The distinct margins between the
three stages provide evidence that the selected methods can detect the disease state with
small errors.

The robustness of the proposed approach was particularly apparent in cases where the
MR images reflected high disease heterogeneity as well as when facing MRI artifacts that
bias the raw data. As was demonstrated in Figure 7, an almost identical performance was
achieved when training the network with and without bias field correction. This stability
can be attributed to the use of different types of inputs for training the networks including
combinations of quantitative T2 maps, PD maps, and raw images as well as a wide range of
disease severity levels—all of which improved the accuracy and consistency of the results.

The method was tested on patients with mild, moderate, and severe muscular dys-
trophies demonstrating the method’s ability to identify the borders between tissues, even
when the disease was in an advanced stage. The fraction of the infiltrated fat was also
calculated, and a high correlation between this index and the disease severity was shown.
The method was evaluated on another type of muscle dystrophy, the Charcot–Marie–Tooth
(CMT) disease, suggesting that this approach is applicable to a range of muscle dystrophies
exhibiting similar pattern of fatty infiltration.

To assess the disease’s severity, radiologists typically examine T2-weighted data:
an image is collected at one predefined echo time, when the contrast is optimized to
best highlight the disease. The disadvantages of this qualitative approach are that the
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estimation is reliant only on one specific echo-time. In the current work, on the contrary,
the disease was estimated by looking at quantitative maps generated from full series of
echo times. Thus, it is possible to synthesize any contrast level offline, greatly facilitating
accurate prediction of the disease’s state. Furthermore, the EMC algorithm used to generate
the T2 and PD maps relies on precise Bloch simulations of the experimental protocol
timing diagram, radiofrequency (RF) pulse shapes, and gradient pulses, thereby producing
accurate values that are stable across vendors and scan setting [32,40,41].

Many previous works quantified a disease state based on high-resolution T1, Dixon,
and other MRI modalities. Methods include active contours, fuzzy c-means, k-means, and
other conventional techniques. These methods are promising for the mild and moderate
disease stages given high-resolution MR images, where the fine lines can be seen using
the naked eye. However, they are challenged in severe disease levels, while deep-learning-
based methods provide improved performance as shown in this study.

In this work, fat infiltration was estimated by considering multiple leg muscles as a
single region. Future studies can include segmenting specific muscles and quantifying the
fat infiltration in each muscle separately. To address the small data limitation, future work
can also use the generative models in order to generate more diseased MRI images and
augment the number of images. Lastly, future research can also include tracking the disease
state over time using the quantitative biomarker calculated in this work. Fat infiltration into
muscles and progressive loss of muscle tissue are associated with several pathologies of
the peripheral nervous system that can benefit from the quantitative biomarker presented
in this study.
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