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Abstract—We study the problem of identifiability of the total
effect of an intervention from observational time series in the
situation, common in practice, where one only has access to
abstractions of the true causal graph. We consider here two
abstractions: the extended summary causal graph, which con-
flates all lagged causal relations but distinguishes between lagged
and instantaneous relations, and the summary causal graph
which does not give any indication about the lag between causal
relations. We show that the total effect is always identifiable
in extended summary causal graphs and provide necessary and
sufficient conditions for identifiability in summary causal graphs.
We furthermore provide adjustment sets allowing to estimate the
total effect whenever it is identifiable.

I. INTRODUCTION

Over the last century and across numerous disciplines,

experimentation has emerged as a potent methodology for

estimating without bias the total effect of an intervention on a

specific component of a given system [Neyman et al., 1990].

However, experimentation can be costly, unethical or even

unfeasible. Both researchers and experts are thus interested

in estimating the effect of an intervention directly from ob-

servational data. This can be done under some assumptions

when relying on a complete causal graph [Pearl et al., 2000],

and typically relies on two sequential steps: identifiability

and estimation [Pearl, 2019]. The identifiability step involves

distinguishing cases where a solution is possible and, when

it exists, providing an estimand - an expression enabling the

estimation of intervention effects from observational data. The

subsequent step involves the actual estimation of this estimand

from the available data.

The identifiability step received much attention for non-

temporal causal graphs [Pearl, 1993, 1995a, Spirtes et al.,

2000, Pearl et al., 2000, Shpitser and Pearl, 2008,

Maathuis and Colombo, 2013]. For abstraction of causal

graphs, Perkovic [2020] derived necessary and sufficient

conditions for identifying total effects in MPDAG, and

Anand et al. [2023] studied C-DAG, where relationships

between clusters of variables are specified, but relationships

between the variables within a cluster are left unspecified.

For temporal causal graph, Blondel et al. [2016] developed

the do-calculus for the full-time causal graphs (FTCGs, Figure

I.1a). However, in dynamic systems, experts have difficulties in
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Figure I.1: Illustration: (a) three FTCGs, (b) three ESCGs

derived from them, (c) the SCG which can be derived from any

FTCG in (a) and any ESCG in (b). Consider f(yt|do(xt−1)),
red vertex: the variable we intervene on, blue vertex: the

response we are considering. Bold edges correspond to di-

rected paths from Xt−1 to Yt, and gray vertices correspond

to nodes with different status depending on the FTCG (see

Definition 8).

building full time causal graphs, while they can usually build

an abstraction of those graphs where temporal information is

omitted (as ESCGs, Figure I.1b or SCGs, Figure I.1c). As-

suming no instantaneous relations, Eichler and Didelez [2007]

demonstrated that the total effect is identifiable from an ESCG

or an SCG, and Assaad et al. [2023] established identifiability

in the presence of instantaneous relations for acyclic SCGs.

Ferreira and Assaad [2024] addressed the identifiability prob-

lem for general SCGs, including cycles and instantaneous

relations for the direct effect; however, the identifiability of
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total effects in this context remains unexplored.

Our main contribution consists in demonstrating, under

causal sufficiency, when the total effect can be identified when

working with such abstractions of a complete graph as an

extended summary causal graph (ESCG, as in Figure I.1b)

or a summary causal graph (SCG, as in Figure I.1c). The

main difficulty lies here on the fact that these abstractions

may correspond to complete graphs with potentially different

skeletons and compatibility wrt to the true underlying proba-

bility distribution.

The remainder of the paper is structured as follows: Section

II introduces the main notions, Section III presents the problem

setup, identifiability in ESCGs and SCGs are respectively

discussed in Sections IV and V, while Section VI concludes

the paper. Omitted proofs can be found in the Supplement.

II. PRELIMINARIES

a) Graph notions: For a graph G, a path from X to

Y in G is a sequence of distinct vertices < X, . . . , Y > in

which every pair of successive vertices is adjacent. A causal

path from X to Y is a path from X to Y in which all

edges are directed towards Y , that is X → . . . → Y . A

backdoor path between X and Y is a path between X and

Y with an arrowhead into X . A causal path from X to Y
and the edge Y → X form a directed cycle. We denote by

Cycles(X,G) the set of all directed cycles containing X in

G, and by Cycles>(X,G) the subset of Cycles(X,G) with at

least 2 vertices (i.e., excluding self-loops). If X → Y , then X
is a parent of Y . If there is a causal path from X to Y , then

X is an ancestor of Y , and Y is a descendant of X . The sets

of parents, ancestors and descendants of X in G are denoted

by Par(X,G), Anc(X,G) and Desc(X,G) respectively. If a

path π contains Xi → Xj ← Xk as a subpath, then Xj is a

collider on π. A vertex Xj is a definite non-collider on a path

π if the edge Xi ← Xj , or the edge Xj → Xk is on π. A

vertex is of definite status on a path if it is a collider, a definite

non-collider or an endpoint on the path. A path π is of definite

status if every vertex on π is of definite status. A path π from

X to Y of definite status is d-connected given a vertex set Z ,

with X,Y /∈ Z if every definite non-collider on π is not in

Z , and every collider on π has a descendant in Z . Otherwise,

Z blocks π. Given an ordered pair of variables (X,Y ) in a

DAG G, a set of variables Z satisfies the standard backdoor

criterion relative to (X,Y ) if no vertex in Z is a descendant of

X , and Z blocks every backdoor path between X and Y . By a

slight abuse of notation, we denote G\{Y } as the subgraph of

G when removing the vertex Y and its corresponding edges.

Lastly, the skeleton of a graph corresponds to all vertices and

edges of the graph without considering edge orientations.

b) Causal graphs in time series: Consider V a set of

p observational time series and Vf = {Vt−ℓ|ℓ ∈ Z} the

set of temporal instances of V where Vt−ℓ correspond to the

variables of the time series at time t− ℓ. We suppose that the

time series are generated from an unknown dynamic structural

causal model (DSCM, Rubenstein et al. [2018]), an extension

of structural causal models (SCM, Pearl et al. [2000]) to time

series. This DSCM defines a full-time causal graph (FTCG, see

below) which we call the true FTCG and a joint distribution P
over its vertices which we call the true probability distribution.

The graph that is used to qualitatively represent causal

relations described in a DSCM is known as the full-time causal

graph (FTCG).

Definition 1 (Full-time causal graph (FTCG), Figure I.1a). Let

V be a set of p observational time series and Vf = {Vt−ℓ|ℓ ∈
Z}. The full-time causal graph (FTCG) Gf = (Vf , Ef )
representing a given DSCM is defined by: Xt−γ → Yt ∈ E

f

if and only if X causes Y at time t with a time lag of γ > 0
if X = Y and with a time lag of γ ≥ 0 for X 6= Y .

As common in causality studies on time series, we consider

in the remainder acyclic FTCGs with potential self-causes.

Note that acyclicity is guaranteed for relations between vari-

ables at different time stamps and that self-causes, i.e., the fact

that, for any time series X , Xt−1 causes Xt, are present in

most time series. We furthermore assume causal sufficiency:

Assumption 1 (Causal sufficiency). There is no hidden com-

mon cause between any two observed variables.

In practice, it is usually impossible to work with FTCGs and

people have resorted to simpler causal graphs, exploiting the

fact that causal relations between time series hold throughout

time, as formalized in the following assumption which allows

one to focus on a finite number of past slices, given by the

maximum lag. We fix it to γmax in the remainder.

Assumption 2 (Consistency throughout time). An FTCG Gf

is said to be consistent throughout time if all the causal

relationships remain constant in direction throughout time.

Experts are used to working with abstractions of causal

graphs which summarize the information into a smaller graph

that is interpretable, often with the omission of precise tempo-

ral information. We consider in this study two known causal

abstractions for time series, namely extended summary causal

graphs and summary causal graphs. An extended summary

causal graph [Assaad et al., 2022c] distinguishes between past

time slices, denoted as Ve
t−

, and present time slices, denoted

as Ve
t , thus enabling the differentiation between lagged and

instantaneous causal relations.

Definition 2 (Extended summary causal graph (ESCG), Fig-

ure I.1b). Let Gf = (Vf , Ef ) be an FTCG built from the set

of time series V satisfying Assumption 2 with maximal tem-

poral lag γmax. The extended summary causal graph (ESCG)

Ge = (Ve, Ee) associated to Gf is given by Ve = (Ve
t−
,Ve

t )
and Ee defined as follows:

• for any X in V , we define two vertices, Xt− and Xt,

respectively in Ve
t−

and Ve
t ;

• for all Xt, Yt ∈ Ve
t , Xt → Yt ∈ Ee if and only if Xt →

Yt ∈ E
f ;

• for all X,Y ∈ Ve
t−

, Xt− → Yt ∈ Ee if and only if there

exists at least one temporal lag 0 < γ ≤ γmax such that

Xt−γ → Yt ∈ Ef .

In that case, we say that Ge is derived from Gf .

At a higher level of abstraction, a summary causal graph

[Peters et al., 2013, Meng et al., 2020, Assaad et al., 2022a,b]
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represents causal relationships among time series, regardless

of the time delay between the cause and its effect.

Definition 3 (Summary causal graph (SCG), Figure I.1c). Let

Gf = (Vf , Ef ) be an FTCG built from the set of time series

V satisfying Assumption 2 with maximal temporal lag γmax.

The summary causal graph (SCG) Gs = (Vs, Es) associated

to Gf is such that

• Vs corresponds to the set of time series V ,

• X → Y ∈ Es if and only if there exists at least one

temporal lag 0 ≤ γ ≤ γmax such that Xt−γ → Yt ∈ Ef .

In that case, we say that Gs is derived from Gf as well as

from the ESCG derived from Gf .

Since the FTCG is assumed to be acyclic, the ESCG is

inherently acyclic. In contrast, SCGs may include directed

cycles and even self-loops. For example, the three FTCGs in

Figure I.1a and the three ESCGs in Figure I.1b are acyclic,

while the SCG in Figure I.1c has a cycle. We use the notation

X ⇄ Y to indicate situations where there are time lags where

X causes Y and other lags where Y causes X . Additionally, if

an SCG is an abstraction of an ESCG, in cases where there is

no instantaneous relation, ESCGs and SCGs convey the same

information.

It is worth noting that if there is a single ESCG or SCG

derived from a given FTCG, different FTCGs, with possibly

different orientations and skeletons, can yield the same ESCG

or SCG. For example, the SCG in Figure I.1c can be derived

from any FTCG and any ESCG in Figures I.1a and I.1b, even

though they may have different skeletons (for example, Gf1
and Gf3 or Ge1 and Ge3) and different orientations (for example,

Gf1 and Gf2 or Ge1 and Ge2). In the remainder, for a given ESCG

or SCG G, we call any FTCG from which G can be derived

as a candidate FTCG for G. For example, in Figure I.1, Gf1 ,

Gf2 and Gf3 are all candidate FTCGs for Gs. The set of all

candidate FTCGs for G is denoted by C(G).

III. PROBLEM SETUP

We focus in this paper on the total effect [Pearl et al.,

2000] of the singleton variable Xt−γ on the singleton variable

Yt, written P (Yt = yt|do(Xt−γ = xt−γ)) (as well as

P (yt|do(xt−γ)) by a slight abuse of notation), when the only

knowledge one has of the underlying DSCM consists in the

ESCG or SCG derived from the unknown, true FTCG. Yt

corresponds to the response and do(Xt−γ = xt−γ) repre-

sents an intervention (as defined in Pearl et al. [2000] and

Eichler and Didelez [2007, Assumption 2.3]) on the variable

X at time t− γ, with γ ≥ 0.

The above setting is very common in practice and entails

that one neither knows the true FTCG nor the true probability

distribution. Futhermore, even if one has access to observed

data, in practice such observations are finite, which prevents

one from discovering the true FTCG, and even from identi-

fying it in the set of candidate FTCGs, as no existing causal

discovery method is guaranteed to yield the true FTCG in

the finite data setting [Assaad et al., 2022b]. In the purely

theoretical context of infinite data, such an identification is

only possible with additional assumptions, beyond the scope

of this study.

Each candidate FTCG proposes a particular decomposition

of the true joint probability distribution which is given by the

standard recursive decomposition that characterizes Bayesian

networks. Not all decompositions are however correct wrt

the true probability distribution P . We meet there the notion

of compatibility, which we restrict here to P and candidate

FTCGs.

Definition 4 (Compatibility with P , Pearl et al. [2000]). If

the probability distribution P admits the decomposition of a

candidate FTCG Gf , we say that Gf is compatible with P .

Note that only the (unknown) true FTCG is guaranteed to

be compatible with P .

In general, a total effect P (yt | do(xt−γ)) is said to be

identifiable from a graph if it can be uniquely computed with

a do-free formula from the observed distribution [Pearl, 1995a,

Perkovic, 2020]. In our context, this means that the same

do-free formula should hold in all candidate FTCG so as to

guarantee that it holds for the true one.

Definition 5 (Identifiability of total effects in ESCGs and

SCGs). In a given ESCG or SCG G, P (yt | do(xt−γ)) is

identifiable iff it can be rewritten with a do-free formula that

is valid for any FTCG in C(G).

do-free formulas are typically obtained through an adjust-

ment set which contains variables that are sufficient to adjust

for computing the total effect from xt−γ to yt. The standard

backdoor criterion, introduced in Pearl [1995b] and which

typically allows one to obtain adjustment sets in the true

FTCG, has been shown to be complete for identifiability under

Assumption 1. We introduce here a new backdoor criterion

specific to ESCGs and SCGs which we call the summary

backdoor criterion.

Definition 6 (Summary backdoor criterion). Let X,Y be

disjoint vertices in an ESCG or SCG G = (V , E). A set

of vertices Z in V satisfies the summary backdoor criterion

relative to (X,Y ) and γ if

(i) Z blocks all backdoor paths between Xt−γ and Yt in any

FTCG in C(G),
(ii) Z does not block any directed path between Xt−γ and

Yt in any FTCG in C(G),
(iii) Z does not contain any descendant of Xt in any FTCG

in C(G).

Note that when there is no backdoor path between Xt−γ

and Yt in any FTCG in C(G), Z = ∅ satisfies the summary

backdoor criterion.

The summary backdoor criterion is sound for the identifica-

tion of the total effect P (yt|do(xt−γ)) in an ESCG or SCG,

as stated in the following proposition.

Proposition 1. Let X and Y be distinct vertices in an ESCG

or SCG G of a DSCM with true (unknown) probability P .

Under Assumptions 1 and 2 for G, if there exists a set Z
satisfying the summary backdoor criterion relative to (X,Y )
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and γ, then the total effect of Xt−γ on Yt is identifiable in G,

and

P (yt|do(xt−γ)) =
∑

z

P (yt|xt−γ , z)P (z).

It turns out that the summary backdoor criterion is also com-

plete for the identification of the total effect P (yt|do(xt−γ)) in

an ESCG or SCG, provided that the interventions considered

are effective in the following sense.

Assumption 3. (Effective intervention) Let P be the true

(unknown) distribution of a given DSCM. For any FTCG

Gf compatible with P , for any set of variables Z in Gf

which contains descendants of Xt−γ and/or does not block

all backdoor paths between Xt−γ and Yt in G, we assume

that:

EZ|do(xt−γ)[P (yt|Z, do(xt−γ))] 6= EZ [P (yt|Z, xt−γ)].

This assumption requires that the effect of an intervention

setting Xt−γ to xt−γ has an impact on the expectation of the

probability of observing yt given Z and xt−γ , when Z does

not satisfy the backdoor criterion. As discussed in Appendix A,

this assumption has strong justifications. Lastly, note that any

FTCG compatible with P is a candidate FTCG for the ESCG

or SCG asociated with P .

We can now state the theorem related to the completeness

of the summary backdoor criterion is complete for the iden-

tification of the total effect P (yt|do(xt−γ)) in an ESCG or

SCG.

Theorem 1. Let X and Y be distinct vertices in an ESCG or

SCG G of a DSCM with true (unknown) probability P . Under

Assumptions 1 and 2 for G and Assumption 3 for P , the total

effect of Xt−γ on Yt is identifiable in G only if there exists

a set Z satisfying the summary backdoor criterion relative to

(X,Y ) and γ. Furthermore:

P (yt|do(xt−γ)) =
∑

z

P (yt|xt−γ , z)P (z).

Remarks

1) Note that if X or Y are non-singleton sets, the summary

backdoor criterion may fail to identify the total effect of

X on Y . This is due to the fact that orientation (and thus

causal ordering) may be different in different candidate

FTCGs, similarly to Perkovic [2020].

2) It is important to note that our context differs

from previous studies in identifiability (for example

Pearl [1995a], Shpitser and Pearl [2008], Blondel et al.

[2016], Perkovic [2020]) as the graphs we have to con-

sider for a given ESCG or SCG, namely the candidate

FTCGs, may have different skeletons and may not all

be compatible with the true underlying distribution. This

contrasts with the graphs associated with CPDAGs and

MPDAGs studied in particular in Perkovic [2020]. This

also explains why we need a specific assumption on

the type of distributions on which completeness of the

summary backdoor criterion can be established1.

1Note that the summary backdoor criterion is sound for any type of
distributions.

We now turn to the identifiability problem in ESCGs and

SCGs in the next two sections.

IV. IDENTIFIABILITY IN ESCG

The total effect is always identifiable by adjustment in

ESCGs, as stated in the following theorem.

Theorem 2. (Identifiability in ESCG) Consider an ESCG

Ge. Under Assumptions 1 and 2 for Ge, the total effect

P (yt|do(xt−γ)) is identifiable in Ge for any γ ≥ 0. Further-

more, the set

Bγ ={(Zt−γ−ℓ)1≤ℓ≤γmax
|Zt− ∈ Par(Xt,G

e)}

∪ {Zt−γ |Zt ∈ Par(Xt,G
e)},

is an adjustment set for P (yt|do(xt−γ)).

If Bγ is a valid adjustment set, it may still be very large.

Additional adjustment sets, potentially smaller than Bγ , can

however be obtained in the densest candidate FTCG, which is

the candidate FTCG which contains all potential edges and is

thus maximal in the number of edges.

Proposition 2. Consider an ESCG Ge and a maximal lag

γmax and let γ ≥ 0. Any adjustment set B′
γ for the total effect

P (yt|do(xt−γ)) valid with respect to the standard backdoor

criterion on the densest candidate FTCG is a valid adjustment

set for the total effect in Ge and

P (yt|do(xt−γ)) =
∑

b∈B′

γ

P (b)P (yt|xt−γ ,b).

In addition, Bγ is a valid adjustment set with respect to the

standard backdoor criterion on the densest candidate FTCG.

Note however that smaller (in the number of variables)

adjustment sets may exist in the true FTCG when it is different

from the densest candidate FTCG.

V. IDENTIFIABILITY IN SCG

SCGs are the most abstract version of causal graphs con-

sidered in this paper. Due to the potential cycles, we use

the notion of σ-blocked path introduced in Forré and Mooij

[2017], considered here in the context of causal sufficiency.

Definition 7 (σ-blocked path with no hidden confounding).

Consider an SCG Gs = (Vs, Es). A path π = 〈X, · · · , Y 〉 in

Gs is σ-blocked by a set Z ⊆ Vs if:

• at least one of the endpoints X,Y is in Z; or

• there exists a vertex W ∈ π, such that W 6∈ Anc(Z,Gs)
with two adjacent edges in π that form a collider at Z ,

(i.e., →W ←); or

• there exists a vertex Z ∈ π ∩ Z with two adjacent

edges in π that forms a non-collider at Z , and such that

there exists a directed edge pointing from Z to a vertex

not in the strongly connected component Anc(Z,Gs) ∩
Desc(Z,Gs).

If none of the above holds then the path 〈X, · · · , Y 〉 is σ-active

by Z .
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Note that a backdoor path can start with the edge ⇄, and

particularly X ⇄ Y is the only σ-active backdoor path of size

2 in Gs with Z ⊆ Vs\{X,Y }.
We now present the main result of this section, which states

necessary and sufficient conditions for the identifiability in

SCG. Remind that Cycles(X,Gs) is the set of all directed

cycles containing X in Gs, and Cycles>(X,Gs) is the subset

where cycles have at least 2 vertices.

Theorem 3. (Identifiability in SCG) Consider an SCG Gs =
(Vs, Es) associated with a DSCM with true (unknown) prob-

ability distribution P . Under Assumptions 1 and 2 for Gs and

Assumption 3 for P , the total effect P (yt|do(xt−γ)), with

γ ≥ 0, is identifiable if and only if X /∈ Anc(Y,Gs) or

X ∈ Anc(Y,Gs) and none of the following holds:

1) γ 6= 0 and Cycles>(X,Gs\{Y }) 6= ∅, or

2) there exists a σ-active backdoor path, with Z = ∅,

πs = 〈V 1 = X, · · · , V n = Y 〉

from X to Y in Gs such that 〈V 2, · · · , V n−1〉 ⊆
Desc(X,Gs) and one of the following holds:

a) n > 2, i.e. 〈V 2, · · · , V n−1〉 6= ∅, or

b) n = 2 and γ 6= 1, or

c) n = 2, γ = 1 and Cycles(Y,Gs\{X}) 6= ∅.

Note that Assumption 3 is needed to characterize the graph

and the distribution for non-identifiable total effects, but is not

necessary for graphical criterion of identification.

In the remainder, we prove the equivalence stated in the

above theorem through Lemmas stated in Section V-A for

the necessary conditions and in Section V-B for the sufficient

conditions.

A. Necessary conditions

We first introduce the notion of ambiguous vertices, repre-

sented in gray in every figure, that will be useful for the proofs

of most of the lemmas.

Definition 8 (Ambiguous vertices). Consider an SCG Gs and

the total effect P (yt | do(xt−γ)), for γ ≥ 0. A vertex Vt′

belonging to a backdoor path for (Xt−γ , Yt) in a candidate

FTCG is ambiguous if there exists another candidate FTCG

in which Vt′ belongs to a directed path from Xt−γ to Yt or

in which Vt′ is a descendant of Yt.

Ambiguous vertices are crucial for identifiability.

Property 1. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)) for γ ≥ 0. If there exists a backdoor path πf in a

candidate FTCG between Xt−γ and Yt in which all vertices

are ambiguous then P (yt | do(xt−γ)) is not identifiable.

Property 1 provides a way to prove the necessary conditions

given in Theorem 3 by exhibiting in a candidate FTCG a

path consisting only of ambiguous vertices. This situation,

which is illustrated in Figures V.1-V.4, is the foundation for

the proofs of Lemmas V.1 - V.4 which alternately consider all

the conditions, starting with Condition 1 in Lemma V.1, of

Theorem 3.

Z

X Y

(a) An SCG Gs
1 and the total effect P (yt|do(xt−1)).

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

ZtZt−1Zt−2

(b) A first candidate FTCG.

XtXt−1Xt−2

YtYt−1Yt−2

ZtZt−1Zt−2

(c) Another candidate FTCG.

Figure V.1: An example of an SCG Gs1 (a) satisfying the

conditions of Lemma V.1 with two candidate FTCGs in (b)

and (c). Each pair of red and blue vertices in the FTCGs

represents the total effect we are interested in. Gray vertices

are ambiguous: they constitute a backdoor path in (b) and

belong to a directed path in (c) (bold edges indicate direct

paths from Xt−1 to Yt). The total effect is thus not identifiable

given the SCG as stated in Property 1.

Lemma V.1. Consider an SCG Gs and the total effect

P (yt | do(xt−γ)) for γ > 0. If X ∈ Anc(Y,Gs) and

Cycles>(X,Gs\{Y }) 6= ∅ then P (yt | do(xt−γ)) is not

identifiable.

Example V.1. Given the SCG in Figure V.1a, the total effect

P (yt | do(xt−1)) is non-identifiable since Lemma V.1 is sat-

isfied. This can be illustrated by looking at the two candidate

FTCGs in Figure V.1b and V.1c. The path 〈Xt−1, Zt−1, Yt〉
is a back-door path in the first FTCG depicted in (b), but all

vertices (except the endpoints) on this path are ambiguous,

since Zt−1 belongs to the directed path 〈Xt−1, Zt−1, Yt〉
in the second FTCG depicted in (c). Thus, by Property 1,

P (yt | do(xt−1)) is non-identifiable.

The second lemma considers Condition 2(a).

Lemma V.2. Consider an SCG Gs, and the total effect P (yt |
do(xt−γ)), for γ ≥ 0. If X ∈ Anc(Y,Gs) and there exists a

σ-active backdoor path

πs = 〈V 1 = X, · · · , V n = Y 〉

from X to Y in Gs with Z = ∅ such that 〈V 2, · · · , V n−1〉 ⊆
Desc(X,Gs) and n > 2 then P (yt | do(xt−γ)) is not

identifiable.

Example V.2. Given the SCG in Figure V.2a, the total

effect P (yt | do(xt−1)) is non-identifiable since Lemma V.2

is satisfied. This can be illustrated by looking at the two

candidate FTCGs in Figures V.2b and V.2c. The path

〈Xt−1, Zt−1, Xt, Yt〉 is a back-door path in the first FTCG

depicted in (b), but all vertices (except the endpoints) on

this path are ambiguous, since Zt−1 and Xt belong to the

directed path 〈Xt−1, Yt−1, Zt−1, Xt, Yt〉 in the second FTCG
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Z

X Y

(a) An SCG Gs
2 and the total effect P (yt|do(xt−1)).

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

ZtZt−1Zt−2

(b) A first candidate FTCG.

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

ZtZt−1Zt−2

(c) Another candidate FTCG.

Figure V.2: An example of an SCG Gs2 (a) satisfying the

conditions of Lemma V.2 with two candidate FTCGs in (b)

and (c). Each pair of red and blue vertices in the FTCGs

represents the total effect we are interested in. Gray vertices

are ambiguous: they constitute a backdoor path in (b) and

belong to a directed path in (c) (bold edges indicate direct

paths from Xt−1 to Yt). The total effect is thus not identifiable

given the SCG as stated in Property 1.

X Y

(a) An SCG Gs
3 and the total effect P (yt|do(xt−2)).

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

(b) A first candidate FTCG.

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

(c) Another candidate FTCG.

Figure V.3: An example of an SCG Gs3 (a) satisfying the

conditions of Lemma V.3 with two candidate FTCGs in (b)

and (c). Each pair of red and blue vertices in the FTCGs

represents the total effect we are interested in. Gray vertices

are ambiguous: they constitute a backdoor path in (b) and

belong to a directed path in (c) (bold edges indicate direct

paths from Xt−2 to Yt). The total effect is thus not identifiable

given the SCG as stated in Property 1.

depicted in (c). Thus, by Property 1, P (yt | do(xt−1)) is non-

identifiable.

The third lemma considers Condition 2(b), where the only

σ-active backdoor path from X to Y with n = 2 is X ⇆ Y .

Lemma V.3. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)), with γ 6= 1. If X ⇆ Y ∈ Gs then P (yt | do(xt−γ))
is not identifiable.

Example V.3. Given the SCG in Figure V.3a, the total effect

P (yt | do(xt−2)) is non-identifiable since Lemma V.3 is sat-

isfied. This can be illustrated by looking at the two candidate

FTCGs in Figures V.3b and V.3c. In the first FTCG depicted in

(b), 〈Xt−2, Yt−2, Xt−1, Yt〉 is a backdoor path, but all vertices

on the path (except the endpoints) are ambiguous since in

X Y

(a) An SCG Gs
4 and the total effect P (yt|do(xt−1)).

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

(b) A first candidate FTCG.

Xt

Yt

Xt−1

Yt−1

Xt−2

Yt−2

(c) Another candidate FTCG.

Figure V.4: An example of an SCG Gs4 (a) satisfying the

conditions of Lemma V.4 with two candidate FTCGs in (b)

and (c). Each pair of red and blue vertices in the FTCGs

represents the total effect we are interested in. Gray vertices

are ambiguous: they constitute a backdoor path in (b) and

belong to a directed path in (c) (bold edges indicate direct

paths from Xt−1 to Yt). The total effect is not identifiable

given the SCG as stated in Property 1.

the other FTCG depicted in (c), Yt−2 and Xt−1 belong to

the directed path 〈Xt−2, Yt−2, Xt−1, Yt〉. Thus by Property 1,

P (yt | do(xt−2)) is not identifiable.

Lastly, the fourth lemma considers Condition 2(c) where

again, the only σ-active backdoor path from X to Y with

n = 2 is X ⇆ Y .

Lemma V.4. Consider an SCG Gs and the total effect

P (yt | do(xt−1)) (γ = 1). If X ⇆ Y ∈ Gs and

Cycles(Y,Gs\{X}) 6= ∅ then P (yt | do(xt−1)) is not

identifiable.

Example V.4. Given the SCG in Figure V.4a, the total effect

P (yt | do(xt−1)) is non-identifiable since Lemma V.4 is sat-

isfied. This can be illustrated by looking at the two candidate

FTCGs in Figures V.4b and V.4c. In the first FTCG depicted

in (b), 〈Xt−1, Yt−1, Yt〉 is a backdoor path, but all vertices

on the path (except the endpoints) are ambiguous since in the

other FTCG depicted in (c), Yt−1 belongs to the directed path

〈Xt−1, Yt−1, Yt〉. Thus, by Property 1, P (yt | do(xt−1)) is not

identifiable.

B. Sufficient conditions

We now turn to Lemmas V.5-V.7 to prove that conditions

in Theorem 3 are sufficient. To do so, for the total effect

P (yt|do(xt−γ)), we consider the following set:

Aγ ={(Zt−γ−ℓ)1≤ℓ≤γmax
|Z ∈ Desc(X ;Gs)}

∪ {(Zt−γ−ℓ)0≤ℓ≤γmax
|Z ∈ Vs\Desc(X,Gs)} (1)

and we prove that it is an adjustment set when the total effect

is identifiable. As one can note, it contains all possible parents

of Xt−γ in all candidate FTCGs of Gs. Thus, Aγ blocks any

backdoor path π between Xt−γ and Yt in any candidate FTCG

through the parent of Xt−γ on that path.

In addition to ambiguous vertices, one can also define

ambiguous paths, as follows.

Definition 9 (Ambiguous paths). Consider an SCG Gs and a

candidate FTCG Gf . A path πf ∈ Gf between Xt−γ and Yt,
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Z

X Y

W

(a) P (yt|do(xt))

X Y

WZ

(b) P (yt|do(xt−γ))

X Y

WZ

(c) P (yt|do(xt−1))

Figure V.5: Three SCGs and a total effect which is identifiable. Each pair of red and blue vertices in the FTCGs represents the

total effect we are interested in, and we precise the total effect and the lag considered in the caption. This illustrates Lemma

V.2 (Figure a-b) and Lemma V.3 (Figure c).

for γ ≥ 0, is an ambiguous path if it does not contain any

vertex at time t− γ − ℓ for ℓ ≥ 1. We note Πf
γ the set of all

ambiguous paths in Gf .

When π is not an ambiguous path (π /∈ Πf
γ), then the parent

of Xt−γ is in the past of Xt−γ and thus cannot be ambiguous.

One thus has the following property:

Property 2. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)), for γ ≥ 0. Suppose πf is a backdoor path between

Xt−γ and Yt in a candidate FTCG Gf . If πf 6∈ Πf
γ , then πf

is blocked by a subset of Aγ containing at least one non-

ambiguous vertex.

Example V.5. For example, in Figure V.4c, πf
1 =

〈Xt−1, Xt−2, Yt−1, Yt〉 is not an ambiguous path between

Xt−1 and Yt since Xt−2 precedes Xt−1 in time. On the other

hand, πf
2 = 〈Xt−1, Yt−1, Yt〉 is an ambiguous path between

Xt−1 and Yt. The path πf
1 is blocked by Xt−2.

We now introduce the notion of compatible path that will

allow us to relate backdoor paths in a given SCG and its

candidate FTCGs.

Definition 10 (Compatible path). Consider an SCG Gs,

a candidate FTCG Gf , and the total effect P (yt |
do(xt−γ)), for γ ≥ 0. We say that a path πf =
〈Xt−γ ,W

2
t2
, · · · ,Wm−1

tm−1 , Yt〉 in Gf is compatible with a path

πs = 〈X,V 2, · · · , V n−1, Y 〉 in Gs if for all (W j

tj
)2≤j≤m−1:

either W j ∈ 〈V 2, · · · , V n−1〉 or ∃V ∈ 〈V 2, · · · , V n−1〉 such

that W j ∈ Cycles(V,Gs)\Cycles(X,Gs).

The following property relates backdoor paths in a given

SCG and in any of its candidate FTCG.

Property 3. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)) for γ ≥ 0. Then (i)⇒ (ii), where:

(i) γ = 0 or Cycles>(X,Gs\{Y }) = ∅,
(ii) in any candidate FTCG Gf , there exists no backdoor path

πf ∈ Πf
γ that is not compatible with any backdoor path

in Gs.

The two above properties allow one to prove the following

lemmas, which, except for the first one, are the counterparts

of the lemmas presented in the previous section and which

prove that each condition Theorem 3 is sufficient. The first

lemma is rather straightforward and concern the case where

X 6∈ Anc(Y,Gs) for a given SCG Gs.

Lemma V.5. Consider an SCG Gs, γ ≥ 0 fixed and the total

effect P (yt | do(xt−γ)). If X 6∈ Anc(Y,Gs) then P (yt |

do(xt−γ)) is identifiable, and P (yt | do(xt−γ)) = P (yt).

The following lemma excludes both Conditions 1 and 2 of

Theorem 3 by considering the negation of Condition 1 (in (i))

and the situation in which there is no σ-active backdoor path

from X to Y with Z = ∅.

Lemma V.6. Consider an SCG Gs, γ ≥ 0 fixed and the total

effect P (yt | do(xt−γ)). If X ∈ Anc(Y,Gs) and

(i) either γ = 0 or Cycles>(X,Gs\{Y }) = ∅ and

(ii) ∄σ-active backdoor path πs = 〈V 1 = X, · · · , V n =
Y 〉 from X to Y in Gs with Z = ∅ such that

〈V 2, · · · , V n−1〉 ⊆ Desc(X,Gs),

then P (yt | do(xt−γ)) is identifiable by Aγ .

This lemma is illustrated in Figure V.5a - V.5b.

When there is a σ-active backdoor path from X to Y with

Z = ∅, the negation of Condition 2 of Theorem 3 is obtained

with n = 2, γ = 1 and Cycles(Y,Gs\{X}) = ∅. The negation

of Condition 1 of Theorem 3 is obtained in this setting with

Cycles>(X,Gs\{Y }) = ∅. Note that, as before, having a σ-

active backdoor path from X to Y with Z = ∅ and n = 2 is

equivalent to X ⇆ Y .

Lemma V.7. Consider an SCG Gs and the total effect P (yt |
do(xt−1)) (γ = 1). If the only σ-active backdoor path from

X to Y in Gs with Z = ∅ is X ⇆ Y ∈ Gs and

(i) Cycles>(X,Gs\{Y }) = ∅ and

(ii) Cycles(Y,Gs\{X}) = ∅,

then P (yt | do(xt−1)) is identifiable by Aγ .

This lemma is illustrated in Figure V.5c.

C. Adjustment set

When the total effect is identifiable, the set Aγ defined in

Equation (1) is an adjustment set, but it has a large size, so

we provide a smaller adjustment set, defined as follows:

A′
γ = {Vt′ ∈ Aγ |V ∈ Anc(X,Gs) ∪ Anc(Y,Gs)}.

Proposition 3. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)), with γ ≥ 0. Under assumptions of identifiability

provided by Theorem 3, the set A′
γ is an adjustment set for

the total effect.

VI. CONCLUSION

We have studied in this paper the identification of total

effects between singleton variables, under causal sufficiency,
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for both extended summary causal graphs and summary causal

graphs. We have in particular shown that the total effect

is always identifiable for extended summary causal graphs.

The same does not hold for summary causal graphs for

which the situation is slightly more complex. We have here

established graphical conditions which are sufficient, in any

underlying probability distribution, for the identifiability of the

total effect; these conditions are furthermore necessary in all

distributions satisfying the effective intervention assumption.

In addition, we have provided a set of adjustment sets for

estimating the total effect in extended summary causal graphs,

and an adjustment set when considering summary causal

graphs.

These results have significant implications, such as impact

analysis in dynamic systems, particularly in scenarios where

experts are unable to provide either a full temporal causal

graph or an extended summary causal graph. They are also

valuable in cases where the assumptions underlying causal

discovery methods for inferring causal graphs with time lags

are deemed overly restrictive.
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Assumption 3. (Effective intervention) Let P be the true

(unknown) distribution of a given DSCM. For any FTCG

Gf compatible with P , for any set of variables Z in Gf

which contains descendants of Xt−γ and/or does not block

all backdoor paths between Xt−γ and Yt in G, we assume

that:

EZ|do(xt−γ)[P (yt|Z, do(xt−γ))] 6= EZ [P (yt|Z, xt−γ)].

We consider here the augmented version Gfaug of G [Pearl,

2000] obtained by adding to Gf a parent node FXt−γ
to

Xt−γ representing the intervention do(xt−γ). FXt−γ
takes two

values, {do(xt−γ), idle}, and is such that:

P (x′
t−γ |P(Xt−γ))

= P (x′
t−γ |P(Xt−γ)) if FXt−γ

= idle,

= 0 if FXt−γ
= xt−γ 6= x′

t−γ ,

= 1 if FXt−γ
= xt−γ = x′

t−γ .

The distribution P is extended in Gfaug in such a way that, for

any set W of variables in Gf ,

P (W|do(xt−γ)) = P ′(W|FXt−γ
= do(xt−γ))

and that P can be viewed as the posterior distribution induced

by conditioning FXt−γ
on the value idle.

A set of variables Z which does not satisfy the standard

backdoor criterion for P (yt | do(xt−γ)) in Gf is such that

it either contains a descendant of Xt−γ , or it does not block

all backdoor paths between Xt−γ and Yt in Gfaug , or both. If

it contains a descendant of Xt−γ , then Z 6⊥⊥Gf
aug

FXt−γ
and

P ′(Z|FXt−γ
) 6= P ′(Z). If it does not block all backdoor paths

between Xt−γ and Yt in Gfaug , then Yt 6⊥⊥Gaug
FXt−γ

|Xt−γ ,Z
(by definition of the standard backdoor criterion) meaning that:

P ′(FXt−γ
, Yt|Z, Xt−γ) 6=P ′(FXt−γ

|Z, Xt−γ)

× P ′(Yt|Z, Xt−γ).

Thus:

P ′(Yt|Z, Xt−γ , FXt−γ
) =

P ′(Yt,Z, Xt−γ , FXt−γ
)

P ′(Z, Xt−γ , FXt−γ
)

=
P ′(Yt, FXt−γ

|Z, Xt−γ)

P ′(FXt−γ
|Z, Xt−γ)

6= P ′(Yt|Z, Xt−γ).

So, for a set of variablesZ which does not satisfy the backdoor

criterion for P (yt | do(xt−γ)) in Gf , either P ′(Z|FXt−γ
) 6=

P ′(Z) or P ′(yt|Z, Xt−γ , FXt−γ
) 6= P ′(Yt|Z, Xt−γ), or both.

One can thus expect that the expectation of P ′(yt|Z, xt−γ) wrt

P ′(Z) changes when conditioning on the intervention vertex

FXt−γ
as at least one of the two quantities change. This is

what Assumption 3 states.

The following example provides a situation where As-

sumption 3 does not hold, which justifies the term effective

intervention, and that it is necessary to prove Theorem 3.

Example A.1. Let us consider the following DSCM:



















X0 = Y0 = Z0 = 0,

Xt = Zt−1 with prob. px, (1− Zt−1) with prob. (1− px),

Zt = Xt with prob. pz, (1−Xt) with prob. (1− pz),

Yt = X
Zt−1

t−1 with prob. py, (1−Xt−1)
Zt−1 with prob. (1 − py).

The associated, true FTCG and SCG are represented in

Figure V.1 (c) and (a) respectively. Set px = py = pz = 0.5
and consider the intervention P (Yt = 1|do(Xt−1 = 0))
denoted here P (yt|do(xt−1)) (any other value for Yt and

Xt−1 gives similar results). Using the do-calculus results, we

have quite straightforwardly, for zt−1 ∈ {0, 1}, that:
{

P (zt−1) = P (zt−1|do(xt−1)),

P (yt|zt−1, xt−1) = P (yt|zt−1, do(xt−1)).

Therefore,
∑

zt−1

P (zt−1|do(xt−1))P (yt|zt−1, do(xt−1))

=
∑

zt−1

P (zt−1)P (yt|zt−1, xt−1).

In other words, Assumption 3 is not met. The system is

completely random with no way to distinguish between the

two values 0 and 1. In this case, intervening or not on xt−1

has no impact on the observed values. Note however that most

settings of px, py and pz lead to distributions that satisfy

Assumption 3.

Furthermore, Lemma V.1, and thus Theorem 3, states that

P (yt|do(xt−1)) is not identifiable, as illustrated in Figure V.1

which displays, in addition to the true FTCG, a candidate

FTCG (Figure V.1 (b)) in which the do-free formula for

P (yt|do(xt−1)) should be different from the one in the true

FTCG. However, with our setting, both do-free formulas

(obtained by the standard backdoor criterion in Figure V.1 (b)

and by a direct rewriting in Figure V.1 (c)) are equivalent to

P (yt). Lemma V.1, and thus Theorem 3, are not valid in this

case.

A. Proofs of Section III

Proposition 1. Let X and Y be distinct vertices in an ESCG

or SCG G of a DSCM with true (unknown) probability P .

Under Assumptions 1 and 2 for G, if there exists a set Z
satisfying the summary backdoor criterion relative to (X,Y )
and γ, then the total effect of Xt−γ on Yt is identifiable in G,

and

P (yt|do(xt−γ)) =
∑

z

P (yt|xt−γ , z)P (z).

Proof. If there exists a set Z satisfying the summary backdoor

criterion relative to (X,Y ), then the total effect is identifiable

as Z satisfies the standard backdoor criterion in all candidate

FTCGs; as we are assuming causal sufficiency, the same

rewriting with a do-free formula of the total effect exists in

all candidate FTCGs:

P (yt|do(xt−γ)) =
∑

z

P (yt|xt−γ , z)P (z).
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Theorem 1. Let X and Y be distinct vertices in an ESCG or

SCG G of a DSCM with true (unknown) probability P . Under

Assumptions 1 and 2 for G and Assumption 3 for P , the total

effect of Xt−γ on Yt is identifiable in G only if there exists

a set Z satisfying the summary backdoor criterion relative to

(X,Y ) and γ. Furthermore:

P (yt|do(xt−γ)) =
∑

z

P (yt|xt−γ , z)P (z).

Proof. Let us assume that there is no set Z satisfying the

summary backdoor criterion relative to (X,Y ). Let denote

by Gf the true (unknown) FTCG, and Sa(G
f ) the set

of all backdoor adjustment sets, according to the standard

backdoor criterion, of P (yt | do(xt−γ)) in the FTCG Gf .

As Z does not satisfy the summary backdoor criterion,

there exist (at least) two candidate FTCGs, Gf1 and Gf2 ,

such that Sa(G
f
1 ) ∩ Sa(G

f
2 ) = ∅, which implies that either

Sa(G
f
1 ) ∩ Sa(G

f ) = ∅ or Sa(G
f
2 ) ∩ Sa(G

f ) = ∅, or both

by completeness of the standard backdoor criterion in any

candidate FTCG2. Without loss of generality, let us assume

that Sa(G
f
1 ) ∩ Sa(G

f ) = ∅ and let Z ∈ Sa(G
f
1 ). One

has: P (yt|do(xt−γ)) =
∑

z
P (yt|do(xt−γ), z)P (z|do(xt−γ )).

As Gf is compatible with P , by Assumption 3, the above

quantity is different from
∑

z
P (yt|xt−γ , z)P (z|xt−γ ) which

is a do-free formula provided by Gf1 . As the standard backdoor

criterion is complete, there is no do-free formula common to

both Gf1 and Gf , which concludes the proof.

B. Proofs of Section IV

Theorem 2. (Identifiability in ESCG) Consider an ESCG

Ge. Under Assumptions 1 and 2 for Ge, the total effect

P (yt|do(xt−γ)) is identifiable in Ge for any γ ≥ 0. Further-

more, the set

Bγ ={(Zt−γ−ℓ)1≤ℓ≤γmax
|Zt− ∈ Par(Xt,G

e)}

∪ {Zt−γ|Zt ∈ Par(Xt,G
e)},

is an adjustment set for P (yt|do(xt−γ)).

Proof. If X 6∈ Anc(Y,Ge), then in every candidate FTCG

Gf , Xt−γ 6∈ Anc(Yt,Gf ). Thus, P (yt | do(xt−γ)) is always

identifiable in Ge, and P (yt | do(xt−γ)) = P (yt).
Assume now that X ∈ Anc(Y,Ge). Let γmax be the

maximal lag, and Gf be a candidate FTCG. We prove that

Bγ ={(Zt−γ−ℓ)1≤ℓ≤γmax
|Zt− ∈ Par(Xt,G

e)}

∪ {Zt−γ|Zt ∈ Par(Xt,G
e)}

is an adjustment set for P (yt|do(xt−γ)) in Gf .

First, we have to prove that Par(Xt−γ ,G
f ) ⊆ Bγ . Let

Zt−γ−ℓ ∈ Par(Xt−γ ,Gf ). If ℓ = 0, then Zt causes Xt in Ge

by consistency throughout time, which means that Zt−γ ∈ Bγ .

If ℓ > 0, then Zt− causes Xt in Ge, that is Zt−ℓ−γ ∈ Bγ . This

2If both G
f
1

and G
f
2

have a non-empty intersection with Gf resp. containing

Z1 and Z2, then Z1 provides a valid do-free formula in G
f
2

which, by

completeness of the standard backdoor criterion implies that Z1 ∈ Sa(G
f
2
).

shows that the set Bγ blocks all back-door paths relatively to

P (yt|do(xt−γ)).
Then, we have to prove Bγ does not contain any descendant

of Xt−γ in Gf . If this is true, there exists Wt−γ ∈ Bγ ∩
Desc(Xt−γ ,Gf ), at time slice t − γ because it is a parent

and a descendant of Xt−γ . By consistency throughout time,

Wt ∈ Desc(Xt, G
f ). However, by definition of Bγ , Xt ∈

Desc(Wt, G
f ), which contradicts the acyclicity assumption of

Ge. It means that neither it blocks any directed path between

Xt−γ and Yt, nor it contains any descendant of Yt.

Proposition 2. Consider an ESCG Ge and a maximal lag

γmax and let γ ≥ 0. Any adjustment set B′
γ for the total effect

P (yt|do(xt−γ)) valid with respect to the standard backdoor

criterion on the densest candidate FTCG is a valid adjustment

set for the total effect in Ge and

P (yt|do(xt−γ)) =
∑

b∈B′

γ

P (b)P (yt|xt−γ ,b).

In addition, Bγ is a valid adjustment set with respect to the

standard backdoor criterion on the densest candidate FTCG.

Proof. Let Gfd be the densest candidate FTCG, and B′
γ be an

adjustment set in Gfd . Let Gf be another candidate FTCG. By

definition of Gfd , any back-door path in Gf is also in Gfd (the

last graph contains all possible edges). Then, B′
γ blocks all

back-door paths in Gf . Moreover, since no vertex in B′
γ is a

descendant of Xt−γ in Gfd , the same holds for Gf . Thus, B′
γ

is also an adjustment set in Gf .

C. Proofs of Section V

Property 1. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)) for γ ≥ 0. If there exists a backdoor path πf in a

candidate FTCG between Xt−γ and Yt in which all vertices

are ambiguous then P (yt | do(xt−γ)) is not identifiable.

Proof. Let’s assume that the total effect is identifiable. Then,

there exists a set of vertices W which blocks all back-door

paths between Xt−γ and Yt of all candidate FTCGs and which

does not block any directed paths between Xt−γ and Yt nor

contains any descendant of Yt. Let’s consider a candidate

FTCG and a back-door path πf between Xt−γ and Yt in this

FTCG. All vertices which are in W and πf block πf . As

they are in W , they cannot belong, in any candidate FTCG,

to a directed path from Xt−γ and Yt, as otherwise they would

block this path, and cannot be a descendant of Yt. They are

thus unambiguous according to Definition 8.

Lemma V.1. Consider an SCG Gs and the total effect

P (yt | do(xt−γ)) for γ > 0. If X ∈ Anc(Y,Gs) and

Cycles>(X,Gs\{Y }) 6= ∅ then P (yt | do(xt−γ)) is not

identifiable.

Proof. Let X → W 2 → . . . → Wm−1 → Y
be a directed path in Gs and 〈X,V 2, . . . , V n−1, X〉 ∈
Cycles>(X,Gs\{Y }).

There exists a candidate FTCG Gf1 such that πf
1 =

Xt−γ−1 → . . . → V n−1
t−γ → Xt−γ → W 2

t−γ+1 . . . → Yt.

There also exists another candidate FTCG Gf2 with the path
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πf
2 = Xt−γ ← V n−1

t−γ ← . . . ← Xt−γ−1 → . . . → Yt. Thus,

by Property 1, P (yt | do(xt−γ)) is not identifiable.

Lemma V.2. Consider an SCG Gs, and the total effect P (yt |
do(xt−γ)), for γ ≥ 0. If X ∈ Anc(Y,Gs) and there exists a

σ-active backdoor path

πs = 〈V 1 = X, · · · , V n = Y 〉

from X to Y in Gs with Z = ∅ such that 〈V 2, · · · , V n−1〉 ⊆
Desc(X,Gs) and n > 2 then P (yt | do(xt−γ)) is not

identifiable.

Proof. Let πs = 〈V 1 = X, · · · , V n = Y 〉 be such a σ-active

backdoor path.

Then there exists a candidate FTCG Gf1 such that πf
1 =

Xt−γ ← . . . ← V i
t−γ → . . . → Yt is a backdoor path. As

X ∈ Anc(Y,Gs) and all V j ⊆ Desc(X,Gs), 2 ≤ j ≤ n− 1,

all those variables also belong to a directed path from Xt−γ

to Yt in some other candidate FTCG Gf2 . Thus, by Property

1, P (yt | do(xt−γ)) is not identifiable.

Lemma V.3. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)), with γ 6= 1. If X ⇆ Y ∈ Gs then P (yt | do(xt−γ))
is not identifiable.

Proof. If γ = 0, there exists a candidate FTCG Gf1 such that

Xt ∈ Par(Yt,G
f
1 ) and another candidate FTCG Gf2 such that

Yt ∈ Par(Xt,G
f
2 ), thus the total effect is not identifiable.

Let γ > 1. There exists a candidate FTCG Gf1 such that

Xt−γ ← Yt−γ → Xt−γ+1 → . . . → Yt and Xt−γ → Yt.

There also exists another candidate FTCG Gf2 such that

Xt−γ → Yt−γ → Xt−γ+1 → . . .→ Yt. Then, by Property 1,

P (yt | do(xt−γ)) is not identifiable.

Lemma V.4. Consider an SCG Gs and the total effect

P (yt | do(xt−1)) (γ = 1). If X ⇆ Y ∈ Gs and

Cycles(Y,Gs\{X}) 6= ∅ then P (yt | do(xt−1)) is not

identifiable.

Proof. Let 〈Y, V 2, . . . , V n−1, Y 〉 ∈ Cycles(Y,Gs\{X}).
There exists a candidate FTCG Gf1 with a back-door path

Xt−1 ← Yt−1 → . . . → V n−1
t−1 → Yt and a directed path

Xt−1 → Yt. There also exists another candidate FTCG Gf2
with a directed Xt−1 → Yt−1 → . . . → V n−1

t−1 → Yt. Then,

by Property 1, P (yt|do(xt−1)) is not identifiable.

Property 3. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)) for γ ≥ 0. Then (i)⇒ (ii), where:

(i) γ = 0 or Cycles>(X,Gs\{Y }) = ∅,
(ii) in any candidate FTCG Gf , there exists no backdoor path

πf ∈ Πf
γ that is not compatible with any backdoor path

in Gs.

Proof. Assume first Cycles>(X,Gs\{Y }) = ∅. Suppose

∃πf = Xt−γ ← Wt−γ · · · → Yt ∈ Πf
γ which is a back-

door path between Xt−γ and Yt that is not compatible with

any back-door path πs = 〈V 1 = X,V 2, · · · , V n−1, V n = Y 〉
in Gs.

If n = 2, then the path compatible with the cycle 〈X,X〉
is of the form Xt−γ → Xt−γ+i → · · · → Xt−γ+j → Yt: it

means that πf cannot be a back-door path.

If n > 2, Wt−γ is such that W 6∈ {V 2, · · · , V n−1} and

∄V ∈ {V 2, · · · , V n−1} such that W ∈ Cycles(V,Gs). If the

path between Wt−γ and Yt does not pass by Xt−γ+ℓ with

ℓ > 0, then there exists a back- door path between X and Y
passing by W in Gs as πf lies in a candidate FTCG, which

contradicts our assumption. So the path necessarily passes by

Xt−γ+ℓ. Thus there is a cycle Cx on X such that size(Cx) >
2, which leads again to a contradiction. Thus, there does not

exist a back-door path πf ∈ Πf
γ between Xt−γ and Yt that is

not compatible with any back-door path in Gs.

The case γ = 0 is treated in the same way, with the fact

that the path considered cannot go back to Xt as this would

create a cycle in the FTCG.

Lemma V.5. Consider an SCG Gs, γ ≥ 0 fixed and the total

effect P (yt | do(xt−γ)). If X 6∈ Anc(Y,Gs) then P (yt |
do(xt−γ)) is identifiable, and P (yt | do(xt−γ)) = P (yt).

Proof. If X 6∈ Anc(Y,Gs), then in every candidate FTCG

Gf , Xt−γ 6∈ Anc(Yt,Gf ). Thus, P (yt | do(xt−γ)) is always

identifiable in Gs, and P (yt | do(xt−γ)) = P (yt).

Lemma V.6. Consider an SCG Gs, γ ≥ 0 fixed and the total

effect P (yt | do(xt−γ)). If X ∈ Anc(Y,Gs) and

(i) either γ = 0 or Cycles>(X,Gs\{Y }) = ∅ and

(ii) ∄σ-active backdoor path πs = 〈V 1 = X, · · · , V n =
Y 〉 from X to Y in Gs with Z = ∅ such that

〈V 2, · · · , V n−1〉 ⊆ Desc(X,Gs),

then P (yt | do(xt−γ)) is identifiable by Aγ .

Proof. We will prove that Aγ is an adjustment set for P (yt |
do(xt−γ)) in any candidate FTCG under conditions (i) and (ii).

Let Gf be a candidate FTCG, and Πf
γ the set of ambiguous

paths. By Property 2, any back-door path πf /∈ Πf
γ can

be blocked by Aγ . Furthermore, by definition, elements of

Aγ cannot block any directed path between Xt−γ and Yt

and cannot be descendants of Yt as otherwise they would be

descendant of Xt−γ .

We now turn our attention to paths in Πf
γ . Let πf ∈ Πf

γ

be a back-door path between Xt−γ and Yt. Since γ = 0
or Cycles>(X,Gs\{Y }) = ∅ then by Property 3, all back-

door paths in Πf
γ are compatible with back-door paths in Gs.

Let πs = 〈V 1 = X, · · · , V n = Y 〉 be a σ-active back-door

path in Gs compatible with πf . By (ii), there exists m ≥ 1
vertices such that {V i1 , · · · , V im} ⊆ 〈V 2, · · · , V n−1〉 and

{V i1 , · · · , V im} 6⊂ Desc(X,Gs). Then, ∀Vt−γ such that V ∈
{V i1 , · · · , V im}, Vt−γ 6∈ Desc(Xt−γ ,Gf ) and since X ∈
Anc(Y,Gs) then it must be the case that V 6∈ Desc(Y,Gs)
and by consequence Vt−γ 6∈ Desc(Yt,Gf ). Thus, Vt−γ cannot

be an ambiguous vertex. Its parent in πf furthermore blocks

πf , is not ambiguous (as otherwise Vt−γ would be ambiguous)

and is a member of Aγ by definition of Aγ . Thus Aγ blocks

all back-door paths between Xt−γ and Yt in any candidate

FTCG Gf . Furthermore, no node in Aγ can block a directed

path between Xt−γ and Yt or is a descendant of Yt as nodes

in Aγ are either defined before t− γ or are not descendant of

Xt−γ , and thus of Yt. This concludes the proof.
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Lemma V.7. Consider an SCG Gs and the total effect P (yt |
do(xt−1)) (γ = 1). If the only σ-active backdoor path from

X to Y in Gs with Z = ∅ is X ⇆ Y ∈ Gs and

(i) Cycles>(X,Gs\{Y }) = ∅ and

(ii) Cycles(Y,Gs\{X}) = ∅,

then P (yt | do(xt−1)) is identifiable by Aγ .

Proof. We will prove that A1 is an adjustment set for P (yt |
do(xt−1)) in any candidate FTCG under conditions (i) and (ii).

Let Gf be a candidate FTCG, and Πf
1 the set of ambiguous

paths.

Since (ii) then by Property 3, all back-door paths in Πf
1 are

compatible with back-door paths in Gs. In addition, by Prop-

erty 2, any path πf /∈ Πf
1 can be blocked by A1. Therefore,

in the following, we focus on paths in Πf
1 compatible with

back-door paths in Gs.

Consider the σ-active back-door path πs = 〈X,Y 〉. As

there cannot be a loop on Y by (i), the only path πf ∈ Πf
1

from Xt−1 to Yt compatible with πs that pass by Yt−1 is

πf = 〈Xt−1, Yt−1, Xt, Yt〉. Then, under consistency through-

out time, acyclicity and temporal priority, the only choices are

Xt−1 → Yt−1 → Xt → Yt and Xt−1 ← Yt−1 → Xt ← Yt.

The first is a directed path, the second a back-door path

already blocked due to the collider Yt−1 → Xt ← Yt. Thus,

all potential back-door paths between Xt−1 and Yt in any

candidate Gf are blocked, and A1 does not activate them.

Theorem 3. (Identifiability in SCG) Consider an SCG

Gs = (Vs, Es) associated with a DSCM with true (unknown)

probability distribution P . Under Assumptions 1 and 2 for

Gs and Assumption 3 for P , the total effect P (yt|do(xt−γ)),
with γ ≥ 0, is identifiable if and only if X /∈ Anc(Y,Gs) or

X ∈ Anc(Y,Gs) and none of the following holds:

1) γ 6= 0 and Cycles>(X,Gs\{Y }) 6= ∅, or

2) there exists a σ-active backdoor path, with Z = ∅,

πs = 〈V 1 = X, · · · , V n = Y 〉

from X to Y in Gs such that 〈V 2, · · · , V n−1〉 ⊆
Desc(X,Gs) and one of the following holds:

a) n > 2, i.e. 〈V 2, · · · , V n−1〉 6= ∅, or

b) n = 2 and γ 6= 1, or

c) n = 2, γ = 1 and Cycles(Y,Gs\{X}) 6= ∅.

Proof. To prove this theorem, we present necessary conditions

in Lemmas V.4-V.7 and sufficient conditions for the identifia-

bility in Lemmas V.1-V.3.

Proposition 3. Consider an SCG Gs and the total effect P (yt |
do(xt−γ)), with γ ≥ 0. Under assumptions of identifiability

provided by Theorem 3, the set A′
γ is an adjustment set for

the total effect.

Proof. Let Gf be an candidate FTCG. Consider Vt′ ∈ Aγ\A′
γ :

by definition of A′
γ , it follows that Vt′ 6∈ Anc(Xt−γ ,Gf ) ∪

Anc(Yt,G
f ). Therefore Vt′ does not lie on any back-door path

between Xt−γ and Yt: Vt′ is not necessary in the adjustment

set, confirming that A′
γ is also an adjustment set.
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