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False Discovery Proportion control for aggregated Knockoffs

Controlled variable selection is an important analytical step in various scientific fields, such as brain imaging or genomics. In these high-dimensional data settings, considering too many variables leads to poor models and high costs, hence the need for statistical guarantees on false positives. Knockoffs are a popular statistical tool for conditional variable selection in high dimension. However, they control for the expected proportion of false discoveries (FDR) and not their actual proportion (FDP). We present a new method, KOPI, that controls the proportion of false discoveries for Knockoff-based inference. The proposed method also relies on a new type of aggregation to address the undesirable randomness associated with classical Knockoff inference. We demonstrate FDP control and substantial power gains over existing Knockoff-based methods in various simulation settings and achieve good sensitivity/specificity tradeoffs on brain imaging and genomic data.

Introduction

Statistically controlled variable selection arises in many different application fields, when the aim is to identify variables that are important for predicting an outcome of interest. For instance, in the context of brain imaging, practitioners are interested in finding which brain areas are relevant for predicting behavior or brain diseases. Such problems also appear in genomics, where practitioners wish to select genes associated with disease outcomes.

More precisely, we consider here conditional variable selection, meaning that we wish to select variables that are relevant to predict an outcome given the other variables. This type of inference is substantially more challenging than marginal inference, especially in high-dimensional settings, where the number of variables exceeds the number of samples. This is typically the case for brain mapping studies that comprise at most a few hundred subjects (hence, samples), while modern functional Magnetic Resonance Imaging (MRI) scans consist of more than 100k voxels. In the context of conditional inference, those are typically reduced to a few hundreds of brain regions, still possibly more than the number of samples.

Importantly, statistical guarantees are needed to ensure that the inference is reliable -i.e. that the proportion of false discoveries made by the variable selection procedure is controlled.

In the Knockoffs framework [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Candès | Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection[END_REF], this problem is tackled by building noisy copies of the original variables. These copies are then compared to their original counterpart to perform variable selection.
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The intuition underlying Knockoffs is that irrelevant variables do not get a larger weight than their Knockoff, while relevant variables do. Crucially, the Model-X Knockoffs procedure [START_REF] Candès | Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection[END_REF] controls the False Discovery Rate [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] which is the expected proportion of false discoveries.

A major caveat with this procedure is the random nature of the Knockoffs generation process: for two runs of the Knockoffs procedure on the same data, different Knockoffs will be built and subsequently different variables may be selected. This undesirable behavior hinders reproducibility. A second caveat is that False Discovery Rate (FDR) control does not imply False Discovery Proportion (FDP) control [START_REF] Korn | Controlling the number of false discoveries: application to high-dimensional genomic data[END_REF]. This leads to potentially unreliable inference: single runs of the method can produce a much higher proportion of False Discoveries than the chosen FDR level.

In this work, we propose a novel Knockoff-based inference procedure that addresses both concerns while offering power gains over existing methods, for no significant computation cost. The paper is organized as follows. After a refresher on Knockoff inference and aggregation, we consider the π statistic introduced in [START_REF] Nguyen | Aggregation of multiple knockoffs[END_REF] to rank variables by relevance. Using the symmetry of knockoffs under the null hypothesis, we construct explicit upper bounds on the Joint Error Rate (JER; 4) of these statistics, leading to FDP control. We then use the calibration principle of [START_REF] Blanchard | Post hoc confidence bounds on false positives using reference families[END_REF] to obtain sharper bounds. Finally, we obtain a robust version of this method using harmonic mean aggregation of the π statistics across multiple Knockoffs draws. We demonstrate empirical power gains in various simulation settings and show the practical benefits of the proposed method for conditionally important region identification on fMRI and genomic datasets.

Related work

There has been much effort in the statistical community to achieve derandomized Knockoff-based inference. [START_REF] Ren | Derandomizing knockoffs[END_REF] introduced the idea of running Model-X Knockoffs [START_REF] Candès | Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection[END_REF] multiple times and computing for each the proportion of runs for which it was selected. [START_REF] Gimenez | Improving the stability of the knockoff procedure: Multiple simultaneous knockoffs and entropy maximization[END_REF] explore the idea of sampling multiple Knockoffs simultaneously. This induces a massive computational cost, which is prohibitive compared to methods that can support parallel computing. [START_REF] Nguyen | Aggregation of multiple knockoffs[END_REF] introduced an aggregation method that relies on viewing Model-X Knockoffs as a Benjamini-Hochberg (BH) procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] on so-called intermediate p-values. Such p-values can be computed on different Knockoff runs and aggregated using quantile aggregation [START_REF] Meinshausen | P-values for high-dimensional regression[END_REF] -then, BH is performed on the aggregated p-values to select variables. This approach relies on the heavy assumption that Knockoff statistics are i.i.d. under the null. Additionally, it is penalized by the conservativeness of the quantile aggregation scheme. Alternative aggregation schemes such as the harmonic mean [START_REF] Wilson | The harmonic mean p-value for combining dependent tests[END_REF] can be used but do not yield valid p-values.

[18] introduced an alternative aggregation procedure where Model-X Knockoffs are viewed as an e-BH procedure [START_REF] Wang | False discovery rate control with e-values[END_REF] on well-defined e-values [START_REF] Vovk | E-values: Calibration, combination and applications[END_REF]. Since the mean of two e-values remains an e-value, aggregation is done by averaging e-values across different Knockoffs draws. Then, e-BH is performed on the aggregated e-values to select variables. FDR control on aggregated Knockoffs is achieved without any additional assumption compared to Model-X Knockoffs. However, this method requires the difficult setting of a hyperparameter related to the chosen risk level, which highly impacts power in practice. Other recent developments in Knockoffs include the conditional calibration framework of Luo et al. [START_REF] Luo | Improving knockoffs with conditional calibration[END_REF] which aims at improving the power of Knockoffs-based methods.

There have been a few attempts at controlling other type 1 errors than the FDR using Knockoffs. [START_REF] Janson | Familywise error rate control via knockoffs[END_REF] achieves k-FWER control and proposes that FDP control can be obtained by using a procedure that leverages joint k-FWER control. Recently, [START_REF] Li | Simultaneous false discovery proportion bounds via knockoffs and closed testing[END_REF] introduced such a procedure to reach FDP control based on the k-FWER control introduced in [START_REF] Janson | Familywise error rate control via knockoffs[END_REF]. In summary, the KOPI approach is the first one that aims at controlling the FDP of knockoffs-based inference for any aggregation scheme, leading to both accurate FDP control and increased sensitivity.

Refresher on Knockoffs

Notation. We denote vectors by bold lowercase letters. A vector x = {x 1 , . . . , x p } from which we removed the j th coordinate is denoted by x -j , i.e. x \ {x j }. Independence between two random vectors x and y is denoted by x ⊥ y. For two vectors x and x and a subset S of indices, (x, x) swap(S) denotes the vector obtained from (x, x) by swapping the entries x j and xj for each j ∈ S. Matrices are denoted by bold uppercase letters, the only exception being the vector of Knockoff statistics that we denote by W as in [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF][START_REF] Candès | Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection[END_REF]. For any set S, |S| denotes the cardinality of S. For a vector z = (z j ) 1≤j≤p and S ⊂ p , we denote by z (j:S) (or z (j) when there is no ambiguity) the j th smallest value in the sub-vector (z s ) s∈S . For an integer k, k denotes the set {1, . . . , k}. Equality in distribution is denoted by d =.

Problem setup. The input data are denoted by X ∈ R n×p , where n is the number of samples and p the number of variables. The outcome of interest is denoted by y ∈ R n . The goal is to select variables that are relevant with regards to the outcome conditionally on all others. Formally, we test simultaneously for all j ∈ p :

H 0,j : y ⊥ x j |x -j versus H 1,j : y ̸ ⊥ x j |x -j .
The output of a variable selection method is a rejection set Ŝ ⊂ p that estimates the true unknown support H 1 = {j : y ̸ ⊥ x j |x -j }. Its complement is the set of true null hypotheses H 0 = {j : y ⊥ x j |x -j }. Its cardinality |H 0 | is denoted by p 0 . To ensure reliable inference, our aim is to provide a statistical guarantee on the proportion of False Discoveries in Ŝ. The False Discovery Proportion (FDP) and the False Discovery Rate (FDR) [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] are defined as:

FDP( Ŝ) = | Ŝ ∩ H 0 | | Ŝ| ∨ 1 , FDR( Ŝ) = E[FDP( Ŝ)] = E | Ŝ ∩ H 0 | | Ŝ| ∨ 1 .
An α-level post-hoc FDP upper bound [START_REF] Goeman | Multiple testing for exploratory research[END_REF] is a function V that verifies:

P (∀S ⊂ p , FDP(S) ≤ V (S)/|S|) ≥ 1 -α .
Knockoffs. The Knockoff filter is a variable selection technique introduced by [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF] and refined by [START_REF] Candès | Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection[END_REF] which controls the FDR. This procedure relies on building noisy copies of the original variables called Knockoff variables, that are designed to serve as controls for variable selection. Definition 1 (Model-X Knockoffs, 6). For the family of random variables x = (x 1 , . . . , x p ), Knockoffs are a new family of random variables x = (x 1 , . . . , xp ) satisfying:

1. for any S ⊂ p , (x, x) swap(S)

d = (x, x) 2. x ⊥ y|x.
Once we have such variables at our disposal, we quantify their importance relative to the original ones. This is done by computing Knockoff statistics W = (W 1 , . . . , W p ) that are defined as follows.

Definition 2 (Knockoff Statistic, 6). A knockoff statistic W = (W 1 , . . . , W p ) is a measure of feature importance that satisfies:

1. W depends only on X, X and y: W = g(X, X, y).

2. Swapping column x j and its knockoff column xj switches the sign of W j :

W j ([X, X] swap(S) , y) = W j ([X, X], y) if j ∈ S c -W j ([X, X], y) if j ∈ S.
The most commonly used Knockoff statistic is the Lasso-coefficient difference (LCD) [START_REF] Weinstein | A power analysis for knockoffs with the lasso coefficient-difference statistic[END_REF]. This statistic is obtained by fitting a Lasso estimator [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] on [X, X] ∈ R n×2p , which yields β ∈ R 2p . Then, the Knockoff statistic can be computed using β:

∀j ∈ p , W j = | β j | -| β j+p |.
This coefficient summarizes the importance of the original j th variable relative to its own Knockoff: W j > 0 indicates that the original variable is more more important for fitting y than the Knockoff variable, meaning that the j th variable is likely relevant. Conversely, W j < 0 indicates that the j th variable is probably irrelevant. We thus wish to select variables corresponding to large and positive W j . Formally, the rejection set Ŝ can be written Ŝ = {j : W j > T q }, where T q is chosen to provably control the FDR at level q [START_REF] Candès | Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection[END_REF].

Aggregation schemes. Due to the randomness in the knockoff generation process, different variables may be selected for two different runs of the method, which is undesirable. To mitigate this, aggregation of multiple Knockoffs runs is needed. Ren and Barber [START_REF] Ren | Derandomized knockoffs: leveraging e-values for false discovery rate control[END_REF] introduced an aggregation scheme which relies defining Knockoffs e-values.

e j = p 1 + | {k : W k ≤ -T q } | 1 {Wj ≥Tq} .
Such e-values can be averaged across D draws and e-BH [START_REF] Wang | False discovery rate control with e-values[END_REF] is performed for variable selection.

Alternatively, [START_REF] Nguyen | Aggregation of multiple knockoffs[END_REF] defines the following π-statistic, that quantifies the evidence against a variable:

π j = 1+|{k:W k ≤-Wj }| p if W j > 0 1 if W j ≤ 0. (1) 
In [START_REF] Nguyen | Aggregation of multiple knockoffs[END_REF] π statistics are treated as p-values and aggregated using quantile aggregation [START_REF] Meinshausen | P-values for high-dimensional regression[END_REF]. However, they can only be considered p-values under restrictive assumptions that are hard to check. In the next section, these statistics are used as a building block to reach FDP control. The KOPI framework does not require π statistics to be valid p-values.

4 Main contribution: FDP control for aggregated Knockoffs

Post hoc FDP control for π statistics

To obtain FDP control, we rely on Joint Error Rate control as introduced in [START_REF] Blanchard | Post hoc confidence bounds on false positives using reference families[END_REF]. For k max ∈ p , we define a threshold family of size k max as a vector t = (t j ) j∈ kmax such that 0

≤ t 1 ≤ • • • ≤ t kmax ≤ 1.
Definition 3 (Joint Error Rate, 4). Denote by π (j:H0) the j th smallest value π j amongst all null hypotheses. The JER associated with t = (t j ) j∈ kmax is:

JER(t) = P ∃j ∈ k max ∧ p 0 : π (j:H0) < t j . (2) 
The threshold family t is said to control the JER at level α iff JER(t) ≤ α.

An α-level FDP upper bound can be derived from JER control via the following result: Proposition 1 (FDP control via JER control 4). If t is a threshold family of length k max that controls the JER at level α, then, V t (S)/|S| is an α-level FDP upper bound, with:

V t (S) = min 1≤k≤kmax (k -1) + i∈S 1 {πi>t k } . (3) 
The proof of this result -originally included in [START_REF] Blanchard | Post hoc confidence bounds on false positives using reference families[END_REF] -can be found in appendix A.1 for selfcontainedness. In the remainder of this section, we show how to obtain JER control for π statistics.

Joint distribution of π statistics under the null

By Definition 3, JER(t) of a given threshold family only depends on the joint null distribution of the π statistics. As for earlier FDR control [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF] or k-FWER control [START_REF] Janson | Familywise error rate control via knockoffs[END_REF] results, the key idea to obtain JER control for π statistics is to prove that the relevant part of this distribution is in fact known, thanks to the properties of knockoff statistics. We use the same notation as in [START_REF] Janson | Familywise error rate control via knockoffs[END_REF]. Letting

Z j = | {k ∈ p : W k ≤ -W j } | and χ j = sign(W j )
, the π statistics (π j ) j= p are given by:

π j = 1 + Z j p 1 {χj =1} + 1 {χj =-1} .
For a given W, let σ(W) be a permutation of p that sorts W by decreasing modulus:

σ(W) = (σ 1 , . . . , σ p ) such that |W σ1 | ≥ |W σ2 | • • • ≥ |W σp |.
We start by proving that the Z statistics can be expressed as a function of the vector of χ statistics:

Lemma 1. For k ∈ p such that χ σ k = 1, Z σ k = k-1 j=1 1 {χσ j =-1} .
Proof of Lemma 1. We have

Z j = | {k ∈ p : W k ≤ -W j } | = | {k ∈ p : W k < 0 and W k ≤ -W j } | If W k < 0, then W k ≤ -W j is equivalent to |W k | ≥ |W j |
, which holds if and only if k < j by the definition of σ(W).

Lemma 1 implies that the distribution of order statistics of π|σ(W) is entirely determined by that of χ|σ(W). To formalize this, we introduce π 0 statistics.

Definition 4 (π 0 statistics). Let χ 0 = (χ 0 j ) 1≤j≤p be a collection of p i.i.d. Rademacher random variables, that is, for all j, P(χ 0 j = 1) = P(χ 0 j = -1) = 1/2. The associated π 0 statistics are defined for j ∈ p by

π 0 j = 1 + Z 0 j p 1 {χ 0 j =1} + 1 {χ 0 j =-1} , where Z 0 j = j-1 k=1 
1 {χ 0 k =-1} . (4) 
Theorem 1. Let t be a threshold family of length k max . Then, for π 0 = (π 0 j ) j∈ p as in (4),

JER (t) ≤ JER 0 (t) := P ∃k ∈ k max : π 0 (k) < t k . ( 5 
) Proof of Theorem 1. Let k ∈ k max . Since t k ≤ 1, we have π (k:H0) < t k if and only if N k ≥ k,
where

N k = j ∈ H 0 , χ j = 1 and 1 + Z j p < t k .
With the notation of Definition 4, we define the random variable

N 0 k = j ∈ H 0 , χ 0 j = 1 and 1 + Z 0 j p < t k .
If H 0 = p , then Lemma 1 implies that conditional on σ(W), N k and N 0 k have the same distribution. Indeed, the vectors (W j ) j/χj =1 and (Z j ) j/χj =1 have the same ordering, and conditional on σ(W), (χ j ) j∈H0 are jointly independent and uniformly distributed on {-1, 1} (Lemma 2.1 in 11; 1). Using the same argument as in the proof of Lemma 3.1 in Janson and Su [START_REF] Janson | Familywise error rate control via knockoffs[END_REF], in the case where H 0 ⊊ p , false null χ j will insert -1's into the process on the nulls, implying that N k is stochastically dominated by N 0 k . Noting that N 0 k ≥ k if and only if π 0 (k) < t k , we obtain that

P ∃k ∈ k max ∧ p 0 , π (k:H0) < t k |σ(W) ≤ P ∃k ∈ k max ∧ p 0 , π 0 (k) < t k ≤ P ∃k ∈ k max , π 0 (k) < t k .
Taking the expectation with respect to σ(W) yields the desired result.

Theorem 1 is related to Lemma 3.1 of Janson and Su [START_REF] Janson | Familywise error rate control via knockoffs[END_REF] and Lemma 3.1 of Li et al. [START_REF] Li | Simultaneous false discovery proportion bounds via knockoffs and closed testing[END_REF], that rely on the sign-flip property of Knockoff statistics under the null [START_REF] Barber | Controlling the false discovery rate via knockoffs[END_REF]. The interest of Theorem 1 is that the upper bound JER 0 (t) only depends on the π 0 statistics and the threshold family t, and not on the original data. Therefore, it can be estimated with arbitrary precision for any given t using Monte-Carlo simulation, as explained in the next section and described in Algorithm 1 in Supp. Mat.

Joint Error Rate control for π statistics via calibration

To approximate the JER upper bound derived in Theorem 1, we draw B Monte-Carlo samples using Algorithm 1. This yields a set of B vectors of π 0 statistics denoted by π 0 b ∈ R p for each b ∈ B . This allows us to evaluate the empirical JER, which estimates the upper bound of interest.

Definition 5 (Empirical JER). For B vectors of π 0 statistics and a threshold family t, the empirical JER is defined as:

JER 0 B (t) = 1 B B b=1 1 ∃k ∈ k max : π 0 b(k) < t k , (6) 
where

for each b ∈ B , π 0 b(1) ≤ • • • ≤ π 0 b(p) .
Since JER 0 B (t) can be made arbitrarily close (by choosing B large enough) to JER 0 (t) for any given threshold family t, it remains to choose t such that JER 0 (t) ≤ α in order to ensure JER control. To this end, we consider a sorted set of candidate threshold families called a template:

Definition 6 (Template [4]). A template is a component-wise non-decreasing function T : [0, 1] → R p that maps a parameter λ ∈ [0, 1] to a threshold family T(λ) ∈ R p .
This definition is naturally extended to the case of templates containing a finite number of threshold families. The template corresponding to B ′ threshold families is then denoted by

(T (b ′ /B ′ )) b ′ ∈ B ′ .
Once a template is specified, the calibration procedure [START_REF] Blanchard | Post hoc confidence bounds on false positives using reference families[END_REF] can be performed; this consists in finding the least conservative threshold family t amongst the template that controls the empirical JER at level α. Formally, we consider the threshold family defined t B α = T(λ B (α)), where

λ B (α) = 1 B ′ max b ′ ∈ B ′ s.t. JER 0 B T b ′ B ′ ≤ α .
As observed by Blain et al. [START_REF] Blain | Notip: Non-parametric true discovery proportion control for brain imaging[END_REF], optimal power is reached when the candidate families match the shape of the distribution of the null statistics. We define a template based on the distribution of the π 0 statistics appearing in Theorem 1. In practice, we draw B ′ samples from this distribution independently from the B Monte Carlo samples to avoid circularity biases. Since a template has to be component-wise non-decreasing, i.e. the set of candidate threshold families has to be sorted, we extract empirical quantiles from these B ′ sorted vectors. This yields a template T 0 composed of B ′ candidate curves that match quantiles of the distribution of π 0 statistics. The b ′ B ′ -quantile curve defines the threshold family T 0 (b ′ /B ′ ). We obtain the following result: Theorem 2 (JER control for π-statistics). Consider the threshold family defined by t B α = T 0 (λ B (α)). Then, as B → +∞,

JER(t B α ) ≤ α + O P (1/ √ B).
The number B of Monte-Carlo samples in Theorem 2 can be chosen arbitrarily large to obtain JER control, leading to valid FDP bounds via Equation 3. This result is proved in Appendix A.2.

False Discovery Proportion control for aggregated Knockoffs

In the previous section we have seen how to reach FDP control via Knockoffs. As explained above, aggregation is needed to mitigate the randomness of the Knockoff generation process. Therefore, we aim to extend the previous result to the case of aggregated Knockoffs. Let us first define aggregation:

Definition 7.
For D draws of Knockoffs, an aggregation procedure is a function f : R D → R that maps a vector of (π d ) d∈ D statistics to an aggregated statistic π.

In practice, since we have p variables, aggregation is performed for each variable, i.e.:

∀j ∈ p , f (π 1 j , . . . , π D j ) = π j .
Then, inference is performed on the vector of aggregated statistics (π 1 , . . . , π p ). Then, for each b ∈ B , we perform aggregation:

π 0 b = f (π 0,d b ) d∈ D .
The JER in the aggregated case is defined as:

JER(t) = P ∃j ∈ k max ∧ p 0 : π (j:H0) < t j .
We obtain the aggregated template following the same procedure, i.e. drawing D templates and aggregating them. For each b ′ ∈ B ′ , the aggregated threshold family is written:

T b ′ B ′ = f T d b ′ B ′ d∈ D
.

We can then write the empirical JER in the aggregated case as:

JER T b ′ B ′ = 1 B B b=1 1 ∃j ∈ k max : π 0 b(j) < T j b ′ B ′ .
Calibration can be performed in the same way as in the non-aggregated case. Note that we perform calibration after aggregating; therefore, JER control is ensured directly on aggregated statistics and is not a result of aggregating JER controlling families. Importantly, this approach holds without additional assumptions on the aggregation scheme f . We consider the threshold family t

B α = T(λ B (α)), where λ B (α) = 1 B ′ max b ′ ∈ B ′ s.t. JER 0 B T b ′ B ′ ≤ α .
With T 0 a template composed of B ′ candidate curves that match quantiles of the distribution of π 0 statistics, we obtain the following result: Theorem 3 (JER control for aggregated π-statistics). Consider the threshold family defined by t

B α = T 0 (λ B (α)). Then, as B → +∞, JER(t B α ) ≤ α + O P (1/ √ B).
Proof. The proof is identical to that of Theorem 2 using the empirical aggregated JER.

The calibrated aggregated threshold family yields valid FDP upper bounds via Proposition 1. The proposed KOPI (Knockoffs -π) method therefore achieves FDP control on aggregated Knockoffs.

Experiments

Methods considered. In our implementation of KOPI, we rely on the harmonic mean [START_REF] Wilson | The harmonic mean p-value for combining dependent tests[END_REF] as the aggregation scheme f . Additionally, we set k max = ⌊p/50⌋ following the approach of [START_REF] Blain | Notip: Non-parametric true discovery proportion control for brain imaging[END_REF]. We also consider both state-of-the-art Knockoffs aggregation schemes: AKO (Aggregation of Multiple Knockoffs, 17) and e-values based aggregation [START_REF] Ren | Derandomized knockoffs: leveraging e-values for false discovery rate control[END_REF]. Additionally, we consider Vanilla Knockoffs, i.e. [START_REF] Candès | Panning for gold:'model-x'knockoffs for high dimensional controlled variable selection[END_REF] and FDP control via Closed Testing [START_REF] Li | Simultaneous false discovery proportion bounds via knockoffs and closed testing[END_REF]. In simulated data experiments, we generate Knockoffs assuming a Gaussian distribution for X, with all variables centered. For methods that support aggregation, we use D = 50 Knockoff draws.

Simulated data

Setup. At each simulation run, we generate Gaussian data X ∈ R n×p with a Toeplitz correlation matrix corresponding to a first-order auto-regressive model with parameter ρ, i.e. Σ i,j = ρ |i-j| .

Then, we draw the true support β * ∈ {0, 1} p . The number of non-null coefficients of β * is controlled by the sparsity parameter s p , i.e. s p = ∥β * ∥ 0 /p. The target variable y is built using a linear model:

y = Xβ * + σϵ,
with σ controlling the amplitude of the noise: σ = ∥Xβ * ∥ 2 /(SNR∥ϵ∥ 2 ), SNR being the signal-tonoise ratio. We choose the central setting n = 500, p = 500, ρ = 0.5, s p = 0.1, SNR = 2. For each parameter, we explore a range of possible values to benchmark the methods across varied settings. Knockoffs draws and the following simulation settings: α = 0.1, q = 0.1, p = 500. Each column represents a varying parameter with the first row displaying FDP coverage and the second row displaying power. The red line and associated error bands represent the acceptable limits for FDP bound coverage. KOPI consistently outperforms all other methods while retaining FDP control.

To select variables using FDP upper bounds, we retain the largest possible set of variables S such that V (S) ≤ q|S| (Algorithm 4). For each of the N simulations and each method, we compute the empirical FDP and True Positive Proportion (TPP):

F DP (S) = |S ∩ H 0 | |S| and T P P (S) = |S ∩ H 1 | |H 1 | .
If the FDP is controlled at level α, |{k ∈ N : F DP (S k ) > q}| ∼ B(N, α). Then, we can compute error bands on the α-level using std (B(N, α)/N ) = α(1 -α)/N . The second row of Fig. 1 represents the empirical power achieved by each method, which corresponds to the average of TPPs defined above for N runs i.e. Power = N k=1 T P P (S k )/N. Fig. 1 shows that across all different settings, KOPI retains FDP control. We can also see that FDR control does not imply FDP control, as Vanilla Knockoffs are consistently outside of FDP bound coverage intervals. However, the two existing aggregation schemes (AKO and e-values) that formally guarantee FDR control are generally conservative and achieve FDP control empirically. This is consistent with the findings of [START_REF] Ren | Derandomized knockoffs: leveraging e-values for false discovery rate control[END_REF]. The Closed Testing procedure of [START_REF] Li | Simultaneous false discovery proportion bounds via knockoffs and closed testing[END_REF] achieves FDP control as announced but suffers from a lack of power.

Interestingly, KOPI achieves FDP control while offering power gains compared to FDR-controlling Knockoffs aggregation methods. Yet FDP control is a much stronger guarantee than FDR control, as discussed previously. These gains are especially noticeable in challenging inference settings where most methods exhibit a clear decrease in power or even catastrophic behavior (i.e. zero power). Moreover, Fig. 3 (in appendix) shows that when using q = 0.05 rather than q = 0.1 as in Fig. 1, the robustness of KOPI with regards to difficult inference settings is even more salient. More precisely, for q = 0.05, AKO and Closed Testing are always powerless. E-values aggregation yields good power in easier settings such as ρ ≤ 0.6, SNR ≥ 2.5 or n > 750 but exhibits catastrophic behavior in harder settings. Overall, apart from KOPI, only Vanilla Knockoffs exhibit non-zero power, but this method fails to control the FDP as it is intended to control FDR. KOPI preserves FDP control in all settings while yielding superior power compared to all other methods.

Brain data application

The goal of human brain mapping is to associate cognitive tasks with relevant brain regions. This problem is tackled using functional Magnetic Resonance Imaging (fMRI), which consists in recording the blood oxygenation level dependent signal via an MRI scanner. The importance of conditional 
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Figure 2: Empirical FDP and power on semi-simulated data for 42 contrast pairs. We use 7 HCP contrasts C0: "Motor Hand", C1: "Motor Foot", C2: "Gambling", C3: "Relational", C4: "Emotion", C5: "Social", C6: "Working Memory". We consider all 42 possible train/test pairs: the train contrast is used to obtain a ground truth, while the test contrast is used to generate the response. Inference is performed using the 5 methods considered in the paper and the empirical FDP is reported in the left box plot, while power is reported in the right box plot. Notice (right figure) that KOPI yields superior power compared to all other Knockoffs-based methods while controlling the FDP (left Fig. ). inference for this problem has been outlined in [START_REF] Weichwald | Causal interpretation rules for encoding and decoding models in neuroimaging[END_REF]. We use the Human Connectome Project (HCP900) dataset that contains brain images of healthy young adults performing different tasks while inside an MRI scanner. Details about this dataset and empirical results can be found in Appendix E.

While these results demonstrate the face validity of the approach, FDP control and power cannot be evaluated. Therefore, following [START_REF] Nguyen | A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension[END_REF], we consider an additional experiment that consists in using semi-simulated data. We consider a first fMRI dataset (X 1 , y 1 ) on which we perform inference using a Lasso estimator; this yields β * 1 ∈ R p that we will use as our ground truth. Then, we consider a separate fMRI dataset (X 2 , y 2 ) for data generation. The point of using a separate dataset is to avoid circularity between the ground truth definition and the inference procedure. Concretely, we discard the original response vector y 2 for this dataset and build a simulated response y sim 2 using a linear model, with the same notation as previously (we set σ so that SN R = 4): y sim 2 = X 2 β * 1 + σϵ. Then, inference is performed using Knockoffs-based methods on (X 2 , y sim 2 ). Since we consider β * 1 as the ground truth, the FDP and TPP can be computed for each method. As can be seen in Fig. 2, KOPI is the most powerful method among those that control the FDP.

Genomic data application

In addition to the brain data application, we compared KOPI to other Knockoffs-based methods on gene-expression data [START_REF] Bourgon | Independent filtering increases detection power for high-throughput experiments[END_REF] containing 79 samples and 90 genes. KOPI yields a non trivial selection for all runs, with 3 genes selected in 100% of all 50 runs of the experiment. Across all runs, only 8 different genes are selected by KOPI. Vanilla Knockoffs select 24 different genes across all runs and no gene exceeds a selection frequency of 70%. All other methods are powerless in all runs. Details and results of this experiment can be found in Appendix D.

Discussion

In this paper, we have proposed a novel method that reaches FDP control on aggregated Knockoffs. It combines the benefits of aggregation, i.e. improving the stability of the inference, in addition to providing a probabilistic control of the FDP, rather than controlling only its expectation, the FDR.

Simulation results support that KOPI indeed controls the FDP. Furthermore, while FDP control is a stricter guarantee than FDR control, KOPI actually offers power gains compared to state-of-the-art aggregation-based Knockoffs methods. This sensitivity gain is a direct benefit from the JER approach and its adaptivity to arbitrary aggregation schemes. While the latter has been formulated and used so far in mass univariate settings [START_REF] Blain | Notip: Non-parametric true discovery proportion control for brain imaging[END_REF], the present work presents a first use of this approach in the context of multiple regression. Moreover, KOPI does not require any assumption on the data at hand or on the law of Knockoff statistics under the null.

The computation time of the proposed approach is comparable to existing aggregation schemes for Knockoffs: sampling π statistics under the null using Algorithm 1 can be done once and for all for a given value of p. JER estimation via Algorithm 2 and calibration can be performed via binary search of complexity O(log(B ′ )). Finding the rejection set Ŝ after performing calibration is done in linear time via [START_REF] Enjalbert-Courrech | Powerful and interpretable control of false discoveries in two-group differential expression studies[END_REF]. In practice, the computation time is the same as for classical knockoff aggregation [START_REF] Ren | Derandomizing knockoffs[END_REF] and is in minutes for the brain imaging datasets considered. Avenues for future work include a theoretical analysis of the False Negative Proportion (FNP) [START_REF] Genovese | Operating characteristics and extensions of the false discovery rate procedure[END_REF] of KOPI and developing a step-down version of the method to further improve power.

We provide a Python package containing the code for KOPI available at https://github.com/ alexblnn/KOPI.

A Proofs

A.1 Proof of FDP control via JER control

For self-containedness we provide a Proof of Proposition 1 adapted from [START_REF] Blanchard | Post hoc confidence bounds on false positives using reference families[END_REF]:

Proposition 1 (FDP control via JER control 4). If t is a threshold family of length k max that controls the JER at level α, then, V t (S)/|S| is an α-level FDP upper bound, with:

V t (S) = min 1≤k≤kmax (k -1) + i∈S 1 {πi>t k } . (3) 
Proof. Denote by R k = {j : π j ≤ t k }. Then for any set S:

|S ∩ H 0 | = S ∩ R k ∩ H 0 + |S ∩ R k ∩ H 0 | ≤ S ∩ R k + |R k ∩ H 0 | = i∈S 1 {πi(X)>t k } + |R k ∩ H 0 | ≤ i∈S 1 {πi(X)>t k } + k -1 =: V t k (S)
, where the last inequality holds with probability at least 1 -α by [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Since (2) holds simultaneously for all k, the minimum over k of all V k (S) is an α-level upper bound on the false positives in S and therefore V t (S)/|S| is itself an α-level FDP upper bound.

A.2 Proof of Theorem 2 Lemma 2. For any threshold family t, we have

JER 0 (t) -JER 0 B (t) = O P (1/ √ B) Proof of Lemma 2. Let Z B (t) = √ B JER 0 (t) -JER 0 B (t)
. By the Central Limit Theorem, we have

Z B (t) d ----→ B→∞ Z(t),
where Z(t) is a centered Gaussian random variable with variance σ 2 (t) = JER 0 (t)(1 -JER 0 (t)). As such, for any M > 0, we have

P (|Z B (t)| ≥ M ) ----→ B→∞ P (|Z(t)| ≥ M ) .
Since JER 0 (t) ≤ 1, we have σ 2 (t) ≤ 1 /4 for any t, so that Z(t) is stochastically dominated by N (0, 1 /4), which does not depend on the threshold family t. As such, we have

P (|Z(t)| ≥ M ) = 2P (Z(t) ≥ M ) ≤ 2Φ(2M )
, where Φ denotes the tail function of the standard normal distribution. Since Φ(x) tends to 0 as x → +∞, we have proved that Z B (t) = O P (1).

Theorem 2 (JER control for π-statistics). Consider the threshold family defined by t B α = T 0 (λ B (α)). Then, as B → +∞,

JER(t B α ) ≤ α + O P (1/ √ B).
Proof. We treat the case where t B α is well defined for all B, i.e. that there exists a threshold family amongst T 0 controls the empirical JER 0 for B draws. If this is not the case for some B, then t B α is set to the null family and the result holds.

By Theorem 1 we have for all t that JER (t) ≤ JER 0 (t). We can write:

JER 0 (t) = JER 0 B (t) + JER 0 (t) -JER 0 B (t) = JER 0 B (t) + O P (1/ √ B)
by Lemma 2. Applying the above to t = t B α yields the desired result since JER 0 B (t B α ) ≤ α by definition.

B Algorithms

Algorithm 1 describes the procedure to obtain samples from the joint distribution (π 0 k ) k . This is useful to compute the empirical JER of Equation 6 via 2 and in turn to perform calibration which is described in Algorithm 3. Once calibration is performed, inference can be performed using Algorithm 4. The FDP of resulting regions is provably controlled thanks to Theorem 3.

Algorithm 1: Sampling from the joint distribution of π statistics under the null according to Theorem 1. 1 Input: B the number of MC draws; p the number of variables 2 Output: Algorithm 2: Computing the Empirical JER. The empirical JER is computed for a given threshold family and a matrix of π 0 statistics. This algorithm is similar to Algorithm 3 of [START_REF] Blain | Notip: Non-parametric true discovery proportion control for brain imaging[END_REF].

Π 0 ∈ [0, 1] B×p a matrix of π 0 statistics 3 Π 0 ← zeros(B, p) 4 for b ∈ [1, B] do 5 χ ← draw_random_vector({-1, 1} p ) // Draw signs 6 Z = 0 // Initialize count 7 for j ∈ [1, p] do 8 if χ[j] < 0 then 9 Π 0 [b][j] ← 1 10 Z ← Z + 1 // Increment Z
1 Input: Π 0 a matrix of π 0 statistics; t a threshold family; k max the size of the threshold family Output: JER, the empirical JER of threshold family t 2 (B, p) ← shape(Π 0 ) 

3 JER ← 0 4 for b ∈ [1, B] do 5 for i ∈ [1, k max ] do 6 diff[i] ← Π 0 [b ′ ][i] -t[i] 7 //

E Details and results on HCP data E.1 HCP dataset

We use the HCP900 task-evoked fMRI dataset [START_REF] Van Essen | The Human Connectome Project: a data acquisition perspective[END_REF], in which we take the masked 2 mm resolution z-statistics maps of the 778 subjects from 7 tasks to solve binary regression problems, namely predicting which condition is associated with the brain image: emotion (emotional face vs shape outline), gambling (reward vs loss), language (story vs math), motor hand (left vs right hand), motor foot (left vs right foot), relational (relational vs match) and social (mental interaction vs random interaction).

We consider the fixed-effect maps (average across right-left and left-right phase encoding schemes) for each condition, yielding one image per subject per condition (which corresponds to two images per subject for each classification problem). Then, for each problem, the number of samples available is 1556 (= 2 × 778) and the number of voxels is 156 374 after gray-matter masking. Dimension reduction was carried out using Ward parcellation scheme to 1k clusters, which is known to yield spatially homogeneous regions [START_REF] Thirion | Which fMRI clustering gives good brain parcellations[END_REF]. The signal is then averaged per cluster, yielding a reduced design matrix X for the problem.

E.2 Brain data are non-Gaussian

In the synthetic data experiments we used the Gaussian Knockoff generation process described in 6. However, fMRI brain maps can be heavily non-Gaussian. In turn, Gaussian Knockoffs cannot satisfy the Knockoffs exchangeability assumption and any statistical control on False Discoveries is rendered spurious.

To build non-Gaussian Knockoffs, we use a linear variant of the Sequential Conditional Independent Pairs (SCIP) algorithm of 6:

Algorithm 5: Generating Non-Gaussian Knockoffs using the Sequential Conditional Independent Pairs algorithm of 6.

1 for j ∈ [1, p] do 2
Fit a Lasso model on (X -j , X j ) 3 Compute the residual ϵ j = X j -X -j β j 4 end 5 for j ∈ [1, p] do 6 Sample Xj from X -j β j + ϵ ρ(j) // ρ is a random ordering of [1, p] 7 end 8 Return X1:p

E.3 Additional results

The results corresponding to 7 contrasts of the HCP dataset are presented in 

For a fixed aggregation

  scheme f , we can naturally extend the calibration procedure of the preceding section. Instead of drawing a single B × p matrix of π 0 statistics containing π 0 b ∈ R p for each b ∈ B , we draw D such matrices. Given d ∈ D , each matrix contains π 0,d b ∈ R p for each B .

Figure 1 :

 1 Figure1: FDP bound coverage at level α and empirical Power for 50 simulation runs and five different methods: Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation, KOPI and Knockoff inference via Closed Testing. We use D = 50 Knockoffs draws and the following simulation settings: α = 0.1, q = 0.1, p = 500. Each column represents a varying parameter with the first row displaying FDP coverage and the second row displaying power. The red line and associated error bands represent the acceptable limits for FDP bound coverage. KOPI consistently outperforms all other methods while retaining FDP control.

  Π 0 ← sort_lines(Π 0 ) // Sort samples 18 Return Π 0

Figs 5 -

 5 Fig 11: foot contrast of the HCP motor task in Fig 5, hand contrast of the HCP motor task in Fig 6, relational versus match contrast of the HCP relational task in Fig 7, gain vs loss contrast of the HCP gambling task in Fig 8, 2-back vs 0-back contrast of the HCP working memory task in Fig 9, face vs shape -Pearson normality test, motor contrast

Figure 4 :

 4 Figure 4: D'Agostino-Pearson normality test for a motor contrast. We perform a normality test for each cluster amongst the 1000 present for the motor foot contrast. The distribution of the normality test p-values indicates strong non-normality in fMRI data.

Figure 5 :

 5 Figure 5: Brain mapping on motor contrast using Knockoffs-based methods. Among the five methods considered in this paper -Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff inference via Closed Testing-only Vanilla Knockoffs, e-values and KOPI yield discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws and α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla Knockoffs yield 17 regions, KOPI: 24 regions and e-values: 18 regions.

Figure 6 :

 6 Figure 6: Brain mapping on motor hand contrast using Knockoffs-based methods. Among the five methods considered in this paper -Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff inference via Closed Testing-only Vanilla Knockoffs, e-values and KOPI yield discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws and α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla Knockoffs yield 11 regions, KOPI, 10 regions and e-values 11 regions.

Figure 7 :

 7 Figure 7: Brain mapping on the HCP Relational task using Knockoffs-based methods. Among the five methods considered in this paper -Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff inference via Closed Testing-only Vanilla Knockoffs and KOPI yield discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws, α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla Knockoffs yield 58 regions and KOPI, 24 regions.

Figure 8 :

 8 Figure 8: Brain mapping on HCP gambling task using Knockoffs-based methods. Among the five methods considered in this paper -Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff inference via Closed Testing-only Vanilla Knockoffs, KOPI and e-values aggregation yield discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws, α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla Knockoffs yield 57 regions, KOPI 57 regions, e-values aggregation, 19 regions.

Figure 9 :

 9 Figure 9: Brain mapping on HCP working memory task using Knockoffs-based methods. Among the five methods considered in this paper -Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff inference via Closed Testing-only Vanilla Knockoffs yields discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws, α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla Knockoffs yield 8 regions.

Figure 10 :

 10 Figure 10: Brain mapping on HCP emotional task using Knockoffs-based methods. Among the five methods considered in this paper -Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff inference via Closed Testing-only Vanilla Knockoffs, KOPI and e-values aggregation yield discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws, α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla Knockoffs yield 22 regions, KOPI: 37 regions, e-values aggregation: 20 regions.

Figure 11 :

 11 Figure 11: Brain mapping on HCP social task using Knockoffs-based methods. Among the five methods considered in this paper -Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs using quantile-aggregation (AKO), KOPI and Knockoff inference via Closed Testing-only Vanilla Knockoffs and KOPI yield discoveries, plotted above. All other methods are powerless. We use 50 Knockoffs draws, α = 0.1 and q = 0.2. Each figure represents the region returned by a given method. Vanilla Knockoffs yield 32 regions, KOPI: 27 regions.

Table 4 :

 4 Check JER control at rank i Stability selection criteria for 5 Knockoffs-based methods on "Colon vs Kidney" genomic data. Note that KOPI displays a very stable selection set across all runs with 21 genes present in > 90% of runs. KOPI also avoids most spurious discoveries, as only 7 genes are selected less than 50% of the time, compared to 34 genes using Vanilla Knockoffs and 20 using e-values. All other Knockoffs-based methods are powerless in all runs.

	8	end
	9	if min(diff) < 0 then
	10	JER ← JER + 1 B
	11	// Increment risk if JER control event is violated
	12	end
	13 end
	14 Return JER
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Algorithm 3: Performing calibration on π-statistics. First, we use Theorem 1 to build a suitable template and estimate the JER of each candidate threshold family. Then, we perform calibration to select the least conservative possible threshold family that controls the JER at a given level α.

1 Input: α the desired FDP coverage; B the number of MC draws for JER estimation; B ′ the number of candidate threshold families 2 Output: t α the calibrated threshold family at level α

Algorithm 4: Performing inference via Knockoffs and calibration. We compute the largest possible region that satisfies the required FDP level q using the JER controlling family computed via Algorithm 3. The bound V tα is computed from π using Equation 3.

1 Input: X the input data; y the target variable; q the maximum tolerable FDP; t α the calibrated threshold family at level α 2 Output: Ŝ the selected variables

V tα (S) |S| ≤ q} // Find largest admissible region 8 // V tα (S) depends on π 9 Return Ŝ

C Additional simulation results

C.1 A harder inference setup

We evaluated the performance of all five methods in the more challenging setting q = 0.05 instead of using q = 0.1. The results are presented in Fig. 3. In this setting, AKO and Closed Testing are always powerless and aggregation via e-values suffers from a lack of power in most cases. Vanilla Knockoffs exhibit satisfactory power but consistently fail to control the FDP. KOPI preserves FDP control and yields acceptable power.

C.2 Impact of aggregation scheme choice

While the theoretical guarantees we obtain hold for all choices of aggregation schemes, these hyperparameter impacts the power of KOPI. To assess this, we use the same simulated data setup as in Figure 1 to compare four aggregation schemes: arithmetic mean, geometric mean, harmonic mean and quantile aggregation.

Importantly, we first check that the FDP is controlled for all types of aggregation and in all settings considered by reporting the bound non-coverage. We use three settings of varying difficulty, parametrized by the correlation level ρ and use α = 0.1, q = 0.1: Harmonic Arithmetic Geometric Quantile aggregation ρ = 0.5 10% 0% 2% 10% ρ = 0.6 2% 0% 0% 4% ρ = 0.7 2% 0% 0% 0% Table 1: FDP control of KOPI for four aggregation schemes and three different correlation levels. Note that FDP control is maintained in all scenarios which is coherent with the result obtained in Theorem 3.

The FDP is indeed controlled in all cases since non-coverage never exceeds the chosen level α = 10% as seen in Table 1. This is coherent with the theoretical guarantees we obtain in Theorem 3. We now report the average power to benchmark aggregation schemes: Harmonic Arithmetic Geometric Quantile aggregation ρ = 0.5 0.91 0.77 0.87 0.90 ρ = 0.6 0.83 0.58 0.77 0.83 ρ = 0.7 0.72 0.39 0.61 0.72 Table 2: Empirical power of KOPI for four aggregation schemes and three different correlation levels. Note that harmonic mean aggregation consistently outperforms arithmetic aggregation and geometric aggregation. Quantile aggregation performs similarly to harmonic aggregation.

Note that harmonic mean aggregation outperforms arithmetic and geometric mean consistently and performs similarly to quantile aggregation as seen in Table 2.

D Details and results on genomic data D.1 Lymphomatic leukemia mutation classification

Differential gene expression studies aim at identifying genes whose activity differs significantly between two (or more) populations, based on a sample of measurements from individuals from these populations. The activity of a gene is usually quantified by its level of expression in the cell. We consider a microarray data set studied in [START_REF] Bourgon | Independent filtering increases detection power for high-throughput experiments[END_REF] that consists of expression measurements for biological samples from n = 79 individuals with B-cell acute lymphoblastic leukemia (ALL): 37 of these individuals harbor a specific mutation called BCR/ABL, while the remaining 42 do not. Our goal here is to identify, from this sample, genes for which there is a difference in the mean expression level between the mutated and non-mutated populations. We focus on the p = 90 genes on chromosome 7 whose individual standard deviation is above 0.5.

The genes selected by different Knockoffs-based methods are summarized in Table 3. Stability selection criteria analogous to [START_REF] Luo | Improving knockoffs with conditional calibration[END_REF][START_REF] Ren | Derandomizing knockoffs[END_REF] are displayed. Note that the selection made by KOPI is more robust than that of Vanilla Knockoffs: 4 genes are selected in nearly all runs by KOPI, while none are selected as frequently by Vanilla Knockoffs. Conversely, KOPI only selects 2 genes in less than 50% of all runs compared to 18 for Vanilla Knockoffs. This confirms that error control guarantees of KOPI, together with the stability brought by aggregation, lead to avoiding most spurious/non-reproducible detections. Besides KOPI and Vanilla Knockoffs, all other methods are powerless in all runs. KOPI Vanilla KO e-values Closed Testing AKO Selected in >90% of runs 4 0 0 0 0 Selected in >50% of runs 6 6 0 0 0 Spurious detections (<50% of runs) 2 18 0 0 0 Table 3: Stability selection criteria for 5 Knockoffs-based methods on "Lymphomatic leukemia mutation" genomic data. Note that KOPI displays a very stable selection set across all runs with 4 genes present in > 90% of runs. KOPI also avoids most spurious discoveries, as only 2 genes are selected less than 50% of the time, compared to 18 genes using Vanilla Knockoffs. The 6 genes selected more than 50% of the time by KOPI and Vanilla Knockoffs are the same. All other Knockoffs-based methods are powerless in all runs.

D.2 Colon vs Kidney classification

We also considered an additional genomic dataset to reproduce these results with a larger number of samples. The dataset we used is part of GEMLeR (Gene Expression Machine Learning Repository) [START_REF] Stiglic | Stability of ranked gene lists in large microarray analysis studies[END_REF], a collection of gene expression datasets that can be used to benchmark ML methods on genomics data. We chose the "Colon vs Kidney" dataset: this is a binary classification dataset where the goal is to distinguish cancerous tissue from two different organs (Colon and Kidney) using gene expression data. This dataset comprises 546 samples and 10936 genes. To make the problem tractable for Knockoffs-based methods we perform dimensionality reduction to select the 546 genes that have the largest variance. Then, we run all Knockoffs-based methods 50 times and report the selected genes.

The genes selected by different Knockoffs-based methods are summarized in Table 4. Stability selection criteria analogous to [START_REF] Luo | Improving knockoffs with conditional calibration[END_REF][START_REF] Ren | Derandomizing knockoffs[END_REF] are displayed. Note that the selection made by KOPI is more robust than that of Vanilla Knockoffs: 21 genes are selected in nearly all runs by KOPI, while none are selected as frequently by Vanilla Knockoffs. Conversely, KOPI only selects 7 genes in less than 50% of all runs compared to 34 for Vanilla Knockoffs and 20 for e-values aggregation.