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Abstract

In this study, we revisit the Choquet capacity in the framework of con-
volutional neural networks, in (max, +)-algebra. By incorporating a discrete
and learnable Choquet capacity model, we enhance the ability to represent the
spatial arrangement and density variations in random point processes of con-
volutional neural networks. To validate the effectiveness of our approach,
numerical experiments are conducted on synthetic datasets simulating di-
verse spatial point patterns of the Neyman-Scott process. When compared
to classical convolutional neural networks, the proposed approach exhibits
comparable or improved performances in terms of classification. Superior
results are also observed in regression problems involving the Neyman-Scott
parameter that monitors the point patterns spatial dispersion.
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1 Introduction
There is a significant demand for analytical techniques that can handle vast
amounts of image data in particular in engineering science [1]. For instance,
images from satellites, geological maps, microscope images of metals and
materials, cellular tissue, and data from computerized tomography [2] all
require automatic and quantitative methods due to the sheer volume of data
involved. In some scenarios, the information observed is set of coordinates
in 2D or 3D, and the feature of interest depends on the spatial relation-
ship between these points. Examples include individual brain activation
maps [3, 4], RNA Localization patterns [5], positions on random sensor net-
works [6], realizations of random processes [7], among others. On the one
hand, mathematical morphology [8, 9, 10] offers ideas that are applicable in
this context, particularly due to its interpretation in terms of the size/shape
relationship of the object of interest. Cord and co-authors combined textural
descriptors and statistical learning to address segmentation problems [11]
and extract defects merged in complex real textures [12]. On the other hand,
data-driven learning methods have changed the way image problems are
solved. Especially the deep models allow to solve recognition problems with
performance sometimes superior to humans [13]. In this paper, we follow
the results of [14, 15, 16, 17], to present a new application of morphological
models learned from data for the characterization of random point processes.
The Neyman-Scott point process is presented in section 2. The proposed
Choquet Capacity model is described in section 3. Section 4 demonstrate
the benefits of the proposed model in comparison with classical convolu-
tional neural networks (CNNs) for classification and regression problems on
images generated by Neyman-Scott point process. We conclude in section 5.

2 Neyman-Scott point processes
In the present work, we consider Neyman-Scott point processes [18, 19, 20,
21] as a way to generate point patterns that are statistically different from the
classical Poisson model of points [22, 23, 24]. The Neyman-Scott model,
like Poisson’s one, is a particular type of Boolean random set [25, 26, 8, 27].
Poisson point processes on R2 depend on a single parameter 𝜃, called the
intensity. The intensity 𝜃 represents the mean number number of points
per unit area. In the Poisson point model, the number of points in any
two disjoint domains are independent random variables which lead to the
following Poisson-distributed law for the number of points 𝜂(Ω) in a domain
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Ω,

P{𝜂(Ω) = 𝑘} = (𝜃 |Ω|)𝑘
𝑘!

exp−𝜃 |Ω | , (1)

where |Ω| is the area ofΩ. This leads to the formula for the Choquet capacity
𝑇 (K) of the Poisson point process 𝑋 = {𝑥1, 𝑥2, ...}:

𝑇𝑋 (K) := P(𝑋 ∩ K ≠ ∅) = 1 − P{K ⊆ 𝑋𝑐} = 1 − exp−𝜃 |𝐾 | , (2)

where K is a compact set [28].
Neyman-Scott point processes are different from Poisson point processes

in that they generate clustered sets of points. This is achieved in two steps.
In the first step, a standard Poisson point process of intensity 𝜃𝑝 is generated,
leading to a set of parent points 𝑥 (𝑝) ∈ R2 (𝑝 ∈ N). In the second step, we
associate each parent point with a set of 𝑛𝑝 daughter points 𝑥 (𝑝)1 , . . . , 𝑥

(𝑝)
𝑛𝑝 .

The Neyman-Scott point process is made of all daughter points; parent points
are not included. Neyman-Scott models are accordingly parametrized by 𝜃𝑝,
the probability law for the 𝑛𝑝 and that of the daughter points, given in term
of the multivariate probability law for the 𝑥

(𝑝)
𝑖

− 𝑥 (𝑝) . For simplicity, we
consider a constant distribution 𝑛𝑝 ≡ 𝑛. We also assume that the vectors
𝑥
(𝑝)
𝑖

−𝑥 (𝑝) are i.i.d. variables drawn from a multivariate random distribution
in R2, with uniform angular distribution in [0; 2𝜋]. Distances from parent
to daughter points are presently drawn from a Pareto law with parameters 𝛼,
𝑟𝑚 such as:

P{|𝑥 (𝑝)
𝑖

− 𝑥 (𝑝) | > 𝑟} =
(𝑟𝑚
𝑟

)𝛼
𝐻 (𝑟 − 𝑟𝑚), 𝛼 > 0, 𝑟𝑚 > 0, (3)

where 𝐻 (·) is the Heavyside function, equal to one onR+ and zero elsewhere.
Here 𝑟𝑚 controls the typical size of the clusters whereas the parameter 𝛼

monitors the spatial dispersion. Thus, 𝑟 has infinite variance when 𝛼 ≤ 2
and infinite mean when𝛼 ≤ 1. Examples of realizations are shown in Fig. (1).
The points spatial dispersion in the Neyman-Scott model is markedly more
heterogeneous when 𝛼 is large (see Fig. (1b). When 𝛼 approaches one, the
Neyman-Scott and Poisson models are difficult to distinguish (see Figs. 1).

Importantly, the Choquet-Matheron-Kendall theorem established inde-
pendently by [29, 30] states that any stationary and ergodic random set, such
as Poisson or Neyman-Scott point processes, is completely determined by
the functional 𝑇 (K). In the next section, we propose a model that uses (2) to
find optimal K in a discrete setting (denoted as K), in the sense of learning
from labeled data for supervised problems. Note that this learning process
makes use of convolutional layer where K are optimized in the real set. Ac-
cordingly, we propose regularization terms to encourage the network to learn
binary kernels.
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(a) (b) (c)

Figure 1: Realizations of a Poisson point process (a) and Neyman-Scott models
(b-c) with the same density of points. b) Parameters 𝑟𝑚 = 0.1, 𝛼 = 100. c)
𝑟𝑚 = 0.1, 𝛼 = 3.

3 Choquet Capacity models

3.1 Discrete random set
Usually random sets are defined in the sense of Euclidean geometry, as
subsets of R𝑑 . However, in many applications, as in image processing, the
domain is discrete, defined in pixels structures in 2D, Ω = Z2. The discrete
random set (DRS) X on Z2 is now defined by X := {(𝑖, 𝑗) ∈ Z2 : 𝑥𝑖, 𝑗 = 1}.
The discrete-capacity functional of a random set 𝑋 is defined by [30]:

𝑇X (K) := P(X ∩ K ≠ ∅) = 1 − P{K ⊆ X𝑐} := 1 −𝑄X (K) (4)

for every K ∈ 𝑆 the collection of all bounded subsets ofZ2. From (4), it is easy
to see that: a) 0 ≤ 𝑇X (K) ≤ 1 for every K ∈ 𝑆, b) 𝑇X (∅) = 0, and c) 𝑇X (K1) ≤
𝑇X (K2),∀K1,K2 ∈ 𝑆 such that K1 ⊆ K2. Other important properties can
be shown for DRS [31, 32]. According to the Choquet-Kendall-Matheron
theorem, any discrete random set X is uniquely characterized by its discrete-
capacity functional 𝑇 (K), defined over all bounded subsets K ∈ 𝑆 of Z2.
Furthermore, we note that:

P(X ∩ K ≠ ∅) = P(𝑥 ∈ 𝛿K̆ (X)) (5)

where K̆ = {−𝑥; 𝑥 ∈ K} denotes the set K mirrored w.r.t. the origin. The
capacity in (4) is accordingly obtained from the morphological dilation 𝛿K̆ (𝑋)
of X by K [27, 33].
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Figure 2: Schematic of the proposed Choquet Capacity model.

Hereafter, the points (𝑖, 𝑗) ∈ Z2 of the DRS X are obtained from the
set 𝑋 in R2 so that: (𝑖, 𝑗) ∈ X whenever ( [𝑖; 𝑖 + 1[×[ 𝑗 ; 𝑗 + 1[) ∩ 𝑋 ≠ ∅.
Accordingly, the DRS X is a partial representation of the Neyman-Scott
point process defined by Eq. (3). The representation of 𝑋 by X is however
excellent when 𝑟𝑚 ≫ 1, i.e. when 𝑟𝑚 is much larger than the pixel size.

3.2 Choquet Capacity layer
This section describes a layer that can be used for the computation of (5),
in the context of neural networks. To do so, we use the extension of convo-
lutional models in the (∨, +) algebra, called max-plus convolutions [34], or
dilation layer [15]. The dilation layer replaces discrete classical convolutions
and can be compared to fuzzy measures in so-called fuzzy integral neural
networks [35]. For an input image f, the dilation layer is defined as:

𝛿K( 𝑓 ) (𝑥) :=
∨
𝑦∈Z2

[ 𝑓 (𝑥 − 𝑦) + K(𝑦)] =
∨
𝑦∈Z2

[ 𝑓 (𝑦) + K(𝑥 − 𝑦)] (6)

where K is a matrix of real values called kernel or structuring function.
In the cases where the image 𝑓 represents a DRS (denoted by f), and the
kernel K takes on values in {−1; 0}1, we have that f(𝑦) + K(𝑥 − 𝑦) = 0 if

1Hereafter, we consider input images lying in the interval [0, 1], so that in practice, −1 plays
the same role as −∞ for kernel.
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K(𝑥 − 𝑦) ≤ f(𝑦) (𝑦 ∈ Z2) and 1 elsewhere. By sliding the kernel through
the domain and calculating its average, assuming ergodicity, we obtain an
estimation for the value of 𝑄f (K) in (4):

�̂�f (K) :=
1
𝑀

𝑀∑︁
𝑗=1

𝛿K(f) (𝑥 𝑗) (7)

where 𝑀 is the number of pixels in the image. In the following, equation (7)
is called a Choquet Capacity layer with convolutional kernels K.

Hereafter, we propose to study the performance of the Choquet Capac-
ity layers to learn 𝑛𝑘 kernels, K𝑠 := {K𝑖}𝑛𝑘𝑖=1, in the framework of neural
networks. Accordingly, for each input image 𝑓 , a vector containing the 𝑛𝑘
values computed by (7) is used as features, transformed linearly by a dense
layer (or many for multilayer perceptrons (MLP) models) with parameter
W, and finally passed trough an activation function adapted to the regres-
sion or classification problem. Fig (2) shows a schematic of the proposed
Choquet Capacity model for a classification problem. The classical training
mechanism on neural networks seeks to find the optimal model’s parameters
(W,K𝑠),

arg min
(K𝑠,W)

{
𝑁∑︁
ℓ=1
loss(𝑌ℓ , 𝑌ℓ) + Reg(W,K𝑠)

}
(8)

where𝑌ℓ is the prediction of the network for the ℓ-th sample,𝑌ℓ is the ground
truth, 𝑁 is the number of samples and Reg(W,K𝑠) is a regularization term
on the parameters of the model. In its simplest form, the parameters (W,K𝑠)
are initialized to random values and updated by means of a stochastic gradient
descend, the gradient being computed by backpropagation [13]. Note that
the shape K in (5) is a bounded subset, whereas each of the matrix K in (6)
is a max-plus convolutional kernel with real values. Therefore, we propose
two alternatives that address this difference during the training of the model:

i) Regularization: the term Reg in (8) is set to penalize kernel values
that are far from a binary equivalent, in our case of max-plus algebra
on binary images, 0 or −1. Two different regularization functions are
considered for 𝑅:

Reg1(K𝑠) = 𝜆1

𝑛𝑘∑︁
𝑖=1

(K𝑖 + 1) + 𝜆2

𝑛𝑘∑︁
𝑖=1

(K𝑖 + 1)2, (9a)

Reg2(K𝑠) = 𝜆1

𝑛𝑘∑︁
𝑖=1

(K𝑖 + 1)K𝑖 + 𝜆2

𝑛𝑘∑︁
𝑖=1

(K𝑖 + 1)2K2
𝑖 , (9b)
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where 𝑛𝑘 in the number of kernels and 𝜆1 ≥ 0 and 𝜆2 ≥ 0 are the
hyperparameters to control the effect of regularization.

ii) Quantization of the kernels during optimization. We use an integrated
value filter to enforce kernel values in [−1, 0]. We use the straight-
through estimator proposed in [36, 37]. Predictions are computed by
rounding the kernel to the closest integer (−1 or 0) whereas the gradient
in the backpropagation is left unchanged.

The different approaches above are compared to one another and to classical
convolutional networks in the next section. We would like to study the effect
of including more layers into the model. This is called the depth of the
network in deep learning [38]

4 Numerical experiments
In the present section, we quantify the performances of the various convo-
lutional networks. Two problems are addressed: first, that of classification
of realizations of Neyman-Scott point patterns w.r.t. Poisson; second, the
prediction of the dispersion parameter 𝛼 in a regression problem2.

4.1 Classification of point pattern
In this experiment, we set the image size to 500 × 500 pixels and 𝜃 = 0.05
in number of points per pixel unit. We choose 𝑛 = 50 and let 𝜃𝑝 = 𝜃/𝑛 so
that the density of points is the same irrespective of the model chosen. We
also fix 𝑟𝑚 = 0.1 × 500 = 50 and let 𝛼 varies between 1 and 100. All point
patterns are statistically homogeneous. We perform the classification task on
two classes of Poisson and Neyman-Scott point patterns with different values
of the parameter 𝛼 and conduct a comparative analysis with the CNNs. The
data set contains 500 images for each class, with a train-to-validation ratio of
4:1. For simplicity, we use one layer in each neural network, with four filters
of size 7 × 7 pixels. For supervised classification, a common choice of loss
function is the binary cross-entropy also known as log loss, defined by

logloss(𝑌,𝑌 ) := − 1
𝑁

𝑁∑︁
ℓ=1

[
𝑌ℓ log 𝑞ℓ0 + (1 − 𝑌ℓ) log 𝑞ℓ1

]
(10)

2The source code of this section is available at https://github.com/Jacobiano/
ChoquetLayer
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Figure 3: Validation accuracy for the different neural network models in the two-
classes classification problem (Poisson and Neyman-Scott point processes) vs. the
parameter 𝛼 that monitors spatial dispersion.

where (𝑞ℓ0, 𝑞
ℓ
1) denote the prediction of the network for the ℓ-th samples, 𝑌ℓ

the ground truth of the ℓ-th samples and 𝑁 is the number of samples. The
models are trained to predict the class between images produced by Poisson
processes and Neyman-Scott models with different values of 𝛼 parame-
ter. Figure 3 shows the boxplot of validation accuracy for models training
from different initialization values. Interestingly, the Choquet Capacity layer
demonstrates competitive performance, especially when the parameter 𝛼 de-
creases, so that realizations of the Neyman-Scott point pattern are similar
to that of a Poisson distribution. When regularization is applied, the model
tends to have values {−1, 0}, but they are still values that prevent us from indi-
cating that the solution is binary. For quantization, K𝑠 contain only values in
{−1, 0} in Figure (4)(c), although no distinctive shape is observed. However,
performance significantly degraded, when regularization or quantization is
used, specially in more difficult cases.
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(a) Regularization 1 in (9a) (b) Regularization 2 in (9b)

(c) Quantization operator (d) No regularization

Figure 4: Example of learned kernel K𝑠 = {K1, . . . ,K4} using different proposed
regularization alternatives of the Choquet Capacity layer. Max and min values
indicated at the top of each image.

4.2 Parameter regression of the Neyman-Scott point
processes
In the present subsection, we compare the performances of different neural
network models for predicting the value of the parameter 𝛼, in a regression
problem. We set the image size to 128 × 128 pixels, the density of points to
𝜃 = 100/(128 × 128) and 𝑟𝑚 = 0.02. We also let 𝛼 vary between 0 and 9.
This last one is the value that we would like to predict. For the regression
problem, the mean absolute error is the mean absolute difference between
true value and prediction:

MAE(𝑌,𝑌 ) := − 1
𝑁

𝑁∑︁
ℓ=1

|𝑌ℓ − 𝑌ℓ | (11)

is used as loss function. During training the 𝛼 values are scaled to the
interval [0, 1] as it is standard practice in regression models. As a first
example, we compare the result between Choquet Capacity and a classical
convolutional layer followed by a multi-layer perceptron that consists of
two layers of dimension ten and batch normalization [39], followed by a
sigmoid activation, see Figure 5. Note that the convolutional layer and our
proposition have exactly the same number of parameters. In this case, our
Choquet Capacity model obtains predictions that are clearly quantitatively
better.

As a second illustration in the regression case we studied the effect
of network depth, prior to the use of the Choquet Capacity model. Usually,

9



(a) (b)

(c) (d)

Figure 5: Comparison on the prediction over testing training for one layer con-
volutional with global average pooling network (a, b) and our Choquet Capacity
proposition in the regression problem of the Neyman-Scott point processes (c, d).
Models (a) and (c), as well as (b) and (d), have the same number of parameters.
All models have been trained with the same protocol.
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Figure 6: Architecture used in section 4.2, with varying number of layers of clas-
sical convolutional layers of kernel size 3 × 3 pixels followed by ReLU activation.

increasing both depth and width (number of filters per layer) helps to improve
the model performance until the number of parameters becomes too high and
stronger regularization is needed [40]. For that, we consider convolutional
layers with kernel size of 3 × 3 pixels and 48 filters are concatenated before
the use of global pooling and the MLP. This architecture is represented in
Figure 6. We compare different convolutions in the last layer before the global
pooling: proposed Choquet Capacity model, classical CNN, and depthwise
convolutional (DWCNN). The latter is included because it contains exactly
the same number of parameters compared to our Choquet Capacity model.
In Figure 7, we compare the validation loss of the three networks with the
number of parameters in each model shown in logarithmic scale. The number
of degrees of freedom is increased by augmenting the depth from one to seven
in the convolutional part in each architecture, leading to models with deeper
feature extractions. The Choquet Capacity model improves the regression
results in all explored cases, for a fixed number of parameters, compared to
DWCNN. Finally, Figure 7 also shows than comparable performances to the
Choquet model are achieved by classical CNNs at the cost of a much higher
number of parameters.

5 Conclusion
The results obtained in this study are based on a novel approach that makes
use of dilation layers with global pooling, inspired from the definition of
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Figure 7: Performance of different neural networks for varying number of layers
in each model (See Figure 6). Three architectures are compared. In all cases
each layer has 48 kernels of size 3 × 3, ReLU is used as activation function, and a
final layer with a convolution of size 13 × 13 followed by GlobalAveragePooling,
BatchNormalization and a MLP with two layers of dimension ten with a final
sigmoid activation. DWCNN refers to a depthwise convolution, CNN to a classical
convolution and Choquet Capacity to the max-plus convolutions in 3. DWCNN
and Choquet Capacity models have exactly the same number of parameters.
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the Choquet capacity of random sets. Numerical experiments performed
on synthetic datasets which simulate diverse Neyman-Scott point patterns,
demonstrate the efficiency of the method, as well as seemingly superior
performances in particular in regression problems involving the dispersion
parameter in the Neyman-Scott point process. Compared to classical convo-
lutions, the Choquet Capacity networks are somewhat more difficult to train,
due to the presence of a nonlinear convolution filters. Yet they are versatile
in that they may be combined with classical convolutional networks. As a
negative result, the alternatives studied to motivate the estimation of binary
kernels result in very important losses in the performance of the models.
This topic, as well as the adequacy of Choquet capacity networks to analyse
real-world data, will be addressed in future research works.
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