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WHAT MEANS “SLIGHTLY SUPERCRITICAL”
IN NAVIER-STOKES EQUATIONS?

PEDRO GABRIEL FERNÁNDEZ DALGO

Escuela de Ciencias F́ısicas y Matemáticas, Universidad de Las Américas, Vı́a a Nayón, C.P.170124, Quito, Ecuador

Abstract. The goal of this paper is to clarify some differences between the critical Lebesgue

space L3 and the critical weak Lebesgue space L3,8, when these are considered in the hypothesis

of classical statements for the 3D homogeneous incompressible Navier-Stokes equations.

1. Introduction

Recent interesting technical progress in the analysis of the velocities solving the Navier-Stokes

equations appear associated to critical hypothesis. Let us fix some notions. The homogeneous

incompressible Navier-Stokes equations
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Btu “ ∆u ´ pu ¨ ∇qu ´ ∇p

∇ ¨ u “ 0, up0, ¨q “ u0,
(1.1)

satisfy the following scaling property : If pu, pq is a solution on R3 ˆ r0, T q with initial velocity

u0, then defining

uλpx, tq :“ λupλx, λ2tq, pλpx, tq :“ λ2ppλx, λ2tq and u0,λ “ λu0pλ ¨q,

we obtain puλ, pλq is a solution on R3 ˆ r0, T {λ2q with initial data u0,λ.

A norm or quasi-norm } ¨ }XT
, on the time-dependent vector fields with domain R3 ˆ r0, T q,

is called critical (for the velocity) if for all time-dependent vector field u on R3 ˆ r0, T q, for all

λ ą 1, }uλ 1R3ˆr0,T {λ2q}XT
“ }u}XT

. Restricting our attention to the initial data, we say that a

norm or semi-norm } ¨ }X0 defined on the vector fields with domain R3, is critical if for all vector

field u0 on R3, for all λ ą 0, }u0,λ}X0 “ }u0}X0 .

The most classical results concerning strong solutions of (NS) are limited by critical hypothesis

(we refer to [10], [20] and [12]). For example, the local existence of mild solutions with initial

data in the critical Lebesgue space L3 is known (see [10], [15] and [13]), but in the case of initial

data belonging to the critical weak Lebesgue space L3,8, smallness conditions are required:

}u}L3,8pR3q :“ sup
αą0

α
“

µ
`␣

x P R3 : |upxq| ą α
(˘ ‰1{3

ă ϵuniv, being µ the Lebesgue measure.
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Regularity of Leray solutions belonging to L8pp0, T qL3q has been proved (see [8], [18], [19], [22]),

however under the “slightly” weaker hypothesis L8pp0, T qL3,8q, regularity is an open problem

when the solution is not axisymmetric, we refer to [2].

In attempting to deal with supercritical hypotheses, the use of quantitative arguments to study

concentration of some frequencies in presence of a singularity, permits to precise a blow-up rate

slightly supercritical “with respect to the L3 norm”. The idea is due to Tao in [21], who proved

that for a finite energy solution v with viscosity ν “ 1, which first blows up at T ˚, we have for

some absolute constant c ą 0,

lim sup
tÒT˚

}vp¨, tq}L3pR3q
`

log log log 1
T˚´t

˘c “ `8. (1.2)

A quantitative strategy has been established in the local setting, considering type I conditions

}v}L8pp0,T˚q,L3,8q ă `8, by Barker and Prange in [5], and also by Kang, Miura and Tsai in [11].

Barker and Prange demonstrate under type I conditions that

}vp¨, tq}L3pBx0 pδqq ě CM log

ˆ

1

T ˚ ´ t

˙

, where δ “ OppT ˚
´ tq

1
2

´
q,

based on localized smoothing estimates in [4] while Kang, Miura and Tsai propose a direct

approach in paper [11]. Very recently, in [3] Barker shows how to quatify the main result in [8].

He proves for δ small enough,

lim sup
tÒT˚

}vp¨, tq}L3pBx0 pδq q

ˆ

log log log 1

pT˚´tq
1
4

˙
1

1129

“ `8,

improving thus (1.2). All these advances have a “supercritical” appearance however a less op-

timistic and more accurate reading would be : these advances are slightly supercritical with

respect to the L3 norm. With respect to the L3,8 norm, these results have not a slightly

supercritical relationship. Although L3,8 is still a critical space, analogous results to those cited

above, using L3,8 instead of L3, have not been demonstrated, except when conditions of small-

ness or axisymmetry are imposed. Thus, L3,8 type conditions for the profils, and L8pp0, T q, L3,8q

type conditions in space-time, represent a big obstacle for the understanding of the Navier-Stokes

equations.

To reinforce our opinion on the local well behavior of Navier-Stokes solutions, considering L3

norms in the hypothesis, we will revisit some results.

2. Removing smallness of the L3 norm in localized smoothing for the

Navier-Stokes equations

In which concerns localized smoothing, we revisit Theorem 1 in [4] where a local smallness

hypothesis of L3 nature appear. To remove this smallness hypothesis the price to be paid is

roughly the non-quantification of this result. Let us consider the definitions and notations in [4]

(almost standard), in particular consider the constant γuniv described in Theorem 1 in [4]. Our

main result reads as follow :
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Theorem 2.1. Let u0 be a divergence free vector field belonging to L2
ulocpR3q. Consider a compact

set K Ă R3. We suppose that for each x P K, there exists λx ą 0, such that
ş

B2λx pxq
|u0|3dy ă γ3

univ

and }λxu0pλx ¨ `xq}L2
uloc

ă `8.

Suppose u to be a local energy solution of (NS) with initial data u0 (Definition 16 in [4]). Then,

there exists T “ Tu0,K such that u P L8pK ˆ p0, T qq.

Proof We will apply a rescaling argumment. Let x P K. We take λx such that
ż

B2λx pxq

|u0|
3dy ă γ3

univ

and }λxu0pλx ¨ `xq}L2
uloc

ă `8. We have
ż

B2λx pxq

|u0pyq|
3dy “

ż

B2p0q

|λxu0pλxy ` xq|
3dy

and uλx,xpt, yq :“ λxupλ2
xt, λxy ` xq is a solution of the Navier Stokes equations with initial data

u0,λx,xpyq “ λxu0pλxy ` xq.

Let us denote Mu0,x :“ }u0,λx,x}L2
uloc

. By Theorem 1 in [4], we conclude that there exists

S˚pMu0,xq such that

uλx,x P L8
pB 1

3
p0q ˆ pβ, S˚

pMu0,xqqq

for all β P p0, S˚pMu0,xqq. It follows that

u P L8
pBλx

3
pxq ˆ pβ, λ2

xS
˚
pMu0,xqqq

for all β P p0, λ2
xS

˚pMu0,xqq.

As tBλx
3

pxq;x P Ku cover the compact K, we can take a finite family txp1q, xp2q, ..., xpkqu Ă R3

such that
"

Bλxpiq

3

pxpiqq; i P t1, ..., ku

*

cover K. Then, we define

T “ T pu0, Kq “ min
iPt1,...,ku

λ2
xpiq

S˚
pMu0,xpiq

q

so that u P L8pK ˆ pβ, T qq, for all β P p0, T q.

Remark 2.1. If K is not compact, to make this proof works, when we take for each x P K the

positive number λx such that
ż

B2λx pxq

|u0|
3dy ă γ3

univ,

we need at the same time infxPK λ2
xS

˚pMu0,xq to be a positive number. So, we can impose as

hypothesis λx to be bounded from below and Mu0,x to be bounded from above. Then the following

Corollary follows immediately from the proof of Theorem 2.1:

Corollary 2.1. Let u0 be a divergence free vector field belonging to L2
ulocpR3q. We assume that

sup
xPR3

sup
λą0

}λu0pλ ¨ `xq}L2
uloc

ă `8 (2.1)
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and there exists λ ą 0 such that for each x P R3, there exists λx ą λ, such that
ż

B2λx pxq

|u|
3dy ă γ3

univ.

Suppose u to be a local energy solution of the Navier-Stokes equations with initial data u0. Then,

there exists T “ Tu0 such that u P L8pR3 ˆ p0, T qq.

Remark 2.2. We observe that (2.1) is satisfied by the functions in the critical Morrey space

9M2,3, which contains L3,8, where the norm is given by

}f} 9M2,3 “ sup
xPR3

sup
Rą0

ˆ

1

R

ż

|y´x|ăR

|f |
2dy

˙1{2

.

This remark is also used for exemple in [13]. Observe that we could use Theorem 1.1 in [11] in

order to prove Theorem 3.1.

3. Removing backward discretely selfsimilar singularities

In this section we want to show how scaling arguments permit to remove easily L3 profiles in

backward discretely selfsimilar singularities. We will remove even L3,qpR3q profiles with 1 ď q ă

`8, where we consider the Lorentz spaces Lp,q, for 1 ď p, q ă `8, on measurable sets Ω Ă R3,

defined by the quantity

}f}Lp,qpΩq “

ˆ

p

ż `8

0

αq df,Ωpαq
q{p dα

α

˙1{q

where,

df,Ωpαq “ µptx P Ω : |fpxq| ą αuq,

denoting µ the Lebesgue measure. That permits to precise some statements of recent results as

Theorem 2 in [6] or Corollary 1.1 in [5].

We start by remember the definition of the λ-discretely self-similarity (see [7, 9]):

Definition 3.1. Let λ ą 1.

‚ A vector field u0 P L2
locpR3q is λ-discretely self-similar (λ-DSS) if λu0pλxq “ u0pxq.

‚ A time dependent vector field u P L2
locpp´8, 0q ˆ R3q is λ-DSS if λupλ2t, λxq “ upt, xq.

‚ A pressure p P L1
locpp´8, 0q ˆ R3q is λ-discretely self-similar if λ2ppλ2t, λxq “ ppt, xq.

In the next statement, the notion of suitable Leray solution admits the standard definitions,

including infinite energy solutions, we can consider for example the definition in [5], [6], [9], [14]

or [15].

Theorem 3.1. Let λ P p1,`8q and let u0 be a non trivial divergence-free vector field which is λ-

DSS. Suppose, there exists a backward λ-DSS suitable Leray solution u of (NS) on p´8, 0s ˆ R3.

Then, for all t0 P p´8, 0q we have,

lim inf
nÑ8

ż

B1zBλ´1

|λnupλnx, t0q| ą 0. (3.1)
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Remark 3.1. Observe that condition (3.1) implies the profile in negative times can’t belong to

L3,q, with 1 ď q ă 8. In fact, by change of variables and by Hölder inequality (for Lorentz

spaces),
ż

B1zBλ´1

|λnupλnx, t0q|dx “
1

λ2n

ż

BλnzBλn´1

|upy, t0q|dy (3.2)

ď
1

λ2n
}1BλnzBλn´1 }

L
3
2 ,

q
q´1

}up¨, t0q}L3,qpBλnzBλn´1 q, (3.3)

and since }1BλnzBλn´1 }
L

3
2 ,

q
q´1

ď Cλ2n, we find

lim inf
n

ż

B1zBλ´1

|λnupλnx, t0q| ď C lim inf
n

}up¨, t0q}L3,qpBλnzBλn´1 q. (3.4)

By other hand, since upt0q P L3,q, with 1 ď q ă 8, using the definition of this Lorentz space and

the monotone convergence, we can verify that limnÑ8 }up¨, t0q}L3,qpR3zBλn´1 q “ 0.

In terms of L2 norms, we have (3.1) also implies

lim inf
RÑ8

1

R

ż

BR

|up¨, t0q|
2

ą 0.

In fact, by the Hölder inequality

lim inf
nÑ8

ż

B1zBλ´1

|λnupλnx, t0q| “ lim inf
nÑ8

1

λ2n

ż

BλnzBλn´1

|upx, t0q| ď lim inf
nÑ8

c

λn

ż

BλnzBλn´1

|upx, t0q|
2.

Proof of Theorem 3.1 : Suppose there exists t0 P p´8, 0q such that

lim inf
nÑ8

ż

B1zBλ´1

|λnupλnx, t0q| “ 0. (3.5)

We will demonstrate up¨, 0q “ 0. It is sufficient to show that for almost all x P B1zBλ´1 , upx, 0q “

limupx, tnq “ 0. Then, by discretely selfsimilarity of the initial profile we obtain up¨, 0q “ 0.

By interior estimates of regularity (see [19] and [22]) we know

u P Cpr´1, 0s, L1
pB1qq. (3.6)

Consider the sequence tn “ t0{λ
2n. By λ-DSS property we get

λnupλnx, t0q “ upx,
1

λ2n
t0q. (3.7)

By (3.7) and (3.5) we can extract a subsequence of up¨, 1
λ2n t0q converging to zero pointwise. We

so get, up to a subsequence, for almost all x P B1zBλ´1 , upx, 0q “ limupx, tnq “ 0 by (3.6).

Corollary 3.1. Suppose that u defined on p´8, 0sˆR3 is a suitable backward discretely selfsimilar

solution such that

}u}L8pp´1,0q,L3,8q ă `8

and there exists t0 ă 0 such that upt0q P L3,q, with 3 ď q ă `8, then u “ 0.

It is a direct consequence of Theorem 3.1 and Theorem 4.1 in [1] (a Liouville type theorem).

DATA AVAILABILITY STATEMENT : Data sharing isn’t applicable to this article as no datasets

were generated or analized during the current study.
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[8] L. Escauriaza, G. Seregin, V. Šverák, L3,8-Solutions to the Navier-Stokes Equations and Backward Unique-

ness, Russ. Math. Sur. 58(2), 211–250 (2003)
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