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Abstract12

More than ever, air transport players (i.e., airline and airport companies) in an intensely competitive13

climate need to benefit from a carefully optimized management of airport resources to improve the14

quality of service and control the induced costs. In this paper, we investigate the Airport Check-in15

Desk Assignment Problem. We propose a Constraint Programming (CP) model for this problem,16

and present some promising experimental results from data coming from ADP (Aéroport de Paris).17
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1 Introduction21

Before the COVID-19 health crisis, the International Air Transport Association (IATA)22

forecasts showed that passengers would double by 2036, reaching 7.8 billion. The COVID-1923

pandemic has slowed air traffic considerably, especially in 2020 and early 2021, but since then24

the economic pressure is back again. Actually, air traffic picked up in 2022 and is similar25

to 2019. Some airlines have even announced the return to service of Airbus 380 to manage26

demand. In such a context, optimizing airport resources management remains essential27

to control induced costs while keeping a good quality of services. For many planning and28

scheduling air transport problems, techniques and tools developed from mathematical and29

constraint programming remain essential. Specifically, when airline companies have access30

to the resources delivered at the airport, the consumption of these resources (e.g., check-in31

banks, aircraft stand) must be carefully planned while optimizing an objective function32

determined by some business rules; see, for example, [24, 9, 22, 8, 29].33

A classical air transport problem is the Airport Gate Assignment Problem (AGAP),34

which involves assigning each flight (aircraft) to an available gate while maximizing both35

passenger conveniences and the airport’s operational efficiency; see surveys in [2, 5] and36

models in [19, 20, 23]. Another classical problem is the Check-in Assignment Problem,37

which involves assigning each flight to one or more check-in desks depending on the airline’s38

requirements. Different approaches in MILP (mixed-integer linear programming) have been39

proposed [33, 1]. A recent survey [13] presents different methods for solving this problem using40

integer programming or dynamic programming. However, it does not seem to indicate that41

constraint programming modeling is proposed. Because significant improvements have been42

made during the last decade in Constraint Programming (CP), such as, e.g., efficient filtering43
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(and compression) algorithms for table constraints [14, 6], or lazy clause generation [12],44

tackling optimization of airport tasks with CP remains an interesting issue. In this paper,45

we are interested in the Airport Check-In Desk Assignment Problem as defined at CDG46

International Airport. We propose a Constraint Programming (CP) approach and show its47

potential interest by presenting a few promising experimental results.48

The rest of this paper is organized as follows. In Section 2, we present Airport Check-In49

Desk Assignment Problem. In Section 3, we propose a Constraint Optimization model50

for this problem and some possible variants of this model. In Section 4, we present some51

experiments carried out in an in-situ experimental context with the Paris airport system.52

Finally, in Section 5, we conclude and give some perspectives for future works.53

2 Airport Check-In Desk Assignment Problem at Paris Airport54

CDG Airport is the ninth-largest airport in the world in terms of passenger traffic. There55

are approximately 1, 400 flight movements (takeoff or landing) per day. At the airport, one56

of the combinatorial problems to address is to set each flight (or group of flights) to one57

or more available check-in desks. In this section, we provide some information about the58

Airport Check-In Desk Assignment Problem.59

A registration corresponds to a flight or a set of flights of the same airline. For each60

registration, a task must be carried out: associating a set of check-in desks with it. Each61

task of registration (or check-in for a flight) starts at the same time and ends at the same62

time. Note that the number of check-in desks depends on the number of passengers and is63

fixed in advance by the airline and the airport. Figure 1 presents some registration tasks at64

Orly Airport with 1, 4 and 5 tasks.65

Figure 1 An example of planning at Orly Airport

Planning registrations can be achieved for one or more days. For the moment, the66

planning horizon we manage is for one week (sometimes less). In the rest of the paper, a67

check-in desk will be called a bank, and the set of all registrations (tasks) is denoted by68

R, the set of all zones (groups of banks) is denoted by Z, the set of banks by C, and the69

maximal number of banks required by a registration by ν.70

2.1 Imposing Consecutive Desks71

When attempting to model this problem, a first arising constraint is that the banks (check-in72

desks) used for a specific registration must be consecutive (as we can observe in Figure 1).73

Importantly, as banks are grouped by zones, we must pay attention to assign only banks74

from the same zone to a registration. For example, in Figure 2, there are two zones (colored75

in blue and pink); so for a registration, we cannot use both a blue and a pink bank.76
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Figure 2 Example of a planning that allows overlapping.

2.2 Sharing Desks under Conditions77

By default, a registration cannot share its assigned banks with those of another registration78

if the two registration tasks are time overlapping. So at any time, no bank can be shared by79

two different registrations. However, for some reason of logistics (space) and under certain80

general conditions (called overlapping rules), some overlapping between flights from the same81

airline company may be tolerated for a limited period of time and or for a limited number of82

tasks. In the latter case, if for example the number of banks required by a registration is83

set to 4 and the maximum number of overlapping situations is 2, then only two banks from84

the four banks associated with the registration can be shared with another registration that85

shares the same overlapping rule. We will note O the set of pairs of registrations (ρ1, ρ2)86

that can’t strictly share banks (they may be time overlapping, but no rule exists permitting87

to have shared banks between them). Figure 2 presents an example of planning that allows88

overlapping for 100% of the time and without a limited number of tasks.89

2.3 Excluding some Banks90

It is frequent that some banks are unavailable for a period of several hours to several days91

(for example for maintenance reasons). Also, some exclusion constraints ensures that certain92

banks are excluded from certain registrations under some conditions.93

2.4 Pre-assigning Banks94

Sometimes, users (from ADP) may want to force a specific set of banks to be associated with95

some registrations. We will note (ρ, j, c) the triplet that represents the pre-assignment of96

bank c as the jth bank used by registration ρ; all such triplets will be denoted by P.97

2.5 Specifying the Objective98

Of course, assigning a bank to a registration is subject to some placement preferences by99

airline companies. For each assigned bank, a reward is given: the reward of assigning the100

bank c as the jth bank used by registration ρ is denoted by rc
ρ,j . Assuming that we have a101

series1 of 0/1 variables xc
ρ,j associated with each registration task (indicating which check-in102

desk will be used), we can then define the overall objective function as follows:103

1 Note that we shall not use 0/1 variables in the model proposed in Section 3.

DPCP 2023
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maximize
∑
ρ∈R

j∈1..ntasks(ρ)

xc
ρ,j × rc

ρ,j (1)104

3 Constraint Optimization Model105

Now that the problem has been introduced in general terms, we need to describe it more106

formally using a constraint network. A Constraint Network (CN) consists of a finite set107

of variables subject to a finite set of constraints. Each variable x can take a value from a108

finite set called the domain of x. Each constraint c is specified by a relation that is defined109

over (the Cartesian product of the domains of) a set of variables. A solution of a CN is the110

assignment of a value to every variable such that all constraints are satisfied. A Constraint111

Network under Optimization (CNO) is a constraint network that additionally includes an112

objective function obj that maps any solution to a value in R.113

For modeling CNOs, also called Constraint Optimization Problems (COPs), several114

modeling languages or libraries exist such as, e.g., OPL [27], MiniZinc [25, 30], Essence [11]115

and PyCSP3 [18]. Our choice is the recently developed Python library PyCSP3 that permits116

to generate specific instances (after providing ad hoc data) in XCSP3 format [3, 4], which is117

recognized by some well-known CP solvers such as ACE (AbsCon Essence) [16], OscaR [26],118

Choco [28], and PicatSAT [34]. For simplicity, however, we formally describe below the119

model developed for the Airport Check-in desk problem in a higher “mathematical” form.120

Firstly, we need to introduce the variables of our model. A registration must use check-in121

desks in coherence with its strategy. Therefore, rather than making domains containing all122

possible banks, the domains are initially reduced to the banks that are compatible with the123

strategy associated with the registration. For each registration ρ we note this domain Dx,ρ.124

Similarly, the domains for the variables representing rewards for airlines, they only contain125

the values corresponding to the allowed check-in desks. For each registration ρ we note this126

domain Dr,ρ. We also introduce a fictive bank f with a reward of 0.127

We need two (2-dimensional) arrays of variables to represent assigned registration and128

associated rewards:129

x is a matrix of |R| × ν variables having the set of values Dx,ρ; x[ρ][j] represents the130

index (code) of the check-in desk assigned to the jth task of the registration ρ.131

r is a matrix of |R| × ν variables having the set of values Dr,ρ; r[ρ][j] represents the132

satisfaction of the airline for the jth task of the registration ρ.133

Secondly, we need to introduce the constraints in our model. Because of the nature of134

the problem (and data), it is natural to post so-called table constraints, which explicitly135

enumerate either the allowed tuples (positive table) or the disallowed tuples (negative table)136

for a sequence of variables (representing the scope of a constraint). Efficient algorithms for137

such table constraints have been developed over the last decade [15, 17, 6, 31].138

3.1 A first COP formulation139

Let us consider the variables previously introduced, the problem can be formulated as follows:140

x[ρ][j] = c, ∀(ρ, j, c) ∈ P (2)141
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(x[ρ][j] = x[ρ][j + 1] − 1) ∨ (x[ρ][j] = f ∧ x[ρ][j + 1] = f), ∀ρ ∈ R, ∀j ∈ ntask(ρ) (3)142

x[ρ1][i] ̸= x[ρ2][j]∀ρ1, ρ2 ∈ O, ∀i ∈ ntask(ρ1), ∀j ∈ ntask(ρ2) (4)143

x[ρ][i], r[ρ][i] ∈ {(c, wc
ρ), ∀c ∈ C ∪ {f, 0}} (5)144

Constraints (2) ensure that each pre-assignment of P is respected. Constraints (3) ensure145

that the chosen check-in desks for registration are consecutive or used the the fictive check-in146

desk for each task of each registration. The introduction of holes in the domains (e.g., useless147

check-in desks) makes it possible to manage this by imposing that a task must be equal148

to the following task minus one and by not including useless check-in desks in the domain.149

In this way, we insert a hole representing the zone’s separation. Constraints (4) prevent150

two overlapping registration from being assigned to the same check-in desk (as presented in151

Section 2.2). Constraints (5) use table constraint to map the check-in desk with this weight.152

We note wc
ρ the weight associated to the check-in desk c considering the strategy rule of ρ.153

Finally, for constraints presented in Section 2.3 we use conflict tables.154

3.2 Gathering Binary Difference Constraints155

We will now strengthen this natural formulation by reformulating the set of constraints ( 4)156

using the AllDifferentExcept constraint. This latter enforces all variables to take distinct157

values, except those variables that are assigned value to a special (joker) value (here it is our158

fictive bank f).159

AllDifferentExcept({x[ρ1], x[ρ2]}, f) (6)160

For each pair ρ1, ρ2 in the set of forbidden overlaps O. Note that we used the notation161

x[ρ1] and x[ρ2] for a shortcut that integrates the entire second dimension of the matrix into162

the constraint (i.e. each task of ρ1 or ρ2). This formulation allows us to reduce the number163

of constraints about no-overlapping tasks considerably, as the previous formulation needs a164

quadratic number of not-equal constraints.165

3.3 Gathering AllDifferentExcept constraints166

Even though the formulation above notably reduces the number of posted constraints, the167

solver remains too slow for finding acceptable results (bounds) in a reasonable amount of168

time. We have thus gathered all AllDifferentExcept constraints into a unique pragmatic169

constraint called GatherAllDifferentExcept. For this particular constraint, we use a170

specific fast propagator that performs a limited form of filtering (i.e., does not enforce171

generalized arc consistency). This is a very pragmatic approach, which is somewhat equivalent172

to the initial set of binary constraints, but quite faster (only one constraint being posted).173

DPCP 2023
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Table 1 Description of the main instances (Φ) uses in this study.

Instance |C| # Tasks |O| # Strategy rules

ORLY 1234 - 2023-05-08/2023-05-14 326 2224 21 31
CDG T1 - 2023-07-03/2023-07-09 137 630 6 38
CDG T2 - B & D - 2023-07-03/2023-07-09 108 766 1 21

4 Experiments Results174

4.1 Instances175

Table 1 presents some factual aspects concerning our instances based on real data from Paris176

Airport and representing realistic scenarios. The first column is the name of the instance,177

while the second, third, fourth and fifth columns indicate the number of check-in desks, the178

number of tasks, the number of overlapping rules and strategy rules, respectively. Each179

instance concerns a planning over 7 consecutive days. We note this set of instances Φ.180

4.2 Decomposition181

Because decomposing the problem is possible without degrading results, it was decided to182

break the problem into simpler sub-problems so as to solve them successfully. To do this,183

we first break down the problem into groups of terminals based on assignment strategies.184

If a strategy for registration covers the check-in desks of several terminals then we group185

the terminals, otherwise, we leave them separate. Finally, for each group of terminals, we186

can re-decompose them day by day. If there are night flights, these are pre-assigned before187

launching resolution.188

4.3 Results189

In our experimentation, the time limit for each execution (part of the decomposition) is190

limited to 30 seconds (compilation time in XCSP format is not included in this timeout).191

They are launched on a real environment in the Paris airport system equipped with 64192

GB of RAM and two 10-core Intel Xeon Silver 4210R (2.4 GHZ). Note that the solver is193

stopped when no more improvement has been made during a period of 5 seconds (since the194

last solution was found). Since the choice of stopping the solver after 5 seconds makes it195

non-deterministic, we run each configuration on each decomposition 5 times. For our study,196

we use frba/dom [21] as variable-ordering heuristic (this heuristic was observed as the best197

one on this problem), solution-saving [32, 7] for simulating a form of large neighborhood198

search. Concerning the value-ordering heuristic we have tested different configurations:199

BIVS [10], until the first solution is found (after that, the smallest value in the domain is200

systematically selected if solution-saving cannot be applied), Static, a static order based201

on the rewards of check-in desks in the strategies, and BIVS + Static, an approach that202

mixes the two heuristics: BIVS until the first solution is found (after that, Static is used if203

solution-saving cannot be applied). We use the solver ACE2 and in particular the JUniverse3
204

2 https://github.com/xcsp3team/ace
3 https://github.com/crillab/juniverse

https://github.com/xcsp3team/ace
https://github.com/crillab/juniverse
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Table 2 Result on decomposition ORY124 (7 days) from planning ORLY 1234 of Φ.

Configuration ALE GAT Time Solver T First Last # not
Bivs + Static 0 False 140-201 101-146 22,648,100 (35-70) 22,834,100 (48-90) 281
Bivs + Static 0 True 148-186 88-120 22,648,100 (5-10) 23,676,100 (31-49) 256
Bivs + Static 4 False 173-222 103-144 22,648,100 (37-53) 22,840,100 (50-68) 281
Bivs + Static 4 True 139-182 80-102 22,648,100 (5-10) 23,694,100 (30-50) 255
Bivs 0 False 141-209 105-138 22,648,100 (37-63) 22,840,100 (51-81) 281
Bivs 0 True 118-159 77-110 22,648,100 (5-7) 23,620,900 (26-44) 258
Bivs 4 False 182-228 106-155 22,648,100 (36-61) 22,840,100 (49-78) 281
Bivs 4 True 145-188 78-105 22,648,100 (5-11) 23,565,100 (23-47) 260
Static 0 False 235-324 194-240 17,512,500 (16-25) 19,762,600 (165-210) 288
Static 0 True 119-187 80-112 17,512,500 (4-7) 23,940,100 (30-44) 243
Static 4 False 250-300 196-230 17,512,500 (17-30) 19,466,400 (155-201) 288
Static 4 True 112-177 77-104 17,512,500 (4-6) 23,782,700 (25-42) 245

Table 3 Result on decomposition ORY3 (7 days) from planning ORLY 1234 of Φ.

Configuration ALE GAT Time Solver T First Last # not
Bivs + Static 0 False 287-328 208-241 19,894,700 (132-194) 19,896,100 (152-204) 84
Bivs + Static 0 True 186-245 100-150 21,082,800 (6-18) 21,351,080 (20-69) 12
Bivs + Static 4 False 271-362 184-254 21,082,800 (103-162) 21,085,540 (120-191) 16
Bivs + Static 4 True 163-235 82-122 21,082,800 (5-11) 21,392,580 (22-65) 12
Bivs 0 False 277-338 178-231 21,082,800 (101-165) 21,085,860 (130-188) 16
Bivs 0 True 178-275 80-152 21,082,800 (6-14) 21,342,520 (17-77) 13
Bivs 4 False 266-359 172-256 21,082,800 (99-153) 21,085,040 (117-176) 16
Bivs 4 True 179-267 98-162 21,082,800 (4-13) 21,371,480 (22-62) 12
Static 0 False 281-381 190-285 18,376,800 (16-37) 19,235,000 (148-209) 15
Static 0 True 253-334 173-240 18,376,800 (4-11) 21,469,680 (108-203) 1
Static 4 False 298-344 220-256 18,376,800 (20-47) 19,215,220 (183-209) 14
Static 4 True 276-348 199-246 18,376,800 (4-12) 21,569,760 (151-206) 1

adapter of ACE: ACEURANCETOURIX4 which allows interaction with ACE via an API.205

Table 2 and 3 present some results with different configurations for instance ORLY 1234206

for the week from 2023-05-08 to 2023-05-14. After the decomposition step, this latter is207

decomposed in two groups of terminals (ORLY 1,2,4 and ORLY 3 ). The first column208

presents the configuration of ACE, and the second column indicates the arity limit for which209

intension constraints are transformed into extension constraints by the solver. The third210

column indicates if we gather or not the AllDifferentExcept constraints, False corresponds211

to the second formulation (Section 3.2) and True to the third formulation (Section 3.3). The212

column Time presents the best and worst case of resolution time (including compilation time)213

over the 5 executions if we have run the resolution sequentially. The column Solver T is214

similar to the column Time but only for the solver. The columns First and Last contain the215

mean of the first (resp. last) bound computed over the 5 executions and the best and worst216

case runtime for obtaining the first (resp. last) bound. Finally, the last column contains the217

number of registrations that are not assigned (i.e. the number of registrations that use the218

fictive check-in desk). For space reasons, we have limited the results to only ORLY instance219

but all the results are available and reproducible5 (thanks to Metrics6).220

We can see that the value-heuristic Static finds a good solution and reduces the number221

of registrations that are not assigned. However, the time needed to find this solution is higher222

4 https://github.com/crillab/aceurancetourix
5 https://gitlab.com/productions-tfalque/articles/check-in-scheduling-optim-cdg-airport/

experiments
6 https://github.com/crillab/metrics

DPCP 2023
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than BIVS, which finds an acceptable solution. The combination of both does not allow to223

reduce time or reduce the number of unassigned registrations. We can also observe that in224

the case of the Static configuration, GatherAllDifferent brings a 22% gain and reduces225

unallocated registrations by 45 in an acceptable amount of time.226

5 Conclusion227

In this paper, we have been interested in the Airport Check-in Desk Problem as defined at228

Paris Airport. We have proposed a COP model for this problem, mainly exploiting table229

constraints and developing an ad-hoc constraint (for reducing the number of constraints, and230

accelerating the resolution consequently). We have presented a first empirical evaluation of231

our approach. Our results look quite promising, as the ADP group starts replacing their232

current proprietary solution with ours, based on generic open-source tools (modeling library233

and constraint solver). In the future, we plan to simplify the execution process by limiting234

data processing in the PyCSP3 model and discarding the decomposition step. We also plan235

to use a multi-criteria objective.236
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