
HAL Id: hal-04250613
https://hal.science/hal-04250613

Submitted on 19 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Towards DevOps for Cyber-Physical Systems (CPSs):
Resilient Self-Adaptive Software for Sustainable

Human-Centric Smart CPS Facilitated by Digital Twins
Jürgen Dobaj, Andreas Riel, Georg Macher, Markus Egretzberger

To cite this version:
Jürgen Dobaj, Andreas Riel, Georg Macher, Markus Egretzberger. Towards DevOps for Cyber-
Physical Systems (CPSs): Resilient Self-Adaptive Software for Sustainable Human-Centric Smart
CPS Facilitated by Digital Twins. Machines, 2023, 11 (10), pp.973. �10.3390/machines11100973�.
�hal-04250613�

https://hal.science/hal-04250613
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Citation: Dobaj, J.; Riel, A.;

Macher, G.; Egretzberger, M. Towards

DevOps for Cyber-Physical Systems

(CPSs): Resilient Self-Adaptive

Software for Sustainable

Human-Centric Smart CPS

Facilitated by Digital Twins. Machines

2023, 11, 973. https://doi.org/

10.3390/machines11100973

Academic Editor: Sang Do Noh

Received: 10 September 2023

Revised: 16 October 2023

Accepted: 17 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Towards DevOps for Cyber-Physical Systems (CPSs): Resilient
Self-Adaptive Software for Sustainable Human-Centric Smart
CPS Facilitated by Digital Twins
Jürgen Dobaj 1,* , Andreas Riel 2 , Georg Macher 1 and Markus Egretzberger 3

1 Institute of Technical Informatics, Graz University of Technology, 8010 Graz, Austria; georg.macher@tugraz.at
2 Grenoble INP (Grenoble Institute of Engineering and Management), University Grenoble Alpes, G-SCOP,

CNRS, 38000 Grenoble, France; andreas.riel@grenoble-inp.fr
3 Andritz Hydro GmbH, R&D Automation, 1120 Vienna, Austria; markus.egretzberger@andritz.com
* Correspondence: juergen.dobaj@tugraz.at

Abstract: The Industrial Revolution drives the digitization of society and industry, entailing Cyber-
Physical Systems (CPSs) that form ecosystems where system owners and third parties share responsi-
bilities within and across industry domains. Such ecosystems demand smart CPSs that continuously
align their architecture and governance to the concerns of various stakeholders, including developers,
operators, and users. In order to satisfy short- and long-term stakeholder concerns in a continuously
evolving operational context, this work proposes self-adaptive software models that promote De-
vOps for smart CPS. Our architectural approach extends to the embedded system layer and utilizes
embedded and interconnected Digital Twins to manage change effectively. Experiments conducted
on industrial embedded control units demonstrate the approach’s effectiveness in achieving sub-
millisecond real-time closed-loop control of CPS assets and the simultaneous high-fidelity twinning
(i.e., monitoring) of asset states. In addition, the experiments show practical support for the adap-
tation and evolution of CPS through the dynamic reconfiguring and updating of real-time control
services and communication links without downtime. The evaluation results conclude that, in partic-
ular, the embedded Digital Twins can enhance CPS smartness by providing service-oriented access to
CPS data, monitoring, adaptation, and control capabilities. Furthermore, the embedded Digital Twins
can facilitate the seamless integration of these capabilities into current and future industrial service
ecosystems. At the same time, these capabilities contribute to implementing emerging industrial
services such as remote asset monitoring, commissioning, and maintenance.

Keywords: Digital Twin; self-adaptive systems; CPS; DevOps; embedded systems; distributed control
system; IIoT; industrial product service system; industry 4.0; industry 5.0

1. Introduction and Background

The ongoing Industrial Revolution is driving a digital transformation entailed by the
progressing fusion of computational, physical, and social processes. The observed fusion
materializes around Cyber-Physical Systems (CPSs). CPSs are engineered automation
systems with integrated computational and physical capabilities to interact with humans
through various modalities. The ability to interact with and expand the capabilities of the
physical world through computation, communication, and control is an essential driver of
emerging technologies and business models [1,2].

For example, the manufacturing industry is transforming its CPSs to transition from
traditional mass production and customization to a new paradigm of human-centric mass
personalization. This transition will not only deliver unique value by tailoring products to
the specific preferences of individual consumers but also promote economic, ecologic, and
social sustainability through the effective integration (i.e., connectivity and interaction) of
humans, parts, and machines into the production process [3]. Another prominent example

Machines 2023, 11, 973. https://doi.org/10.3390/machines11100973 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11100973
https://doi.org/10.3390/machines11100973
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-6460-8080
https://orcid.org/0000-0001-9859-019X
https://orcid.org/0000-0001-9215-3300
https://doi.org/10.3390/machines11100973
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11100973?type=check_update&version=1

Machines 2023, 11, 973 2 of 55

is the shift towards Industrial Product-Service Systems (IPS2s). IPS2s denote a new business
paradigm that strives for value co-creation between industry partners within and across
domains. For that purpose, IPS2s exploit the ever-increasing connectivity of CPSs to create
an open ecosystem of products and services. This ecosystem facilitates value optimization
for all stakeholders along the value chain by integrating and coordinating various aspects
such as the planning, development, provisioning, operation, and utilization of products,
services, and immanent software [4,5]. To satisfy stakeholder needs, the individual ecosys-
tem elements must be able to adjust their behavior to the system’s operational context,
considering different states and goals at varying proximity and time scales [6,7].

These trends create a need for smarter CPSs that continuously align their architecture
and governance to the concerns of various stakeholders, including developers, opera-
tors, and users [6,8]. Such smart CPSs are even more software-intensive than traditional
CPSs and can be characterized as systems realized through the dynamic composition of
autonomous and heterogeneous resources that interact to provide users with rich func-
tionalities. Since smart CPSs operate in highly dynamic environments where both entities
and their interconnections are subject to continuous change, the traditional stability as-
sumptions used in CPS design are no longer valid. Such a dynamic operational context
introduces uncertainty that spans many diverse dimensions, including context, goals, mod-
els, functions, and quality properties of the underlying software systems. Such inherent
uncertainty provides enormous potential to harm the longevity of software systems in gen-
eral and, thus, also the longevity (i.e., the technical sustainability) of software-intensive smart
CPS [9].

In the field of ecology, sustainability refers to the capacity of biological systems to
maintain their diversity and productivity over time; i.e., sustainability is the endurance of
systems and processes. This complex concept encompasses numerous dimensions [10]:
social, individual, economic, environmental, and technical sustainability. While the first four
dimensions are established concepts, technical sustainability is a rapidly evolving field,
referring to “the longevity of information, systems, and infrastructure and their adequate
evolution with changing surrounding conditions” mainly associated with the continuous
and fast evolution of technologies [9].

In line with other research [9,11–15], we have argued that modern software systems—
such as CPS, cloud, and service-oriented systems—must be designed for sustainability. In other
words, these systems must be able to handle the continuous change inherent to modern
software-intensive systems. We also argue that this can be achieved through the following
two system capabilities: adaptation and evolution. Adaptation enables a system to mitigate
uncertainty anticipated at the time of development to keep satisfying system and user goals
at runtime. Evolution enables a system to adapt to unanticipated uncertainty to handle goal
changes and novelty. Integrating these capabilities enhances the technical sustainability of
software systems by making them resilient against continuous changes and faults [8].

Traditionally, the adaptation and evolution of software systems have been approached
separately with a focus on either runtime or development time. However, modern software
systems must be available 24/7 to ensure business continuity. This blurs the traditional seg-
regation between runtime and development time, as uncertainty must be addressed when the
information becomes available while the system is running [8]. To address the convergence
of runtime and development time, Weyns et al. defined the following question in their
research agenda for smarter CPS [8]: “How to integrate adaptation processes with evolu-
tion processes of smarter systems to satisfy short- and long-term stakeholder concerns in
a continuously evolving operational context?”

This article addresses this generic research question in light of modern mission-critical
and high-availability industrial CPSs. A mission-critical system is one that is essential for the
survival of a business or organization. These systems are created with the sole purpose of
achieving mission objectives, as their malfunction can threaten human life, cause environ-
mental damage, and result in significant financial loss. Redundancy is among the vital design
principles of mission-critical systems generally applied to increase system availability and

Machines 2023, 11, 973 3 of 55

reliability. The principle of diverse redundancy is commonly applied in safety-critical domains
to reduce the risk of common-cause failures. Safety-critical and mission-critical systems
frequently require fault-tolerant mechanisms. In the case of distributed or large-scale systems,
where (timely) human intervention is limited, achieving a certain level of system autonomy is
generally necessary to automatically or autonomously execute fail-operational, self-protecting,
and self-healing mechanisms to ensure continuous system operation [16,17]. Compared
to other system classes, mission-critical systems adhere to much stricter requirements
regarding their dependability [18]. Since the architectural models and methodologies pre-
sented in this work are protocol- and technology-agnostic, they can be readily applied
to mission-critical embedded cyber-physical software systems and to diverse software
systems that feature more relaxed requirements.

In particular, this article presents the results obtained during a more than six-year-long
and still ongoing industrial case study with our industry partner, Andritz Hydro. Andritz
Hydro is among the world’s leading suppliers of end-to-end solutions for hydropower
plants and highly customized electromechanical systems and automation solutions for
hydraulic power generation. Their CPS solutions are responsible for critical infrastructure
control and must be designed for uninterrupted and reliable operation, typically 24/7.
In our collaborative research effort, we seek holistic solutions for their ongoing shift from a
product-centric to a product-service-oriented business.

The following CPS capabilities comprise the essential services of our industry partner’s
IPS2 offering: remote asset monitoring, optimization, commissioning, and maintenance. These
use cases have also been classified as most relevant at present and in the near future within
the comprehensive state-of-the-art analysis of Brissaud et al. [5]. Digital Twins (DTs), as
the virtual counterparts to CPS assets, are accepted as an enabler technology for these use
cases. In addition, Digital Twins are a crucial concept in the ongoing digital transformation
to gain a competitive and economic advantage over competitors in general [5,12,19].

We conducted a multi-stakeholder analysis to identify the technical IPS2 and Digital
Twin requirements to obtain an integrated view of business, customer, and provider needs,
which we published in [6]. Our analysis finds that CPS providers in the IPS2 context face
particularly high risks due to design uncertainty [20]. These risks stem from unclear design
requirements (e.g., behavior, operation environment, interfaces) and inherent emergent needs
characterized by keeping pace with changing customer needs, emerging cyber security at-
tacks, the increasing risk of fatal software bugs and failures in complex and interconnected
CPS, and the evolution of standards and technology throughout the CPS lifetime [21].
Our findings are also supported by other industry studies [5,12,22]. To address these
provider risks, we agreed that the envisioned hydroelectric IPS2 offering, and particularly
its underlying smart CPS, shall be able to adapt its behavior (i.e., service offerings and
service quality) to changing needs and that the identification of needs shall be augmented
with operational data from DTs. On this basis, we can narrow the previously stated re-
search question and define the main research question addressed in this work: How can
Digital Twin-enhanced smart software systems be designed that support the continu-
ous and reliable adaptation of high-availability mission-critical CPS in their physical
space and cyberspace to emergent needs and uncertainties in their environmental and
operational context?

Our approach to addressing the two stated research questions is by transferring De-
vOps principles to the domain of high-availability mission-critical CPSs. DevOps (short
for Development Operation) is a set of principles to integrate and streamline the de-
velopment and operation of modern software systems. DevOps originates from the IT
domain and is considered the most effective way to provide value with IT systems through
the creation of cross-functional product teams that manage software services through-
out their lifecycle, along with automating engineering processes such as the building,
testing, and deployment of IT systems [23–25]. In recent decades, several engineering
processes, design patterns, tools, frameworks, libraries, and middleware technologies
have been developed to accelerate software engineering for the consumer market. These

Machines 2023, 11, 973 4 of 55

IT tools can also be used and integrated for engineering and managing software that is
deployed in non-critical industrial cloud and edge environments [26–29]. However, transfer-
ring DevOps to mission-critical industrial and embedded real-time environments is a challenging
problem [19,30,31]. Nevertheless, the transfer of DevOps principles to mission-critical em-
bedded CPS encompasses the core of our design and research methodology to enable
system adaptation and evolution for smart CPS.

1.1. Toward Resilient, Sustainable, and Human-Centric Smart CPSs: The Potential of DevOps

Although the ongoing Industrial Revolution is not over (Industry 4.0), in 2021, the
European Commission announced the next revolution, termed Industry 5.0 [32]. Indus-
try 4.0 is known as the digitalization of the manufacturing industry by CPSs. It is the
age of smart and cognitive machines with little room for humans. This raised concerns
about the future of society beyond Industry 4.0. Industry 5.0 shall complement the existing
technology-driven Industry 4.0 paradigms by shifting the focus toward more resilient,
sustainable, and human-centric solutions. Aheleroff et al. summarized their comparison of
the Revolutions as follows [33]: Industry 4.0 focuses on “doing things right”, while Industry
5.0 is concerned about “doing the right things”, which results in sustainable development [33–35].
Since this work utilizes Industry 4.0 technologies to enhance the technical sustainability of
smart CPSs, it is interesting to ascertain how the proposed approach aligns with the goals
of the next industrial revolution:

Sustainability is about respecting planetary boundaries, which shall be addressed
through circular processes that re-use, re-purpose, re-manufacture, and recycle products to
reduce waste and the environmental impact (i.e., circular economy) [32]. As outlined in
the introduction, this study seeks holistic software solutions that support the realization of
IPS2. Since IPS2s are a fundamental prerequisite for the circular economy [5], this work
contributes to the sustainability goals of Industry 5.0.

Resilience denotes the capacity of industry to withstand disruptions and to ensure
the provisioning and support of critical infrastructure during times of crisis. This involves
developing a higher level of robustness that can better equip industry against unforeseen
events [32]. As stated, we are of the opinion that software systems must be designed for
sustainability, which means that they must be resilient against continuous changes and
faults. In this work, we empirically show that our self-adaptive software models can adapt
their architecture and governance to various stakeholders’ short- and long-term needs and
thereby support the resilience goals of Industry 5.0.

Human-centric solutions prioritize human needs and interests by shifting from
technology-driven progress to an inclusive workplace, where the human is not seen as a
cost factor. Instead, humans are seen as investments, and technology is to be developed
to serve people and societies, meaning that technology used in manufacturing is adaptive
to the needs and diversity of industry workers [34]. The contribution of DevOps towards
human-centric CPS is manifold:

• Learn. DevOps significantly emphasizes comprehensive system monitoring and data
collection [25], which facilitates knowledge acquisition and understanding of system
behavior and aging. This understanding allows designers and operators to optimize
the system towards enhanced value delivery.

• Train. DevOps promotes the convergence of engineering and operation through
continuous experimentation, which enables engineers (e.g., developers, operators,
and commissioning workers) to test, compare, and evaluate system changes in the
real operational environment from remotely before their actual (remote) deployment
to production [36]. In addition to that, continuous experimentation can be used
for the remote training of people in real operational environments instead of using
simulations only.

• Value. DevOps facilitates automating engineering tasks such as software deployment
and testing during multiple lifecycle phases, including development, commissioning,
and maintenance [23]. Hence, DevOps can free engineers from laborious, error-prone,

Machines 2023, 11, 973 5 of 55

and time-consuming routine tasks so that they can focus on more creative and value-
added activities.

• Collaborate. As stated, we use DevOps to optimize value delivery by streamlining
human-driven system evolution by effectively supporting system change and change
processes at development time and runtime. However, changing a system during run-
time is risky, particularly when adapting safety and mission-critical systems. Hence,
our proposed approach also supports machine-driven system adaptation to provide
self-protection mechanisms that ensure system safety and integrity during adaptation.
These self-adaptation mechanisms can also enhance human–machine collaboration
by continuously adapting machine behavior to the needs of individual humans in
real time.

1.2. Design Space for the Structured Engineering of Resilient and Sustainable Smart CPSs

This section explains the design space and research scope of the case study presented
in this work. In addition, it outlines our research approach and provides the necessary
background to define this work’s research agenda, which is given in Section 1.3. In prin-
ciple, our industrial case study follows a three-stage process that adheres to the systems
engineering methodology [37]: (a) system conception and requirements analysis, (b) system
design, and (c) system development and validation. We have regularly published relevant
results during this process.

In the first and second phases, we investigated architectural concepts, design patterns,
and requirements engineering methods from diverse research and industry domains,
including cloud, edge, embedded, self-adaptive, service-oriented, and Cyber-Physical
Systems. Based on our investigations, we have published several concepts and design
patterns [17,21,38], as well as a novel requirements engineering method for the use of
Digital Twins in IPS2 [6]. We applied this method to derive the requirements and design of
generic self-adaptive system models that facilitate DevOps for CPS, which we published
in [31]. In this work, we present the results of the last phase, where we revise and augment
our previous works with (a) the learnings and results obtained during system development
and validation and (b) the state-of-the-art scientific literature regarding the usage of DTs in
modern industrial environments (see Section 2).

To transparently present our research design, methodology, and contributions, we
have compiled a visual breakdown of this work shown in Figure 1. In addition, we added
the green shaded labels/boxes to indicate the contributions of this work. Table 1 outlines
these contributions and the structure of this work.

Figure 1a shows a pseudo-ontology of this work’s design space. The orange design
space elements comprise the architectural design dimensions of our approach and the rele-
vant technology elements we use to achieve our target system’s desired capabilities. Figure 1b
shows the AdEpS (Adaptation and Evolution processes for Sustainability) model as de-
fined in [9]. The AdEpS model denotes a comprehensive model that takes an architectural
perspective on the challenges of software system adaptation and evolution at runtime. In
particular, it comprises two interacting processes: one manages adaptation, and the other
manages evolution. Within these processes, the AdEpS model considers the challenges of
handling change for monitoring, planning, evaluating, coordinating, and implementing re-
configurations. To that purpose, the model explicitly includes the following three elements
that are essential for modern self-adaptive and autonomous software systems [9]:

• The steps and resources of the MAPE-K loop (short for monitor, analyze, plan, en-
act/execute, and knowledge). The MAPE-K loop denotes the most widely used
pattern to structure and implement the behavior of self-adaptive systems [39,40].

• The various types of uncertainty, covering also the risks identified during our stake-
holder analysis described above. Table 2 provides examples per uncertainty type.

• The explicit representations of the resources on which the change processes work:
(a) the architecture description and the system implementation for evolution and
(b) the runtime model and running system for adaptation.

Machines 2023, 11, 973 6 of 55

Smarter CPS
Adaptability

Smart CPS

Digital Twin

(Primary & Secondary)
CPS Assets

enhancesenhances

CPS Asset Servitization
to offer service-oriented access to CPS capabilities

for their integration into modern industrial eco-systems

CPS Evolution
to manage emergent needs
(i.e., design uncertainty) like
goal changes and novelty

CPS Self-Adaptation
for uncertainty control to

continuously meet system,
stakeholder, and user goals

requires requires

ManageabilityContext- and Self-
Aware Ability

Real-Time Closed Loop Control
of high-availability mission-critical
assets at sub-millisecond scale

Adaptation
uncertainty

Model
uncertainty

Monitor
uncertainty

Goal uncertainty
(and novelty)

Analyze & Plan
Adaptation

Monitor &
Enact

Changes

Runtime
Architecture Model

Running
System

Analyze & Plan
Evolution

System
Implementation

Architecture
Description

Change enactment
uncertainty

Evolution
Management

(Dev/Eng Centric)

Adaptation
Management

(Ops/Runtime Centric)

(a) This work's design space and mapping of this work's contributions (b) AdEpS model and mapping of this work's contributions

D3

E1

E1

E3

E2

E2 E3

Environmental
uncertainty

E2

facilitates

of

(1) enhances capabilities of
(2) describe, abstract, monitor, adapt, control

D1 D2

D1 and D2

of of

use use

Machines Humans

Legend Design
Dimension

Technology
Elements

Empirical
Experiment

(green)

Design
Model

Supported
Industrial
Use Case

Uncertainty addressed
by the present workUncertaintyDesired

Capability
(green) (green) (green)(orange)(orange)(orange)

requires requires

drivedrive

Integrated Adaptation and Evolution of smart CPS

facilitates
E1 E2 E3
U1 U2 U3 U4

D3

D3

D3

Figure 1. Visual breakdown of work: (a) shows a pseudo ontology of this work’s design space and
(b) the AdEpS model as of [9], which we use to map our contributions. The green labels indicate our
contributions, and Table 1 briefly describes them. Table 2 explains the uncertainty types.

Table 1. Outline of this work and its contributions. The label column links to the labels in Figure 1.

Type Label Section Description

Method Section 1.2 Design space for the structured engineering of sustainable and smart CPSs

Agenda Section 1.3 Research agenda and methodology of the presented industrial case study

Analysis Section 2 State-of-the-art analysis of Digital Twins in modern industrial environments

Requirements Section 3 Requirements for Digital Twin-enhanced embedded control software

Design Model
D1

Section 4
DT-enhanced control service for resource-constrained embedded devices

D2 Microservice-based design for the orchestration of native embedded services
D3 Secondary asset DT model to manage and reflect the ICT properties and states of the CPSs

Servitization Section 5 Description of the experiment setup and the practical implementation of the CPS asset servitization

Emperical
Experiments

E1 Section 6 Sub-millisecond real-time twinning for context- and self-monitoring of CPS asset properties
E1 Section 6 Sub-millisecond rel-time closed-loop control of CPS assets
E2 Section 7 Self-protection: Zero-downtime parameter-based self-adaptation of CPS assets to mitigate environmental and

change-enactment uncertainty during CD and CE
E3 Section 8 Zero-downtime architecture- and parameter-based asset adaptation to enable CD and CE in CPS

Demonstrated
DevOps
Capabilities
to facilitate
CD and CE

C1 Sections 6–8 Reliable and reconfigurable remote monitoring of CPS assets and services (see E1, E2, E3)
C2 Section 7 Reliable parameter-based remote adaptation of CPS services and communication properties (see E2)
C3 Section 8 Reliable remote software deployment and updating (i.e., architecture-based adaptation of CPS services and

communication links) (see E3)
C4 Section 8 Reliable runtime experiments (i.e., A/B testing) to test architecture and parameter changes (see E3)

Discussion of
Supported
Industrial
Use Cases

U1

Section 9

Reliable remote asset monitoring (enabler: C1)
U2 Reliable remote asset optimization (enabler: C1, C2)
U3 Reliable remote asset commissioning (enabler: C1, C2, C3, C4)
U3 Reliable remote asset maintenance (enabler: C1, C2, C3, C4)

Conclusion Section 10 Conclusion and future work

Machines 2023, 11, 973 7 of 55

Table 2. Uncertainties covered by the AdEpS model [9] shown in Figure 1.

Type Domain * Description

Goal
uncertainty Evolution

The goals/requirements of the system may be subject to uncertainties, e.g., User requirement, communication
protocols, workflows, and processes may dynamically change in ways that are difficult to predict.

Environmental
uncertainty Adaptation The context of the system may be subjects of uncertainties, e.g., The availability of resources may dynamically

change in ways that are difficult to predict.

Model
uncertainty Adaptation The runtime architecture model may be subject to uncertainties (i.e., model uncertainty [41]), e.g., The model may

only provide inaccurate predictions of an algorithm’s resource usage in time and memory consumption.

Adaptation
uncertainty Adaptation The adaptation itself may be subject to uncertainties, e.g., The analysis of a real situation may result in the

selection of an inaccurate execution plan.

Monitoring
uncertainty Both

Monitoring may be subject to uncertainties, e.g., Measuring physical quantities such as distance and pressure
may be subject to noise. The cyclic update of measurement values obtained from external services may be subject
to unexpected delays and jitter.

Change
enactment
uncertainty

Both
Change enactment may be subject of uncertainty, e.g., The time to change a service may differ from the expected.
Applied changes may have unexpected side-effects, e.g., due to high CPU or memory contention.

* Domain refers to the uncertainty type’s associated change management process: adaptation and evolution.

In this work, we use the AdEpS model to perform a structured and transparent map-
ping of our architectural design approach and this work’s contributions to an established
model in the smart CPS and self-adaptive systems research communities. Therefore, the
green labels/boxes indicate the contributions proposed, evaluated, and discussed in the
remainder of this work.

The circle in the design space shown in Figure 1a comprises the elements fundamental
to all CPSs:

• Primary assets (PAs) denote the processes, machinery, and heavy assets that implement
the intended CPSs’ functionality by affecting the physical world. Examples of processes
are power generation, power distribution, and goods manufacturing. Examples of machin-
ery and heavy assets are turbines, generators, pumps, presses, and transportation systems.

• Secondary assets (SAs) denote the information processing and communication tech-
nology (ICT) infrastructure required to enhance the primary assets with computing
capabilities. This comprises all hardware, software, and network elements required
to control the primary assets. Examples of hardware are sensors, actuators, fieldbus
systems, and control units (also denoted as programmable logic controllers (PLCs)).
Examples of software and networks comprise all software services and data processed
and transmitted via ICT infrastructure. Where appropriate, we distinguish ICT in-
frastructure between Information Technology (IT) and Operation Technology (OT).
In principle, IT is designed for the consumer market. In contrast, OT is hardened for
safety [16,18], which is an essential system property in critical industrial environments
where failures of OT may lead to severe incidents that can cause significant financial
losses and harm to humans and the environment. Section 2 provides further details
on IT and OT.

• Real-time closed-loop control of primary assets denotes the most fundamental CPS
capability and is realized through the computing and communication capabilities
provided by the secondary assets. Our case study investigates a specific CPS class
required to provide hard real-time sub-millisecond closed-loop control on resource-
constrained embedded devices for critical infrastructure control. A domain-specific
example is the excitation control system responsible for maintaining the voltage and
frequency of the generator within acceptable limits, which is critical for the stable and
reliable feed-in to the power distribution system.

• The Digital Twin is becoming a defacto standard element to enrich CPS asset capa-
bilities and the smartness of CPS. Nevertheless, it is a novel paradigm in its early
stages. So far, research has not agreed on a common definition [42], and with the
increasing research on DT, new application areas and definitions emerge such as the

Machines 2023, 11, 973 8 of 55

one provided in Section 2.1. In industry, even pioneer companies are still in the initial
adoption phases [5,19]. Hence, we decided to add Digital Twin to the smarter CPS
design space and placed the Digital Twin technology element outside the circle of the
most fundamental smart CPS components.

Preview of this work’s Digital Twin usage: Before we explain the remaining design
space, we want to briefly preview our approach to using the Digital Twin to enhance CPS
smartness. In this work, the Digital Twin concept involves cloning a real object (physical or
software/virtual object) into a software counterpart, denoted as a logical object. We use this
logical object to reflect all the essential properties and characteristics of the original object
to address the needs within a specific application context. In particular, we use logical objects
to support dynamic and context-aware updating and reconfiguration of primary and secondary CPS
assets at runtime. In the remainder of this work, we investigate how this approach shall
facilitate the adjustment (i.e., adaptation) of the underlying CPS software structure and
behavior and how this adjustment can affect the physical and virtual CPS spaces in order to
satisfy short- and long-term stakeholder concerns in a continuously evolving operational context.

The smarter CPS design space: The principal idea of our design approach toward
smarter CPS is to reuse as many elements of the fundamental CPS technologies as possible.
Hence, our approach is to enrich the fundamental CPS elements—particularly the secondary
assets’ computing capabilities—with the capabilities necessary to manage continuous change.
Depending on proximity and time scales [6], the change-management processes of the
AdEpS model are driven by either humans or machines. This is illustrated in Figure 1a
through the machine-driven CPS self-adaptation and the human-driven CPS evolution
capability elements. These capabilities are essential to implement the AdEpS change
processes shown in Figure 1b.

Machine-driven change is typically operations/runtime-centric and implements the
adaptation-management processes. Self-adaptation systems provide the capabilities neces-
sary for adaptation management, which can be divided into two groups: data-enabled and
data-driven approaches. Data-enabled approaches use runtime information to perform immedi-
ate (e.g., sub-millisecond scale) system adaptations in reaction to uncertain operational and
environmental conditions. Examples include system adaptations in response to failures,
misconfiguration, and security attacks to ensure service continuity and dependability (i.e.,
availability, integrity, safety, and security) [18]. Data-driven approaches typically operate
at a slower time scale. They are generally based on machine learning and model-based
approaches and may integrate humans into the decision process. Data-driven approaches
aim to identify the ideal parameters and process conditions to, e.g., maximize process yield
and physical equipment longevity [43–45].

Human-driven change is typically development/engineering-centric and implements the
evolution processes through the development, testing, and deployment of hardware and
software. In industrial systems, these processes are split into offsite (i.e., office, laboratories,
and test facilities) and onsite (i.e., operational industrial facilities) activities. Offsite activities
comprise rigorously defined development and testing processes to ensure CPS safety
and security [16,46]. Onsite activities comprise all commissioning and maintenance work
required to make and keep the CPS facilities operational. Today, even small changes in CPS
processes or behavior usually result in a halt of the operational system required for the onsite
deploying, configuring, and testing of control software. These processes entail downtime,
during which costly equipment stops generating revenue. In addition, the primarily manual
and laborious interactions with the system are error-prone, time-consuming, and costly.
These manual onsite interventions will eventually become unmanageable in the increasingly
dynamic industrial environments and ecosystems. Hence, the industry calls for solutions
that effectively support the industrial use cases listed in Table 1 (see U1 to U4) [47–51].

With the introduction of DevOps for CPS, we aim to streamline the offsite development-
centric and the onsite operation-centric processes. To that aim, we seek to transfer the following
DevOps practices: continuous integration (CI), continuous deployment (CD), and continuous
experimentation (CE). CICD comprises automated software testing, integration, building, and

Machines 2023, 11, 973 9 of 55

deployment to reduce manual work and streamline software deployment [52,53]. In a similar
vein, CE is a proven method for systematically running experiments within large software-
intensive environments to assess the performance and quality of new software variants in their
real operational context and environment before their actual deployment [54]. For instance,
A/B testing is an approach that compares the performance of software variants by establishing
and evaluating controlled online experiments within the operational software system. This
methodology improves the software development and engineering processes by enabling a
data-driven approach to development and engineering [36].

In line with other research [5,19], we argue that the servitization of CPS assets can
support the above use cases and their integration into modern industrial product–service
ecosystems. In addition, we also argue that servitization facilitates the integrated adapta-
tion and evolution of smart CPS through unified service-oriented CPS asset interfaces since
such interfaces (a) can be offered to humans and machines alike (b) to drive CPS change,
(c) to coordinate and manage (i.e., integrate) various change processes, (d) to abstract
complexities and technical aspects, and (e) to document and describe CPS runtime and
engineering capabilities and behavior.

During the first two phases of our case study and the extensive analysis of the scientific
literature (see Section 2), we identified the Digital Twin as a suitable technology element
to realize such unified service-oriented interfaces [31]. In our case study, the attraction of the
Digital Twin principle lies in its ability to realize capabilities that span multiple lifecycle
phases and to make these capabilities accessible to humans and machines alike. In partic-
ular, Digital Twins have the potential to serve as a unified means to describe, document,
abstract, monitor, access, manage, and transfer runtime and engineering knowledge be-
tween humans and machines and across CPS layers and lifecycle phases [55]. In order
to unfold this potential, developing a software system that supports the integration and
interconnection of Digital Twins throughout all CPS layers (i.e., cloud, edge, and embed-
ded control layers) becomes necessary. The transfer of the Digital Twin principle to the
embedded and mission-critical CPS layers is among the main challenges toward realizing
DevOps for CPS.

As shown in Figure 1a, we have identified three design dimensions required to provide
the outlined smarter CPS capabilities:

• Adaptability denotes the ability of a system to adjust its properties to new conditions.
The sources of such new conditions are represented in the AdEpS model through
uncertainty—see [9] for a detailed explanation. Table 1 summarizes and Section 9
discusses how this work addresses the uncertainty types highlighted in Figure 1b.
Adaptability is realized through two principal properties of self-adaptive systems:
parameter-based and architecture-based adaptation. Parameter-based adaptation is the ability
of a software system to adapt internal variables to, e.g., optimize the parameters of
a control function or communication protocol at runtime. In contrast, architecture-
based adaptation is the ability of a software system to change its structure to, e.g.,
update software components and the way they are composed and interact. Thereby,
architecture-based adaptation supports the evolution of software systems to cope with
novelty and unanticipated change (i.e., design/goal uncertainty).

• Context- and Self-Aware Ability: Self-awareness means the system knows its own
states and behaviors. Context-awareness means that the system is aware of its context,
i.e., its operational environment. Both properties are based on self- and context-
monitoring, which reflects what properties are monitored [56]. Context-awareness
is required to obtain awareness of environmental uncertainty. On the other hand, self-
awareness is required to address change-enactment uncertainty.

• Manageability in our case study denotes the ability of the system to make change-
management capabilities (i.e., the functions necessary for system adaptation and
evolution) easily accessible for humans and machines throughout all system lifecy-
cle phases.

Machines 2023, 11, 973 10 of 55

In this work, we follow an architectural approach to address these design dimensions
in an integrated manner. We have defined the following research agenda to guide the
literature research as well as the research design and evaluation process.

1.3. Research Agenda and Methodology

Based on the initial research questions and the described design space, we apply the
Goal Question Metric (GQM) [57] to narrow down the objective of the presented case study:

Purpose: Develop and evaluate.
Issue: A DT-enhanced self-adaptive software framework (SWF) for sub-millisecond

real-time closed-loop control of high-availability mission-critical smart CPS.
Object: To support the adaptation and evolution of the CPS physical space and

cyberspace to emerging needs (i.e., goal uncertainty) and uncertainties in their environment
and operational context (i.e., environmental and change enactment uncertainties) without
causing system interruption and downtime.

Viewpoint: From the viewpoint of researchers and practitioners.
Based on this objective, we refine the initial research questions and define three design-

specific research questions. These research questions are aligned to the design dimensions
shown in Figure 1a.

RQ1 Context- and Self-Aware Ability: How to design and integrate Digital Twins into
software systems so that they provide a high-fidelity (i.e., real-time sub-millisecond)
reflection of their CPS operational context in physical space and cyberspace that is
available for autonomous (i.e., context-aware and self-aware) decision-making on
resource-constrained embedded control units?

RQ2 Adaptability: How to design control software for resource-constrained embedded
control units that supports parameter-based and architecture-based adaptation
without causing system downtime and interruptions during the simultaneous
execution of sub-millisecond real-time closed-loop control services?

RQ3 Manageability: How to automate and orchestrate distributed adaptations in the
CPS physical space and cyberspace to support practitioners (i.e., development,
operation, maintenance, and commissioning engineers) in mastering software-
related complexities during CPS development and operations (i.e., monitoring,
deployment, commissioning, control/operation, and maintenance)?

In our case study, we use these research questions and the design space to guide our
literature research and the design process of the self-adaptive software models underlying
our proposed architectural solution. In order to evaluate the characteristics of our proposed
self-adaptive software systems, we implement them within an SWF, which we use to
conduct empirical experiments. Therefore, we apply the methodology of empirical software
experimentation [58] enhanced by the guidelines proposed by Gerostathopoulos et al. [59].
Besides defining a structured research agenda/scope and experiment design, one of their
key recommendations is to establish an explicit mapping between software architecture
components and their corresponding MAPE-K elements. We establish this explicit mapping
in Section 4.2.

Research Scope: To the best of the authors’ knowledge, this work is the first to in-
vestigate DT-enhanced self-adaptative software design models for embedded OT control
units targeting sub-millisecond real-time closed-loop control. Hence, this work’s case
study has the characteristics of a feasibility study, intending to assess the proposed SWF’s
(and its underlying design models) effectiveness and applicability. Therefore, this work’s
experimental goals are to assess the SWF’s MAPE-K characteristics alongside the execution
of mission-critical closed-loop control services. The proposal and evaluation of innovative
analyze–plan (AP) approaches that utilize DT capabilities on control units are the subject
of future work. Considering the AdEpS model, this work aims to evaluate the SWF’s
monitoring (M), enact/execution (E), and knowledge base (K) characteristics and its capa-
bilities to deal with uncertainty. Therefore, this work assesses the SWF’s parameter-based
and architecture-based adaptation mechanisms and the SWF’s ability to reflect the states

Machines 2023, 11, 973 11 of 55

and operational context of its primary and secondary assets. In addition to the empirical
evaluation, Section 9 provides a qualitative discussion of how the proposed approach,
particularly CE, can contribute to mitigating model uncertainty. Table 1 gives an overview
of the conducted experiments and the DevOps capabilities that are thereby demonstrated.

2. State-of-the-Art Analysis of Digital Twins in Modern Industrial Environments
2.1. Definition and Fundamental Concepts of Digital Twins

The concept of DT is a powerful way to bridge the gap between the physical and the
cyber worlds by creating logical objects that mirror their physical counterparts. The concept
of DT was first proposed in a presentation by Michael Grieves in 2003. Its usage first grew
in the manufacturing environment [60,61] and later in the Internet of Things (IoT) [27] and
Cyber-Physical Systems (CPSs) communities [43]. Since then, the DT model has evolved
from its original conception as a tool for designing and manufacturing physical products to
a general framework applicable to virtually any physical object and even intangible objects
such as digital services [27,29,31,43,62].

As stated in the introduction, Digital Twin research and Digital Twin usage in industry
are both young and rapidly evolving fields. Until now, research has not agreed on a
common definition. Therefore, Kuehner et al. [42] conducted a meta-review of definitions
of Digital Twin in the context of Industry 4.0. As a result, they proposed the following
synthesized definition:

“A Digital Twin is a virtual representation of its physical counterpart. Its components
provide the basis for a simulation or are simulation models themselves. The Digital Twin
has an automated bidirectional data connection with the represented physical counterpart.
This connection may span across several life phases of the system”.

However, new definitions emerge with the increasing research and exploration of new
application areas. In this work’s design space, where system evolution and adaptation
depend on the operational context of both the physical world and the cyber world, the
Digital Twin definition must be extended to incorporate evolutionary behavior and the
diverse sources of uncertainty (see Figure 1b). To that aim, we provide the following
definition of Digital Twin:

“A Digital Twin is a virtual representation of a tengible or intengible object. This
concept involves cloning a real object into a software counterpart, the logical object.
The logical object bidirectionaly reflects the essential properties and characteristics of
the real object as required by the specific operational context and lifecycle phase (i.e.,
the Digital Twin’s intended use). The logical object shall provide a service-oriented
interface for seamless interaction and composition with other logical objects and software
services and to facilitate the real and logical objects’ cooperation and co-evolution to cope
with changing system goals”.

Below, we briefly discuss this definition. Figure 2a illustrates the principle elements
of our proposed DT definition, and Figure 2b contains the tangible and intangible objects
of interest: the primary and secondary assets. In our case study, the primary assets (i.e.,
physical equipment, machinery, and processes) and secondary assets (i.e., the entire ICT
infrastructure, including the computing hardware and software elements like services,
data, and communication links) represent the set of real objects to be reflected by logical
objects. These logical objects can then be used to establish the context- and self-awareness
required for managing system change and uncertainty. In other words, we generalize
the definition of DTs and conceptualize them as digital versions of real-world systems
providing a softwarized copy: the logical object of the real object to be modeled. A
logical object is designed to reflect the real object’s properties, structure, behaviors, and
relationships to meet the operational context needs. In this context, the real object and its
software counterpart cooperate and co-evolve to enhance the real object’s functionalities
and continuously satisfy short- and long-term stakeholder concerns.

Machines 2023, 11, 973 12 of 55

Logical
Objects (LOs)

Real Objects
(ROs)

Data
Commands

Industrial
Service

Business
Service

(a) DT concept.

CPS
Industrial Machinery

and Processes

Enterprise Service
Bus (ESB)

Service Interfaces

DT-enhanced Services

Business Processes

Data
Layer

Integration
Layer

Service
Layer

Business
Layer

(b) Typical industrial IoT software architecture supporting DTs.

IT OT

Legend Figure (b)

Software System
Boundary

Primary Asset

Secondary Asset

Software Services
using and running
on SAs

Software Layer
Boundary

Figure 2. (a) Digital Twin concept. (b) Concept of a typical industrial software architecture supporting
DTs (adapted from [27]).

Figure 2b shows the concept of a typical software architecture that supports the
DT principle in industrial environments such as power plants, oil refineries, water and
wastewater treatment, and manufacturing facilities. From a software architectural point
of view, the DT software system can be structured into four layers. The data layer at the
bottom represents the target environment (i.e., the CPS) that the DTs shall reflect in the
higher software layers. The physical layout of such a CPS is organized as distributed control
systems (DCSs) (see Section 2.3) and comprises the primary assets (PAs) and secondary
assets (SAs) that implement the intended CPS functionality (Sections 1.2 and 2.3 give
further insights about asset properties). The enterprise service bus (ESB) at the integration
layer denotes a middleware framework for interconnecting all software system services
and objects. In the physical world, this interconnection is realized through the IT and OT
network elements that interconnect the real and logical objects on the data layer, as shown
in Figure 3. The architecture-centric view of the ESB allows for abstracting the complexities
and heterogeneity of the underlying IT and OT hardware, software, and protocols. In short,
the ESB models the middleware that interconnects all objects on the data layer, and it can
grant access to information and functions provided by these objects for their integration
into the service layer. The service layer denotes the software layer that implements Digital
Twin-enhanced services to organize and process gathered data and information. These
services provide the functionality to build a modern industrial service (eco-)system to enrich
both the data and the business layer functionality.

As we argued in the introduction, Boschert et al. [55] also propose that next-generation
Digital Twins must provide the means to cooperate and co-evolve with the elements in the
upcoming industrial ecosystem. We explicitly integrate these needs through the service-
oriented interface property in our definition of Digital Twin. The service-oriented nature
of the interface stems from the fact that a Digital Twin, particularly its logical object, is a
software service in its essence. This service provides the means to describe, monitor, and
control its associated real object throughout its lifecycle. The design of modern software
services adheres to service-oriented computing principles. Service-oriented computing is
a computing paradigm that utilizes services as fundamental elements for application
development. Instead of paraphrasing the very precise overview of services from Papazoglou
and Georgakopoulos, we give it as a direct quotation [63]:

“Services are self-describing, open components that support rapid, low-cost composition
of distributed applications. Services are offered by service providers—organizations that
procure the service implementations, supply their service descriptions, and provide related
technical and business support. Since services may be offered by different enterprises and

Machines 2023, 11, 973 13 of 55

communicate over the Internet, they provide a distributed computing infrastructure for
both intra- and cross-enterprise application integration and collaboration.

Service descriptions are used to advertise the service capabilities, interface, behavior, and
quality. Publication of such information about available services provides the necessary
means for discovery, selection, binding, and composition of services. In particular, the
service capability description states the conceptual purpose and expected results of the ser-
vice (by using terms or concepts defined in an application-specific taxonomy). The service
interface description publishes the service signature (its input/output/error parameters
and message types). The (expected) behavior of a service during its execution is described
by its service behavior description (for example, as a workflow process). Finally, the Qual-
ity of Service (QoS) description publishes important functional and nonfunctional service
quality attributes, such as service metering and cost, performance metrics (response time,
for instance), security attributes, (transactional) integrity, reliability, scalability, and
availability. Service clients (end-user organizations that use some service) and service
aggregators (organizations that consolidate multiple services into a new, single service
offering) utilize service descriptions to achieve their objectives”.

In addition to these service-oriented aspects, we want to quote and forward the
interested reader to Antoine Beugnard’s discussion of the concept of Digital Twin from
a software engineering perspective [64]. The author describes the Digital Twin internals
and interfaces from a software component’s perspective, also considering the overarching
aspects of the Digital Twin’s system layers and lifecycle phases.

2.2. Challenges

In industrial environments, operation technology (OT) comprises the hardware and
software that monitors and controls machines, processes, and infrastructure. Information
technology (IT) combines technologies for networking, information processing, enterprise
data centers, and cloud systems. OT devices control the physical world and run special-
purpose software designed for integrity, high availability, and safety. In comparison, IT
systems manage data and applications, and the design focus is on security, interoperability,
and continuous maintenance supported by practices such as CICD. In theory, CD allows the
release of software daily, weekly, fortnightly, or whatever suits the business requirements. In
notable contrast, OT devices may run for decades without being updated and consequently
might have numerous software vulnerabilities. However, the convergence of runtime and
development time and the need for smarter OT software systems—which we discussed in
Section 1—results in the increasing use and adoption of IT in the OT domain. This trend
is commonly denoted as the convergence of IT and OT and is accompanied by many open
challenges [65–67].

2.2.1. The Challenge of IT and OT Convergence

One of the most relevant examples of current practices in the OT domain is the
significant adoption of microservice architectures and the extensive usage of container
technology to facilitate CD. For example, Bellavista et al. [29] introduce design patterns for
future DTs. Based on these patterns, they conceptualize and demonstrate a DT container
to ease the management of real objects at the industrial edge using IT tools like Docker,
Kubernetes, and Istio. Damjanovic-Behrendt and Behrendt [26] propose a similar approach
with a strong focus on DT integration and the comparison of open-source tools. In their
DT proposal, they use IT tools such as Apache Kafka, RabbitMQ, and the Elastic Stack to
deliver the DT core services (i.e., data manager, model manager, and service manager).
Wang et al. [28] present a vehicular use case, exemplifying a cloud–edge framework based
on Amazon Web Services (AWSs). Their approach describes a sophisticated framework to
create a DT aggregate consisting of three DT instances (i.e., Human, Vehicle, and Traffic),
together representing a holistic mobility DT. Stated practices are the de facto standard for
building highly distributed, adaptive, and manageable cloud and edge deployments.

Machines 2023, 11, 973 14 of 55

However, adopting these IT solutions at the OT control unit level remains a challeng-
ing problem. Siqueira and Davis [19] thoroughly analyze the state-of-the-art literature on
designing and building the computing and software infrastructure required by Industry 4.0.
Their survey clearly states that containerization is a mature technology for cloud envi-
ronments, but its support on embedded devices still needs improvement. Our previous
work [31] compares the system architectures of IT and OT environments to analyze the
challenges associated with implementing IT-based software-deployment strategies in OT
environments. We conclude that using cloud and edge patterns such as sidecar proxies,
message broker systems, and load balancers can result in intolerable delays and may lead
to single-point and common-cause failures.

As outlined in the introduction, the transfer of these practices from the IT domain
to the mission-critical embedded OT domain is at the heart of our methodology. In order
to discuss and address the challenges related to modern OT architectures, networks, and
communication standards, we proposed a set of microservice [21] and service mesh [17]
patterns for use in dependable environments. These publications propose architectural
patterns and frameworks to reduce software complexity and increase system interoper-
ability and manageability. We achieve this by encapsulating communication protocols
and domain-specific data behind service-oriented interfaces. These interfaces allow for
hiding the low-level complexities of the network, protocol/communication, and data lay-
ers, which ease the software development process on the application/service layer. We
particularly emphasize the importance of evolution at the communication layer to make
the systems resilient against protocol changes and to allow the dynamic integration of com-
munication protocol stacks at runtime (which we also experimentally evaluate in Section 8
of the present work). In addition, our previous work discusses the benefits of modern
publisher–subscriber machine-to-machine communication protocol standards such as OPC
UA, DDS, and oneM2M, as well as the importance of time-sensitive communication. Tian
and Hu [68] provide a more technology-specific viewpoint, where the authors discuss
the role of OPC UA TSN in the convergence of IT and OT. In [69], Patera et al. build
and evaluate the prototypical implementation of an ESB as modeled in Figure 2b. To that
aim, they implement a three-layer framework: The top and bottom layers address IT and
OT needs, respectively. The middleware layer uses OPC UA as a backplane protocol to
interconnect diverse machine-level protocols from the bottom control layer with an event-
streaming platform (i.e., Apache Kafka) on the top layer. Although the detailed analysis
of their work is out of scope, we want to note that their solution is an instantiation of the
infrastructure-as-a-service framework, which we proposed in [17].

The architectural models proposed in the present work are protocol- and technology-
agnostic and can, therefore, be implemented using any technology and protocol standard
appropriate. In principle, our design models use two protocol patterns: the command–
response and publisher–subscriber patterns. These patterns can be implemented through
industrial- and consumer-oriented (i.e., OT and IT) protocol standards. The Industrial Inter-
net Consortium defines a comprehensive connectivity framework [70]. We refer the interested
reader to their chapter “Core Connectivity Standards”, which assesses the features of the
most relevant connectivity standards for modern industrial environments.

2.2.2. The Challenge of Runtime and Development Time Convergence

In Section 1, we explained the need for adaptation and evolution in software systems
and showed that the realization of these properties results in blurring the traditional
segregation between runtime and development time, which we denote as the convergence of
runtime and development time. This section builds on our initial arguments and discusses
industry practices to address emerging needs.

Agile software practices, including DevOps, are increasingly adopted by regulated
industries, where safety and standard compliance are cornerstones in software development
for mission-critical CPSs. These industries rely on rigorous engineering processes to
deliver certifiable or certification-ready software. As concluded in [71], agile practices and

Machines 2023, 11, 973 15 of 55

CICD pipelines produce high-quality and certifiable software ready to be delivered more
frequently to the end-user. They also conclude that DevOps practices cannot be directly
adopted due to stricter safety, compliance, and CPS architecture requirements. Leite et al. [25]
made a similar observation when analyzing the DevOps concept and challenges in the IT
sector. They note that adopting DevOps practices imposes significant challenges on the
system architecture, embedded systems, and IoT, including their design, management, and
operation. Lwakatare et al. [30] conducted multiple case studies about adopting DevOps
with companies from various industry domains. Their analysis pinpoints the distinguishing
factors between applying DevOps in the web and embedded systems domain. Figure 3
shows their findings and identified key challenges [31].

Figure 3. Characteristics of DevOps in the web domain and obstacles in the embedded systems
domain [30].

Despite these challenges, the increasing interest of the regulated industry in DevOps
practices has resulted in proposals of concepts and roadmaps [38,55,72–77] pursuing the
introduction of DevOps for CPS design and operations. Most of these works put the
Digital Twin at the center of DevOps to serve as a knowledge base for organizing and
automating DevOps processes. While all these and similar works that we have found
postulate that the DT can facilitate DevOps principles for CPS, we could not find any work
that addresses CPS and DT service design for DevOps. To close this gap, we have recently
proposed self-adaptive CPS design models [31] that use the DT as a shared knowledge
base to orchestrate DevOps activities in a modern industrial environment, with a particular
focus on distributed and networked embedded control units. However, evaluating these
models’ effectiveness and practical implementation is still necessary. In addition, a more
precise and explicit connection between the generic software models and the DT concept’s
realization in practice is required [31].

2.3. Modern Industrial Environments

Modern industrial environments are CPSs, usually organized as distributed control
systems (DCSs). A DCS employs a central supervisory control loop at the plant level to
coordinate a group of localized controllers and machines that work together to manage

Machines 2023, 11, 973 16 of 55

the entire industrial process. DCSs are generally modularized to minimize the impact of
single faults on the overall system. Modern DCSs are also connected to the enterprise
network to supply business operations with a comprehensive view of the industrial process.
Figure 4 illustrates the physical infrastructure layout of a modern DCS. It comprises the
three characteristic layers: the enterprise, plant, and process levels [21].

Data Layer

Plant & Process
Control Room
Subnet(s)

Process Section 1 Process Section N

Firewall

Control Network

GatewayCR

Enterprise Network

PES/MES
(Operations) Asset Mngt. & Maintenance Digital Twin Mngt.

Enterprise
Planning &
Management

ERP QMS DT Mngt. Remote
Access Training R&D

Legend

Network Boundary
& Physical Boundary

Primary Asset

Mission-Critical
Secondary Asset

Software Layer
Boundary

ERP: Enterprise Resource Planning, MES: Manufacturing Execution System, PES: Process Execution System, QMS: Quality
Management System, DT Mngt.: Digital Twin Management, R&D: Research and Development, HMI: Human Machine Interface

Less Critical
Secondary Asset
(not in the scope
of this work)

Primary Assets
(Heavy) asset examples: turbines, generators, pumps, engines, presses, robots, vehicles, transportation systems, etc.

Process examples: electric power generation, oil refining, water and wastewater treatment, chemical & goods manufacturing

Note on Secondary Assets:
Secondary assets comprise
all hardware, software, and
network elements required to
control the primary assets
including sensors, actuators,
fieldbus systems, and control
units (also denoted as PLCs).
Mission-critical secondary
assets are those elements
placed near critical assets
and infrastructure to control
their behavior in real-time.

Note on Primary Assets:
Primary assets comprise the
industrial processes and their
heavy assets and machines.
Examples are provided in the
figure.

Ed
ge

Em
be

dd
ed

Local HMI Edge
Node(s)

Sensor(s) Actuators
M2M Com.
(Asset API) IIoT DevicesIIoT Devices

Process Control Unit (PCU)

Gateway1Subnet1

Real-time Fieldbus Network

Ed
ge

Em
be

dd
ed

Local HMI Edge
Node(s)

Sensor(s) Actuators
M2M Com.
(Asset API) IIoT DevicesIIoT Devices

Process Control Unit (PCU)

GatewayNSubnetN

Real-time Fieldbus Network

Figure 4. Target environment. Typical CPS architecture of a modern distributed control system.

The process level is modularized into multiple sections. Each process section hosts
primary assets (PAs) and secondary assets (SAs). The PAs comprise heavy machinery
and equipment to interact with processes in the physical world. The SAs represent all
the necessary OT devices like sensors, network elements, control units, and actuators to
manage, operate, and control the PAs and their associated processes.

Devices designed for OT are usually special-purpose-built. They run specialized
software and various heterogeneous (and even proprietary) network and bus protocols. OT
devices have a much longer lifespan than those used in IT, as they are built to withstand
industrial environments for many years if not decades. Due to their integral role in critical
infrastructure and process control, OT devices must operate continuously without failure,
often 24/7.

OT devices and systems are not updated as often as their IT counterparts. In some
cases, updates may not be supported at all, making OT devices more susceptible to soft-
ware vulnerabilities. Accessing them can be challenging, given that they are installed in
remote or harsh locations. Additionally, they may be controlled by partners or vendors.
Any modifications to OT devices, including simple software updates, generally require a
complex approval process as they can have cascading effects on the industrial process and
system safety.

Safety-critical and mission-critical OT devices are embedded systems (as highlighted
by the dotted elements on the embedded layer in Figure 4) that are increasingly part of
networked systems that interact with each other to provide added-value functions on the
system level. This interaction occurs via networks that are either private to the system (i.e.,
the control network and process section subnets), or linked to an IT cloud (i.e., the enterprise
network), or both. One of the main challenges with these networks is ensuring cybersecurity.
This means protecting the network and connected devices from malicious attacks that aim
to alter their intended behavior. It is important to note that not all secure systems are safety-

Machines 2023, 11, 973 17 of 55

critical, but all safety-critical systems must be secure. Otherwise, intruders could compromise
the built-in safety features. However, functional safety and cybersecurity have evolved
independently in most industry sectors (e.g., IEC 61508 and IEC 62443 in the automation
sector; ISO26262 and ISO/SAE 21434 in the automotive sector) since highly specialized
knowledge is required to meet the requirements of the individual standards. Due to
the increasing connectivity requirements, integrated design approaches are emerging to
tackle the needs of safety- and security-critical systems. Two typical integrated design
approaches are defense-in-depth and zonal architectures. Defense-in-depth proposes using
multiple successive and diverse vertical layers, while zones cluster the system or a single
layer into groups with similar security requirements. Each layer and zone provides failure
and attack prevention/detection to shield and control a sub-system instead of the entire
system. This eases the overall design since the individual sub-systems are smaller and can
be designed for their specific security and safety needs. These needs are defined during risk
assessment and classified by safety-integrity and security levels. Besides safety and security
requirements, such a modularization aligns with the fault-tolerance idea of separating the
production process into multiple process sections (e.g., production cells) to mitigate failure
propagation due to single section and equipment failures. Figure 4 shows the resulting
modularization into subnets/zones and layers. Access to the control network, i.e., the plant-level
backbone network, shall only be granted through gateways [16,46,78–80].

In addition to OT equipment, process-level subnets include IIoT devices and edge nodes.
Unlike OT devices, IIoT devices have a substantially shorter lifespan. They typically commu-
nicate via standard IT protocols and support monitoring and control capabilities at a low
cost. Edge nodes provide extensive connectivity and offer relatively high computational and
memory capabilities on-premise. Edge nodes enable offloading services and information
requests from other process sections and DCS layers, including the cloud. In addition,
edge nodes can take over computing tasks such as processing, storage, caching, and load
balancing on data sent and received. These characteristics can enhance several aspects,
including data protection (by processing sensitive data onsite instead of in the cloud),
responsiveness (due to lower latency at the edge compared to higher layers and the cloud),
and traffic management (by enforcing precise control over mission-critical traffic flows as
they move through the industrial network) [81,82].

The plant level regards the management and operation of plant processes. The critical
component is the Process-Execution System (PES), which provides a centralized overview
of process conditions and equipment states. Depending on the process, the PES may receive
dozens or even hundreds of process variables and heavy asset and machinery setpoints.
Observations may lead to automatic or manual set point adjustments or confirm the process
is in control. Aside from the operations services, asset management and maintenance ensure
the plant processes’ continued and optimal service over time.

The enterprise level is about decision making and business operations and planning.
In this regard, enterprise resource planning (ERP) software provides critical information on
supply chains, cash flows, customer orders, and production processes. Decision makers use
this information to determine production timing and quantities. The quality management
system (QMS) supports coordinating and directing organization activities to meet customer
and regulatory needs and continuously improve overall effectiveness and efficiency.

2.4. Modern Industrial Software Architectures

In recent years, industries and researcher initiatives have established several multi-
layer reference architectures and frameworks [44,70,78,83–86] in a joint venture to foster
interoperability, standards, and other baselines across all software layers. With Figure 2b,
we already explained the typical layers that can be found in industrial software systems
that support the DT principle. In this section, we present a recently published architectural
design by Bellavista et al. [29]. They proposed a containerized DT service intended for edge
computing [87]. Their concept makes DT services adaptive to changing needs by supporting
their (re-)deployment in IT cloud and OT edge environments. To that aim, they structure the

Machines 2023, 11, 973 18 of 55

DT service according to microservice patterns, allowing DT lifecycle management through
the exploitation of orchestration solutions. In the software architecture shown in Figure 4,
the DT container serves as the host for the DT service, which is composed of multiple
microservices. The DT service contains and manages the DT model of its associated real
objects, e.g., representing industrial machine and process state, design, configuration, and
behavior. Interaction with external entities is enabled via four interfaces. The physical
interface manages the communication with the real objects, while the digital interface
enables communication with digital services operating industrial applications (i.e., the
logical objects). The DT service uses the storage and container interface to self-manage its
migration between the cloud and edge.

The presented containerized DT approach relies on IT tools (e.g., Docker, Kubernetes,
and Istio). As outlined at the beginning of this section, the usage of these technologies limits
their applicability to the edge layer, which is also indicated by the technology boundaries
shown in Figure 5. Nevertheless, we intentionally presented the approach in more detail for
several reasons. To begin with, we subsequently use the clear architectural representation
to position our approach. In addition, they demonstrated that a microservice-based design
can effectively increase the adaptivity and manageability of industrial software services
and components, such as DTs. Finally, the example showcases the present capabilities of
IT-driven solutions to expand across cloud and edge settings. However, it also highlights
their notable constraints in extending the DT principle to mission-critical OT environments.

Mission-Critical
Control Unit Level Higher (less critical) Software Levels (e.g., edge, control room, cloud)

Digital Twin Container
deployed within a container that is hosted on an edge/cloud machine

Digital
Interface

Digital
Service(s)

Industrial
Machine(s)

Physical
Interface

Digital Twin Service

DT Model

Real Object State, Design,
Configuration,

Behavior, History

Container
Management

Interface

Storage
Interface

logs config

DT Manager

MES / ERP

OT only Mixed OT & IT Environment/Tools

Industrial
Process(es)

Legend

Container

Service /
Microservice

DT Element

Technology /
Criticality
Boundary

Logical ObjectsReal Objects
Data

Commands Industrial
Application

Figure 5. Representation of the containerized DT and its mapping to the DT concept (adapted
from [29]). The logical object (i.e., the DT model) manages the properties associated with its linked real
objects by communicating with their MCUs and PCUs. The physical and digital interfaces manage
the communications. The storage interface retrieves container status and history. The container
management interface exposes the state and configuration of the DT container to other services.

3. Requirements for DT-Enhanced Embedded Control Software

Based on the design space and research agenda described in Section 1 and the state-
of-the-art analysis in Section 2, we can define the following set of requirements for the
envisioned SWF that shall run on resource-constrained embedded OT control units for
mission-critical CPS control:

R1 Primary Asset Closed-Loop Control: The SWF shall support sub-millisecond real-
time closed-loop control of primary assets

R2 Primary Asset Monitoring Fidelity: The SWF shall support logical objects that
reflect primary asset states at a sub-millisecond time scale.

R3 Secondary Asset Monitoring Fidelity: The SWF shall support logical objects that
reflect secondary asset states at a sub-millisecond time scale.

R4 Secondary Asset Closed-Loop Control: The SWF shall support sub-second parameter-
based self-adaptation of primary and secondary asset parameters.

Machines 2023, 11, 973 19 of 55

R5 Secondary Asset Management: The SWF shall support architecture-based self-
adaptation of both mission-critical and non-critical control unit services.

R6 Servitization: The SWF shall provide interfaces that allow access to the primary and
secondary asset logical objects’ monitoring and adaptation services for integration
and use at all CPS layers.

4. Design of a DT-Enhanced Self-Adaptive Software Framework for Mission-Critical
Industrial Process Control

In this section, we discuss our solution for a DT-enhanced control service designed
with the aim to improve the autonomy and adaptability of CPS in operating and man-
aging their mission-critical physical space and cyberspace. We introduce the service
software architecture to establish an explicit map between architecture elements and their
corresponding MAPE-K elements. Then, we present our SA DT model and explain relevant
implementation aspects of the model and the control service. Finally, we conclude this
section by discussing the applied design patterns and approaches.

4.1. Software Architecture of the DT-Enhanced Control Services

Figure 6 shows the software architecture of the DT-enhanced control service. The
service is structured into several microservices designed to support various configurations
to compose the overall service, such as the following.

• All microservices run as native processes hosted by the control unit.
• All microservices are hosted within a container (similar to the containerized DT) that

runs on the control unit.
• A mixed configuration where some microservices run as native processes and others

within a container environment.

Mission-Critical
Control Unit Level

Higher (less critical)
SW Levels (e.g., edge)

Control Unit (e.g., PLC or industrial PC)
hosting the control service as native process(es) or container(s)

PA Interface

SA Interface

Management
Interface

Digital Twin
Service(s)

Primary Asset(s) (PA)
(i.e., Physical Assets like

Industrial Machines
and Processes)

PA
Control
Service

SA
Control
Service

Secondary Asset(s) (SA)
(i.e., Networked Industrial
Control System Elements,
Services, & IIoT Devices)

In
te

rfa
ce

 M
ed

ia
to

r

R
ea

l-T
im

e
M

ed
ia

to
r

DT-enhanced Control Service

Logical ObjectsReal Objects Data
Commands

Primary Asset DT Model

Real Object State,
Design, Configuration,

Behavior, History

Secondary Asset DT Model

Real Object State,
Design, Configuration,

Behavior, History

Industrial Application

Control
Service(s)

OT only Mixed OT & IT

DT Manager

Digital
Service(s)

Legend
Native or
Container

Service /
Microservice

DT Element

Technology /
Criticality
Boundary

Figure 6. Representation of the DT-enhanced control service design proposed by Dobaj et al. [31].
We explicitly aligned the architecture to the DT container [29] shown in Figure 5. The PA and SA
DT models manage the properties of their associated assets. The PA and SA interfaces disclose
asset-specific data and services. The management interface exposes the adaptation capabilities for
hierarchical (self-)management.

The DT-enhanced control service manages two DT models: the primary asset (PA)
DT model and the secondary asset (SA) DT model. The PA DT model can reflect industrial
machines and processes as logical objects. The SA DT model supports creating logical
objects that can reflect the state, design, configuration, structure, and behavior of IT and
OT elements (i.e., the entire ICT infrastructure), which Section 2 explains in more detail.
Two mediator services moderate (i.e., synchronize) the access to these logical objects. The
real-time mediator provides deterministic read/write access to the logical objects required
for mission-critical real-time PA and SA control. In contrast, the interface mediator does not
need to meet real-time constraints and exposes, besides read/write access to logical objects,

Machines 2023, 11, 973 20 of 55

various management interfaces (typically a command–response API) for reconfiguration
and orchestration.

Interaction with external entities is enabled via three interfaces. The management
interface discloses management, reconfiguration, and orchestration capabilities to external
services. The two asset interfaces reveal access to PA and SA data and services. All
interfaces support reconfigurable software-based (and, depending on the network interface,
hardware-based) traffic shaping. Traffic shaping, or packet shaping, is a technique for
managing network congestion. It controls the data transfer by prioritizing the processing
of packets according to packet-specific quality-of-service (QoS) properties. Traffic shaping
is required to classify and prioritize mission-critical traffic over less critical traffic [68,88].

All three interfaces must use the mediator services to interact with the local control
services, which is necessary to guarantee system integrity during data and service manipu-
lation and orchestration. In addition, such a design enables the implementation of a script
engine on top of the mediators to provide the following features:

• Practitioners can dynamically interact with the system using a well-defined command-
line interface.

• Practitioners can use scripts to automate tasks that can be verified beforehand, lower-
ing the risk of errors.

• Practitioners can use scripts to define context-aware tasks for autonomous execution
by, e.g., transferring script execution to the SA control service.

In this work, we demonstrate the feasibility of this approach by showing the proposed
script engine via a command line tool (CLT) for test and service orchestration, as Section 5
describes in more detail. In addition, the script engine and mediator functions can be inte-
grated, for example, into function plan (FUP) elements for programmable logic controller
(PLC) programming. Such FUP elements would enable the convenient implementation of
real-time-capable and context-aware self-adaptation mechanisms in real-world plants.

We refer the interested reader to Dobaj et al. [21], where we use design patterns to
discuss multiple aspects of microservice-based architectures for the industrial Internet of
Things. In addition, we propose a dedicated architecture and data flow that facilitate system
evolution at all software layers. We particularly emphasize the importance of evolution at
the communication layer to make the system resilient against protocol changes and to allow
the dynamic integration of communication protocol stacks at runtime. In addition, we
discuss the benefits of modern publisher–subscriber machine-to-machine communication
protocol standards such as MTConnect, OPC UA, and DDS.

4.2. DT-Enhanced Context-Aware Self-Adaptation

Figure 7 shows the one-on-one mapping of the DT-enhanced control service archi-
tecture elements to their corresponding MAPE-K elements. The DT models represent
the knowledge bases, the control services implement the analysis and plan steps, and all
other components provide monitoring and execution capabilities. In particular, the PA
control service uses sensors and actuators to interact with its PAs. Similarly, the SA control
service uses probes, effectors, and management interfaces to interact with its SAs. The
information gathered through PA and SA monitoring is fed into the DT model and made
accessible through logical objects. These logical objects reflect the operating context of
the control service’s physical space and cyberspace. Since all microservices can access
the logical objects via the mediator interfaces, they can use this information (i.e., analyze
and plan) for context-aware decision-making. Notably, the DT-enhanced control service
is also self-aware since the software probes sense the states of the microservices, the host
operating systems, and the host system hardware.

Machines 2023, 11, 973 21 of 55

M
an

ag
ed

 S
ys

te
m

Managed System Managing and Self-Managing System

SA
 with Manage-
ment Interface

Control Unit (e.g., PLC or industrial PC)
hosting the control service as native process(es) or container(s)

PA Interface

SA Interface

Management
Interface

In
te

rfa
ce

 M
ed

ia
to

r

R
ea

l-T
im

e
M

ed
ia

to
r

DT-enhanced Control Service

Primary Asset DT Model

K

Secondary Asset DT Model

K

PA Control
Service

AP

M

E

SA Control
Service

AP

M

E

Sensors

Actuators

Software
Probes

Software
Effectors

(optional)

External
Managing
System

ME

Legend

A Analyze

M Monitor

P Plan

E Execute

K Knowledge

PA

SA
 with

Manage-
ment

Interface
Sub-System
Boundary

Hardware &
Software M &
E Elements

ME

ME

ME

Figure 7. Mapping of the DT-enhanced control services to its corresponding MAPE-K elements.
The sub-system boundaries show the realization of the hierarchical control pattern. The SA control
service manages its associated SAs. The software probes and effectors enable self-awareness and
self-adaptation. External systems can use the exposed interfaces for hierarchical management.

The DT-enhanced control service adaptation and self-adaptation capabilities are
designed according to the hierarchical control pattern [39] with one knowledge repository
per MAPE loop to support fully autonomous operation alongside hierarchical co-operation
and orchestration. In the hierarchical control pattern context, the DT-enhanced control
service responsibilities are threefold:

1. The PA and SA control services are responsible for the autonomous monitoring and
control of its associated PAs and SAs under normal operating conditions (R1, R2,
R3, R4);

2. The PA and SA control services (or an additional local management service) are
responsible for managing the autonomous adaptation and self-adaptation of system
properties in reaction to uncertainties (see Figure 1b) in physical space and cyberspace
(R1, R2, R3, R4, R6); and

3. The PA and SA control services co-operate with external managing systems to ensure
the reliable (i.e., self-protected) and context-aware orchestration of system adaptations
across CPS software and system layers (R1, R2, R3, R4, R5, R6).

4.3. The Secondary Asset Digital Twin for Enhanced Management and Control

Figure 8 shows the data flow diagram of our proposed SWF, which also represents
the SA DT model we use to accurately reflect the SWF structure, design, data flow, timing,
configuration, and behavior during runtime. In this section, we establish a mapping
between the diagram elements and their corresponding architectural elements shown in
Figures 5 and 7. We also clarify how the SWF uses the SA DT model to perform parameter-
based and architecture-based adaptations.

Structure and Data Flow. Before establishing the mapping, we explain the data flow
diagram elements and structure shown in Figure 8. The boxes with rounded corners
represent software services. Each service is implemented as a single operating system
process. The boxes with a top and bottom line represent storage elements. Storage elements
are implemented as shared memory objects maintained by an associated process. The
boxes with sharp corners represent services that interact with the SWF, such as third-party
applications. The lines with arrows indicate the flow of data.

The SWF services are strictly separated into two criticality levels: the support services
at the top and the mission-critical real-time services at the bottom. The mission-critical
services interact with critical infrastructure and are responsible for the time-synchronous,
cyclic, and real-time processing of mission-critical data. To that aim, these services are
structured into three consecutive pipeline stages and a network layer. The left and right
layers represent the network layer, which can host local applications and different protocol
stacks to interact with industrial devices (see [17,21] for design details). The cyclic real-time

Machines 2023, 11, 973 22 of 55

processing stages are located between these network layers, and data are passed between
stages from left to right.

Output
ProcessingPrimary Function Processing

Input
Processing

Network
Layer

Subscriber
& Router

PA Control
Real-Time
Protocol
Stack(s)

Local App

PA Interface

Manager (Resources, Configurations, Updates, Data Flow, Network, Traffic, etc.)

SA Control

Cyclic Real-Time Processing Pipeline Stages and their Data Flow

Network
Layer

Real-Time
Protocol
Stack(s)

Local App

Data Buffer per InterfaceRequest Buffer per Interface

M
is

si
on

-C
rit

ic
al

R

ea
l-T

im
e

Se
rv

ic
es

Su
pp

or
t

Se
rv

ic
es

Publisher
Config

Sub & Router
ConfigConfigs PA Control

Config Configs

Legend
Critical Real-Time
Microservice

Critical Shared-Memory
Storage

Critical Services and
Memory not discussed

Wait-Free Data Flow

Support Service
and Shared-Memory

Management
Data Flow

Non-Blocking
Data Flow

Non-Blocking
Twinning Data Flow

SA InterfaceManagement Interface

Publisher

PA
States & Data

SA
States & Data

SA Control
Config

Response Buffer per Interface

Ingress Egress

Figure 8. SA DT model showing the data flow model of the cyclic real-time processing pipeline at the
control unit level.

1. The input processing stage implements the subscriber pattern. The subscriber reads
and receives messages from the network layers and performs routing and traffic
shaping to optimize the data flow through the pipeline stages.

2. The primary function-processing stage implements the intended system functionality,
which is, in the first place, the autonomous control of the PAs. To that aim, the PA
control service processes the received data and updates the software representation
(i.e., the logical object) of the PA. The SA control service operates similarly alongside
the PA control service. The states of both the PAs and SAs are stored in their respective
storage elements. Read and write access to these storage elements is implemented
using highly efficient (wait-free) read–acquire and write–release operations, which
ensures that both services can easily and efficiently access information about their
operational context in physical and cyberspace via the PA and SA storage, respec-
tively. Read and write access to the PA and SA storage elements can be considered
deterministic if caching effects are negligible.

3. The output processing stage implements the publisher pattern. It reads data from the
PA and SA storage elements to create and publish messages to registered subscribers.

The support services assist the mission-critical services to help them achieve their
goals. Since the support services can subscribe to PA and SA twinning data, they can also
operate fully autonomously in the given operational context. However, they do not directly
interact with critical infrastructure, making them less crucial than their mission-critical
counterparts. In particular, the support services responsible are twofold. First, they manage
the communication with external entities; second, they execute and coordinate requests
from external entities. To that aim, the management support services (represented as
a single manager service in Figure 8) use the twinning information to check if external
requests can be performed in the current operational context. If so, the support services
orchestrate the adaptation in coordination with the PA and SA control services and report
the final result.

General Mapping. Let us restate that any software services and secondary equipment,
such as sensors, actuators, and network and control devices, are categorized as SAs. In
contrast, machines, mechanical components, and physical processes are categorized as
PAs. Hence, the data flow diagram elements can be mapped as follows: The states and
data-storage elements hold the current and historic state and the configuration of their
real objects (i.e., the PAs and SAs). The ingress and egress network layers represent the

Machines 2023, 11, 973 23 of 55

critical OT communication links to interact with the primary and secondary assets. There
is a one-on-one mapping between the PA and SA control services.

Managing SA DT Models. As stated, the data flow model represents the DT model of
the DT-enhanced control service itself and reflects its design, structure, and behavior. The
configuration (config) storage elements hold the configuration of the DT-enhanced control
service and its sub-services. The SA control service and the manager service implement the
software probes and effectors required for self-monitoring and self-adaptation. Section 4.4
explains the model describing the service timings and their data throughput characteristics.
In order to create a DT model for the managed SAs, it is essential to integrate the data flow
model with details about their network protocols and configuration. Software probes can
acquire the necessary data from the services hosted at the network layer, and software
effectors can manage potential adaptations.

Mediator Mapping. The support services implement the interface mediator, whereas
each interface implements a command–response protocol and a data streaming protocol
according to the publisher–subscriber pattern. To that aim, the three interface services main-
tain sessions with external services, and the manager service interacts with the real-time
orchestrator and orchestrates the execution of local commands. The real-time mediator algo-
rithm is implemented through the cyclic processing pipeline, which defines the sequences
to access and modify critical data, which also includes the modification of configuration
changes represented by the bidirectional management data flows. The most crucial part
is to ensure freedom from interference through the strict separation of mission-critical
from less critical services and data. In our implementation, we guarantee this separation
by encapsulating services within processes combined with a proper (i.e., well-separated
and linearly aligned) memory layout of the shared memory storage elements for data ex-
change. We use a mixture of (primarily lockless queuing-based) non-blocking and wait-free
synchronization mechanisms that are optimized for minimal contention.

What parameter-based adaptations are supported, and how are they implemented?
The SA DT model distinguishes two types of parameter-based adaptations: deterministic
and non-deterministic. Local and external services can trigger both types. However, only
mission-critical services have the permission to carry out deterministic adaptations by
altering data in storage elements. Non-deterministic parameter adaptations usually involve
various steps, such as non-deterministic operations like memory allocation and interactions
with external services and devices. After the completion of a non-deterministic parameter
adaptation, the manager service informs critical services about relevant changes so that
they can update their representation deterministically.

From an implementation perspective, both parameter adaptation types are imple-
mented similarly. Parameters to control a specific property of the DT-enhanced control
service are encapsulated within their corresponding logical object. Two instances per logical
object are maintained: an active one and a passive one. Deterministic adaptations can
directly alter the properties of the active logical object. In contrast, a non-deterministic
adaptation sequence performs four steps. First, all adaptations are performed, but only
the configuration of the passive logical object is updated. Second, the mission-critical ser-
vices are notified that changes are available. Depending on the complexity of the changes,
mission-critical services may either swap the active and passive real objects or perform
additional management steps before executing the logical object swap.

What architecture-based adaptations are supported, and how are they implemented?
The SA DT model supports four fundamental architecture-based adaptations: create and
terminate a service and establish and tear down a communication link. Our most important
design goal was to ensure that each architecture-based adaptation can be applied to every
data flow diagram element without causing system interruptions and downtime even
under high load conditions (e.g., during the execution of multiple sub-millisecond real-time
control services). To that aim, we implemented the concept of containerized microservices
by encapsulating each storage and service element as an individual logical object. Each
logical object is represented by a standard operating system process that comprises at

Machines 2023, 11, 973 24 of 55

least one low-priority thread per element. This low-priority thread is responsible for
coordinating adaptations with the manager service. Additional threads with higher priority
can be added to the same process or spawned in another process to implement the intended
logical object functionality. All architecture-based adaptations include non-deterministic
actions. Therefore, they follow a comparable adaptation procedure to the one used in
non-deterministic parameter-based adaptations.

4.4. The Timing Model of the Cyclic Real-Time Processing Pipeline

Figure 9 depicts the detailed timing model of the cyclic real-time processing pipeline
shown in Figure 8. The timing model is also integrated into the SA DT model and used
to monitor and adapt the DT-enhanced control service’s timing behavior. The model
indicates that each cycle comprises three main stages: management, primary function,
and twinning. These stages are further broken down into sub-stages. Each stage and
sub-stage gets assigned a certain percentage of processing time per cycle, subsequently
denoted as the cycle portion. All cycle portions can be configured using deterministic
parameter-based adaptation.

time t

 Cycle Time T
tsafety margin

Input Function

[5...30%] [60...5]% [5...30]% 15%
70% 15%

Management (Stateful)
OutputInput Function

(1...15%) (1...15%) (1...15%)

Output
Primary Function Twinning

15%

tcontrol ttwinning tsafety margin

Management (Stateful)

 Tmax_valid = T + Jittermax

 Jittermax =
 Jitterworst-case +

(1% of T)

Sub-Stages:

Portions Exp.1:
Cycle Portions:

Process Output
Stages:

20% 30% 20% 15%(1...15%) (1...15%) (1...15%)Exp.2 & Exp.3:

Figure 9. SA DT model specifying the timing constraints for the individual pipeline stages and
sub-stages.

The management stage is the only stage that can maintain a state across multiple
cycles. Therefore, it utilizes a detailed state machine consisting of several steps. Each
step is considered atomic and must be completed within one cycle portion. To ensure
that this requirement is met, the state machine takes into account the worst-case execution
time for each atomic step and verifies beforehand if enough processing time is available.
This provides two essential benefits. The management stage can perform complex and
processing-intensive tasks that mission-critical tasks otherwise cannot execute, thereby
reducing synchronization efforts and simplifying the overall adaptation workflow. Ad-
ditionally, the management stage can act as a safety buffer that can be customized to
compensate for large jitter spikes. The progress of individual management steps can be
guaranteed if the available cycle portion is greater than the maximum required portion of
the longest atomic step. The management stage implements the three stages of the cyclic
real-time processing pipeline in the described stateful manner. The function sub-stage
implements the management actions, whereas the input and output sub-stages use the
publisher–subscriber services to communicate with the manager service at the support
service layer.

The primary function stage implements the three stages of the cyclic real-time pro-
cessing pipeline in a stateless manner, which means that all steps must be completed within
the available cycle portion. The input and output sub-stages use the publisher–subscriber
services to interact with services hosted at the network layer. The cycle portions assigned
to the input and output sub-stages must be equal to guarantee maximum data throughput
without creating backpressure at the output sub-stage. The function sub-stage implements
the asset control functions (i.e., the primary intended function of the system) and can
consume the remaining cycle portion.

The twinning stage is split into two sub-stages. The process sub-stage, in the first
phase, gathers all measurement data and state information of the active processing cycle to
compute essential key performance indicators (KPIs) in its second phase. The KPIs thereby

Machines 2023, 11, 973 25 of 55

obtained offer valuable insights about the device and service health and the usage of
resources and cycle portions. In the output sub-stage, we publish all data, state information,
and KPIs in a single message to the registered subscribers. Our implementation captures
over 300 states within one cycle, allowing the creation of real objects that accurately reflect
the data flow and service states in real time. We use these real objects to continuously check
invariants at runtime to identify software system anomalies quickly. Our DT-enhanced
control service also classifies the processed KPIs using a traffic light system, allowing their
easy integration into a dashboard without domain knowledge and pre-processing.

5. Service-Oriented Instrumentation and Self-Adaptation of the DT-Enhanced
Control Service

This section describes four vital aspects of this work: First, we explain the experi-
mental setup and some of its implementation details. Second, we demonstrate a specific
instantiation of the DT-enhanced control service model. Third, we provide further details
about the service-oriented instrumentation, adaptation, and self-adaptation capabilities
and their implementation aspects. Finally, we explain how we ensure data validity.

5.1. Experiment Setup: Hardware Setup and Software Configuration of the DT-Enhanced
Control Service

Figure 10 shows the hardware and software setup that we used in the subsequently
explained experiments. We do not publish the measurement results obtained on our
industry partner’s platform to ensure experiment reproducibility. Instead, we executed the
experiments on industrial-grade embedded devices that are commonly available and share
at least the same processing unit and (some) time-sensitive network interfaces. The light
solid boxes indicate that two devices were used in the experiments. The top box represents
a general-purpose laptop, and the bottom box is the industrial control unit running the
software framework under test (SUT).

The laptop runs Ubuntu 20.04 LTS and was used for interactive experiment instrumen-
tation. It represents the external management system as shown in Figure 7. For remote
monitoring, it executes the KSysGuard application that maintains one secure socket shell
(SSH) connection per sensor plugin. A sensor plugin provides a (streaming) remote moni-
toring interface that allows fine-grained (i.e., per data point) access to Digital Twin data.
On request, it reveals all available data points and provides meta-information about these
data points. The testing engineer used an SSH connection to start a command line tool
(CLT) on the control unit for interactive remote experiment instrumentation.

As an embedded control unit, we used the UP Core Plus Board [89] featuring an Intel
Atom x7-E3940 that operates at a frequency of 1.8 GHz and has access to 8 GB system
memory. Extension boards are available to provide time-sensitive network interfaces (i.e.,
via the i210 chip) for accurate time-synchronization and real-time data transmission. As an
operating system, we used real-time Ubuntu [90], i.e., Ubuntu 22.04 LTS with preempt_rt
patch. The most significant difference performance-wise between the industrial platform
of our partner and the off-the-shelf UP Core Plus Board used is that the standard UEFI
only offers some configuration settings to tweak the Intel Atom CPU for optimal real-
time performance. We used the standard UEFI to ensure maximum reproducibility in the
presented experiments.

All services on the embedded control unit implement the DT-enhanced control service
architecture as shown in Figure 6, allowing us to use every service’s twinning information
in the subsequent experiment analysis phase. For simplicity, we did not use a super fine-
graned microservice structure, where every element shown in Figure 8 is encapsulated
within a process. Instead, every DT-enhanced control service (i.e., every service shown
in Figure 10) is encapsulated within one process. These services can be structured into
two sub-systems, as shown in Figure 7: the managing system at the top and the managed
system at the bottom.

Machines 2023, 11, 973 26 of 55

M
an

ag
ed

 S
ys

te
m

Input - Processing - Output
Primary Function LayerIngress Network Layer Egress Network Layer

General Purpose Laptop

Ex
te

rn
al

 M
an

ag
in

g
Sy

st
em

M
an

ag
in

g
Sy

st
em

Real-Time
Protocol Stack

Input

Real-Time
Protocol Stack

Output

Real-Time
Primary

Function A

Real-Time
Primary

Function B

RT Command Line Tool (CLT)
SA Control

Measure-
ments

Real-Time
KSysGuard

Sensor Plugin

1 1 per Service

1 1 1

1 in Exp.3

SSHSSH

Remote Monitoring
with KSysGuard

MMME

Operating System: Ubuntu 22.04 LTS with preempt_rt Patch
Hardware Platform: UP Core Plus Board 4 Core Intel Atom® x7-E3940 (1.8 GHz) 8GB Memory

90 85

99 99

99

99

Cardinality

Priority
Cycle Time

Network
Data Flow

Real-Time
Data Flow

Management
Data Flow

DT-enhanced
control service

SA Control Service
and Software
Probe/Effector

Legend

1 ms 1 ms 1 ms

100 ms0.5 ms

1 ms

Update Rate: 300 ms

Real-Time
Twinning Data Flow

Sub-System
Boundary

Device Boundary

Pipeline Stage(s)

Test Engineer

Control Unit

Figure 10. Representation of the evaluation platform hardware and software configuration.

The managing system has three responsibilities. First, it provides remote orchestration
and monitoring interfaces via SSH connections to the external managing system. Second,
it interprets received remote commands and manages and orchestrates their device-local
execution. Third, it implements the analyze–plan steps for MAPE-based self-adaptation
on the level of the control unit. For that purpose, the CLT implements a command line
interface that provides fine-grained access to all monitoring and adaptation functions,
which the test engineer uses for experiment instrumentation and automation. In particular,
we implemented a scripting language and a script engine to provide fine-graned service-
oriented command and response interfaces to all elements shown in Figure 8. To manage
the local command execution, the CLT uses the twinning and orchestration capabilities
provided by the service interfaces of the managed system.

The working principle of the CLT and the sensor plugin are similar. Both are designed
to offer a self-descriptive interface to support and demonstrate the servitization principle
in a simple manner. The services receive commands via the standard input and send
responses via the standard output, enabling bidirectional interaction with human actors
or other applications. Both services support commands to query information about their
interfaces, behavior, structure, and available data points and services. In addition, they
provide continuous monitoring features and adaptation commands. Next, we explain some
of the servitization features using examples.

The KSysGuard application, for example, provides customizable dashboards to vi-
sualize data points received via the standard output. Appendix B provides some of the
dashboards we used for debugging and experimental observation. These particular dash-
boards are configured with a 300 ms update interval. Data points can be structured into
a hierarchy of categories that are represented within a tree. In addition, data points have
descriptive meta-information such as description, data type, data range, unit, min, max,
and more. The sensor plugins on request provide all this information, and the KSysGuard
application uses it to enrich its dashboard. Besides remote monitoring and visualization,
the sensor plugin can be used for integration testing to observe invariants and other system
properties. Overall, the sensor plugin principle can support the self-organized dynamic
composition of services based on contracts [91].

The CLT can read commands from the command line or scripts. Scripts contribute to
the infrastructure-as-code paradigm [92,93] by the following means: They can be version-

Machines 2023, 11, 973 27 of 55

controlled and enable the flexible definition of complex orchestration sequenced. They
can also be tested and support the reproducible creation of environments through reliable
deployment, reconfiguration, and adaptation of the CPS.

A noteworthy property of our setup is its support for the dynamic reconfiguration of
the MAPE loop. The CLT implements the MAPE loop in our setup to control and manage
the secondary assets. To that aim, the MAPE loop uses the command interface of the script
engine. Reusing the script engine allows us to describe the behavior of the MAPE steps via
a list of commands. Consequently, the CLT can execute multiple MAPE loops, and the
behavior of these loops can be adjusted at runtime by simply updating their associated
lists via the CLT interface.

The managed system implements the data flow model shown in Figure 8 and can
be structured into three layers: the ingress network layer, the primary function layer,
and the egress network layer. Each network layer hosts a DT-enhanced control service
that simulates incoming and outgoing traffic, respectively. The primary function layer’s
responsibility is to implement the primary intended functions for CPS closed-loop control.
More particularly, the Real-Time Protocol Stack Input service (RT PS input service) acts
as a data generator responsible for network load simulation and sends messages to the
Real-Time Primary Function service (RT PF service). The RT PF service processes and then
forwards all received messages to the Real-Time Protocol Stack Output service (RT PS
output service). These three services thereby implement the behavior of a real-time closed-
loop software stack that controls and interacts with its physical environment. All services
operate at a cycle time of 1 ms under the real-time first-in–first-out (FIFO) scheduling policy
at priority 99. Each service offers a management interface or instrumentation and the PA
and SA interfaces for twinning and adaptation. Considering the overall structure, the
experiment setup implements the hierarchical control pattern with knowledge repositories
as per MAPE loop as of [39], Figure 9.

5.2. Experimental Execution: Instrumentation and Self-Adaptation

The system sequence diagram in Figure 11 shows the steps that are common among
all experiments. In addition, it reveals further details about the infrastructure and the
service interactions to implement the behavior described above. All experiments are fully
automated and can be structured in three phases: setup, experiment, and persistency
and analysis.

Setup phase. The test engineer starts a script that contains the entire test descrip-
tion/automation. This script establishes an SSH connection to the control unit and starts
and configures all four DT-enhanced control service instances (i.e., CLT, RT PS Input, RT
PF, and RT PS Output). After this setup phase, all managed services execute the cyclic
processing pipeline and publish/twin their states into their associated Q1, Q2, and Q3
queues. Next, the KSysGuard application is started on the Remote PC, which establishes
multiple SSH connections, each associated with a KSysGuard sensor service for remote
monitoring. After the KSysGuard setup phase, all managed services publish/twin their
states into their associated Q4, Q5, and Q6 queues.

Experimental phase. After the successful setup, the experiment starts. The subse-
quent sections explain the experiment-specific steps. Here, we describe the cyclic sequences
used for measurement and orchestration in all experiments. Every 1 ms, the CLT fetches the
twinning information from all queues for subsequent use in its analyze–plan (AP) and log
steps. Each measurement entry created in the log step is cycle-accurate across the services
to accurately reflect the overall system behavior. Measurement data are asynchronously
written into a file. Every 300 ms, the KSysGuard requests sensor information. For that pur-
pose, the sensor services fetch the most recent twinning states from their associated queues
and generate a response by writing the requested sensor values to the standard output.

Machines 2023, 11, 973 28 of 55

twin

every 1 ms

:CLT
Test Instrumentation

async
write

: RT PS Input
Data Generator

process

twin
pub

sub &
routefetch

:RT PF
PA Control Function

sub &
route

process

twin
twin

pub

:RT PS Output
Data Sink

sub &
route

process

twin
twin

pub
Ti

m
e-

Sy
nc

hr
on

ou
s

C
yc

lic
 P

ip
el

in
e

Ex
ec

ut
io

n

ssh: setup

Setup Phase

File

M

AP

E

log

:KSysGuard
Sensor (3 Inst.)

Remote Monitoring

fetch

:Remote PC
Remote Test

Instrumentation

KSysGuard

fetch

start

ssh: Setup Phase

Q1

Q4

Q2

Q5

Q3

Q6

every 300 ms

fetch

ssh: request data

ssh: put data

R
em

ot
e

M
on

ito
rin

g
start

Q: Queue; M: Monitoring; AP: Analyze-Plan; E: Execute; Sub: Subscriber; Pub: Publisher

Test Engineer

Figure 11. System sequence diagram showing the system behavior and interactions that are similar
between all experiments.

Persistency and analysis phase. After the experiment is successfully executed, all
services are terminated, and the measurement files are copied to the remote PC (i.e., the
laptop) for further analysis. During the experiment phase, the twinning mechanisms are
used to obtain a cycle-accurate view of all control unit services. We intentionally did not
calculate a moving average to ensure that all potential effects and side effects are visible
with a 1 ms time resolution. Since we are using the twinning mechanisms, an essential
feature deeply integrated into the SWF, the influence of the measurement-related effects
is minimized. During the execution of the experiment, we observed model and SWF
invariants via remote monitoring dashboards. In the subsequent analysis, we followed
a similar but more accurate approach. We created multiple interactive high-resolution
time series plots with the Plotly library for Python. We used these interactive plots to
check and compare the observed system behavior against the data flow model. In addition,
we checked all build-in error states to identify potential failures. We can confirm that no
violations of invariants occurred during any of the experiments.

6. Experiment 1: Twinning Fidelity and Real-Time Control Characteristics

The experiment intends to validate the requirements R1, R2, and R3. Therefore, the
experimental goal is to analyze the SWF’s performance characteristics concerning its real-
time control capabilities and its PA and SA twinning (i.e., monitoring) fidelity from the
point of view of a software engineer in the context of designing a CPS control function
supporting DTs. The experimental hypothesis is that the SWF can provide sub-millisecond
real-time closed-loop control and simultaneous sub-millisecond PA and SA twinning in
a real-world configuration. For hypothesis testing, the SWF’s throughput characteristics
of the cyclic processing pipeline on the primary function layer shall be evaluated under
various load conditions. Experimental and data validity is ensured according to the
statement in Section 5.2.

6.1. Experimental Design

Section 5 describes the general experimental setup and its instrumentation. Table 3
gives an overview of the experimental factors and dependent variables. Any elements
not explained here are introduced in Sections 4 and 5. The system sequence diagram in
Figure 12 shows the experiment-specific sequence diagram. The experiment is designed

Machines 2023, 11, 973 29 of 55

to determine the maximum end-to-end throughput characteristics of the cyclic processing
pipeline, which defines the maximum number of data the primary function layer (i.e., the
RT PF service) can process under certain load conditions. Suppose the RT PF service cannot
process all received messages under certain load conditions. In that case, the service can
drop messages at various processing steps (observable via message drop counters) and
store messages for later processing (observable via backpressure counters). The RT PS
input and output services are configured to not limit the maximum end-to-end throughput
characteristics of the RT PF service. The RT PF service load is primarily determined using
the following timing and data flow factors:

• Service cycle time;
• Cycle portions per pipeline state and sub-stage;
• The number of messages received, to be processed, and to be sent per cycle;
• The size per received, processed, and sent message.

:CLT
Test Instrumentation

wait until 200
twinning messages
have been received

: RT PS Input
Data Generator

:RT PF
PA Control Function

:RT PS Output
Data Sink

for all configurations to test

In
st

ru
m

en
ta

tio
n

config & check
config & check
config & check

Test
Engineer

ssh: start test

Setup Phase

every 1 ms: Pipeline Execution with Twinning

Figure 12. System sequence diagram showing the test instrumentation of experiment 1.

One timing factor and one data flow factor are modified to reduce the number of
experiments. All others are kept constant during the experiment, as defined in Table 3. The
cycle time of all services is set to 1 ms, and the cycle portions are kept constant during
all experiments. Only the sub-portions of the primary function (as shown in Figure 9)
are modified. These sub-portions represent the timing factor, i.e., factor1. To obtain a
configuration with maximum end-to-end throughput, the PF input portion PFinput.portion
must equal the PF output portion PFoutput.portion. For maximum load, the PF function
portion PFf unction.portion must be configured to consume the remaining PF portion PFportion.
The following equations express these invariants:

PFinput.portion = PFoutput.portion (1)

PFportion = PFinput.portion + PFf unction.portion + PFoutput.portion (2)

The payload size of a single message is set to 1500 bytes and remains constant in the
experiment. This value was chosen to obtain relevant and realistic maximum message
throughput characteristics since a payload of 1500 Byte corresponds to the maximum size
of an EtherCAT frame, which is also equal to the maximum payload size of an Ethernet
packet, according to IEEE 802.3. In short, receiving single messages larger than 1500 bytes
is impossible. Hence, transferring more data per cycle requires sending/receiving more
messages per cycle. The number of received, processed, and sent messages represents the
second factor, i.e., factor2.

Machines 2023, 11, 973 30 of 55

Table 3. Factors and dependent variables of experiment 1.

Type Name Value

Constants: Timing

Cycle time 1 ms
Management portion 15%
Primary function portion 70%
Twinning portion 15%

Constants: Data flow

PA message payload size 1500 Byte
Number of twinned SA states per cycle 317
Size per twinned SA states 4 Byte
Number twinning messages per cycle 2

Factor1: Timing
PF input portion [05, 10, 15, 20, 25, 30]%
PF function portion [60, 50, 40, 30, 20, 10]%
PF output portion [05, 10, 15, 20, 25, 30]%

Factor2: Data flow Number of PA messages per cycle [1..19]

Dependent variables

All constants, factors, and cycle portions
All dependent variables are
measured per cycle leverag-
ing the SA state twinning
mechanism.

Overall cycle usage
Jitter (in percentage of the cycle time)
Backpressure
Various other dataflow statistics

Summing up, this experiment evaluates the impact of and the dependency between
two factors to determine the maximum end-to-end throughput characteristics of the cyclic
processing pipeline. Therefore, one factor at a time is modified, resulting in the following
number of measurement cycles:

= [Number o f measurement intervals]

= [Number o f f actor1 con f igurations] ∗ [Number o f f actor2 con f igurations]

= 6 ∗ 19

= 114

(3)

At least 200 consecutive cycles of all running services in each interval are simultane-
ously measured using the provided twinning mechanism. For the experiment execution, all
services are started only once, and the individual factors are modified using the provided
runtime reconfiguration mechanisms.

6.2. Results and Analysis

The analysis of results is structured into two parts. First, Section 6.2.1 analyzes
the timing and cycle usage characteristics. Second, Section 6.2.2 analyzes the data flow
characteristics.

6.2.1. Timing and Cycle Usage Characteristics

The timing and cycle usage characteristics of the service under test (i.e., the RT PF
service) must reflect the processing behavior described in Section 4.3. Figure 9 shows the
reference model for the subsequent analysis and validation of the measured cycle portions.
All figures in this section have the following structure:

• Columns and legend: All figures are structured into six columns, each representing
the six possible configurations of factor1. Each column’s legend and heading indicate
the configuration shown in a specific column. The PF input portion represents factor1.
The Equations (1) and (2) define the dependencies between the PF input, function, and
output sub-portions. Each column is structured into a top and a bottom diagram. The
bottom diagram shows the discrete measurement values, whereas the top diagram
shows the distribution of these measurements as a histogram.

• Y-Axis: Factor2 is plotted along the y-axis and shows the configured number of
messages that shall be processed per cycle.

Machines 2023, 11, 973 31 of 55

• X-Axis: The dependent variable under investigation is plotted along the x-axis. Each
plotted x-axis sample represents a measurement result calculated in the twinning state
of a single execution cycle. In other words, no moving-average algorithm is applied.

• Annotations: Each figure is annotated with vertical lines or boxes to indicate relevant
properties of the reference model.

Figure 13 shows the accumulated cycle usage of all RT PF service-processing steps. The
green dashed line indicates that the maximum average cycle usage is limited to 100%. The
red dashed line indicates the maximum peak cycle usage and the safety margin tsa f ety margin
as shown in Figure 9. This line indicates the buffer available to compensate for unexpected
jitter peaks. The results show that for all configurations, the cycle usage remains below
100%, indicating that all real-time constraints are met and that no jitter peaks have occurred.
For all configurations, the service under testing consumes nearly 100% of the cycle time,
indicating a high service load. The histograms indicate that the average service load is
higher for configurations with a smaller input portion. The maximum cycle usage is
independent of factor2.

90 100 110
0

5

10

15

20

90 100 110 90 100 110 90 100 110 90 100 110 90 100 110

Input Portion [%]
5
10
15
20
25
30

Portion Indicators
Max. Avg.
Max. Peak

exp1-portion-00-full-cycle: RT Primary Function

Cycle Usage [%] Cycle Usage [%] Cycle Usage [%] Cycle Usage [%] Cycle Usage [%] Cycle Usage [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

Figure 13. Cycle Usage of the RT PF service.

Figure 14 shows the jitter portion representing the amount of processing time not
usable due to jitter. A positive jitter (i.e., greater than 0%) means the task is scheduled
after its pre-calculated cycle starting point. The green dashed line indicates the expected
average jitter. The orange line indicates the maximum average jitter to provide a desirable
reconfiguration experience, where at least one atomic configuration step can be executed
within a single management portion. The red dashed line indicates the maximum peak
jitter, which is equivalent to the maximum available safety margin to compensate for the
jitter. The histograms indicate that the average jitter portion across all tests is about 2%,
corresponding to an average jitter of 20 µs. The histograms also indicate a higher average
jitter and jitter variability for configurations with a larger input portion, which effectively
reduces the usable cycle portion. This observation correlates with the measurements shown
in Figure 13.

0 5 10 15
0

5

10

15

20

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Input Portion [%]
5
10
15
20
25
30

Portion Indicators
Exp. Avg. Jitter
Max. Avg. Jitter
Max. Peak Jitter.

exp1-portion-01-jitter: RT Primary Function

Jitter Portion [%] Jitter Portion [%] Jitter Portion [%] Jitter Portion [%] Jitter Portion [%] Jitter Portion [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

Figure 14. Jitter portion of the RT PF service.

Before the execution of the test , we expected an average jitter of 5%. We define a
15% safety margin to compensate for unexpected jitter peaks. The management tasks are

Machines 2023, 11, 973 32 of 55

executed within the usable portion of this safety margin. Figure 15 shows the cycle portion
consumed by management tasks. To ensure these tasks’ continuous progress, we define
that the maximum average jitter shall not be higher than 10%, which dedicates a minimum
average usable portion of 5% to the management tasks. The indicators in Figures 14 and 15
show that the service under testing operates within these constraints for all configurations,
which shall result in a decent reconfiguration/management experience, where at least one
atomic management step can be executed each cycle.

Figure 16 shows the PF input portions. For all configurations, the maximum PF input
portion is about 8% higher than the configured input portion. This is due to the fact that
the input processing starts immediately after all management tasks are processed. Since the
average management portion is about 7%, the PF input step can consume the remaining 8%
of the management portion/safety margin.

5 10 15
0

5

10

15

20

5 10 15 5 10 15 5 10 15 5 10 15 5 10 15

Input Portion [%]
5
10
15
20
25
30

Portion Indicators
Min. Avg. Mngt.
Exp. Avg. Mngt.
Max. Peak Mngt.

exp1-portion-02-mngt: RT Primary Function

Mngt. Portion [%] Mngt. Portion [%] Mngt. Portion [%] Mngt. Portion [%] Mngt. Portion [%] Mngt. Portion [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

Figure 15. Management portion of the RT PF service.

10 20 30
0

5

10

15

20

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

Input Portion [%]
5
10
15
20
25
30

exp1-portion-03-data-01-input: RT Primary Function

Input Portion [%] Input Portion [%] Input Portion [%] Input Portion [%] Input Portion [%] Input Portion [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

Figure 16. PF input portion of the RT PF service.

Figure 17 shows the portions of the PF function. The results indicate that the PF
function consumes, on average, the configured cycle portions, which correspond to 60%,
50%, 40%, 30%, 20%, and 10% from left to right.

20 40 60
0

5

10

15

20

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

Input Portion [%]
5
10
15
20
25
30

exp1-portion-03-data-02-function: RT Primary Function

Prim. Fct. Portion [%] Prim. Fct. Portion [%] Prim. Fct. Portion [%] Prim. Fct. Portion [%] Prim. Fct. Portion [%] Prim. Fct. Portion [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

Figure 17. PF function portion.

Figure 18 shows the portions of the PF output function. The results indicate that, at
its maximum, the PF output portion is about 3% higher than the configured cycle output
portions, which corresponds to 5%, 10%, 15%, 20%, 25%, and 30% from left to right. The PF

Machines 2023, 11, 973 33 of 55

output consumes less than the maximum reserved/configured cycle portion if no more
messages have to be processed within the active cycle. The results show that the number of
messages that can be processed per cycle increases from left to right with the increasing PF
input and output portions (note Equation (1), which defines that the output portion must
be equal to the input portion).

Figure 19 shows the cycle portion consumed by the SA twinning. The green dashed
line indicates the cycle portion reserved for twinning. The orange dashed line indicates
the maximum acceptable average twinning portion, which is obtained by adding the
5% expected jitter to the reserved 15% twinning portion. The histograms show that the
measured twinning portions are quite distributed but largely remain below the 15% limit.
The observed distribution is dedicated to implementation aspects. For example, several
system statistics are read and parsed from the Linux filesystem, which may introduce
unpredictable latencies. The fact that the 15% limit is exceeded means that the twinning
already consumes the processing time of the consecutive cycle, which is observable as a jitter
that exceeds the green dashed line in Figure 14. The subsequent cycle starts immediately
without putting the real-time thread to sleep in such a case.

0 10 20 30
0

5

10

15

20

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Input Portion [%]
5
10
15
20
25
30

exp1-portion-03-data-03-output: RT Primary Function

Output Portion [%] Output Portion [%] Output Portion [%] Output Portion [%] Output Portion [%] Output Portion [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

Figure 18. PF output portion of the RT PF service.

10 15 20
0

5

10

15

20

10 15 20 10 15 20 10 15 20 10 15 20 10 15 20

Input Portion [%]
5
10
15
20
25
30

Portion Indicators
Res. Avg. Twing.
Max. Avg. Twing.

exp1-portion-03-data-04-twinning: RT Primary Function

Twinning Portion [%] Twinning Portion [%] Twinning Portion [%] Twinning Portion [%] Twinning Portion [%] Twinning Portion [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

Figure 19. Twinning portion of the RT PF service.

6.2.2. Data Flow Characteristics

The data flow characteristics of the service under test (i.e., the RT PF service) reflect the
data flow described in Section 4.3. Figure 8 shows the reference model for the subsequent
analysis and validation of the measured data-flow statistics. All figures in this section and
the appendix have the same structure as described at the beginning of Section 6.2.2.

Figure 20 shows the backpressure per cycle, indicating the number of messages that are
queued for subsequent processing. Such queuing occurs if messages cannot be processed
within the current cycle and shall be stored for later processing. The green area indicates
configurations with zero backpressure, meaning that all received messages can be fully
processed and sent within one cycle. A positive backpressure is the main indicator
showing that the maximum throughput ratio of the service under test is reached. A
negative backpressure indicates that queued messages are processed in the current cycle.
Appendix A presents the following complementary data flow statistics:

• Figure A1 shows the number of received messages per cycle.

Machines 2023, 11, 973 34 of 55

• Figure A2 shows the number of messages dropped during the receiving (i.e., input)
step. Such a drop can occur due to backpressure in the subsequent processing stages
and due to routing decisions. The experiment described in Section 7 uses both the
routing and the backpressure mechanisms.

• Figure A3 shows the number of messages sent per cycle.
• Figure A1 shows the number of messages dropped during the send (i.e., output)

step. Such a drop can occur due to backpressure at the message destination and
due to routing decisions. The experimental results in Section 7.2 illustrate how the
backpressure propagates through the system.

The SA twinning mechanisms record over 50 data flow counters per cycle, which can
significantly support debugging, testing, and optimization activities.

−2 0 2 4
0

5

10

15

20

−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4

Input Portion [%]
5
10
15
20
25
30

exp1-df-01-backpressure-cycle: RT Primary Function

Backpr. pC [] Backpr. pC [] Backpr. pC [] Backpr. pC [] Backpr. pC [] Backpr. pC []

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

y=1

y=5

y=8
y=10

y=14

y=18

Figure 20. Backpressure per cycle (Backpr. pC) of the RT PF service.

6.3. Interpretation

Figure 21 summarizes the results of the data flow characteristics analyzed in
Section 6.2.1. In particular, it shows the maximum end-to-end throughput characteris-
tics of the cyclic processing pipeline, i.e., the maximum amount of (general and twinning)
messages for those configurations in which all messages can be processed entirely. The
figure is structured as three diagrams. Each diagram shows the throughput characteristics
of twinning messages and PA messages. The PA messages are denoted as general messages
in the diagrams since PA messages may also carry general information that is not dedicated
to PA control.

Diagram (a) This diagram shows the maximum amount of messages that can be fully
processed per cycle. This figure is derived from Figure 20 and shows the
dependency between the factors under investigation. Factor1 is plotted
along the x-axis. Factor2 is plotted along the y-axis.

Diagram (b) This diagram shows the corresponding effective throughput ratios, i.e.,
the amount of message payload that can be processed per second.

Diagram (c) This diagram shows the corresponding throughput ratios considering
the overhead the implemented protocol header introduced. The protocol
header provides the information required to provide certain functionalities
like error handling, twinning, routing, and traffic shaping. The protocol
header in the tested implementation is not optimized for size and com-
prises 250 bytes. A first investigation showed that the header size could
be relatively easily reduced below 70 bytes if all twinning features of the
framework are activated. If only the most essential features are activated,
the header size can be reduced below 30 bytes. A further reduction in the
header size requires a more elaborate investigation.

Figure 21 shows that the SWF can be flexibly configured between two boundary use
cases (UCs), namely

(UC-1) A use case supporting low message-throughput ratios while providing a large
cycle portion for the execution of the intended (i.e., primary) functionality. The
experiment evaluated such a use case with the input and output portion set to 5%,

Machines 2023, 11, 973 35 of 55

which reserves 60% of the cycle for the execution of the primary function. In this
configuration, two twinning messages and one general message are processed.

(UC-2) A use case supporting high message throughput ratios while providing a smaller
cycle portion for the execution of the intended (i.e., primary) functionality. The
experiment evaluated such a use case with the input and output portion set to
30%, which reserves 10% of the cycle for primary function execution. In this
configuration, 2 twinning messages and 18 general messages are processed.

Summing up, the timing analysis of the overall cycle usage and the individual pipeline
stages confirms that the SWF properly implements the cyclic processing pipeline and the
data flow model introduced in Sections 4.3 and 4.4. The measured end-to-end through-
put characteristics show that the SWF offers a range of configurations that support the
simultaneous processing and distribution of general and twinning messages. In short,
the experiment confirms that the SWF provides sub-millisecond real-time closed-loop
control and the simultaneous sub-millisecond PA and SA twinning in a variety of rep-
resentative real-world configurations.

1.0

5.0

8.0

10.0

14.0

18.0

2.0 2.0 2.0 2.0 2.0 2.0

0 5 10 15 20 25 30 35
0

5

10

15

1.5

7.5

12.0

15.0

21.0

27.0

2.5 2.5 2.5 2.5 2.5 2.5

0 5 10 15 20 25 30 35
0

5

10

15

20

25

1.8

8.8

14.0

17.5

24.5

31.5

3.8 3.8 3.8 3.8 3.8 3.8

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30
Messages per Cycle

General Msgs per Cycle
OLS Msgs per Cycle
Twinning Msgs per Cycle

Throughput Payload Only
General Throughput
OLS Throughput
Twinning Throughput

Throughput incl. Header
General Throughput
OLS Throughput
Twinning Throughput

exp1-00-conclusion

Input Portion [%] Input Portion [%] Input Portion [%]

M
es

sa
ge

s
pe

r
C

yc
le

 [M
S

G
s/

m
s]

T
hr

ou
gh

pu
t [

M
B

/s
]

T
hr

ou
gh

pu
t [

M
B

/s
]

(a) Messages per Cycle (b) Throughput: Payload Only (1500 Byte) (c) Throughput: Payload + Header (+ 250 Byte)

Figure 21. End-to-end throughput characteristics of the cyclic processing pipeline under different
load conditions.

7. Experiment 2: Context-Aware Self-Adaptation Characteristics

This experiment intends to validate the requirement R4. Therefore, the experiment’s
goal is to analyze the SWF’s parameter-based self-adaptation characteristics concerning its
closed-loop timings from the point of view of a software engineer in the context of designing
a CPS control system that uses context and state information to adjust to uncertainties
such as failures and misconfigurations at runtime. The experiment’s hypothesis is that
the SWF allows context-aware closed-loop CPS service self-adaptation. The PA and SA
twinning information (i.e., the real objects) is used as a feedback source (i.e., knowledge)
and the parameter-based adaptation mechanisms as shown in Section 4.2 for adaptation.
For hypothesis testing (i.e., testing of self-adaptive system characteristics), we follow
the guidelines of [59]. The experiment represents uncertainty (i.e., the reason why self-
adaptation is necessary) in the form of sudden message bursts, which is representative
of, e.g., the following situations: device and service misconfiguration, software bugs,
hardware failures, security attacks (e.g., denial of service attack), and network device
failures. Experimental and data validity is ensured according to the statement in Section 5.2.

7.1. Experimental Design

Section 5 describes the general experimental setup and its instrumentation. Table 4
gives an overview of the experiment factors and dependent variables. Any elements
not explained here are introduced in Sections 4 and 5. The system sequence diagram in
Figure 22 shows the experiment-specific steps.

In this experiment, the MAPE-based closed-loop self-adaptation characteristics are
assessed. A particular focus is on the evaluation of the twinning characteristics determined
by the monitoring (M) and execution (E) elements shown in Figure 7. For demonstration
purposes, we configured a simple trigger condition to represent the analyze–plan (AP)

Machines 2023, 11, 973 36 of 55

steps implemented by the CLT. As noted earlier, the definition of sophisticated AP steps is
subject to future work. For example, Krug et al. [94] describe a smarter analysis approach
and demonstrate the usage of moving average convergence–divergence (MACD) indicators
for message burst prediction. Figure 11 shows the CLT’s MAPE steps and the twinning
data flow between the services. Figure 22 reveals details of the analyze–plan (AP) steps
and shows two update commands that are part of the execute step.

1. Monitor: At the end of every cycle, all services (i.e., the data sources (SRCs)) twin
their state into their corresponding queues. The CLT subsequently fetches these states.
The latency between twinning and fetching is denoted as [SRC]to[CLT] latency.

2. Analyze and Plan: The CLT checks the trigger condition, which is activated if the
backpressure counter of the RT PF service is greater than 500 for more than 2 ms. The
latency between the state fetching and the positive evaluation of the trigger condition
is denoted as [CLT]to[TRG] latency.

3. Execute: The countermeasure shall be executed on a positive trigger condition. In this
experiment, the countermeasure shall reduce the message throughput to reduce the
service load. Therefore, the CLT reconfigures the routing mechanisms of the RT PS
input service to drop all messages that are not classified as critical. In other words,
best-effort traffic routing is deactivated, which is achieved via updating the message
delivery state of the RT PF service. The service reconfiguration time is denoted as
[TRG]to[RST] latency and is equivalent to the execution time of the update command.
An update command consists of several sub-commands to immediately check the sys-
tem integrity by evaluating if the requested command could be successfully executed.

To evaluate said latency characteristics, the RT PS Input service is configured to
generate 4 critical messages and 30 non-critical messages per cycle. The critical messages
represent control messages, and the non-critical messages represent message bursts. Each
message carries a payload of 1500 bytes. If best-effort traffic routing is active, all services
operate at maximum load to achieve the maximum throughput. The critical messages are
prioritized over the best-effort messages. If critical messages cannot be processed, they
are queued for later processing, and the corresponding failure counter is incremented to
indicate the violation of real-time processing constraints (i.e., that messages classified as
critical must be processed within the configured timeframe, which corresponds to 1 ms
in this experiment). Best-effort messages that cannot be processed are also queued or
dropped without affecting failure counters. The number of queued messages is observed
as backpressure. The number of dropped messages is observed via drop counters. Faults
are injected via best-effort message bursts that are periodically triggered by activating best-
effort traffic routing. The cycle time and cycle portions are kept constant during testing.

:CLT
SA DT Control

Service

reset
timer

: RT PS Input
Data Generator

:RT PF
PA Control Function

:RT PS Output
Data Sink

AP: if (backpressure[RT PF] > 500) for more than 2 ms

update msg-delivery state: Drop low Prio. Msgs

Setup Phase

Test
Engineer

ssh: start test

every 1 ms: Pipeline Execution with Twinning

every 3500 ms: Activate Message Burst

reset
timer

update msg-delivery state: Process all Msgs

Figure 22. System sequence diagram of the context-aware self-adaptation sequence of experiment 2.

Machines 2023, 11, 973 37 of 55

Table 4. Factors and dependent variables of experiment 2.

Type Name Value

Constants: Timing

Cycle time 1 ms
Management portion 15%
Primary function portion 70%
Twinning portion 15%
PF input portion 20%
PF function portion 30%
PF output portion 20%

Constants: Data flow

PA message payload size 1500 Byte
Number of twinned SA states per cycle 317
Size per twinned SA states 4 Byte
Number twinning messages per cycle 2
Number of critical PA messages per cycle 4
Number of best-effort PA messages per cycle 30

Constants: CLT
trigger condition

if (backpressure[RT PS Input] > 50) for more than
3 ms, then activate countermeasure

Factor: Fault-injection Period between the activation of best-effort message bursts 3.5 s

Dependent variables
MAPE loop latencies
Messages sent per cycle
Backpressure per service

7.2. Results and Analysis

Our analysis of the results is based on two time-series figures and one box plot.
Figure 23 shows an excerpt of the experiment demonstrating the overall system reaction (i.e.,
the system’s self-adaptation) to artificially simulated repeated message bursts. Figure 24
displays a time series diagram with a higher x-axis resolution, providing insights into a
single adaptation sequence between seconds 11 and 13. Both figures are structured into the
following three diagrams:

Diagram (a) This diagram shows the time series data of the RT PS input service that
acts as a data generator. The service simulates a continuous message burst
and sends all messages to the RT PF service.

Diagram (b) This diagram shows the time series data of the RT PF service that processes
the received data and forwards them to the RT PS output service.

Diagram (c) This diagram shows the time series data of the RT PS output service that
processes the received data and simulates data forwarding.

The diagrams are designed to exhibit the backpressure propagation during message
bursts and the system’s reaction to it. The diagrams explicitly illustrate the dependent
variables, while the spikes due to message bursts implicitly indicate the experimental factor:

• x-axis: Execution time in seconds.
• Primary y-axis: The backpressure is plotted along the primary y-axis on the left. The

primary y-axis scaling is different between the plots.
• Secondary y-axis: The number of messages sent per cycle is plotted along the sec-

ondary y-axis on the right side. The secondary y-axis scaling is synchronized between
the plots.

Types of Backpressure. Before analyzing the data flow and backpressure propagation,
we first explain the different types of observable backpressure and begin with a short recap
of the three pipeline stages shown in Figure 8. The primary function stage does not
support backpressure. However, the input and output stages support the backpressure
concept: (a) If the input stage receives more than it can process, then the data remain in
the receive queue, causing so-called receiving backpressure. (b) Suppose the input stage
processes and forwards more data to the primary function stage than the primary function
can consume. In that case, the data remain in the input queue, causing so-called input
backpressure. (c) Suppose the output stage cannot process all publisher events (i.e., data

Machines 2023, 11, 973 38 of 55

sending) to all registered subscribers. In that case, the data remain in the output queue,
causing so-called output backpressure.

00.0 05.0 10.0 15.0 20.0
0

25

50

75

100

0

5

10

15

20

00.0 05.0 10.0 15.0 20.0
0

100
200
300
400
500

0

5

10

15

20

00.0 05.0 10.0 15.0 20.0
−1

0

1

0

5

10

15

20

Send Count
Send Cnt - RT PS Input
Send Cnt - RT Ctrl Fct
Send Cnt - RT PS Output

Backpressure Count
BP Cnt - RT PS Input
BP Cnt - RT Ctrl Fct
BP Cnt - RT PS Output

exp3-00-time-axis

Execution Time [seconds]

Execution Time [seconds]

Execution Time [seconds]

B
ac

kp
re

ss
ur

e
[]

S
en

d
C

ou
nt

 [
]

B
ac

kp
re

ss
ur

e
[]

S
en

d
C

ou
nt

 [
]

B
ac

kp
re

ss
ur

e
[]

S
en

d
C

ou
nt

 [
]

(a) Real-Time Protocol Stack Input (RT PS Input)

(b) Real-Time Primary Function (RT PF)

(c) Real-Time Protocol Stack Output (RT PS Output)

Figure 23. Timeseries diagram showing the periodic adaptation of the routing algorithm to cope with
message bursts.

Backpressure Propagation. Backpressure, as indicated by the name, propagates back-
ward in a queuing-based system. In this experiment, each stage is configured to support
a maximum backpressure of 1024 messages. Hence, backpressure propagates backward
along the data flow only if this limit is reached (i.e., the buffer/queue is filled). Let us
make it more specific:

(a) If the received backpressure reaches its limit, then messages received via the network
are rejected, which results in an increase in backpressure at the message sender. end

(b) If the input backpressure reaches its limit, the input stage can no longer forward
messages, which propagates backward and immediately results in an increasing
received backpressure.

(c) In contrast, output backpressure does not propagate backward to the primary
function stage because the primary function does not maintain a queue. Instead,
the output stage must actively pull data from the storage elements of the primary
function stage. Nonetheless, output backpressure may propagate to the input stage
if messages are directly routed to the output stage. This is indicated by the data flow
between the subscriber and publisher services in Figure 8.

Illustrated Backpressure. Each diagram in the Figures 23 and 24 illustrates a single
backpressure type: diagram (a) shows the receive-backpressure, diagram (b) shows the
input-backpressure, and diagram (c) shows the receive-backpressure. During the exper-
iment, there is no backpressure backpropagation. However, we can observe received
backpressure and input backpressure. No output backpressure is created. Next, we discuss
the forward data flow through all pipeline stages in detail.

Input Service. The RT PS input service shall simulate the network behavior of a
persistent message burst. In other words, some connected device floods the network with
messages that are received and processed by the device under test. We configure the
input service to simulate such a behavior. Therefore, the service shall generate four critical
messages representing common control messages. In addition, the input service shall
generate the maximum possible number of non-critical messages per cycle to simulate the
message burst. Figures 23a and 24a show that the input service can generate, on average,
about 17 messages per cycle if the PF service does not accept best-effort messages (i.e., the

Machines 2023, 11, 973 39 of 55

PF service processes and sends only the four critical messages and drops the best-effort
messages). The message generation ratio drops to about 13 messages per cycle if the PF
service accepts best-effort messages for processing (i.e., the PF service processes and sends
four critical messages and all best-effort messages). Received backpressure is observable if
more messages are generated than the input service can process and forward.

Figure 24. Time-series diagram showing the system behavior during a single message burst interval.

Primary Function Service. Figures 23b and 24b show that the PF service can process
four critical messages and on average about eight best-effort messages. This results in
processing, on average, about 12 messages per cycle if best-effort routing is active (i.e., best-
effort messages shall be processed). When comparing this observation to Figure 21a, we
would expect a maximum message ratio of 10 messages per cycle. However, experiment 1
analyzed the maximum delivery ratio that can be guaranteed. The current experiment
shows that the system supports a higher average throughput/message ratio if message
delays can be accepted. During a message burst, the input backpressure (nearly) linearly
increases. The primary function can only process an average of 12 messages per cycle.
At the same time, the input service sends, on average, 13 messages per cycle, causing an
average increasing input backpressure ratio of one message per cycle. After about 500 ms,
the input backpressure increases to 500, which activates the trigger condition and results in
the parameter-based reconfiguration of the primary function routing mechanism to drop
all non-critical messages. This can be observed via the drop in the send counter and the
rapidly decreasing input backpressure. The backpressure decreases at a ratio of about
15 messages per cycle and processes the 500 messages in less than 35 ms. Figure 24a,b show
a negative correlation between their backpressure counters because of the following reason:
The received backpressure only increases if the input service is under a high load and
cannot process all generated messages. Hence, the input service can send fewer messages
to the primary function servicer. Consequently, the input backpressure remains constant
or decreases.

Output Service. Figures 23c and 24c show that the output services can process and
publish all its received messages. During the experiment, no output backpressure is generated.

MAPE Timing. Figure 25 shows a box plot of the MAPE loop’s timing characteristics.
We explained the individual characteristics in Section 7.1. Each column in Figure 25 has its
individual y-axis, scaled in microseconds, and shows the latency results for the execution
of a single MAPE step:

Machines 2023, 11, 973 40 of 55

1. M: The [SRC]to[CLT] latency corresponds to the monitoring step and denotes the
latency between the twinning at the service side (i.e., the source) and the processing
of the twinned data by the CLT.

2. AP: The [CLT]to[TRG] latency corresponds to the analyze–plan steps and denotes the
time the CLT requires to evaluate the trigger condition shown in Figure 22.

3. E: The [TRG]to[RST] latency corresponds to the execute step and denotes the time
to execute the series of commands and invariant checks required to reconfigure the
message routing of the primary function service.

4. MAP: The [SRC]to[TRG] latency shows the accumulated latency of the monitor,
analyze, and plan steps.

5. MAPE: The [SRC]to[RST] latency shows the accumulated latency of the entire
MAPE loop.

0

1

2

3

4

5

6

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

35

40

45

50

55

60

65

0

1

2

3

4

5

6

35

40

45

50

55

60

65

70
Latency

[SRC] to [CLT]
[CLT] to [TRG]
[TRG] to [RST]
[SRC] to [TRG]
[SRC] to [RST]

exp3-01-boxplots-durations

du
ra

tio
n

[m
ill

is
ec

on
ds

]

Latency=[SRC] to [CLT] Latency=[CLT] to [TRG] Latency=[TRG] to [RST] Latency=[SRC] to [TRG] Latency=[SRC] to [RST]

Figure 25. Box plot of the MAPE loop timings during parameter-based self-adaptation.

7.3. Interpretation

The monitoring timing analysis shows that PA and SA states can be twinned at a
maximum latency of approximately 6 ms, whereas the median is near 1 ms. The parameter-
based adaptation shows a maximum latency of approximately 64 ms. The results show a
maximum end-to-end latency of approximately 69 ms, which is the maximum time required
to execute all MAPE-K steps, including all invariant checks after the actual adaptation.
The observed system behavior shows that the implemented data flow model is robust
against message bursts and that message bursts do not result in the violation of real-time
constraints. In short, the experiment confirms that the SWF supports the twinning of PA
and SA states to establish a context-aware MAPE loop for CPS service self-adaptation.

8. Experiment 3: Service Update and Reconfiguration Characteristics

This experiment intends to validate the requirement R5. Therefore, the experiment’s
goal is to analyze the SWF’s architecture-based service update and the SWF’s parameter-
based service reconfiguration characteristics concerning its timing and the availability of
the system during the adaptation process from the point of view of a software engineer in
the context of designing a CPS control system that shall support zero-downtime updates
and the reconfiguration of CPS real-time control services. The experiment’s hypothesis is
that the SWF supports the updating and reconfiguration of real-time CPS control services
without causing service interruption and downtime. For hypothesis testing, the A/B service
deployment process as described in [31,36] shall be implemented, and the timings of the
individual update and reconfiguration steps shall be measured. Experimental and data
validity is ensured according to the statement in Section 5.2.

8.1. Experimental Design

Section 5 describes the general experimental setup and its instrumentation. Table 5
gives an overview of the experiment factors and dependent variables. Any elements
not explained here are introduced in Sections 4 and 5. The system sequence diagram in
Figure 26 shows the experiment-specific steps. The sequence diagram is kept minimalistic
and shows only the relevant interactions between the individual services that shall also be

Machines 2023, 11, 973 41 of 55

observable in the measurement results. The experiment is fully automated and is started by
the test engineer. In the setup phase, the CLT starts and configures all services. Each service
implements the cyclic processing pipeline and data flow model described in Section 4.3.
The RT PS Input service acts as a data generator and sends a single message per cycle to the
RT PF service. The RT PF A service receives the message, processes it, and sends it to the
RT PS output service. The RT PF A service is the service that shall be updated, i.e., replaced
by the RT PF B service. Note that the state transfer between services A and B is not part of
this evaluation and will be subject to future work. Still, we provide a short description due
to its importance in the overall process.

Table 5. Factors and dependent variables of experiment 3.

Type Name Value

Constants: Timing

Cycle time 1 ms
Management portion 15%
Primary function portion 70%
Twinning portion 15%
PF input portion 20%
PF function portion 30%
PF output portion 20%

Constants: Data flow

PA message payload size 1500 Byte
Number of twinned SA states per cycle 317
Size per twinned SA states 4 Byte
Number twinning messages per cycle 2
Number of PA messages per cycle 1

Factor: A/B
deployment process

Phase 1: Deploy PF B (PF B is a replica of PF A with the same complex-
ity, execution time, inputs, and outputs, as defined by the constant
factors above.)
Phase 2: Run PF B aside PF A
Phase 3: Termiante PF A

Dependent variables
Cycle usage
Messages received per cycle
Execution time per update and reconfiguration step

Table 5 summarizes the experimental configuration chosen to evaluate the timings
and the service behavior during the update and reconfiguration process. The reconfigu-
ration process itself is the factor under evaluation. The process can be divided into three
four phases:

1. In the first phase, the RT PF B service is deployed and configured. This phase consists
of steps s[02] to s[05]. The experiment is designed to evaluate the adaptation capa-
bilities of the SWF. In order to avoid any blurring effects, the PF B service remains
unchanged, unlike in an actual A/B testing situation. Instead, PF B is a replica of PF
A with the same complexity, execution time, inputs, and outputs as defined by the
constant factors shown in Table 5.

2. In the second phase, the RT PF B service is linked to the RT PS unput and output
services, resulting in the side-by-side operation of services A and B. Note that the side-
by-side operation represents the observation phase to compare the service behavior
in an A/B testing scenario. At the end of the second phase, both services receive the
same input messages and send their output messages to the RT PS output service.
This phase consists of steps s[07] and s[08].

3. Notes on the state transfer: If implemented, the state transfer between A and B would
be executed next, resulting in service B taking over the responsibilities of service A.
As noted, the evaluation of the state transfer a subject of future work. But we outline its
underlying mechanism and expected timing characteristics. In principle, the state
transfer is similar to updating the publisher and subscriber configurations (see steps
s[7] and s[8]) with one extra step. Hence, the time required for a state transfer is
comparable to steps s[7] and s[8]. In particular, the state transfer consists of the
following steps. First, the manager creates a new shared-memory logical object, which

Machines 2023, 11, 973 42 of 55

is denoted logical object B. Logical object B, at first, is a copy of the PF A service’s
configuration and data elements (i.e., logical object B is a copy of logical object A). In
the second step, the manager appends all elements required by the PF B service, such
as variables, inputs, and outputs, to logical object B. Third, the publisher service is
configured to perform a memory copy at the end of each cycle to transfer the state
from logical object A to logical object B. The copy operation ensures that logical object
B seamlessly obtains all the state information from logical object A. At this stage,
service A is still the active service executing asset control. The publisher service is
responsible for ensuring system integrity during side-by-side operations. To that aim,
the publisher is configured (a) to perform the necessary twinning for A/B testing and
(b) not to forward output signals of service B that interfere with service A’s output
signals. The engineering team is responsible for creating an automation script that
properly configures all relevant services, such as logical object B and the publisher.
The twinning data are used for the (manual or automated) validation of service B
behavior. If service B operates as intended, the publisher is reconfigured to block all
signals of service A and simultaneously forward all signals of service B. At this stage,
service B seamlessly becomes the active service and service A becomes the passive
service. If the system operates as intended, the manager can terminate service A.
Otherwise, the manager service or an operator can trigger a rollback by reconfiguring
the publisher to its old state and terminating service B. Additional details about the
described sequence can be found in our previous works [6,31].

4. In the last phase, the RT PF A service is terminated if the RT PF B service operates as
intended, which leaves the system in the desired post-update state.

:CLT
Update and

Reconfig. Manager

:RT PF A
PA Control Function

every 1ms:
send: 1 msg

s[10]: Terminate A

: RT PS Input
Data Generator

terminate

:RT PF B
new

PA Control Function

Test
Engineer

ssh: start test

:RT PS Output
Data Sink

start

every 1 ms:
sub & route
process
pub

every 1ms:
send: 1 msg

s[02]: Start RT PF B

Setup Phase

s[01]: Observe system

s[03]: Connect to B
s[04]: Configure B
s[05]: Setup twinning of B
s[06]: Observe system

s[08]: Link B to Output

s[09]: Observe system

s[07]: Link Input to B

s[11]: Observe system

twin

Si
de

-b
y-

Si
de

 O
pe

ra
tio

n
every 1 ms: Pipeline Execution with Twinning

D
ur

in
g

th
is

 p
ha

se
, c

on
tin

uo
us

ex
pe

rim
en

ta
tio

n
(e

.g
.,

A/
B

Te
st

in
g)

ca
n

be
 p

er
fo

rm
ed

Figure 26. System sequence diagram showing the A/B service deployment process described in [31].

During and between these phases, all service states are continuously monitored,
providing the necessary context to implement automated failure-detection and rollback
mechanisms, such as the MAPE-K approach demonstrated in Section 7. In this experiment,
the observing (i.e., monitoring) steps are used only for demonstration. Table 6 describes the

Machines 2023, 11, 973 43 of 55

intention and details of the individual process steps in the present experiment. The table
also shows the results of the duration measurement of each step.

Notes on distributed orchestration: Local service updates and reconfigurations may
affect or depend on other local and remote services. Hence, service updates may result in
a complex chain of distributed system alterations. This may include the deployment and
termination of services, the reconfiguration of input and output signals, and the update of
MAPE elements and rules across different criticality layers in the system. To ensure the
proper coordination of these alterations, the SWF is designed according to the hierarchical
control pattern with knowledge repositories for each MAPE loop as per Weyns et al. [39].
Our previous work [31] provides detailed insights into the architectural requirements, the
individual design aspects of the different system layers, and the hierarchical coordination
of A/B testing in a distributed OT environment. As noted in Section 1.3, the empirical
evaluation focuses on the embedded systems layer. Hence, the detailed investigation of
distributed orchestration is a subject of future work.

Table 6. Service update and reconfiguration process, including measured execution times.

Step Name Duration Description

s[01] Observe 4.98 s Measure system behavior before the start of the update process.

s[02] Start B * 6.51 s CLT starts service B.

s[03] Connect to B 0.54 s CLT establishes a management connection to service B.

s[04] Configure B 2.85 s CLT configures the timing and cycle portions of service B.

s[05] Setup twinning of B 0.84 s CLT establishes the monitoring (i.e., twinning).

s[06] Observe 5.96 s Measure system behavior before linking B to the input and output services.

s[07] Link Input to B 6.34 s

CLT registers service B as subscriber to all messages published by the RT PS input service. Therefore,
the CLT must update the configurations of both services, requiring the execution of several
reconfiguration commands. The CLT uses twinning information to validate service invariants to
ensure system integrity after each reconfiguration.

s[08] Link B to Output 6.46 s Similar to s[07], but the RT PS Output service subscribes to all published messages of B.

s[09] Observe 5.17 s Measure system behavior when B is running side-by-side with A.

s[10] Terminate A** 0.50 s CLT terminates service A, which deregisters itself from all subscriptions.

s[11] Observe 5.37 s Measure system behavior after update process completion.

Sum
All steps 45.2 s
Observe steps only 21.2 s
No observe steps 24.3 s

* B refers to the RT PF B service. ** A refers to the RT PF A service.

8.2. Results and Analysis

Figure 27 shows the experiment results and is structured as four diagrams:

Diagram(a) This diagram shows the time series data of the RT PS input service that
acts as a data generator and sends messages to the RT PF service.

Diagram(b) This diagram shows the time series data of the RT PF service A that pro-
cesses the received data and forwards them to the RT PS output service.

Diagram(c) This diagram shows the time series data of the RT PF service B that im-
plements the same functional behavior as service A. Service A shall be
replaced with service B.

Diagram(d) This diagram shows the time series data of the RT PS output service that
processes the received data from A and B and simulates data forwarding.

The time series diagrams show the cycle usage and data flow between the services
during the entire update and reconfiguration process:

• Primary y-axis: The cycle usage is plotted along the primary y-axis on the left.
• Secondary y-axis: The number of messages received per cycle is plotted along the

secondary y-axis on the right side.

Machines 2023, 11, 973 44 of 55

• Annotations: Each colored area represents the execution time of its corresponding
process step, as indicated by the alternating labels at the top and bottom left side of
each colored area.

The individual steps shown in Figure 27 are described in the previous sections. In the
remainder of this section, we focus on analyzing interesting observations. First, Table 7
compares the observed system behavior before and after the update process, i.e., before
step s[02] and after step s[10].

00 05 10 15 20 25 30 35 40 45

60

80

100

0

2

4

00 05 10 15 20 25 30 35 40 45

60

80

100

0

2

4

00 05 10 15 20 25 30 35 40 45

60

80

100

0

2

4

00 05 10 15 20 25 30 35 40 45

60

80

100

0

2

4

Steps
s[01]: 4.979986 s
s[02]: 6.507972 s
s[03]: 0.541003 s
s[04]: 2.849001 s
s[05]: 0.841003 s
s[06]: 5.959000 s
s[07]: 6.338003 s
s[08]: 6.459998 s
s[09]: 5.171998 s
s[10]: 0.495020 s
s[11]: 5.37008 s

Sum Steps
All Actions: 45.179996 s
Re-config.: 24.32002 s
Monitoring: 21.147994 s

Cycle Usage
Usage - RT PS Input
Usage - RT Ctrl Fct A
Usage - RT Ctrl Fct B
Usage - RT PS Output

Receive Count
Receive - RT PS Input
Receive - RT Ctrl Fct A
Receive - RT Ctrl Fct B
Receive - RT PS Output

exp2-00-dual-Axis

Execution Time [seconds]

Execution Time [seconds]

Execution Time [seconds]

Execution Time [seconds]

C
yc

le
 U

sa
ge

 [%
]

R
cv

 C
ou

nt
 [

]

C
yc

le
 U

sa
ge

 [%
]

R
cv

 C
ou

nt
 [

]

C
yc

le
 U

sa
ge

 [%
]

R
cv

 C
ou

nt
 [

]

C
yc

le
 U

sa
ge

 [%
]

R
cv

 C
ou

nt
 [

]

(a) Real-Time Protocol Stack Input (RT PS Input)

(b) Real-Time Primary Function Instance A (RT PF A)

(c) Real-Time Primary Function Instance B (RT PF B)

(d) Real-Time Protocol Stack Output (RT PS Output)

s[01]

s[01]

s[01]

s[01]

s[02]

s[02]

s[02]

s[02]

s[03]

s[03]

s[03]

s[03]

s[04]

s[04]

s[04]

s[04]

s[05]

s[05]

s[05]

s[05]

s[06]

s[06]

s[06]

s[06]

s[07]

s[07]

s[07]

s[07]

s[08]

s[08]

s[08]

s[08]

s[09]

s[09]

s[09]

s[09]

s[10]

s[10]

s[10]

s[10]

s[11]

s[11]

s[11]

s[11]

Figure 27. Observed service update and reconfiguration process.

Table 7. Comparison of system behavior before and after the update.

Service Comparision

RT PS Input

The update process does not affect the number of messages to be processed in each cycle. The cycle usage in the first phase after
the update is equal to the cycle usage before the update. However, after approximately one second, the cycle usage increases by
about 5%. A subsequent investigation has shown a software bug in the subscriber deregistration sequence. As a consequence, the
RT PS input service executes several retries to send data to the no-longer-running RT PF A service. This observation does not
invalidate the experiment results. Instead, it highlights the robustness of the implementation, showing that individual service
failures do not propagate through the system but are observable via the twinning mechanisms.

RT PF A vs. B The update process does not affect the cycle usage and the number of messages to be processed per cycle.

RT PS Output The update process does not affect the cycle usage and the number of messages to be processed per cycle.

Second, we analyze the individual steps during the updating process. The results
show that the startup of service B does not affect the RT PS input and output services but
has significant side effects on the RT PF A service, which can be observed at the beginning
of step s[02]. Our subsequent analysis of the implementation reveals that the observed
side effects correlate with the allocation and initialization of shared memory elements (i.e.,
several queues and configurations per pipeline stage). During this phase, cache, bus, and
memory contention are high, which may result in the observed side effects. An improved
memory-allocation sequence could reduce these side effects.

Machines 2023, 11, 973 45 of 55

The subscription of service B to all messages of the RT PS input service in step s[07]
has the following effects:

• The cycle usage of the RT PS input service increases slightly because of the additional
message that is sent to service B.

• The cycle usage of service B increases by about 8% once the link between the RT
PS input service and service B is established because service B starts to process the
data received.

• Once the link between the services is established, the cycle usage of service A
slightly increases.

• The newly established link does not affect the RT PS output service.

The subscription of the RT PS output service to all messages of service B in step s[08]
has the following effects:

• Step s[08] does not affect service A or the RT PS input service.
• Once the link between the services is established, the cycle usage of service B decreases.
• After the successful subscription of the RT PS output service, the output service

receives two messages, i.e., one message from each service.

The RT PF A service is terminated in step s[10], reducing the number of messages
received by the RT PS output service by one. All other effects of this step are described
in Table 7.

8.3. Interpretation

This experiment confirms that the SWF supports the updating and reconfiguring
of real-time CPS control services without causing real-time constraint violations, service
interruption, and downtime. The most important lesson of this experiment is that significant
side effects can occur during the service startup phase. In particular, the high CPU cache,
bus, and memory contention during memory allocation and initialization must be reduced
to minimize the potential of cycle time violations under high load conditions. In short, the
experiment confirms that the SWF supports the deployment, update, and A/B testing of
real-time CPS services without causing system interruption and downtime.

9. Discussion
9.1. Research Agenda: Coverage of Research Questions and Requirements

Table 8 summarizes the requirements and research question coverage based on the
interpretation of the conducted experiments.

Table 8. Relationships between experiments, requirements, and research questions.

Requirement RQ Experiment Properties

R1 Primary Asset
Closed-Loop Control RQ2 Exp.1 (Section 6) Figures 13 and 14 confirm that the closed-loop cycle-time remains below 1 ms.

R2 Primary Asset
Monitoring Fidelity RQ1 Exp.1 (Section 6) Figures 19–21 confirm that the logical objects support the sub-millisecond twinning of primary asset data.

R3 Secondary Asset
Monitoring Fidelity RQ1 Exp.1 (Section 6) Figures 19–21 confirm that the logical objects support the sub-millisecond twinning of secondary asset data.

R4 Secondary Asset
Closed-Loop Control RQ2 Exp.2 (Section 7)

Figures 23 and 24 illustrate that the logical objects support context- and self-aware parameter-based self-
adaptation capabilities to provide self-protection mechanisms for mitigating environmental and change-
enactment uncertainties. Figure 25 shows that the MAPE loop worst-case execution time for reliable (i.e.,
continuous self-monitoring and invariant checking) parameter-based self-adaptation is below 70 ms.

R5 Secondary
Asset Management

RQ2
RQ3 Exp.3 (Section 8)

Figure 27 demonstrates how parameter-based and architecture-based adaptation can be combined with the
logical objects’ capabilities to monitor and orchestrate service deployment and runtime experimentation,
demonstrating that the software framework effectively supports CD and CE for CPS at the embedded
system layer.

R6 Servitization RQ3
Section 5
Exp. Setup and
Instrumentation

Figure 10 shows that the experimental setup provides dedicated interfaces for local and remote monitoring,
orchestration, automation, control, and adaptation. The effectiveness and service-oriented nature of these
interfaces is demonstrated in all experiments.

RQ1 Context- and Self-Aware Ability, RQ2 Adaptability, RQ3 Manageability

Machines 2023, 11, 973 46 of 55

We can therefore state that our concept covers all the requirements and provides
answers to all our research questions. Even though the experimental scope of the present
work is limited to the control layer and the experimental setup is limited to the laboratory
scale, we claim that we can trust these results. This is because the experimental setup is
representative of real mission-critical industrial setups, as are the short cycle times and
hard real-time constraints that we fulfilled. In particular, it can be assumed that commercial
industrial-grade software and hardware platforms offer similar or higher performance at
the control layer. Furthermore, the timing requirements and resource constraints are less
stringent in any layer above the embedded control layer, so the SWF and the implemented
self-adaptive system models remain applicable.

9.2. Design Space: Self-Adaptive Software Models to Realize DevOps for Smart CPS

Section 1 states the two main research questions addressed by the case study presented
in this work. In this section, we discuss how the demonstrated experiments can answer
these questions. To structure our discussion, we refer to the design space and the AdEpS
model shown in Figure 1 and to the outline of this work’s contributions provided in Table 1.

In this work, we argue that modern software systems—such as CPS-, cloud-, and
service-oriented systems—must be designed for technical sustainability to satisfy short- and
long-term stakeholder concerns in today’s dynamic industrial environments. We further
argue that technical sustainability can be achieved by adhering to DevOps principles. While
DevOps is a well-established concept in the IT domain, it is de facto not implemented in
the CPS, OT, or embedded system domains. Its transfer to these domains is considered
a challenging problem. We propose implementing the AdEpS model (Adaptation and
Evolution processes for Sustainability) to address this challenge.

To achieve that aim, we follow an architectural approach and propose self-adaptive
system design models for the integrated management of CPS adaptation and evolution
processes. The evolution processes address the development/engineering-centric uncertain-
ties, while the adaptation processes mitigate the operations/runtime-centric uncertainties
illustrated in Figure 1b.

Our approach addresses goal uncertainty through a microservice-based design. This
design implements the MAPE-K pattern for decentralized control and supports parameter-
based and architecture-based adaptation mechanisms to realize runtime adaptation and
evolution at all CPS layers without causing system interruptions and downtime (see
the design models in Table 1). We use embedded and interconnected logical objects as
knowledge repositories to integrate and coordinate the adaptation processes. In addition,
these logical objects provide a unified service-oriented interface to all MAPE-K elements
for humans and machines alike. Hence, these logical objects can provide the context-
and self-awareness to implement self-protection mechanisms to mitigate environmental
uncertainty and change-enactment uncertainty, which is confirmed via the empirical
experiments summarized in Table 1. Self-protection mechanisms are essential to ensure the
reliable execution of both machine- and human-driven change processes.

As demonstrated by the experiments, our approach supports four DevOps capabilities
that are essential to support the IPS2 use cases relevant to our industrial case study (see
Table 1 C1 to C4 and U1 to U4):

• Reliable remote asset monitoring is supported by the logical objects’ monitoring
capabilities. Their service-oriented nature enables the dynamic subscription to asset
information at runtime, which supports the dynamic composition of monitoring and
alerting mechanisms.

• Reliable remote asset optimization relies on asset monitoring to drive, e.g., a machine-
learning model that predicts the optimal operational parameters. The machine-driven
parameter-based adaptation of CPS services, i.e., their logical objects, enables the
adjustment of the runtime parameters based on the predicted parameter set without
causing system downtime.

Machines 2023, 11, 973 47 of 55

• Reliable remote asset commissioning and maintenance is driven by monitoring,
self-protection, and architecture-based adaptation mechanisms. During commission-
ing and maintenance work, engineers typically reconfigure the underlying software
system. This involves parametric changes (e.g., update of control parameters) and ar-
chitectural changes (e.g., new input signal, software update, new communication link).
Let us anticipate that logical objects can be used in future scenarios to pre-validate
such changes in test environments. However, due to model uncertainty [41], it can only
be guaranteed that testing (and simulation) can cover some aspects of the operational
CPS and its environment. Hence, any reconfiguration and deployment of software
and hardware in an operational environment are accompanied by change-enactment
uncertainties and environmental uncertainties. In order to avoid unforeseen disrup-
tions, it is of utmost importance to ensure the reliable execution of any adaptation
to the CPS through self-protection mechanisms. In addition to self-protection, our
approach also provides capabilities to mitigate model uncertainty through runtime
experimentation (i.e., CE). The support for CE allows engineers to validate changes
in the real operational environment before their actual deployment, which brings
about the following two benefits. First, it can reduce unexpected interruptions and
limited service quality. Second, engineers can use the data obtained during runtime
experimentation to update their models to reflect the observations better, effectively
mitigating model uncertainty. In addition, interruption-free CE fosters the vision of
self-evolving computing systems [15] that rely on runtime experiments to validate
system changes proposed by their machine-driven evolutionary engine.

9.3. Summary

Summing up, the conducted experiments demonstrate that our DT-enhanced archi-
tectural approach promotes the implementation of DevOps capabilities for CPSs and
embedded systems. Logical objects play a central role since they provide service-oriented
access to the MAPE-K elements, which is required to implement reliable and effective
change processes across CPS layers and lifecycle phases. Based on the AdEpS model, we
discussed the sources of uncertainty that our approach can address. In short, our work
demonstrates that DevOps capabilities can be feasibly implemented for mission-critical
high-availability CPS, and these capabilities not only enhance the technical sustainabil-
ity of CPS but also promote the implementation of modern industrial use cases. Our
design models’ architectural nature (i.e., technology- and protocol-agnosticism) makes
them transferable to other types of smart software systems operating on the embedded
system layer or above.

10. Conclusions and Future Work

This article proposes a holistic technical concept for implementing an electronic control
architecture that enables smart CPS to autonomously adapt both their physical space and
cyberspace to varying requirements and uncertainties in their operational context and
during runtime. This is achieved through a DT-enhanced control service for resource-
constrained embedded devices that control high-availability mission-critical CPS. In an
experimental setup that reflects actual electronic controls and communication interfaces
used in modern mission-critical CPS, we showed that our concept achieves sub-millisecond
real-time twinning (i.e., monitoring) of the CPS’s physical and cyberspace. Consequently,
our concept can be applied to sub-millisecond real-time control of both the physical and
virtual electronic controls underlying the physical assets of the CPS.

From an application perspective, this concept represents a significant step toward
transferring DevOps to CPS and, more generally, embedded systems. DevOps facilitates
these systems’ continuous adaptation to emergent needs and uncertainties, like changing
user requirements and changes in their operational context. These properties are essential
to address the dynamic nature and uncertainties of modern industrial environments such
as Industrial Product–Service Systems. The key to this achievement is a microservice-

Machines 2023, 11, 973 48 of 55

based design for orchestrating natively deployed embedded services. A secondary asset
Digital Twin model complements the design (a) to reflect the operational cyberspace for
context- and self-aware decision-making and adaptation and (b) to provide service-oriented
access to the CPS’s MAPE-K elements. This enables zero-downtime architecture-based
and parameter-based service adaptation for continuous deployment (CD) and continuous
experimentation (CE) in CPS.

In order to achieve the required levels of criticality, the concept includes self-protection
features through zero-downtime parameter-based self-adaptation. This enables emerging
industrial applications, including

• Reliable and dynamically reconfigurable remote monitoring;
• Reliable, interactive, and automated remote commissioning and maintenance;
• Reliable, interactive, and automated software deployment; and
• Reliable, interactive, and automated runtime experiments (i.e., A/B testing) to validate

changes in the operational environment before their deployment to production.

Future perspectives include transferring the experimental implementation to real
CPS to confirm performance and criticality measurements. The application layer’s perfor-
mance can be evaluated in such settings, and the results can be used to propose further
applications. Furthermore, in-depth investigations of A/B testing of control functions,
the potential of the side-by-side operation to increase system safety and fault tolerance,
and security aspects of the system design are promising extensions to this research. A
visionary opportunity is the development of machine-driven evolutionary engines [15]
that use runtime experiments (i.e., A/B testing) to validate evolution steps in the real
operational environment to implement autonomous self-evolving computing systems that
continuously improve their safety, fault tolerance, and security levels.

Author Contributions: Conceptualization, J.D. and G.M.; methodology, J.D., G.M. and A.R.; software,
J.D.; validation, J.D. and M.E.; formal analysis, J.D. investigation, J.D.; resources, J.D., G.M. and M.E.;
data curation, J.D.; writing—original draft preparation, J.D.; writing—review and editing, A.R. and
G.M.; visualization, J.D.; supervision, G.M.; project administration, G.M.; funding acquisition, G.M.
and M.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Andritz Hydro GmbH, which has been supported by the
Austrian Research Funding Agency FFG. Supported by TU Graz Open Access Publishing Fund.

Data Availability Statement: Simulation data can be made available upon request by the
corresponding author.

Acknowledgments: Apart from the fund providers, the authors kindly thank the research team
members and reviewers for their critical comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API application programming interface
BE best-effort
CLT command line tool
CPS Cyber-Physical System
CU control unit
DevOps DevelopmentOperation
DT Digital Twin
FIFO first-in–first-out
IIoT Industrial Internet of Things
IoT Internet of Things
IPS2 Industrial Product-Service System
IT Information Technology

Machines 2023, 11, 973 49 of 55

LO logical object
MAPE-K monitor-analyze-plan-execute-knowledge
OLS ordinary least squares
OT Operation Technology
PA primary asset
PF primary function
PFP primary function portion
PS protocol stack
R requirement
RE reliable
RQ research questions
RT real time
RO real object
SA secondary asset
SCADA supervisory control and data acquisition
SSH secure socket shell
SWF software framework
UC use case

Appendix A. Experiment 1

0 10 20
0

5

10

15

20

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Input Portion [%]
5
10
15
20
25
30

exp1-df-02-rcv: RT Primary Function

Rcvs pC [] Rcvs pC [] Rcvs pC [] Rcvs pC [] Rcvs pC [] Rcvs pC []

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

y=3

y=7

y=9
y=10

y=14

y=18

Figure A1. PF received counter of the RT PF service, showing the number of received messages
per cycle.

0 2 4
0

5

10

15

20

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

Input Portion [%]
5
10
15
20
25
30

exp1-df-03-rcv-drop: RT Primary Function

Rcv-Drops pC [] Rcv-Drops pC [] Rcv-Drops pC [] Rcv-Drops pC [] Rcv-Drops pC [] Rcv-Drops pC []

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

y=4

y=7

y=10

y=12

y=15

y=19

Figure A2. PF received drop counter of the RT PF service, showing the number of messages dropped
during the receiving step due to e.g., backpressure and routing decisions.

Machines 2023, 11, 973 50 of 55

0 5 10 15 20
0

5

10

15

20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Input Portion [%]
5
10
15
20
25
30

exp1-df-04-send: RT Primary Function

Sends pC [] Sends pC [] Sends pC [] Sends pC [] Sends pC [] Sends pC []

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

y=1

y=5

y=8
y=10

y=14

y=18

Figure A3. PF sending counter of the RT PF service, showing the number of messages sent per cycle.

−0.5 0 0.5
0

5

10

15

20

−0.5 0 0.5−0.5 0 0.5−0.5 0 0.5−0.5 0 0.5−0.5 0 0.5

Input Portion [%]
5
10
15
20
25
30

exp1-df-05-send-drop: RT Primary Function

Snd-Drops pC [] Snd-Drops pC [] Snd-Drops pC [] Snd-Drops pC [] Snd-Drops pC [] Snd-Drops pC []

M
es

sa
ge

s
pe

r
C

yc
le

 [
]

Input Portion [%]=5 Input Portion [%]=10 Input Portion [%]=15 Input Portion [%]=20 Input Portion [%]=25 Input Portion [%]=30

y=19 y=19 y=19 y=19 y=19 y=19

Figure A4. PF sending drop counter of the RT PF service, showing the number of messages dropped
during the send step due to e.g., backpressure at the message destination.

Appendix B. Screenshots

Figure A5. Screenshot of the KSysGuard dashboard during experiment 1.

Machines 2023, 11, 973 51 of 55

Figure A6. Screenshot of the KSysGuard dashboard during experiment 2.

References
1. Baheti, R.; Gill, H. Cyber-physical systems. Impact Control. Technol. 2011, 12, 161–166.
2. Jazdi, N. Cyber physical systems in the context of Industry 4.0. In Proceedings of the 2014 IEEE International Conference on

Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–24 May 2014; pp. 1–4.
3. Aheleroff, S.; Mostashiri, N.; Xu, X.; Zhong, R.Y. Mass personalisation as a service in industry 4.0: A resilient response case study.

Adv. Eng. Inform. 2021, 50, 101438. [CrossRef]
4. Meier, H.; Roy, R.; Seliger, G. Industrial Product-Service Systems—IPS 2. CIRP Ann. 2010, 59, 607–627. [CrossRef]
5. Brissaud, D.; Sakao, T.; Riel, A.; Erkoyuncu, J.A. Designing value-driven solutions: The evolution of industrial product-service

systems. CIRP Ann. 2022, 71, 553–575. [CrossRef]
6. Dobaj, J.; Riel, A.; Macher, G.; Egretzberger, M. A Method for Deriving Technical Requirements of Digital Twins as Industrial

Product-Service System Enablers. In Systems, Software and Services Process Improvement; Yilmaz, M., Clarke, P., Messnarz, R.,
Wöran, B., Eds.; Springer International Publishing: Cham, Switzerland, 2022; Volume 1646; Communications in Computer and
Information Science; pp. 378–392. [CrossRef]

7. Römer, K.; Mattern, F. Towards a unified view on space and time in sensor networks. Comput. Commun. 2022, 28, 1484–1497.
[CrossRef]

8. Weyns, D.; Andersson, J.; Caporuscio, M.; Flammini, F.; Kerren, A.; Löwe, W. A research agenda for smarter cyber-physical
systems. J. Integr. Des. Process. Sci. 2021, 25, 27–47. [CrossRef]

9. Weyns, D.; Caporuscio, M.; Vogel, B.; Kurti, A. Design for sustainability = runtime adaptation ∪ evolution. In Proceedings of the
2015 European Conference on Software Architecture Workshops, Dubrovnik/Cavtat, Croatia, 7–11 September 2015; pp. 1–7.

10. Becker, C.; Chitchyan, R.; Duboc, L.; Easterbrook, S.; Mahaux, M.; Penzenstadler, B.; Rodriguez-Navas, G.; Salinesi, C.; Seyff, N.;
Venters, C.; et al. The Karlskrona manifesto for sustainability design. arXiv 2014, arXiv:1410.6968.

11. Taing, N.; Wutzler, M.; Springer, T.; Cardozo, N.; Schill, A. Consistent unanticipated adaptation for context-dependent applications.
In Proceedings of the 8th ACM International Workshop on Context-Oriented Programming, Rome, Italy, 17–22 July 2016;
pp. 33–38.

12. Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In
Transdisciplinary Perspectives on Complex Systems; Kahlen, F.J., Flumerfelt, S., Alves, A., Eds.; Springer International Publishing:
Cham, Switzerland, 2017; pp. 85–113. [CrossRef]

13. Pahl, C.; Jamshidi, P.; Weyns, D. Cloud architecture continuity: Change models and change rules for sustainable cloud software
architectures. J. Softw. Evol. Process. 2017, 29, e1849. [CrossRef]

14. Tavčar, J.; Horvath, I. A review of the principles of designing smart cyber-physical systems for run-time adaptation: Learned
lessons and open issues. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 145–158. [CrossRef]

15. Weyns, D.; Bäck, T.; Vidal, R.; Yao, X.; Belbachir, A.N. The vision of self-evolving computing systems. J. Integr. Des. Process. Sci.
2022, 26, 351–367. [CrossRef]

16. Riel, A.; Kreiner, C.; Macher, G.; Messnarz, R. Integrated design for tackling safety and security challenges of smart products and
digital manufacturing. CIRP Ann. 2017, 66, 177–180. [CrossRef]

17. Dobaj, J.; Schuss, M.; Krisper, M.; Boano, C.A.; Macher, G. Dependable mesh networking patterns. In Proceedings of the 24th
European Conference on Pattern Languages of Programs, Irsee, Germany, 3–7 July 2019; Boldt, T., Ed.; ACM: New York, NY, USA,
2019; pp. 1–14. [CrossRef]

http://doi.org/10.1016/j.aei.2021.101438
http://dx.doi.org/10.1016/j.cirp.2010.05.004
http://dx.doi.org/10.1016/j.cirp.2022.05.006
http://dx.doi.org/10.1007/978-3-031-15559-8_27
http://dx.doi.org/10.1016/j.comcom.2004.12.036
http://dx.doi.org/10.3233/JID210010
http://dx.doi.org/10.1007/978-3-319-38756-7_4
http://dx.doi.org/10.1002/smr.1849
http://dx.doi.org/10.1109/TSMC.2018.2814539
http://dx.doi.org/10.3233/JID-220003
http://dx.doi.org/10.1016/j.cirp.2017.04.037
http://dx.doi.org/10.1145/3361149.3361174

Machines 2023, 11, 973 52 of 55

18. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]

19. Siqueira, F.; Davis, J.G. Service Computing for Industry 4.0: State of the Art, Challenges, and Research Opportunities. ACM
Comput. Surv. 2022, 54, 1–38. [CrossRef]

20. McManus, H.; Hastings, D. A framework for understanding uncertainty and its mitigation and exploitation in complex systems.
IEEE Eng. Manag. Rev. 2006, 34, 81. [CrossRef]

21. Dobaj, J.; Iber, J.; Krisper, M.; Kreiner, C. A Microservice Architecture for the Industrial Internet-Of-Things. In Proceedings of the
23rd European Conference on Pattern Languages of Programs, Irsee, Germany, 4–8 July 2018; ACM: New York, NY, USA, 2018;
pp. 1–15. [CrossRef]

22. Qu, M.; Yu, S.; Chen, D.; Chu, J.; Tian, B. State-of-the-art of design, evaluation, and operation methodologies in product service
systems. Comput. Ind. 2016, 77, 1–14. [CrossRef]

23. Humble, J.; Molesky, J. Why Enterprises Must Adopt Devops to Enable Continuous Delivery. Cut. IT J. 2011, 24, 6–12.
24. Ebert, C.; Gallardo, G.; Hernantes, J.; Serrano, N. DevOps. IEEE Softw. 2016, 33, 94–100. [CrossRef]
25. Leite, L.; Rocha, C.; Kon, F.; Milojicic, D.; Meirelles, P. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 2020,

52, 1–35. [CrossRef]
26. Damjanovic-Behrendt, V.; Behrendt, W. An open source approach to the design and implementation of Digital Twins for Smart

Manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 366–384. [CrossRef]
27. Minerva, R.; Lee, G.M.; Crespi, N. Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural

Models. Proc. IEEE 2020, 108, 1785–1824. [CrossRef]
28. Wang, Z.; Gupta, R.; Han, K.; Wang, H.; Ganlath, A.; Ammar, N.; Tiwari, P. Mobility Digital Twin: Concept, Architecture, Case

Study, and Future Challenges. IEEE Internet Things J. 2022, 9, 17452–17467. [CrossRef]
29. Bellavista, P.; Bicocchi, N.; Fogli, M.; Giannelli, C.; Mamei, M.; Picone, M. Requirements and design patterns for adaptive,

autonomous, and context-aware digital twins in industry 4.0 digital factories. Comput. Ind. 2023, 149, 103918. [CrossRef]
30. Lwakatare, L.E.; Karvonen, T.; Sauvola, T.; Kuvaja, P.; Olsson, H.H.; Bosch, J.; Oivo, M. Towards DevOps in the embedded

systems domain: Why is it so hard? In Proceedings of the 2016 49th Hawaii International Conference On System Sciences (Hicss),
Koloa, HI, USA, 5–8 January 2016; pp. 5437–5446.

31. Dobaj, J.; Riel, A.; Krug, T.; Seidl, M.; Macher, G.; Egretzberger, M. Towards digital twin-enabled DevOps for CPS providing
architecture-based service adaptation & verification at runtime. In Proceedings of the 17th Symposium on Software Engineering
for Adaptive and Self-Managing Systems, Pittsburgh, PA, USA, 18–23 May 2022; Schmerl, B., Maggio, M., Cámara, J., Eds.; ACM:
New York, NY, USA, 2022; pp. 132–143. [CrossRef]

32. Directorate-General for Research and Innovation. Industry 5.0—Towards a Sustainable, Human-Centric and Resilient Eu-
ropean Industry. Available online: https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/
publications/all-publications/industry-50-towards-sustainable-human-centric-and-resilient-european-industry_en (accessed on
1 October 2023).

33. Aheleroff, S.; Huang, H.; Xu, X.; Zhong, R.Y. Toward sustainability and resilience with Industry 4.0 and Industry 5.0. Front.
Manuf. Technol. 2022, 2, 951643. [CrossRef]

34. Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst.
2021, 61, 530–535. [CrossRef]

35. Zizic, M.C.; Mladineo, M.; Gjeldum, N.; Celent, L. From industry 4.0 towards industry 5.0: A review and analysis of paradigm
shift for the people, organization and technology. Energies 2022, 15, 5221. [CrossRef]

36. Quin, F.; Weyns, D.; Galster, M.; Silva, C.C. A/B Testing: A Systematic Literature Review. arXiv 2023, arXiv:2308.04929.
37. Haberfellner, R.; de Weck, O.; Fricke, E.; Vössner, S. Process Models: Systems Engineering and Others. In Systems Engineering:

Fundamentals and Applications; Springer International Publishing: Cham, Switzarland, 2019; pp. 27–98. [CrossRef]
38. Dobaj, J.; Krisper, M.; Macher, G. Towards Cyber-Physical Infrastructure as-a-Service (CPIaaS) in the Era of Industry 4.0. In

Systems, Software and Services Process Improvement; Walker, A., O’Connor, R.V., Messnarz, R., Eds.; Communications in Computer
and Information Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 1060, pp. 310–321. [CrossRef]

39. Weyns, D.; Schmerl, B.; Grassi, V.; Malek, S.; Mirandola, R.; Prehofer, C.; Wuttke, J.; Andersson, J.; Giese, H.; Göschka, K.M. On
Patterns for Decentralized Control in Self-Adaptive Systems. In Software Engineering for Self-Adaptive Systems II; de Lemos, R.,
Giese, H., Müller, H.A., Shaw, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume
7475, pp. 76–107. [CrossRef]

40. La Iglesia, D.G.D.; Weyns, D. MAPE-K Formal Templates to Rigorously Design Behaviors for Self-Adaptive Systems. ACM Trans.
Auton. Adapt. Syst. 2015, 10, 1–31. [CrossRef]

41. Schneider, G.F.; Wicaksono, H.; Ovtcharova, J. Virtual engineering of cyber-physical automation systems: The case of control
logic. Adv. Eng. Inform. 2019, 39, 127–143. [CrossRef]

42. Kuehner, K.J.; Scheer, R.; Strassburger, S. Digital twin: Finding common ground—A meta-review. Procedia CIRP 2021, 104, 1227–
1232. [CrossRef]

43. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415.
[CrossRef]

http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/3478680
http://dx.doi.org/10.1109/EMR.2006.261384
http://dx.doi.org/10.1145/3282308.3282320
http://dx.doi.org/10.1016/j.compind.2015.12.004
http://dx.doi.org/10.1109/MS.2016.68
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1080/0951192X.2019.1599436
http://dx.doi.org/10.1109/JPROC.2020.2998530
http://dx.doi.org/10.1109/JIOT.2022.3156028
http://dx.doi.org/10.1016/j.compind.2023.103918
http://dx.doi.org/10.1145/3524844.3528057
https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/industry-50-towards-sustainable-human-centric-and-resilient-european-industry_en
https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/industry-50-towards-sustainable-human-centric-and-resilient-european-industry_en
http://dx.doi.org/10.3389/fmtec.2022.951643
http://dx.doi.org/10.1016/j.jmsy.2021.10.006
http://dx.doi.org/10.3390/en15145221
http://dx.doi.org/10.1007/978-3-030-13431-0_2
http://dx.doi.org/10.1007/978-3-030-28005-5_24
http://dx.doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1145/2724719
http://dx.doi.org/10.1016/j.aei.2018.11.009
http://dx.doi.org/10.1016/j.procir.2021.11.206
http://dx.doi.org/10.1109/TII.2018.2873186

Machines 2023, 11, 973 53 of 55

44. Cimino, C.; Negri, E.; Fumagalli, L. Review of digital twin applications in manufacturing. Comput. Ind. 2019, 113, 103130.
[CrossRef]

45. Bayer, B.; Dalmau Diaz, R.; Melcher, M.; Striedner, G.; Duerkop, M. Digital twin application for model-based doe to rapidly
identify ideal process conditions for space-time yield optimization. Processes 2021, 9, 1109. [CrossRef]

46. Dobaj, J.; Macher, G.; Ekert, D.; Riel, A.; Messnarz, R. Towards a security–driven automotive development lifecycle. J. Softw. Evol.
Process. 2021. [CrossRef]

47. Malik, P.K.; Sharma, R.; Singh, R.; Gehlot, A.; Satapathy, S.C.; Alnumay, W.S.; Pelusi, D.; Ghosh, U.; Nayak, J. Industrial Internet
of Things and its applications in industry 4.0: State of the art. Comput. Commun. 2021, 166, 125–139. [CrossRef]

48. Silvestri, L.; Forcina, A.; Introna, V.; Santolamazza, A.; Cesarotti, V. Maintenance transformation through Industry 4.0 technologies:
A systematic literature review. Comput. Ind. 2020, 123, 103335. [CrossRef]

49. Leng, J.; Zhou, M.; Xiao, Y.; Zhang, H.; Liu, Q.; Shen, W.; Su, Q.; Li, L. Digital twins-based remote semi-physical commissioning
of flow-type smart manufacturing systems. J. Clean. Prod. 2021, 306, 127278. [CrossRef] [PubMed]

50. Mitzutani, I.; Ramanathan, G.; Mayer, S. Semantic data integration with DevOps to support engineering process of intelligent
building automation systems. In Proceedings of the 8th ACM International Conference On Systems for Energy-Efficient Buildings,
Cities, and Transportation (BuildSys), Coimbra, Portugal, 17–18 November 2021; pp. 294–297. [CrossRef]

51. Mitzutani, I.; Ramanathan, G.; Mayer, S. Integrating Multi-Disciplinary Offline and Online Engineering in Industrial Cyber-
Physical Systems through DevOps. In Proceedings of the 11th International Conference on the Internet of Things (IOT), St.
Gallen, Switzerland, 8–12 November 2021; pp. 40–47. [CrossRef]

52. Humble, J.; Farley, D. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation; Pearson
Education: London, UK, 2010.

53. Rodríguez, P.; Haghighatkhah, A.; Lwakatare, L.E.; Teppola, S.; Suomalainen, T.; Eskeli, J.; Karvonen, T.; Kuvaja, P.; Verner, J.M.;
Oivo, M. Continuous deployment of software intensive products and services: A systematic mapping study. J. Syst. Softw. 2017,
123, 263–291. [CrossRef]

54. Yaman, S.G.; Munezero, M.; Münch, J.; Fagerholm, F.; Syd, O.; Aaltola, M.; Palmu, C.; Männistö, T. Introducing continuous
experimentation in large software-intensive product and service organisations. J. Syst. Softw. 2017, 133, 195–211. [CrossRef]

55. Boschert, S.; Heinrich, C.; Rosen, R. Next generation digital twin. In Proceedings of the TMCE 2018, Las Palmas de Gran Canaria,
Spain, 7–11 May 2018; Volume 2018, pp. 7–11.

56. Salehie, M.; Tahvildari, L. Self-adaptive software: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst. TAAS 2009,
4, 1–42. [CrossRef]

57. van Solingen, R.; Basili, V.; Caldiera, G.; Rombach, H.D. Goal Question Metric (GQM) Approach. In Encyclopedia of Software
Engineering; Marciniak, J.J., Ed.; Wiley: New York, NY, USA, 2002. [CrossRef]

58. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:
Berlin/Heidelberg, Germany, 2012. [CrossRef]

59. Gerostathopoulos, I.; Vogel, T.; Weyns, D.; Lago, P. How do we Evaluate Self-adaptive Software Systems?: A Ten-Year Perspective
of SEAMS. In Proceedings of the 2021 International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Madrid, Spain, 18–24 May 2021; pp. 59–70. [CrossRef]

60. Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7.
61. Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and

classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [CrossRef]
62. Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021,

4, 36. [CrossRef]
63. Papazoglou, M.P.; Georgakopoulos, D. Service-oriented computing. Commun. ACM 2003, 46, 25–28. [CrossRef]
64. Beugnard, A. A software engineering perspective on digital twin: Many candidates, none elected. In Proceedings of the

DigitalTwin 2023, Gif-sur-Yvette, France, 11–13 October 2023.
65. Murray, G.; Johnstone, M.N.; Valli, C. The convergence of IT and OT in critical infrastructure. In Proceedings of the 15th

Australian Information Security Management Conference, Perth, Australia, 5–6 December 2017; pp.149–155. [CrossRef]
66. Ehie, I.C.; Chilton, M.A. Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in

manufacturing organizations: An empirical investigation. Comput. Ind. 2020, 115, 103166. [CrossRef]
67. Giannelli, C.; Picone, M. Editorial “Industrial IoT as IT and OT Convergence: Challenges and Opportunities”. IoT 2022, 3, 259–261.

[CrossRef]
68. Tian, S.; Hu, Y. The role of opc ua tsn in it and ot convergence. In Proceedings of the 2019 Chinese Automation Congress (CAC),

Hangzhou, China, 22–24 November 2019; pp. 2272–2276.
69. Patera, L.; Garbugli, A.; Bujari, A.; Scotece, D.; Corradi, A. A layered middleware for ot/it convergence to empower industry 5.0

applications. Sensors 2021, 22, 190. [CrossRef] [PubMed]
70. Joshi, R.; Didier, P.; Holmberg, C.; Jimenez, J.; Carey, T. The Industrial Internet of Things Connectivity Framework. Industry IoT

Consortium 2022. Available online: https://www.iiconsortium.org/iicf/ (accessed on 18 October 2023).
71. Baron, C.; Louis, V. Towards a continuous certification of safety-critical avionics software. Comput. Ind. 2021, 125, 103382.

[CrossRef]

http://dx.doi.org/10.1016/j.compind.2019.103130
http://dx.doi.org/10.3390/pr9071109
http://dx.doi.org/10.1002/smr.2407
http://dx.doi.org/10.1016/j.comcom.2020.11.016
http://dx.doi.org/10.1016/j.compind.2020.103335
http://dx.doi.org/10.1016/j.jclepro.2021.127278
http://www.ncbi.nlm.nih.gov/pubmed/35035124
http://dx.doi.org/10.1145/3486611.3492413
http://dx.doi.org/10.1145/3494322.3494328
http://dx.doi.org/10.1016/j.jss.2015.12.015
http://dx.doi.org/10.1016/j.jss.2017.07.009
http://dx.doi.org/10.1145/1516533.1516538
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1109/SEAMS51251.2021.00018
http://dx.doi.org/10.1016/j.ifacol.2018.08.474
http://dx.doi.org/10.3390/asi4020036
http://dx.doi.org/10.1145/944217.944233
http://dx.doi.org/10.4225/75/5a84f7b595b4e
http://dx.doi.org/10.1016/j.compind.2019.103166
http://dx.doi.org/10.3390/iot3010014
http://dx.doi.org/10.3390/s22010190
http://www.ncbi.nlm.nih.gov/pubmed/35009732
https://www.iiconsortium.org/iicf/
http://dx.doi.org/10.1016/j.compind.2020.103382

Machines 2023, 11, 973 54 of 55

72. Combemale, B.; Wimmer, M. Towards a Model-Based DevOps for Cyber-Physical Systems. In Software Engineering Aspects of
Continuous Development and New Paradigms of Software Production and Deployment; Bruel, J.M., Mazzara, M., Meyer, B., Eds.; Lecture
Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12055, pp. 84–94. [CrossRef]

73. Hugues, J.; Hristosov, A.; Hudak, J.J.; Yankel, J. TwinOps—DevOps meets model-based engineering and digital twins for the
engineering of CPS. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, Virtual Event, Canada, 16–23 October 2020; Guerra, E., Iovino, L., Eds.; ACM: New York,
NY, USA, 2020; pp. 1–5. [CrossRef]

74. Ugarte Querejeta, M.; Etxeberria, L.; Sagardui, G. Towards a DevOps Approach in Cyber Physical Production Systems Using
Digital Twins. In Computer Safety, Reliability, and Security. SAFECOMP 2020 Workshops; Casimiro, A., Ortmeier, F., Schoitsch, E.,
Bitsch, F., Ferreira, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020;
Volume 12235, pp. 205–216. [CrossRef]

75. Hasselbring, W.; Henning, S.; Latte, B.; Mobius, A.; Richter, T.; Schalk, S.; Wojcieszak, M. Industrial DevOps. In Proceedings of
the 2019 IEEE International Conference on Software Architecture Companion (ICSA-C), Hamburg, Germany, 25–26 March 2019;
pp. 123–126. [CrossRef]

76. Kostromin, R.; Feoktistov, A. Agent-Based DevOps of Software and Hardware Resources for Digital Twins of Infrastructural
Objects. In Proceedings of the The 4th International Conference on Future Networks and Distributed Systems (ICFNDS); ACM:
New York, NY, USA, 2020; pp. 1–6. [CrossRef]

77. Mertens, J.; Denil, J. The Digital Twin as a Common Knowledge Base in DevOps to Support Continuous System Evolution. In
Computer Safety, Reliability, and Security. SAFECOMP 2021 Workshops; Habli, I., Sujan, M., Gerasimou, S., Schoitsch, E., Bitsch, F.,
Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 12853; Lecture Notes in Computer Science, pp. 158–170.
.{_}12. [CrossRef]

78. Meissner, H.; Ilsen, R.; Aurich, J.C. Analysis of Control Architectures in the Context of Industry 4.0. Procedia CIRP 2017,
62, 165–169. [CrossRef]

79. DesRuisseaux, D. Practical overview of implementing IEC 62443 security levels in industrial control applications. Schneider
Electric 2018. Available online: https://www.se.com/uk/en/download/document/998-20186845/ (accessed on 13 November
2020).

80. Sharpe, R.; van Lopik, K.; Neal, A.; Goodall, P.; Conway, P.P.; West, A.A. An industrial evaluation of an Industry 4.0 reference
architecture demonstrating the need for the inclusion of security and human components. Comput. Ind. 2019, 108, 37–44.
[CrossRef]

81. Fogli, M.; Giannelli, C.; Stefanelli, C. Edge-powered in-network processing for content-based message management in
software-defined industrial networks. In Proceedings of the ICC 2022-IEEE International Conference on Communications,
Seoul, Republic of Korea, 16–20 May 2022; pp. 1438–1443.

82. Fogli, M.; Giannelli, C.; Stefanelli, C. Joint Orchestration of Content-Based Message Management and Traffic Flow Steering
in Industrial Backbones. In Proceedings of the 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), Belfast, UK, 14–17 June 2022; pp. 325–330.

83. Redelinghuys, A.J.H.; Basson, A.H.; Kruger, K. A six-layer architecture for the digital twin: A manufacturing case study
implementation. J. Intell. Manuf. 2020, 31, 1383–1402. [CrossRef]

84. Aheleroff, S.; Xu, X.; Zhong, R.Y.; Lu, Y. Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Adv.
Eng. Inform. 2021, 47, 101225. [CrossRef]

85. European Commission: Smart Grid Coordination Group. Smart Grid Reference Architecture. Available online: https://energy.ec.
europa.eu/publications/smart-grid-reference-architecture_en (accessed on 23 May 2020).

86. Plattform Industry 4.0. The Reference Architectural Model Industrie 4.0 (RAMI 4.0)—An Introduction. Available online: https:
//www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html (accessed on 23 May 2020).

87. Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016, 49, 78–81. [CrossRef]
88. Lo Bello, L.; Steiner, W. A Perspective on IEEE Time-Sensitive Networking for Industrial Communication and Automation

Systems. Proc. IEEE 2019, 107, 1094–1120. [CrossRef]
89. UP – Bridge the Gap. UP Core Plus Specifications. Available online: https://up-board.org/upcoreplus/specifications/ (accessed

on 23 July 2023).
90. Canonical. Real-Time Ubuntu Is Now Generally Available. Canocial 2/14/2023. Available online: https://canonical.com/blog/

real-time-ubuntu-is-now-generally-available#:~:text=14%20February%202023%2C%20London%3A%20Canonical,guarantee%
20within%20a%20specified%20deadline (accessed on 23 July 2023).

91. McKinley, P.K.; Sadjadi, S.M.; Kasten, E.P.; Cheng, B.H. Composing adaptive software. Computer 2004, 37, 56–64. [CrossRef]
92. Artac, M.; Borovssak, T.; Di Nitto, E.; Guerriero, M.; Tamburri, D.A. DevOps: Introducing infrastructure-as-code. In Proceedings

of the 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), Buenos Aires, Argentina,
20–28 May 2017; pp. 497–498.

http://dx.doi.org/10.1007/978-3-030-39306-9_6
http://dx.doi.org/10.1145/3417990.3421446
http://dx.doi.org/10.1007/978-3-030-55583-2_15
http://dx.doi.org/10.1109/ICSA-C.2019.00029
http://dx.doi.org/10.1145/3440749.3442599
.{_ }12
http://dx.doi.org/10.1007/978-3-030-83906-2_12
http://dx.doi.org/10.1016/j.procir.2016.06.113
https://www.se.com/uk/en/download/document/998-20186845/
http://dx.doi.org/10.1016/j.compind.2019.02.007
http://dx.doi.org/10.1007/s10845-019-01516-6
http://dx.doi.org/10.1016/j.aei.2020.101225
https://energy.ec.europa.eu/publications/smart-grid-reference-architecture_en
https://energy.ec.europa.eu/publications/smart-grid-reference-architecture_en
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
http://dx.doi.org/10.1109/MC.2016.145
http://dx.doi.org/10.1109/JPROC.2019.2905334
https://up-board.org/upcoreplus/specifications/
https://canonical.com/blog/ real-time-ubuntu-is-now-generally-available#:~:text=14%20February%202023%2C%20London%3A%20Canonical,guarantee% 20within%20a%20specified%20deadline
https://canonical.com/blog/ real-time-ubuntu-is-now-generally-available#:~:text=14%20February%202023%2C%20London%3A%20Canonical,guarantee% 20within%20a%20specified%20deadline
https://canonical.com/blog/ real-time-ubuntu-is-now-generally-available#:~:text=14%20February%202023%2C%20London%3A%20Canonical,guarantee% 20within%20a%20specified%20deadline
http://dx.doi.org/10.1109/MC.2004.48

Machines 2023, 11, 973 55 of 55

93. Hüttermann, M. Infrastructure as code. In DevOps for Developers; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–156.
94. Krug, T.; Dobaj, J.; Macher, G. Enforcing Network Safety-Margins in Industrial Process Control Using MACD Indicators. In

Systems, Software and Services Process Improvement; Yilmaz, M., Clarke, P., Messnarz, R., Wöran, B., Eds.; Communications in
Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 1646, pp. 401–413.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-031-15559-8_29

	Introduction and Background
	Toward Resilient, Sustainable, and Human-Centric Smart CPSs: The Potential of DevOps
	Design Space for the Structured Engineering of Resilient and Sustainable Smart CPSs
	Research Agenda and Methodology

	State-of-the-Art Analysis of Digital Twins in Modern Industrial Environments
	Definition and Fundamental Concepts of Digital Twins
	Challenges
	The Challenge of IT and OT Convergence
	The Challenge of Runtime and Development Time Convergence

	Modern Industrial Environments
	Modern Industrial Software Architectures

	Requirements for DT-Enhanced Embedded Control Software
	Design of a DT-Enhanced Self-Adaptive Software Framework for Mission-Critical Industrial Process Control
	Software Architecture of the DT-Enhanced Control Services
	DT-Enhanced Context-Aware Self-Adaptation
	The Secondary Asset Digital Twin for Enhanced Management and Control
	The Timing Model of the Cyclic Real-Time Processing Pipeline

	Service-Oriented Instrumentation and Self-Adaptation of the DT-Enhanced Control Service
	Experiment Setup: Hardware Setup and Software Configuration of the DT-Enhanced Control Service
	Experimental Execution: Instrumentation and Self-Adaptation

	Experiment 1: Twinning Fidelity and Real-Time Control Characteristics
	Experimental Design
	Results and Analysis
	Timing and Cycle Usage Characteristics
	Data Flow Characteristics

	Interpretation

	Experiment 2: Context-Aware Self-Adaptation Characteristics
	Experimental Design
	Results and Analysis
	Interpretation

	Experiment 3: Service Update and Reconfiguration Characteristics
	Experimental Design
	Results and Analysis
	Interpretation

	Discussion
	Research Agenda: Coverage of Research Questions and Requirements
	Design Space: Self-Adaptive Software Models to Realize DevOps for Smart CPS
	Summary

	Conclusions and Future Work
	Appendix A
	Appendix B
	References

