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Abstract 

When confronted with continuous tasks, humans show spontaneous fluctuations in performance, 

putatively caused by varying attentional resources allocated to process external information. If neural 

resources are used to process other, presumably “internal” information, sensory input can be missed 

and explain an apparent dichotomy of “internal” versus “external” attention.  

Each of these opposing attentional modes might have their own distinct neural signature. For in-

stance, α-oscillations (~10-Hz) have been linked to a suppression of sensory information and might 
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therefore reflect a state of internal attention. Indeed, in auditory cortex of macaque monkeys, periods 

with strong α-oscillations and reduced responses to sounds alternate with periods in which the op-

posite pattern occurs. In the current study, we extracted neural signatures of internal and external 

attention in human electroencephalography (EEG) - α-oscillations and neural entrainment, respec-

tively. We then tested whether they exhibit structured fluctuations over time, when listeners attended 

to an ecologically relevant stimulus like speech, and completed a task that required full and contin-

uous attention.  

Results showed an antagonistic relation between spontaneous α-oscillations and neural activity syn-

chronized to speech. These opposing neural modes underwent slow, periodic fluctuations around 

~0.07 Hz that were strikingly similar to those observed in non-human primates, and related to the 

successful detection of auditory targets. Our study might have tapped into a general attentional 

mechanism that is conserved across species and has important implications for situations in which 

sustained attention to sensory information is critical.  

 

Significance 

Understanding fluctuations in sustained attention is crucial for a wide variety of everyday activities, 

e.g., in traffic, education or safety monitoring. Lapses in attention can negatively affect outcomes in 

these tasks, sometimes with severe consequences. Here we demonstrate that auditory sustained 

attention fluctuates between an external mode favoring the processing of sensory information and 

an internal mode, where sensory information is ignored. These attentional modes have their own 

neural signatures and alternate with an inherent rhythmicity that can be traced in the human electro-

encephalogram. Our results may be leveraged to predict attentional fluctuations, optimize critical 

system designs or tailor interventional approaches to improve sustained attention. 
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1 Introduction 

The ability to sustain attention is crucial for many activities of everyday life, yet it is surprisingly 

difficult to achieve1,2. Lapses in attention are common even in healthy populations and can have 

negative downstream effects on cognition3 and lead to human error, sometimes with major conse-

quences4–6. A variety of neurological and psychiatric disorders are characterized or accompanied by 

a decreased ability to maintain sustained attention7,8. Understanding the neural processes that give 

rise to dynamic fluctuations in attention is therefore critical. 

It has been proposed that such fluctuations arise due varying amounts of attentional resources allo-

cated to the processing of external information. When sensory input is ignored, neural resources 

might be available for other processes unrelated to external information (such as memory consoli-

dation or internal thought), leading to a dichotomy of “internal” versus “external” attention9,10. Each 

of these opposing attentional modes might have its own signature, including specific patterns of 

neural connectivity1,2 and neural oscillations10–12. Prominently, α-oscillations (~10-Hz) have been 

linked to suppression of sensory information13,14 and attentional (de-)selection15–18, and might there-

fore correspond to a state in which input is prone to be ignored.  

Previous work in the auditory cortex of macaque monkeys supported the notion that internal attention 

is characterized by strong α-oscillations and reduced sensitivity to external information10. When sub-

jects listened to rhythmic tone sequences, neural activity synchronized to the stimulus rhythm, an 

effect often termed neural entrainment19–21. At certain times, however, neural entrainment was re-

duced and α-oscillations dominated processing in auditory cortex. When α-oscillations prevailed, 

they rhythmically modulated neuronal firing and reduced neural and behavioral responses to stimu-

lus input.  Fundamental for our study, these bouts of α-oscillations (i.e. internal attention) occurred 

regularly and alternated with periods of strong entrainment to sound (i.e. external attention), at an 

inherent rhythm of ~0.06 Hz (i.e., ~16-sec)10.  

The identification of rhythmicity in attentional states and their neural counterparts has important im-

plications for future research. It could be leveraged in the design of critical systems technology, 

educational environments or in the design of interventional approaches for situations where sus-

tained attention is critical. However, it remained elusive if humans possess equivalent neural 
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signatures of attentional modes, and whether they exhibit any temporal regularity. It also remained 

unclear if regular attentional lapses occur during the processing of ecologically relevant stimuli. In 

particular, speech requires integration of information over time to be optimally perceived and there-

fore needs full and continuous attention22. 

We recorded electroencephalographic (EEG) data in humans and tested for regular fluctuations in 

attentional modes while they paid sustained attention to rhythmic speech sounds. We hypothesized 

that neural entrainment to speech and spontaneous α-oscillations show rhythmic fluctuations at ultra-

slow frequencies (0.02-Hz - 0.2-Hz) and that these fluctuations show an antagonistic relationship 

(i.e. are coupled in anti-phase).  

2 Results 

2.1 Overview 

We recorded participants’ EEG while they listened to 5-min streams of rhythmic, monosyllabic, 

French words presented at a rate of 3-Hz (Fig. 1a). Depending on the experimental block, partici-

pants were instructed to keep their eyes-open or closed, respectively. They were asked to identify 

words that were presented off-rhythm (i.e., shifted by 80-ms relative to the 3-Hz rhythm). On average, 

participants detected 41.22% (± SD: 13.80) of targets during the eyes-open and 42.96% (± SD: 

15.56) during eyes-closed (Fig. 1b) conditions. The proportion of false alarms was low relative to 

the large number of non-target words (eyes-open: 0.91% ± SD: 1.06, eyes-closed: 0.83% ± SD: 1.00, 

Fig. 1c). There was no difference in hits or false alarms between eyes-closed and eyes-open con-

ditions (dependent samples t-test, hits: t22 = -0.94, p = .35, FA: t22 = 1.11 p = .27), nor was there a 

difference in reaction times (t22 = 1.62, p = .12: Meyes-open = 777-ms ± SD: 122; Meyes-closed = 738-ms ± 

SD: 96, Fig. 1d).  

We used standard spectral analysis methods to extract spontaneous α-oscillations, and inter-trial 

coherence (ITC)10,23 at 3-Hz to quantify auditory entrainment (see Materials and Methods). Both 

showed EEG topographies consistent with the literature23,24 (Fig 1e,f). α-oscillations showed a dom-

inant occipito-parietal topography with a prominent increase in power when participants closed their 
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eyes24 (Fig. 1e). Auditory 

entrainment was domi-

nant in fronto-central sen-

sors with peaks in the ITC 

spectrum at the 3-Hz stim-

ulus rate and its harmonic 

frequencies19,23,25 (Fig. 

1f).  

2.2 α-oscillations 

and entrainment show 

slow fluctuations at sim-

ilar time scales 

Adapting an approach 

from Lakatos et al.10 to hu-

man EEG, we traced the 

evolution of spontaneous 

α-power and auditory en-

trainment during the task 

(Fig. 1a). We used a slid-

ing window approach to 

quantify how both of these 

measures change over 

time (see Materials and 

Methods).  

We found that both α-os-

cillations and neural en-

trainment exhibit slow, regular fluctuations (Fig. 2 a). The dominant frequency in these fluctuations, 

which we revealed as 0.07-Hz (~14 sec, Malpha = 0.0713-Hz ± SD = 0.0126, MITC = 0.0710-Hz ± SD 

Figure 1: Experimental design & analysis. (a) Participants listened to con-
tinuous 5-min streams of rhythmic, monosyllabic French words presented at a 
rate of 3-Hz (top). Spectral analysis was performed on 2-s EEG segments 
centered on the perceptual center of each word. 15 adjacent segments (~5-
sec window) were integrated in a sliding window approach to compute inter-
trial coherence (ITC) over time. ITC at 3-Hz and power in the α-band (8 – 12-
Hz) were extracted and treated as new time-series (4th row). The two time-
series were submitted to another spectral analysis to assess slow, rhythmic 
fluctuations of α-oscillations and auditory entrainment. We identified prominent 
spectral peaks in both spectra and assessed their coupling and phasic relation 
(bottom row). (b+c) Proportion of hits and false alarms in eyes-open and eyes-
open conditions. (d) Reaction times for hits. (e) Topography of α-power in 
eyes-open (top) and eyes-closed (bottom) conditions. Spectra on the right 
have been extracted from channel Pz and averaged across subjects. (f) Same 
as e, but for ITC (spectra are shown for channel Fz). Both α-power and ITC 
spectra and topographies are consistent with previous reports in the literature. 
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= 0.0116), was strikingly 

similar to that reported in 

non-human primates10. 

While the topographical 

distribution of entrainment 

fluctuations (Fig. 2b) re-

sembled that of entrain-

ment itself (Fig. 1e), this 

was not the case for α-os-

cillations. This result im-

plies that the observed 

fluctuations in α-power 

(Fig. 2b) might be indeed 

linked to auditory pro-

cessing, in contrast to the 

distribution of α-power 

that is generally domi-

nated by the visual system 

(Fig. 1d). 

α-oscillations and entrain-

ment did not only fluctuate 

at similar time scales on 

the group level (Fig. 2c), 

but also within individuals: On average, the individual peak frequency for α-power fluctuations did 

not differ from that for neural entrainment (dependent samples t-test: t22 = 0.08, p = .93; M|alpha – ITC| 

= 0.015-Hz ± SD = 0.0112-Hz). Together, we found that α-oscillations and neural entrainment exhibit 

similar slow, regular fluctuations.   

Figure 2: α-power and entrainment exhibit slow anti-phase fluctuations. 
(a-h) Results for eyes-open condition. (a) Envelope spectra of α-power and 
entrainment to rhythmic speech show a peak around 0.07-Hz (shown for elec-
trode Fz). Shaded areas depict standard deviation.  (b) Topography of the 0.07-
Hz peak shown in a. (c) Distribution of individual peak frequencies from the 
spectra shown in a. (d) Coupling between α-power and entrainment fluctua-
tions around 0.07-Hz when both were extracted from the same channel. Chan-
nels showing a significantly non-uniform distribution of phase differences are 
highlighted in red, topography indicates the underlying z-statistic. (e) Channels 
showing significant coupling between α-power fluctuations per channel with en-
trainment in the frontal cluster (d). (f) Distributions of phases in channels show-
ing significant α-power vs. entrainment coupling (cluster shown in d). α-power 
and entrainment to speech are coupled in anti-phase. (g) α-power fluctuations 
in cluster shown in (e) are coupled in anti-phase. (h) Exemplary time-course of 
α-power and entrainment fluctuations at electrode Fz. (i-l) same as a, c, d, g, 
but for eyes-open condition.  
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2.3 Anti-phasic relation between α-power and entrainment fluctuations 

We next assessed if the rhythmic fluctuations of α-oscillations and auditory entrainment are coupled. 

If the two reflected opposing processing modes, they should show an anti-phase relationship: When 

α-oscillations are strong, neural entrainment should be reduced, and vice versa. To this end, we 

computed the average phase difference between α-power and entrainment fluctuations for each 

EEG channel. Our analysis revealed a significant coupling (i.e., constant phase relation) between α-

power and entrainment within a cluster of fronto-central channels (cluster-based Rayleigh’s test; 

pcluster = .037, Fig. 2d, see Supplementary Table 1 for an overview of channels within the cluster). 

A circular one-sample test yielded a significant deviation of the average phase difference from zero 

(p < .001). This average phase difference was close to anti-phase (Mangle = -3.04 rad), and with the 

99% confidence interval for the sample mean including ± p (CI99 = 2.39, -2.18, Fig. 2f). Supplemen-

tary Fig. S1a provides an overview of the phase distribution in each EEG channel. Importantly, the 

anti-phasic relation of the two signals was evident on single subject level. 14 out of 23 participants 

show a significant coupling within the identified cluster. For 15 out of 23 participants, the average 

angle between α-power and entrainment fluctuations significantly differed from 0 (Supplementary 

Fig. S1b).  

For results described above and shown in Fig. 2d, we contrasted α-power and entrainment from the 

same EEG channels. We next tested whether different channel combinations produce similar results. 

The topographical distribution of auditory entrainment in the EEG is well established and was repro-

duced in our results (Figs. 2b,d). However, α-oscillations are typically dominated by vision and their 

topographical pattern was more difficult to predict in our case. We therefore assessed, separately 

for each channel, whether α-power in this channel is coupled with neural entrainment in the frontal 

channel cluster shown in Fig. 2d. The analysis revealed a more distributed cluster of fronto-central 

and parietal channels in which α-power fluctuations are coupled to auditory entrainment (random 

permutation cluster Rayleigh-test: pcluster = .042, Fig. 2e, see Supplementary Table 1 for an over-

view of channels within the cluster). Again, the difference between entrainment and α-power fluctu-

ations was close to anti-phase within this cluster (Mangle = 3.13 rad, circular one-sample test against 

angle of zero: p < .01) with the 99% CI for the sample mean including ± p (CI99 = 2.16, -2.18, Fig. 
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2g). Fig. 2h depicts an exemplary time course of α-power and entrainment fluctuations. An example 

for each participant is shown in Supplementary Fig. S1c. In control analyses, we ruled out that the 

fluctuations observed in the α-band are driven by harmonic entrainment at frequencies in the α-band 

(Supplementary Fig. S2). Together, we found an anti-phase relation between the slow fluctuations 

in α-power and neural entrainment, as predicted from two opposing neural processes9,12.  

2.4 Anti-phase relation between entrainment and α-oscillations is state dependent 

Interestingly, when participants were instructed to close their eyes during the task, the 0.07-Hz peaks 

became less pronounced, compared to the eyes-open condition (Fig. 2i-l). Further, we did not find 

evidence for a significant coupling (pcluster > .68, Fig. 2k) nor anti-phase relationship (circular one-

sample test against angle of zero: p > .05, Mangle = 2.22 rad, Fig. 2l) between α-oscillations and 

entrainment when the eyes were closed. 

2.5 Neural signatures of attentional mode differ between detected and missed target stimuli  

Thus far we have reported a systematic coupling between slow fluctuations of α-power and auditory 

entrainment to rhythmic speech. Periods of stronger entrainment and lower α-power alternated with 

periods of weaker entrainment and higher α-power. If such periods are indeed indicative of different 

attentional processing modes, they should also be related to target detection. In other words, α-

power (or entrainment) fluctuations prior to detected targets should be in opposite phase as com-

pared to missed ones. Fig. 3a,c depicts the average time courses of α-power and entrainment fluc-

tuations around hits and misses (bandpass filtered around the individual peak frequencies around 

0.07-Hz). We computed the instantaneous phase of these time courses on an individual level. We 

observed a systematic clustering of phase differences between hits and misses for both α-power 

(Rayleigh test: p = 0.009, z = 4.61), and entrainment fluctuations (Rayleigh test: p = .049, z = 2.07) 

in the time period before a target occurred (-14-sec to -2.5-sec). Importantly, the mean angle of this 

difference significantly differed from 0 (circular one-sample test against angle of zero; alpha: p < 

0.01, Mangle = -2.87, CI99 = 2.42, -1.88; entrainment: p < 0.05, Mangle = 2.44 rad, CI95 = 1.52, -2.93). 

The CI99 of this difference included ± p (Fig. 3b,e), indicating an anti-phase relation. The observed 



Kasten et al., 2023                                           Rhythmicity in sustained attention 

9 

phase relations appeared to be relatively sta-

ble across the pre-stimulus time period (Fig. 

3c,f). Together, we found that the hypothe-

sized markers of attentional processing (en-

trainment vs. alpha) differ depending on 

whether an auditory target was detected or 

not, as expected from modes of external and 

internal attention, respectively.  

3 Discussion 

Variations in attentional performance are a 

prominent feature of sustained attention. In 

the current study, our marker of sustained at-

tention to speech – neural entrainment – ex-

hibited slow fluctuations with an inherently 

rhythmic component (Fig. 2a). Importantly, 

these fluctuations were opposite to those in 

α-oscillations (Fig. 2f), commonly assumed to reflect suppressed sensory input13,14 and therefore 

indicative of an opposite mode of “internal” attention. In addition, neural signatures of attentional 

mode differed depending on whether a target was detected or not (Fig. 3). Our results therefore 

demonstrate that lapses in (external) attention occur rhythmically, even when presented with a stim-

ulus that requires sustained attention for successful comprehension. Moreover, these fluctuations 

occurred at time scales (~14-sec) that are very similar to those observed in non-human primates10. 

Thus, we might have tapped into a general property of sustained attention that is conserved across 

species.   

An anti-phase relation is consistent with the general roles commonly ascribed to α-oscillations and 

auditory entrainment. Pronounced auditory entrainment indicates an attentional focus on external 

stimulus processing and has been found to be beneficial to auditory perception and speech compre-

hension20,21,26–28. Conversely, α-oscillations have been linked to inhibition of sensory 

Figure 3: α-power and entrainment fluctuations differ be-
tween detected and missed targets. (a) Average, bandpass fil-
tered α-power fluctuations around hits and misses extracted from 
significant cluster shown in Fig. 2e. Shaded areas indicate stand-
ard error of the mean. Note that data after -2.5 s can be affected 
by “smearing” of post—target data and thus cannot be inter-
preted in light of our hypothesis. (b) Polar histogram depicts the 
distribution of phase differences between α-power fluctuations 
prior to hits and misses, respectively (-14-sec to -2.5-sec). (c) 
Event-related phase difference of α-power fluctuations prior to 
hits and misses. Thin lines indicate single subject time-courses. 
Bold line depicts the circular average. Data is only shown for the 
time period used for statistical analysis. Note that -π = π, sug-
gesting a stable phase opposition between envelopes preceding 
hits and misses, respectively. (d-f) Same as a-c, but for ITC. 
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processing13,14,29,30 and attentional (de-)selection15–18,31. In the context of sustained attention, previ-

ous work has linked attentional lapses to pre-stimulus levels of α-oscillations11,32, and periods of mind 

wandering33.  

It remains unclear why the observed effects vanish when participants close their eyes. The domi-

nantly frontal coupling between α-power and auditory entrainment may indicate that these originate 

from temporal auditory, and possibly parietal attention related networks. However, closing the eyes 

is known to cause a substantial increase of α-oscillations pre-dominantly in visual areas24. It is pos-

sible that these enhanced visual α-oscillations overshadow their auditory and parietal counterparts 

when eyes are closed, such that their coupling to auditory entrainment cannot be traced anymore. 

Alternatively, eye-closure may cause a fundamental change in the brain’s processing mode. Block-

ing visual input may allow to allocate more cognitive resources to auditory processing, such that 

rhythmic switching may occur at fundamentally different frequencies or is not necessary at all.  

Our results pose important questions about the putative mechanisms driving the remarkable rhyth-

micity of attentional fluctuations observed in our data and their function. An obvious concern might 

be that the rhythmicity is inherently driven by the regularity of the stimulus material. However, this 

seems unlikely. Low frequency effects caused by the rhythmicity of the stimulus material should 

follow the principles of synchronization theory, which would predict such effects to occur at precise, 

predictable subharmonic frequencies34, while the fluctuations we observe in our data vary across 

participants. It therefore seems likely that the observed fluctuations are intrinsically driven. Indeed, 

at the level of short sub-second time-scales it has been repeatedly suggested that perceptual and 

attentional sampling are inherently rhythmic, fluctuating in the range of theta and α-oscillations35–42. 

It may thus be plausible that rhythmicity in attention can also exists on other time scales. We spec-

ulate that continuous fluctuations between internal and external attentional modes might implement 

a protective mechanism to prevent depletion of attentional resources. Indeed, evidence from non-

invasive brain stimulation suggests that enhancing endogenous α-oscillations with electrical stimu-

lation has a stabilizing effect on sustained attention43.  

There is an intriguing similarity of timescales between the intrinsic attentional rhythms in our data 

and the known coupling of α-oscillations to slow fluctuations of extra-cerebral sources in the body 
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such as the respiratory system44, the heart, and the gut45. In particular, the gastric network seems to 

generate rhythmic activity at similar time scales as those we found here (~0.05 Hz)45,46, and modulate 

the amplitude of spontaneous alpha-oscillations47. Future research should address if these similari-

ties in time scales are a mere co-incidence or if they may be involved in driving slow attentional 

fluctuations.  

A systematic rhythmicity of attentional fluctuations has important implications for both basic and ap-

plied research. Considering rhythmicity may make attentional lapses more predictable and offer a 

potential target for interventional approaches. For example, transcranial alternating current stimula-

tion (tACS) can be used to modulate brain oscillations48–50 and has been previously shown to stabi-

lize sustained attention when applied in a continuous manner43. Considering fluctuations of atten-

tional modes may allow to apply tACS in a state-dependent manner, e.g., to induce shifts in the 

attentional state by applying stimulation either in the α-frequency range or in synchrony with the 

external stimulus. Such targeted intervention may offer novel opportunities to improve or steer sus-

tained attention performance in critical systems or in neurological or psychiatric patients suffering 

from deficits in sustained attention7,8. Before moving to such practical applications, additional re-

search should investigate to what extent the current findings generalize across sensory systems. 

Compared to other sensory domains with a more static input, audition is special in that information 

is inherently transient and may thus benefit more from processing principles that take its temporal 

structure into account51. It thus remains to be determined if similar rhythmicity exists when sustained 

attention is deployed to visual, somatosensory, or cross-modal tasks.   
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4 Materials & Methods  

4.1 Participants 

Twenty-three healthy volunteers (age 22.4 years ± 1.6 years, 15 females) participated in the study. 

They gave written informed consent prior to joining the experiment and were paid for their participa-

tion. The study was approved by the ethics board CPP (Comité de Protection des Personnes) Ouest 

II Angers (proposal no: CPP 21.01.22.71950 / 2021-A00131-40). 

4.2 Experimental Design 

Over the course of six 5-min blocks, participants were instructed to listen to continuous streams of 

rhythmic, one-syllable French words and to indicate if they detected deviations from the rhythm via 

a button press on a standard computer keyboard. In the beginning of each block, they were instructed 

to either keep their eyes-open and fixated on a white cross at the center of a computer screen, or to 

keep them closed. Half the blocks were assigned to the eyes-open, and eyes-closed conditions re-

spectively. The order of blocks was randomized to avoid time-on task effects. Participants were fa-

miliarized with the task prior to the main experiment. They were shown examples of continuous 

rhythmic speech trains as well as streams containing violations of the rhythm. Subsequently, they 

performed a 1-min practice run of the task.  

4.3 Apparatus and stimuli 

Original recordings consisted of a set of 474 monosyllabic French words, spoken to a metronome at 

a rate of 2-Hz by a male, native French speaker. This approach aligned perceptual centers (p-cen-

ters)52 of the words to the metronome beat and resulted in perceptually very rhythmic speech (see 

Zoefel et al53 for a detailed description of stimuli and task). Stimuli were then time-compressed to 3-

Hz using the pitch-synchronous overlap and add (PSOLA) algorithm implemented in the Praat soft-

ware package, and the metronome beat was made inaudible to participants. Intelligibility of the 

speech recordings was degraded by applying 16-channel noise-vocoding54. 16-channel noise-vo-

coded speech is not as easy to understand as clear speech, but is still clearly intelligible55. Individual, 

noise-vocoded words were then concatenated into a continuous sound stream of 5-min length. The 

order of words was randomized with a constraint such that every word from the stimulus set had 
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occurred before it can be repeated. 150 target words that deviated from the 3-Hz stimulus rate by 

80-ms (50% presented early, 50% late) were embedded into the rhythmic speech stream. Partici-

pants were asked to indicate violations of the rhythm by pressing the space bar on a standard com-

puter keyboard.  

Audio signals were generated in MATLAB 2019a and streamed to a Fireface UCX (RME Audio, 

Heimhausen, Germany) soundcard. The audio stream was presented to participants using an In-Ear 

headphone system (Etymotic Research ER-2, Etymotic Research Inc., USA). Experimental instruc-

tions were given via a computer screen in the experimental room controlled using Psychtoolbox 3 

for MATLAB. During blocks that required participants to keep their eyes-open, a white fixation cross 

was presented at the center of the screen. 

4.4 EEG 

Electroencephalogram was recorded from 64 active electrodes according to the extended interna-

tional 10-10 system, using a BioSemi Active 2 amplifier (BioSemi, Amsterdam, Netherlands). EEG 

signals were recorded at a rate of 2048-Hz and digitally stored on a hard drive using ActiView v9.02 

Software (BioSemi, Amsterdam, Netherlands). Electrodes were mounted in an elastic cap and con-

nected to participants’ scalps via a conductive gel (Signa Gel, Parker Laboratories Inc., Fairfield, NJ, 

USA). Signal offsets of the system were kept below 50-μV. 

4.5 Data analysis  

4.5.1 EEG processing 

EEG analyses were performed in MATLAB 2019b using the fieldtrip toolbox56. Data was re-refer-

enced to common average, resampled to 256-Hz and filtered between 1-Hz and 40-Hz using a two-

pass, 4-th order, zero-phase Butterworth filter. An independent component analysis was performed 

to project out artifacts related to eye-blinks, movements, heart-beat or muscular activity. 

Signals were then epoched into consecutive, overlapping segments centered around the p-center 

(the part of the word that was centered on the metronome beat) of each word (± 1-sec). Each seg-

ment was 2-sec long and therefore comprised seven p-centers (Fig. 1). The use of segments allowed 

us to extract time-resolved measures of α-oscillations and neural entrainment. 
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A Fast-Fourier Transform (FFT, Hanning window, 2-sec zero padding) was applied on each of the 

segments. The resulting complex Fourier coefficients were used to extract power in the α-band (8-

12-Hz) as well as inter-trial coherence (ITC) at the stimulus rate (3-Hz). In line with previous work10,23, 

we used ITC to quantify neural entrainment to speech, i.e. neural activity aligned to the 3-Hz rhythm. 

ITC quantifies phase consistency across trials (here: segments). ITC was computed in sliding win-

dows comprising 15 segments (step size: 1 segment). Note that, due to the overlap between suc-

cessive segments, this window is 5 seconds long. We used the following equation to compute ITC 

in each time window: 

𝐼𝑇𝐶(𝑓) = (
1
𝑁
+ 𝑒!"($(%,'))
)

'*+

( 

where 𝜑(𝑓, 𝑛) is the phase in segment 𝑛 at frequency 𝑓. 𝑁 corresponds to the number of segments 

in the window. f was therefore set to 3-Hz and N was set to 15. Within the same windows we aver-

aged power spectra across segments to ensure consistent temporal smoothing in both measures.  

This approach yielded neural measures as a function of time: One α-power, and one ITC value per 

time window. We then used these time-resolved measures to extract their fluctuations over time. ITC 

and α-power time-series were first z-transformed to ensure comparable amplitudes. They were then 

divided into 100-sec segments with 90% overlap. This resulted in a total of 60 segments across the 

3 blocks per condition (eyes-open vs. eyes-closed). Finally, the segments were submitted to another 

FFT (hanning window, 400-sec zero padding). Length of the segments and padding were chosen to 

ensure sufficient spectral resolution below 0.2-Hz as well as a sufficient number of phase estimates 

to quantify if there is systematic coupling between signals. Importantly, a 90% overlap results in an 

effective step size of 10-sec in our case. Given our aim to analyze fluctuations at rates below 0.2-Hz 

(i.e., slower than 5-sec), a 10-sec step size is sufficient to include 0.5 – 2 new cycles of such slow 

fluctuations. To rule out that these step and window size parameters affect our results we repeated 

the analysis using shorter segments (50-sec with 90% overlap, i.e., 5-sec time-steps). Overall, we 

obtained very similar results compared to the main analysis. 

The obtained low-frequency spectra were corrected for arrhythmic (“1/f”) activity using the fooof al-

gorithm57 as shipped with the fieldtrip toolbox. This step helped improve the identification of peaks 
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in the spectrum, and revealed prominent spectral peaks in the α-power and ITC time-courses. On 

the group level, these peaks were close to 0.07-Hz for both α-power and ITC (Fig. 2a).  We next 

identified individual peak frequencies of α-power and ITC fluctuations. To do so, we selected the 

peak frequency that was closest to 0.07-Hz rhythm for individual participants (in a range of 0.04-Hz 

to 0.1-Hz). In accordance with Lakatos et al 201610, we then used the individual peak frequency of 

the α-power envelope to extract the phase of α-power and ITC fluctuations in each 100-sec segment, 

and computed their phase difference. Phase differences were subsequently averaged across seg-

ments, separately for each subject and condition. To rule out that coupling between α-power and 

entrainment are driven by entrainment effects at harmonic frequencies in the α-band (9-Hz & 12-

Hz), we repeated the analysis for the coupling between fluctuations in 3-Hz ITC and ITC at 9-Hz and 

12-Hz. The results of this analysis are presented in Supplementary Fig. S2.  

To investigate how α-power and ITC fluctuations relate to the detection of target stimuli, we filtered 

the corresponding envelopes around the individual α-power envelope peak frequency (± 0.02-Hz), 

identified in the previous step, using a causal, 6-th order, one-pass Butterworth filter. The causal 

filter was chosen to avoid contamination of pre-stimulus activity with stimulus related changes in 

brain activity. We epoched the signals from -14-sec to +7-sec around target stimuli. Using a Hilbert 

transform, we then extracted instantaneous phase angles over time and averaged them across trials, 

separately for ITC and α-power fluctuations around hits and misses, respectively. Subsequently, for 

both alpha power and ITC fluctuations, we computed the time-resolved phase difference between 

hits and misses in the interval before target onset (-14-sec to -2.5-sec). The interval ends 2.5-sec 

prior to the onset of target stimuli to avoid including target-evoked brain responses, which can smear 

into the interval due to the symmetric 5-sec window (described above) that was used to compute 

ITC values and to smoothen α-power trajectories. The analysis was restricted to channels from sig-

nificant clusters revealed in previous analyses (Fig. 2d,e; Supplementary table 1).  

4.5.2 Behavioral analysis 

Average reaction times, as well as the proportion of hits, misses and false alarms were computed 

for each condition (eyes-open vs. eyes-closed). A target word was considered a hit, if a button was 

pressed within 2-sec after stimulus onset, otherwise it was considered a miss. Button presses 
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occurring outside these response intervals were considered false-alarms. Hit rates were computed 

by dividing the number of responses to targets by the number of targets (75 per condition), false 

alarm rates were computed by dividing responses outside of response intervals by the number of 

standards (2475 per condition).  

4.5.3  Statistical analyses 

Statistical analyses were performed in Matlab 2019b using the circular statistics toolbox58 in combi-

nation with functions in fieldtrip for massive-multivariate permutation statistics56,59. 

To assess whether there is a significant coupling between α-power and entrainment fluctuations (i.e. 

envelopes), we tested if their phase difference shows a systematic clustering across subjects (i.e. 

differs from a uniform distribution). To this end, we first computed the average phase difference 

between α-power and ITC envelopes (separately for each channel and subject as detailed in section 

4.5.1) and subjected them to Rayleigh’s test for uniformity of circular data. This test yields a z-statistic 

(one per channel) which is high if these phase differences are non-uniformly distributed across sub-

jects. We next tested whether there is a cluster of channels with such a non-uniform distribution. We 

randomly shuffled α-power and ITC segments within subjects 10,000 times, re-computed the aver-

age phase difference between the two signals per-subject and the corresponding Rayleigh’s statistic 

on the group level, yielding 10,000 z-statistics per channel. Finally, we compared actual data with 

shuffled ones to obtain group-level p-values for channel clusters, using Monte Carlo estimates59. 

A significantly non-uniform distribution of phase differences between α-power and ITC envelopes 

indicates that the two are coupled, but does not tell us anything about their phase relation. If this 

phase relation is close to 0, this would speak against alpha oscillations and entrainment reflecting 

opposing processing modes. We therefore tested the phase relation between the two deviates from 

zero within an identified channel cluster, using the circ_mtest function of the circular statistics 

toolbox. The function tests if a given angle lies within a given confidence interval (e.g., 95% or 99%) 

of a phase distribution. To estimate a p-value, we performed the test against different significance 

levels (α < .05 and α < .01) and report the lowest significant alpha level for each comparison (i.e., p 

< .05 or p < .01), along with the circular average of the underlying phase distribution and the 95% or 

99% circular confidence intervals (CI). Although a non-zero phase relation between alpha oscillations 
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and entrainment might already indicate different modes of processing, our hypothesis was more 

explicit in that it assumes an opposing (i.e. anti-phase) relation between the two. To evaluate this 

hypothesis, we also report if the CIs cover ±π. 

Comparisons of peak frequencies, hit and false alarm rates and reaction times were performed in 

Matlab 2019b using dependent-samples t-tests.  

5 Data & code availability 

The underlying data and code are available from the corresponding author upon reasonable request.  
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