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Abstract

We derive the Green’s functions (concentrated force and couple in an infinite space) for the isotropic
planar relaxed micromorphic model. Since the relaxed micromorphic model particularises into the micro-
stretch, Cosserat (micropolar), couple-stress, and linear elasticity model for certain choices of material
parameters, we recover the fundamental solutions in all these cases.

Keywords: generalized continua, fundamental solution, Kelvin-Mindlin problem, concentrated force, con-
centrated couple, micromorphic continuum, micro-stretch, Cosserat continuum, micropolar continuum, cou-
ple stress model, relaxed micromorphic model, gauge invariant dislocation model.
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1 Introduction

The relaxed micromorphic is a new generalised continuum model that allows to describe size-effects and
band-gaps appearing in metamaterials [7, 42, 59, 60, 61, 66, 67, 81] (in its dynamic setting). The relaxed
micromorphic model belongs to the family of micromorphic models [9, 43] in that the kinematics is given
by the classical displacement u : Ω → R3 and the non-symmetric micro-distortion P : Ω → R3×3, and the
solution is determined from the variational two-field problem

I(u, P ) =

∫
Ω

1

2

(
⟨Ce sym(Du− P ), sym(Du− P )⟩+ ⟨Cc skew(Du− P ), skew(Du− P )⟩ (1)

+ ⟨Cmicro symP, symP ⟩+ µmacroL
2
c⟨LCurlP,CurlP ⟩

)
dx −→ min (u, P ) .

Here Ce,Cmicro,L are positive-definite fourth-order tensors, and Lc is a characteristic length and µmacro =
µM is the macroscopic shear modulus. Cc is a positive semi-definite fourth order tensor and we note the
homogenization relation [50, 52]

Ce = Cmicro

(
Cmicro − Cmacro

)−1

Cmacro ⇐⇒ Cmacro = Cmicro

(
Cmicro + Ce

)−1

Ce , (2)

Cmicro = Ce

(
Ce − Cmacro

)−1

Cmacro ,

connecting the macroscopic stiffness Cmacro uniquely known from classical homogenization for a periodic
metamaterial to the stiffness tensors Cmicro and Ce of the relaxed micromorphic model. This new model
leverages some of the main shortcomings of the classical Eringen-Mindlin micromorphic model (unbounded
stiffness, multitude of parameters). This is achieved by reducing the complexity of the strain energy function
in two ways: first (i) by excluding some generalities in the local part of the energy, and second and foremost
(ii) by reducing the dependency of the curvature energy acting on a full gradient of the micro-distortion in
the classical Mindlin-Eringen model to only a dependency on its Curl. The consequences of this choice are
remarkable: the additional balance equation remains of the second order (Curl is a second order tensor) and
the model still includes the better known micro-stretch and Cosserat (micropolar) models (which can be
alternatively written in dislocation format with a Curl in the curvature part [12]). Compared to the classical
Eringen-Mindlin micromorphic model, note the absence of mixed coupling terms between the elastic strain
sym (Du−P ) and the microstrain symP , i.e, terms like ⟨Ĉ sym(Du−P ), sym(Du−P )⟩. This is the reason
for which the crucial homogenization formula (2) for Lc → 0 can be obtained. Unlike for the linear Cosserat
(micropolar) model, the relaxed micromorphic model remains operative and well posed [4, 11, 52] also for
zero Cosserat couple modulus µc ≡ 0 (Cc ≡ 0), in which case the force stress tensor remains symmetric.
The well-posedness is established using novel generalized Korn’s inequalities for incompatible tensor fields
[35, 36, 37, 38, 55, 56], whereby sharp criteria for the validity of such coercivity estimates were given in
the recent work [13, 14, 15]. In addition, the relaxed micromorphic model now operates as a true two-scale
model between two clearly defined scales: the macroscopic scale with stiffness tensor Cmacro appearing for
the characteristic length Lc → 0 (arbitrary large sample) and the microscopic scale with stiffness tensor
Cmicro appearing for Lc → ∞. Again, see Fig. 1, the limit Lc → ∞ diverges as such in the classical
micromorphic, second gradient, Cosserat model, along with others.
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characteristic length Lc∞ 0

linear elasticity with Cmacro

linear elasticity with Cmicro

relative stiffness
RVE

many RVEs

RMM

unbounded stiffness for other generalized continua

(Eringen-Mindlin, Cosserat, second gradient)

Figure 1: The stiffness of the relaxed micromorphic model (RMM) is bounded from above and below. Other
generalized continua exhibit unbounded stiffness for small sizes. For large values of the characteristic length Lc,
linear elasticity with a micro elasticity tensor is recovered (one RVE) while linear elasticity with a macro elasticity
tensor is obtained for small values of the characteristic length (many RVEs).

The above mentioned advantages have led to a multitude of investigations in short-time from the numer-
ical side [69, 71, 72, 73, 74, 75], from the modelling side [7, 42, 59, 60, 61, 66, 67, 81], analytical solutions
[62, 63, 64, 65], regularity of solutions [28, 29], and many others.

In this paper we continue our investigations from the theoretical side by determining the Green’s func-
tions for the case of a concentrated force and a concentrated couple in an infinite relaxed micromorphic
medium. Closed form solutions are derived using a Fourier transform analysis and results from generalized
functions. It is shown that several well known generalized continuum fundamental solutions can be obtained
as singular limiting cases of the relaxed micromorphic solution. In particular, from the relaxed micromor-
phic solutions we can readily derive the couple-stress, Cosserat-micropolar, micro-stretch, micro-void, and
classical elasticity fundamental solutions ([3, 8, 23, 24, 25, 26, 32, 39, 44, 45, 46, 68, 80, 83]), showing thus
how versatile the relaxed micromorphic theory is. On the other hand, the full Eringen-Mindlin micromor-
phic model is at present too complicated for analytical or even numerical solutions to be sought. Here we
take again advantage of the relaxed micromorphic model which drastically simplifies the situation in the
isotropic planar case (only one curvature parameter remains operative). In the appendix we exhibit the
two-scale elasticity nature relaxed micromorphic model. Moreover, we show how other generalised continua
(micro-stretch, micro-void, Cosserat-micropolar) appear as limits of the relaxed micromorphic model.

1.1 Notation

For vectors a, b ∈ Rn, we define the scalar product ⟨a, b⟩ :=
∑n

i=1 ai bi ∈ R, the (squared) euclidean norm
∥a∥2 := ⟨a, a⟩ and the dyadic product a⊗ b := (ai bj)ij ∈ Rn×n. In the same way, for tensors P,Q ∈ Rn×n,

we define the scalar product ⟨P,Q⟩ :=
∑n

i,j=1 Pij Qij ∈ R and the (squared) Frobenius-norm ∥P∥2 := ⟨P, P ⟩.
Moreover, PT := (Pji)ij denotes the transposition of the matrix P = (Pij)ij , which decomposes orthogonally
into the skew-symmetric part skewP := 1

2 (P − PT ) and the symmetric part symP := 1
2 (P + PT ). The

identity matrix is denoted by 1, so that the trace of a matrix P is given by trP := ⟨P,1⟩, while the deviatoric
component of a matrix is given by devP := P − tr(P )

3 1. Given this, the orthogonal decomposition possible

for a matrix is P = dev symP + skewP + tr(P )
3 1. The Lie-Algebra of skew-symmetric matrices is denoted

by so(3) := {A ∈ R3×3 | AT = −A}. Using the one-to-one map axl : so(3) → R3 we have

Ab = axl(A)× b ∀A ∈ so(3) , b ∈ R3 . (3)

where × denotes the cross product in R3. The inverse of axl is denoted by Anti: R3 → so(3). The derivative
Du and the curl of a vector field u are defined as

Du =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 , curlu = ∇× u =

 u3,2 − u2,3

u1,3 − u3,1

u2,1 − u1,2

 . (4)

We also introduce the Curl and the Div operators for P ∈ R3×3 as

CurlP =

 (curl (P11, P12, P13)
T
)T

(curl (P21, P22, P23)
T
)T

(curl (P31, P32, P33)
T
)T

, DivP =

 div (P11, P12, P13)
T

div (P21, P22, P23)
T

div (P31, P32, P33)
T

 . (5)
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The cross product between a second order tensor and a vector is also needed and is defined row-wise as
follow

m× b =

 (b× (m11,m12,m13)
T )T

(b× (m21,m22,m23)
T )T

(b× (m31,m32,m33)
T )T

 = m · ϵ · b = mik ϵkjh bh , (6)

where m ∈ R3×3, b ∈ R3, and ϵ is the Levi-Civita tensor.

2 The isotropic relaxed micromorphic model

It has the kinematics of the classical Eringen-Mindlin micromorphic isotropic model [9, 43], i.e. the displace-
ment u ∈ R3 and the non-symmetric micro-distortion P ∈ R3×3 as independent fields. The strain energy
density reads

W (Du, P,CurlP ) =µe ∥sym(Du− P )∥2 + µc ∥skew(Du− P )∥2 + λe

2
tr2(Du− P )

+ µmicro ∥symP∥2 + λmicro

2
tr2 (P ) (7)

+
µmacroL

2
c

2

(
a1 ∥dev symCurlP∥2 + a2 ∥skewCurlP∥2 + a3

3
tr2 (CurlP )

)
,

while the two equilibrium equations are

Divσ = f , σ − σmicro − Curlm = M , (8)

with

σ := 2µe sym(Du− P ) + 2µc skew(Du− P ) + λetr(Du− P )1 ,

σmicro := 2µmicro symP + λmicrotr (P )1 , (9)

m := µM L2
c

(
a1 dev symCurlP + a2 skewCurlP +

a3
3

tr (CurlP )1
)
,

where σ is the non-symmetric elastic force stress tensor, m is the non-symmetric moment tensor, f is the
standard body force vector and M is the body volume moment tensor. The homogeneous Neumann and
the Dirichlet boundary conditions are

Neumann: t := σ n = 0 , and η := m× n = 0 , (10)

Dirichlet: u = u , and Q = P × n , (11)

where the higher-order Dirichlet boundary conditions in (11) can be particularised to

P × n = Q = Du× n , (12)

formally called “consistent coupling boundary conditions” [4]. The following additional equilibrium equation
can be derived combining the two equilibrium equations (8) thanks to the fundamental property of differential
operators DivCurl (·) = 0

Divσmicro = f −DivM . (13)

A similar additional equilibrium equation for σmicro does not exist at all e.g. in the classical Eringen-Mindlin
model or the Cosserat model.

3 The isotropic relaxed micromorphic model in plane-strain

Under the plane-strain hypothesis only the in-plane components of the kinematic fields are different from
zero and they only depend on (x1, x2). The structure of the kinematic fields (ũ,P̃ ) are [25]

ũ =

 u1

u2

0

 , ũ♯ =

(
u1

u2

)
, P̃ =

 P11 P12 0
P21 P22 0
0 0 0

 , P̃ ♯ =

(
P11 P12

P21 P22

)
, (14)
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while the structures of the gradient of the displacement Dũ, of the Curl of the micro distortion tensor Curl P̃ ,
and of the double Curl of the micro distortion tensor Curl Curl P̃ are

Dũ =

 u1,1 u1,2 0
u2,1 u2,2 0
0 0 0

 , Dũ♯ =

(
u1,1 u1,2

u2,1 u2,2

)
,

Curl P̃ =

 0 0 P12,1 − P11,2

0 0 P22,1 − P21,2

0 0 0

 =

 0 0
0 0

Curl2D P̃ ♯

0 0 0

 , Curl2D P̃ ♯ :=

(
P12,1 − P11,2

P22,1 − P21,2

)
,

CurlCurl P̃ =

 P12,12 − P11,22 P11,12 − P12,11 0
P22,12 − P21,22 P21,12 − P22,11 0

0 0 0

 =

 0
Curl Curl2D P̃ ♯

0
0 0 0

 ,

CurlCurl2D P̃ ♯ :=

(
P12,12 − P11,22 P11,12 − P12,11

P22,12 − P21,22 P21,12 − P22,11

)
.

(15)
Because of the nature of the Curl operator, it is noted that CurlP just has out of plane components that
depend on the in-plane components of P , while Curl Curl P̃ fully preserves the in-plane structure. Moreover,
since

tr(Curl P̃ ) = 0, (16)∥∥∥dev symCurl P̃
∥∥∥2 =

∥∥∥symCurl P̃
∥∥∥2 =

∥∥∥skewCurl P̃
∥∥∥2 =

1

2

∥∥∥Curl P̃∥∥∥2 =
1

2

∥∥∥Curl2D P̃ ♯
∥∥∥2 ,

the plane strain isotropic relaxed micromorphic model will just depend on one cumulative dimensionless
parameter ã := a1+a2

2 , and the strain energy density in (7) reduces to

W (Dũ, P̃ ,Curl P̃ ) =µe

∥∥∥sym(Dũ− P̃ )
∥∥∥2 + µc

∥∥∥skew(Dũ− P̃ )
∥∥∥2 + λe

2
tr2(Dũ− P̃ )

+ µmicro

∥∥∥sym P̃
∥∥∥2 + λmicro

2
tr2(P̃ ) +

µML2
c

2
ã
∥∥∥Curl P̃∥∥∥2 ,

=µe

∥∥∥sym(Dũ♯ − P̃ ♯)
∥∥∥2 + µc

∥∥∥skew(Dũ♯ − P̃ ♯)
∥∥∥2 + λe

2
tr2(Dũ♯ − P̃ ♯) (17)

+ µmicro

∥∥∥sym P̃ ♯
∥∥∥2 + λmicro

2
tr2(P̃ ♯) +

µmacroL
2
c

2
ã
∥∥∥Curl2D P̃ ♯

∥∥∥2
=µe

∥∥∥dev2 sym(Dũ♯ − P̃ ♯)
∥∥∥2 + µc

∥∥∥skew(Dũ♯ − P̃ ♯)
∥∥∥2 + κe

2
tr2(Dũ♯ − P̃ ♯)

+ µmicro

∥∥∥dev2 sym P̃ ♯
∥∥∥2 + κmicro

2
tr2(P̃ ♯) +

µM L2
c

2
ã
∥∥∥Curl2D P̃ ♯

∥∥∥2 ,

where dev2X := X − 1
2 tr(X) · 12 and µM = µmacro for better readability. Moreover, under plane-strain

conditions, the bulk micro-moduli κe and κmicro are related with the respective Lamé type micro-moduli
through the 2D relations

κe := λe + µe, κmicro := λmicro + µmicro . (18)

Accordingly, the relations between the macro moduli (µmacro, λmacro, κmacro) and the micro-moduli in plane
strain become (see Appendix A2)

µmacro :=
µe µmicro

µe + µmicro
⇔ 1

µmacro
=

1

µe
+

1

µmicro
,

κmacro :=
κe κmicro

κe + κmicro
⇔ 1

κmacro
=

1

κe
+

1

κmicro
, (19)

λmacro :=
(µe + λe)(µmicro + λmicro)

(µe + λe) + (µmicro + λmicro)
− µe µmicro

µe + µmicro
,

where κmacro = µmacro + λmacro. The 3D relations for the macro and micro moduli are given in Appendix
A. From here and onwards, unless otherwise stated, the macro and micro moduli will refer to the case of
plane strain and will be defined through equations (18) and (19).
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Taking the first variation of the strain energy I =

∫
Ω

W dx under the plane strain hypothesis with respect

to (ũ♯,P̃ ♯) leads to

δI ũ
♯

=

∫
Ω

(
2µe ⟨sym(Dũ♯ − P̃ ♯),Dδũ♯⟩+ 2µc ⟨skew(Dũ♯ − P̃ ♯),Dδũ♯⟩+ λe⟨tr(Dũ♯ − P̃ ♯)12,Dδũ♯⟩

)
dx ,

δI P̃
♯

=

∫
Ω

(
− 2µe ⟨sym(Dũ♯ − P̃ ♯), δP̃ ♯⟩ − 2µc ⟨skew(Dũ♯ − P̃ ♯), δP̃ ♯⟩ − λe⟨tr(Dũ♯ − P̃ ♯)12, δP̃

♯⟩ (20)

+ 2µmicro⟨sym P̃ ♯, δP̃ ♯⟩+ λmicro⟨tr(P̃ ♯)12, δP̃
♯⟩+ µM L2

c ã ⟨Curl2D P̃ ♯,Curl2D δP̃ ♯⟩
)
dx .

The equilibrium equation are now obtained by requiring

δI ũ
♯

= ⟨f̃ , δũ♯⟩ , ∀ δũ♯ and δI P̃
♯

= ⟨M̃, δP̃ ♯⟩ , ∀ δP̃ ♯ . (21)

We define the following quantities

σ̃ := 2µe sym(Dũ♯ − P̃ ♯) + 2µc skew(Dũ♯ − P̃ ♯) + λe tr(Dũ♯ − P̃ ♯)12 ,

σ̃micro := 2µmicro sym P̃ ♯ + λmicro tr(P̃
♯)12 ∈ R2×2 , (22)

m̃ := µM L2
c ãCurl2DP̃

♯ ∈ R2 ,

where we used the tilde σ̃ and σ̃micro to emphasize that here we are only considering the in-plane components.
We can rewrite the first variation δI ũ as

δI ũ
♯

=

∫
Ω

⟨σ̃,Dδũ♯⟩dx =

∫
Ω

div(σ̃T δũ♯)− ⟨Div σ̃, δũ♯⟩dx =

∫
∂Ω

⟨σ̃T δũ♯, n⟩ds−
∫
Ω

⟨Div σ̃, δũ♯⟩dx (23)

=

∫
∂Ω

⟨σ̃ n, δũ♯⟩ds−
∫
Ω

⟨Div σ̃, δũ♯⟩dx ,

and that, because of the equation (21), and highlighting that ũ is orthogonal with respect to the out-of-plane
displacement, implies

Div σ̃ = f̃ in Ω , σ̃ n = 0 on ∂Ω . (24)

where the out-of-plane components of Div σ̃ and σ̃ n must not be considered. We can now rewrite the first

variation δI P̃ as

δI P̃
♯

=

∫
Ω

−⟨σ̃, δP̃ ♯⟩+ ⟨σ̃micro, δP̃
♯⟩+ ⟨µM L2

c ãCurl2D P̃ ♯,Curl2D δP̃ ♯⟩dx

=

∫
Ω

⟨−σ̃ + σ̃micro, δP̃
♯⟩+ ⟨µM L2

c ãCurl2D P̃ ♯,Curl2D δP̃ ⟩dx

=

∫
Ω

⟨−σ̃ + σ̃micro, δP̃
♯⟩+ ⟨µM L2

c ãCurlCurl2D P̃ , δP̃ ♯⟩ − div[

3∑
i=1

(µML2
c ãCurl2D P̃ )i × (P̃ ♯)i] dx (25)

=

∫
Ω

⟨−σ̃ + σ̃micro + µM L2
c ãCurlCurl2D P̃ ♯, δP̃ ♯⟩ −

∫
∂Ω

⟨
3∑

i=1

(µML2
c ãCurl2D P̃ ♯)i × (δ̃P

♯
)i, n⟩ds

=

∫
Ω

⟨−σ̃ + σ̃micro + µM L2
c ãCurlCurl2D P̃ ♯, δP̃ ♯⟩ −

∫
∂Ω

⟨(µML2
c ãCurl2D P̃ ♯)× n, δP̃ ♯⟩ds ,

which, because of (21), and recalling that P̃ is orthogonal with respect to the out-of-plane micro-distortion
tensor P (their scalar product is zero), implies

σ̃ − σ̃micro − µM L2
c ãCurlCurl2D P̃ ♯ = M̃ in Ω , (µM L2

c ãCurl2D P̃ ♯)× n = 0 on ∂Ω . (26)

where the out-of-plane components of (26)1 and (26)2 must not be considered. We can now collect all the
homogeneous equilibrium equations obtained and the homogeneous Neumann boundary conditions

Div σ̃ = f̃

σ̃ − σ̃micro − L2
c ãCurlCurl2D P̃ = M̃

}
in Ω ,

σ̃ n = 0

(L2
c ãCurl2D P̃ )× n = 0

}
on ∂Ω . (27)
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Since Div (µM L2
c ãCurlCurl2D P̃ ) = 0, combining the two equation in (27)1 gives rise to another equilibrium

equation that depends only on sym P̃

Div σ̃ = f̃

σ̃ − σ̃micro − µM L2
c ãCurlCurl2D P̃ = M̃

{Div σ̃micro = f̃ +Div M̃}

 in Ω ,
σ̃ n = 0

(L2
c ãCurl2D P̃ )× n = 0

}
on ∂Ω . (28)

The extra equation Div σ̃micro = f̃ +Div M̃ is not independent with respect the other two, and any smooth
solution of (27)1 will automatically satisfy it. This equation can nevertheless substitute Div σ̃ = f̃ , but,
although it depends solely on symP , it is an undetermined system of equations since we just have two equa-
tions for three unknown functions (P11, P22, P12). The governing equilibrium equations (27)1 in components
are

(λe + 2µe) (u1,11 − P11,1) + λe (u2,12 − P22,1)

+µc (u1,22 − u2,12 − P12,2 + P21,2) + µe (u1,22 + u2,12 − P12,2 − P21,2) = f1 ,

(λe + 2µe) (u2,22 − P22,2) + λe (u1,12 − P11,2)

+µc (u2,11 − u1,12 − P21,1 + P12,1) + µe (u2,11 + u1,12 − P21,1 − P12,1) = f2 ,

µM L2
c ã (P11,22 − P12,12)

−P11(λe + λm + 2(µe + µm))− (λe + λm)P22 + (λe + 2µe)u1,1 + λeu2,2 = M11 ,

−µM L2
c ã (P11,12 − P12,11)

−(µc + µe + µm)P12 + (µc − µe − µm)P21 + (µc + µe)u1,2 + (µe − µc)u2,1 = M12 ,

µM L2
c ã (P21,22 − P22,12)

+(µc − µe − µm)P12 − (µc + µe + µm)P21 + (µe − µc)u1,2 + (µc + µe)u2,1 = M21 ,

−µM L2
c ã (P21,12 − P22,11)

−P22(λe + λm + 2(µe + µm))− (λe + λm)P11 + (λe + 2µe)u2,2 + λeu1,1 = M22 .

(29)

which, according to (9), are accompanied by the following constitutive plane strain equations

σ11 = (λe + 2µe)u1,1 + λeu2,2 − (λe + 2µe)P11 − λeP22 ,

σ22 = (λe + 2µe)u2,2 + λeu1,1 − (λe + 2µe)P22 − λeP11 ,

σ12 = (µe + µc)u1,2 + (µe − µc)u2,1 − (µe + µc)P12 − (µe − µc)P21 ,

σ21 = (µe + µc)u2,1 + (µe − µc)u1,2 − (µe + µc)P21 − (µe − µc)P12 ,

m13 = −µM L2
c ã (P11,2 − P12,1) ,

m23 = −µM L2
c ã (P21,2 − P22,1) .

(30)

4 Fundamental solutions for the relaxed micromorphic continuum
under plane strain conditions

4.1 Concentrated force: The Kelvin problem

The Kelvin problem [79] provides the solution of a point force acting in the interior of an infinite elastic
medium [80]. The solution is of fundamental importance since it provides the plane strain Green’s function
for the relaxed micromorphic theory. Lord Kelvin (William Thompson, 1824-1907) solved the problem for
classical isotropic linear elasticity that was later named after him in 1848.

We consider a body occupying the full plane (−∞ < x1 < ∞, −∞ < x2 < ∞) under plane-strain
conditions. The body is acted upon by a concentrated line force situated at the origin of the coordinate
system. There is no loss of generality if we assume that the direction of the line force coincides with the
x2-axis of the coordinate system due to isotropy. In this case, we have that

f =

(
0
−1

)
δ(x1)δ(x2) , M =

(
0 0
0 0

)
, (31)
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with δ(x) being the Dirac delta function.
For the solution of the problem the 2D Fourier transform will be employed. The direct (FT) and inverse

(FT−1) double Fourier transforms are defined, respectively, as

ŷ(ξ) = FT{y(x)} =

∫
x∈R2

y(x) ei ⟨x,ξ⟩ dx, y(x) = FT−1{ŷ(ξ)} =
1

(2π)2

∫
ξ∈R2

ŷ(ξ) e−i ⟨x,ξ⟩ dξ, (32)

where ξ = (ξ1, ξ2) is the 2D Fourier vector with ∥ξ∥ ≡ ξ =
√
ξ21 + ξ22 and i is the imaginary unit [6].

Applying the Fourier transform on the equilibrium equations (29) and noting that FT{δ(x1)δ(x2)} = 1,
yields1

−
(
(λe + 2µe)ξ

2
1 + (µc + µe)ξ

2
2

)
û1 − (λe + µe − µc) ξ1ξ2 û2 + i(λe + 2µe)ξ1P̂11

+iλeξ1P̂22 + i (µc + µe) ξ2P̂12 − i (µc − µe) ξ2P̂21 = 0 ,

− (λe + µe − µc) ξ1ξ2û1 −
(
(λe + 2µe)ξ

2
2 + (µc + µe)ξ

2
1

)
û2 + iλeξ2P̂11

+i(λe + 2µe)ξ2P̂22 + i(µe − µc)ξ1P̂12 + i (µc + µe) ξ1P̂21 = −1 ,

−i(λe + 2µe)ξ1û1 − iλeξ2û2 −
(
λe + 2µe + λm + 2µm + ãµM L2

cξ
2
2

)
P̂11

−(λe + λm)P̂22 + ãµM L2
cξ1ξ2P̂12 = 0 ,

−iλeξ1û1 − i(λe + 2µe)ξ2û2 −
(
λe + 2µe + λm + 2µm + ãµM L2

cξ
2
1

)
P̂22

−(λe + λm)P̂11 + ãµM L2
cξ1ξ2P̂21 = 0 ,

−i (µc + µe) ξ2û1 − iξ1 (µe − µc) û2 + ãµM L2
cξ1ξ2P̂11

−
(
(µc + µe + µm) + ãµM L2

cξ
2
1

)
P̂12 − (µe + µm − µc)P̂21 = 0 ,

−i (µe − µc) ξ2û1 − i (µe + µc) ξ1û2 + ãµM L2
cξ1ξ2P̂22

−
(
(µc + µe + µm) + ãµM L2

cξ
2
2

)
P̂21 − (µe + µm − µc)P̂12 = 0,

(33)

where we recall that ã := (a1 + a2)/2 > 0. The algebraic system can be written in the following form

A(ξ) û = v̂, (34)

where û = {û1, û2, P̂11, P̂12, P̂21, P̂22}T , v̂ = {0,−1, 0, 0, 0, 0}T , and the symmetric Fourier matrix A is given
as

A(ξ) = (35)
−ξ22 (µc + µe)−

(
ξ21 (λe + 2µe)

)
− (ξ1ξ2 (−µc + λe + µe)) iξ1 (λe + 2µe) iξ2 (µc + µe) −iξ2 (µc − µe) iξ1λe

− (ξ1ξ2 (−µc + λe + µe)) −
(
ξ21 (µc + µe)

)
− ξ22 (λe + 2µe) iξ2λe −iξ1 (µc − µe) iξ1 (µc + µe) iξ2 (λe + 2µe)

iξ1 (λe + 2µe) iξ2λe ãµM L2
cξ

2
2 + λe + 2 (µe + µm) + λm −ãµM L2

cξ1ξ2 0 λe + λm

iξ2 (µc + µe) iξ1 (µe − µc) −ãµM L2
cξ1ξ2 ãµM L2

cξ
2
1 + µc + µe + µm −µc + µe + µm 0

−iξ2 (µc − µe) iξ1 (µc + µe) 0 −µc + µe + µm ãµM L2
cξ

2
2 + µc + µe + µm −ãµM L2

cξ1ξ2
iξ1λe iξ2 (λe + 2µe) λe + λm 0 −ãµM L2

cξ1ξ2 ãµM L2
cξ

2
1 + λe + 2 (µe + µm) + λm


The determinant of the Fourier matrix A(ξ) becomes

detA(ξ) =

{
ã2L4

c µ
2
M µm (µe + µc)(λe + 2µe)(λm + 2µm)(ℓ

−2
1 + ξ2)(ℓ−2

2 + ξ2)ξ4, µc > 0,

ã2L4
c µ

2
M µm µe(λe + 2µe)(λm + 2µm)(ℓ

−2
1 + ξ2)ξ6, µc = 0,

(36)

where ℓ1 and ℓ2 are two characteristic lengths related with the internal length Lc as

ℓ1 = Lc

√
ã βµM

4(λM + 2µM)
, ℓ2 = Lc

√
ã µM(µe + µc)

4µc µe
. (37)

We recall also that the macroscopic moduli (λM, µM, κM) are related to microscopic-moduli of the relaxed
micromorphic medium through equations (18) and (19). Further, the dimensionless parameter β is defined
as

β :=
(κe + µe)(κm + µm)

(κe + κm)(µe + µm)
> 0. (38)

1For better readability in component form we abbreviate the λmicro as λm and λmacro as λM, similarly for the other appearing
parameters.
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It is interesting to note that detA(ξ) is an 8th-order polynomial of ξ with corresponding terms {ξ8, ξ6, ξ4},
whereas in classical isotropic linear elasticity the Fourier determinant assumes the form

detAlin.elast(ξ) = µM(λM + 2µM)ξ4. (39)

The positive definiteness conditions for the system (29) read simply

µm > 0, µc ≥ 0, µe > 0, κm > 0, κe > 0, ã L2
c > 0, (40)

which according to (19), imply that µe > µM > 0 and κe > κM > 0.
Looking at (36), the plane(-strain) ellipticity conditions can be readily obtained as (cf. [53])

µM > 0, µm > 0, µe + µc > 0, µc ≥ 0, 2µe + λe > 0, 2µm + λm > 0, ã L2
c > 0 . (41)

From the solution of the above non-homogeneous system (34) we derive the solutions for the transformed
field variables. These can be written in the following form which is amenable for analytical treatment:

û1 = − κM

µM(κM + µM)

ξ1ξ2
ξ4

− ãµM L2
c

4

(
ζ

κM + µM

)2

ξ1ξ2 ϕ1(ξ) +
ãµM L2

c

4µ2
e

ξ1ξ2 ϕ2(ξ) ,

û2 =
1

µMξ2
− κM

µM(κM + µM)

ξ22
ξ4

− ãµM L2
c

4

(
ζ

κM + µM

)2

ξ22 ϕ1(ξ)−
ãµM L2

c

4µ2
e

ξ21 ϕ2(ξ) ,

P̂11 = i
κM

µm(κM + µM)

ξ21ξ2
ξ4

+
iζξ2

(
εãµM L2

cξ
2
1 + 2(κm + µm)

)
4(κM + µM)(κm + µm)

ϕ1(ξ) ,

P̂12 = i
κM

µm(κM + µM)

ξ1ξ
2
2

ξ4
+

iζεãµM L2
c ξ1ξ

2
2

4(κM + µM)(κm + µm)
ϕ1(ξ) +

iξ1
2µe

ϕ2(ξ) ,

P̂21 = −
iξ1

(
(κM + µM) ξ21 + µMξ22

)
µm (κM + µM) ξ4

+
iζεãµM L2

c ξ1ξ
2
2

4(κM + µM)(κm + µm)
ϕ1(ξ)−

iξ1
2µe

ϕ2(ξ) ,

P̂22 = −i
κM

µm(κM + µM)

ξ21ξ2
ξ4

− iξ2
(κm + µm) ξ2

−
iζξ2

(
εãµM L2

cξ
2
1 + 2(κm − µm)

)
4(κM + µM)(κm + µm)

ϕ1(ξ) ,

(42)

where the transformed functions ϕj(ξ) (j = 1, 2) and dimensionless parameters (ζ, ε) are defined as

ϕj(ξ) =
1

ξ2
−

ℓ2j
1 + ℓ2jξ

2
, ζ =

µe

µe + µm
− κe

κe + κm
, ε =

κm

κM + µM
β. (43)

We employ now some useful classical results (see e.g. [20], [57]):

I1 = FT−1{
(
ξ21 + ξ22

)−1} = − 1

2π
(b+ ln r) ,

I2 = FT−1{
(
ξ21 + ξ22

)−2} =
1

8π
r2(b+ ln r) , (44)

I3 = FT−1{
(
ℓ−2 + ξ21 + ξ22

)−1} =
1

2π
K0

[r
ℓ

]
,

and
∂m
x1
∂n
x2
Ij = (−iξ1)

m(−iξ2)
nIj , (m,n = 0, 1, 2, ...), (j = 1, 2, 3) (45)

where r =
√
x2
1 + x2

2, Kn[·] is the n-th order second kind modified Bessel functions and b = 0.57... is Euler’s
constant [20]. It should be noted that the integrals in (44) are defined as the finite part integrals2.

Using the above results, the definitions of the characteristic lengths ℓ1, ℓ2 and ignoring rigid body motions
in the displacement field, we obtain after some rather extensive algebra the following expressions for the
displacement and micro-distortion fields

2The concept of a finite-part integral has been first introduced by Hadamard [21] in 1923. These integrals have stronger singularities
than Cauchy principal value integrals and they exist in the finite part sense [31, 47].
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u1 =
κM x1x2

4π µM (κM + µM) r2
+

ζ2x1x2

2πβ (κM + µM) r2
Φ1 −

µcx1x2

2π µe (µc + µe) r2
Φ2 ,

u2 =
κMx2

2

4πµM (κM + µM) r2
− (κM + 2µM)

4π µM(κM + µM)
ln r − ζ2

4πβ (κM + µM)

(
(x2

1 − x2
2)

r2
Φ1 +K0

[
r

ℓ1

])
+

µc

4π µe (µc + µe)

(
(x2

1 − x2
2)

r2
Φ2 −K0

[
r

ℓ2

])
,

P11 = −
κMx2

(
x2
1 − x2

2

)
4π µm(κM + µM)r4

+
ζx2

4π (κM + µM) r
Ψ1 −

ζεx2

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 +
ζεx1x2

2π (κm + µm)βr2
∂x1Φ1 ,

P12 =
κMx1

(
x2
1 − x2

2

)
4π µm (κM + µM) r4

+
x1

4π µer
Ψ2 +

ζεx1

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 +
ζεx1x2

2π (κm + µm)βr2
∂x2

Φ1 ,

P21 =
κMx1

(
x2
1 − x2

2

)
4π µm (κM − µM) r4

− x1

4π µer
Ψ2 +

ζεx1

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 +
ζεx1x2

2π (κm + µm)βr2
∂x2Φ1

− x1

2π µmr2
,

P22 = − x2

2π(κm + µm)r2
+

κMx2

(
x2
1 − x2

2

)
4π µm (κM + µM) r4

− ζ(κm − µm)x2

4π (κM + µM) (κm + µm)r
Ψ1

+
ζεx2

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 −
ζεx1x2

2π (κm + µm)βr2
∂x1Φ1,

(46)

where the functions Φj and Ψj (j = 1, 2) are defined as

Φj ≡ Φj(r) =
2ℓ2j
r2

−K2

[
r

ℓj

]
, Ψj ≡ Ψj(r) =

1

r

(
1− r

ℓj
K1

[
r

ℓj

])
. (47)

Some useful relations and limits for the second kind modified Bessel functions that have been used for the
derivation of our equations can be found in Appendix A.5.

Equations (46) are the basic results of this paper and constitute the Green’s functions for the general
relaxed isotropic micromorphic continuum under plane strain conditions for the case of a concentrated force
acting in the x2-direction. The Green’s functions for the case where the concentrated force acts in the
x1-direction can be readily derived from the above solution by interchanging the indices 1 ↔ 2.

The micro-rotation for the relaxed micromorphic medium in the case of plane strain is defined as the
skew-symmetric part of P (see (124))

ϑ3 =
1

2
(P21 − P12) = − x1

4πr2

(
µe + µm

µm µe
− 1

µe

r

ℓ2
K1

[
r

ℓ2

])
= − x1

4πr2

(
1

µM
− 1

µe

r

ℓ2
K1

[
r

ℓ2

])
. (48)

Finally, it is noted that the stresses and higher order stresses can be derived from the constitutive relations
(30).

Using now the asymptotic properties of the second kind modified Bessel functions as z → 0 [20]

Kn[z] ∼

{
− ln z

2 − b, for n = 0 ,
Γ[n]
2

(
2
z

)n
for n > 0 ,

(49)

we may readily deduce that as r → 0 the displacement field becomes logarithmically unbounded as in the
classical linear elastic theory and the micro-distortion field P exhibits an r−1 singularity consistent with the
additive coupling Du− P . This in turn implies that, according to (9)1, the components of the stress tensor
σ behave also as O(r−1) as r → 0. The same singular asymptotic behaviour is exhibited by the micro-
rotation ϑ3. In particular, the second term in (48) is bounded as r → 0 but the first term behaves as r−1.
Interestingly, the micro-rotation becomes bounded if µmicro = µm → ∞ which is the case of micro-stretch,
micropolar and couple stress elasticity as we shall see next. Interestingly, it turns out that the components
of CurlP have at most a logarithmic singularity which implies, according to (9)3, that the higher order
stresses m exhibit also a O(log r) behaviour as r → 0.

The above results corroborate uniqueness for our solutions. Indeed, for a unique solution of the concen-
trated load problem the conventional and higher order stress singularities must behave at most as O(r−1)

10



when r → 0, where r is the distance from the point of application of the concentrated loads (see Hartranft
and Shi [22] and Sternberg [78] for the case of couple stress elasticity and Eubanks and Sternberg [77] for the
classical elasticity case). This is due to the fact that the tractions on a circle surrounding and separating the
concentrated load point from the rest of the medium must be statically equivalent to the concentrated force
at that point. This is a general requirement and is independent of the elasticity theory that is employed.

4.1.1 The relaxed micromorphic continuum with zero micro and macro Poisson’s ratio

A simpler case arises for zero micro and macro Poisson’s ratio so that λe = λm = 0 which implies λM = 0
and ζ = 0. In this case, we derive

u1 =
x1x2

8πr2

(
1

µM
− 4µc

µe(µe + µc)
Φ2

)
,

u2 =
x2
2

8π µM r2
− 3

8π µM
ln r +

µc

4π µe (µc + µe)

(
(x2

1 − x2
2)

r2
Φ2 −K0

[
r

ℓ2

])
, (50)

P11 = −
x2

(
x2
1 − x2

2

)
8π µmr4

, P12 =
x1

(
x2
1 − x2

2

)
8π µmr4

+
x1

4π µer
Ψ2 ,

P22 = −
x2

(
x2
1 + 3x2

2

)
8π µmr4

, P21 = −
x1

(
3x2

1 + 5x2
2

)
8π µmr4

− x1

4π µer
Ψ2 .

It is evident that u2 retains the logarithmic singularity but the detailed field is different, in particular

u2 = −
(
3µcµe + µcµm + 3µ2

e + 3µeµm

)
8πµeµm (µc + µe)

ln r, as r → 0. (51)

4.1.2 The pure relaxed micromorphic continuum with symmetric force stress tensor

Another special case of interest is the pure relaxed micromorphic continuum with symmetric force stress
tensor σ. In this case we have that the Cosserat modulus µc = 0 (which implies that ℓ2 → ∞) and
accordingly (see Appendix A.5)

lim
µc→0

µc Φ2 = 0 , lim
µc→0

Ψ2 = 0 , lim
µc→0

µc K0

[
r

ℓ2

]
= 0 , (52)

and we derive

u1 =
κM x1x2

4π µM (κM + µM) r2
+

ζ2x1x2

2πβ (κM + µM) r2
Φ1 ,

u2 =
κMx2

2

4πµM (κM + µM) r2
− (κM + 2µM)

4π µM(κM + µM)
ln r − ζ2

4πβ (κM + µM)

(
(x2

1 − x2
2)

r2
Φ1 +K0

[
r

ℓ1

])
,

P11 = −
κMx2

(
x2
1 − x2

2

)
4π µm(κM + µM)r4

+
ζx2

4π (κM + µM) r
Ψ1 −

ζεx2

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 +
ζεx1x2

2π (κm + µm)βr2
∂x1

Φ1 ,

P12 =
κMx1

(
x2
1 − x2

2

)
4π µm (κM + µM) r4

+
ζεx1

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 +
ζεx1x2

2π (κm + µm)βr2
∂x2

Φ1 ,

P21 =
κMx1

(
x2
1 − x2

2

)
4π µm (κM − µM) r4

+
ζεx1

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 +
ζεx1x2

2π (κm + µm)βr2
∂x2

Φ1 −
x1

2π µmr2
,

P22 = − x2

2π(κm + µm)r2
+

κMx2

(
x2
1 − x2

2

)
4π µm (κM + µM) r4

− ζ(κm − µm)x2

4π (κM + µM) (κm + µm)r
Ψ1

+
ζεx2

(
x2
1 − x2

2

)
2π (κm + µm)βr4

Φ1 −
ζεx1x2

2π (κm + µm)βr2
∂x1

Φ1.

(53)

4.1.3 Limiting cases

It is shown here that the fundamental solutions of several well-known generalized continua can be obtained
as singular limiting cases of the general relaxed micromorphic fundamental solution for a concentrated force.
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4.1.3.1 Micro-stretch elasticity

In order to pass from the general relaxed micromorphic continua to the micro-stretch continua we let
µm → ∞ which, according to (19), implies that: µe → µM, and

lim
µm→∞

ζ = − κe

κe + κm
, lim

µm→∞
β =

κe + µe

κe + κm
. (54)

In this case, the kinematical fields read

u1 =
κM x1x2

4π µM (κM + µM) r2
+

κMκe

2πκm(κM + µM)(κe + µM)

x1x2

r2
Φ1 −

µcx1x2

2π µe (µc + µe) r2
Φ2 ,

u2 =
κMx2

2

4πµM (κM + µM) r2
− (κM + 2µM)

4π µM(κM + µM)
ln r +

µc

4π µM (µc + µM)

(
(x2

1 − x2
2)

r2
Φ2 −K0

[
r

ℓ2

])
− κMκe

4πκm(κM + µM)(κe + µM)

(
(x2

1 − x2
2)

r2
Φ1 +K0

[
r

ℓ1

])
,

P11 =P22 = − κMx2

4πκm (κM + µM) r
Ψ1 , P12 = −P21 = − x1

4π µMr
Ψ2 ,

(55)

and the micro-rotation is given as

ϑ3 =
1

2
(P21 − P12) = − x1

4π µM r2

(
1− r

ℓ2
K1

[
r

ℓ2

])
, (56)

where the characteristic lengths are now defined as

ℓ1 = Lc

√
ã µM(κe + µM)

4(κM + µM) (κe + κm)
, ℓ2 = Lc

√
ã (µM + µc)

4µc
. (57)

We note again that ℓ2 → ∞ as µc → 0.

4.1.3.2 Cosserat (micropolar) elasticity

As (µm, κm) → ∞ we have that: µe → µM, κe → κM, λe → λM, and also ζ → 0, β → 0 which implies
further that ℓ1 → 0. Furthermore, by recalling that κM = λM + µM, and identifying (using Nowacki’s
notation [58]) µc = α, a1µM L2

c = 2γ, a2µM L2
c = 2ε, the relaxed micromorphic solution degenerates to the

known micropolar solution ([39], [8])3

u1 =
(λM + µM)

4π µM (λM + 2µM)

x1x2

r2
− α

2π µM(µM + α)

x1x2

r2

(
2ℓ2

r2
−K2

[r
ℓ

])
,

u2 =
(λM + µM)

4πµM (λM + 2µM)

x2
2

r2
− (λM + 3µM)

4π µM(λM + 2µM)
ln r − α

4π µM (α+ µM)
K0

[r
ℓ

]
+

α

4π µM (α+ µM)

(x2
1 − x2

2)

r2

(
2ℓ2

r2
−K2

[r
ℓ

])
,

P11 = P22 = 0, A12 = P12 = −P21 = −A21 =
x1

4π µM r2

(
1− r

ℓ
K1

[r
ℓ

])
(58)

with the micro-rotation ϑ3 given as

ϑ3 =
1

2
(P21 − P12) = − x1

4π µM r2

(
1− r

ℓ
K1

[r
ℓ

])
(59)

where

ℓ ≡ ℓ2 =

√
(γ + ε)(µM + α)

4αµM
= Lc

√
ã (µM + µc)

4µc
, (60)

is the known characteristic length of the Cosserat (micropolar) theory.

3It should be noted that in [8] there is a misprint in the plane strain fundamental solution (3.78). In particular, the term (1 − ν)

should be replaced with (1 − ν)−1. Also, the solution in [8] is for a horizontal force which can be transformed to the solution for a
vertical force solution as in the present case by interchanging the indices 1 ↔ 2.
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4.1.3.3 Couple stress elasticity – the indeterminate couple stress model

As (µm, κm, µc) → ∞ we have that: µe → µM, λe → λM, and also ζ → 0, β → 0 which implies further
that ℓ1 → 0. In this case, we pass to Mindlin’s [46] and Koiter’s [30] theory of couple stress elasticity (see
also [10, 19, 41, 48, 76, 84]). Indeed, identifying a1µM L2

c = 4η, a2µML2
c = 4η, we derive the fundamental

solution in couple stress theory [23] which assumes the following form

u1 =
(λM + µM)

4π µM (λM + 2µM)

x1x2

r2
− 1

2π µM

x1x2

r2

(
2ℓ2

r2
−K2

[r
ℓ

])
,

u2 =
(λM + µM)

4πµM (λM + 2µM)

x2
2

r2
− (λM + 3µM)

4π µM(λM + 2µM)
ln r − 1

4π µM
K0

[r
ℓ

]
,

+
1

4π µM

(x2
1 − x2

2)

r2

(
2ℓ2

r2
−K2

[r
ℓ

])
,

P11 = P22 = 0, P12 = −P21 =
x1

4π µM r2

(
1− r

ℓ
K1

[r
ℓ

])
(61)

where the characteristic length of the couple stress elasticity model is defined as

ℓ ≡ ℓ2 =

√
η

µM
= Lc

√
ã

4
. (62)

As expected, the continuum-rotation ϑ3 coincides with the skew symmetric part of P (i.e. the micro-rotation
ϑ3). Indeed,

ϑ3 =
1

2

(
∂u2

∂x1
− ∂u1

∂x2

)
=

1

2
(P21 − P12) = − x1

4π µM r2

(
1− r

ℓ
K1

[r
ℓ

])
. (63)

Fundamental solutions for orthotropic couple stress materials under static and dynamic conditions can be
found in [2, 16, 17, 18].

4.1.3.4 Classical linear elasticity (Lc → 0) - lower bound macroscopic stiffness

As Lc → 0 we have also that ℓj → 0 (j = 1, 2) if µc > 0, and in this case we obtain that (see Appendix A.5)

lim
ℓj→0

Φj = 0 , lim
ℓj→0

∂xi
Φj = 0 , (i = 1, 2) , lim

ℓj→0
Ψj =

1

r
, lim

ℓj→0
K0

[
r

ℓj

]
= 0 . (64)

Moreover, by using κM = λM + µM, we finally derive

u1 =
(λM + µM)

4π µM (λM + 2µM)

x1x2

r2
, u2 =

(λM + µM)

4πµM (λM + 2µM)

x2
2

r2
− (λM + 3µM)

4π µ(λM + 2µM)
ln r , (65)

which is the standard classical linear elasticity fundamental solution for the displacements [80]. Moreover,
the continuum rotation is given as

ϑ3 = − x1

4π µM r2
. (66)

In addition,

P11 =
ζx2

4π (λM + 2µM) r2
−

(λM + µM)x2

(
x2
1 − x2

2

)
4π µm(λM + 2µM)r4

,

P12 =
x1

4π µer2
+

(λM + µM)x1

(
x2
1 − x2

2

)
4π µm (λM + 2µM) r4

,

P21 = − x1

4π µer2
− x1

2π µmr2
+

(λM + µM)x1

(
x2
1 − x2

2

)
4π µm (λM + 2µM) r4

,

P22 = − (ζλm + 2 (λM + 2µM))x2

4π (λm + 2µm) (λM + 2µM ) r2
+

(λM + µM)x2

(
x2
1 − x2

2

)
4π µm (λM + 2µM) r4

.

(67)
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4.1.3.5 Classical linear elasticity (Lc → ∞) - upper bound microscopic stiffness

As Lc → ∞ we have also that ℓj → ∞ (j = 1, 2), and in this case we obtain that (see Appendix A.5)

u1 =
(λm + µm)

4π µm (λm + 2µm)

x1x2

r2
+

(κe − µc)

4π (µc + µe) (κe + µe)

x1x2

r2
,

u2 =
(λm + µm)

4πµm (λm + 2µm)

x2
2

r2
− (λm + 3µm)

4π µ(λm + 2µm)
ln r +

(κe − µc)

4π (µc + µe) (κe + µe)

x2
2

r2
(68)

− µc + κe + 2µe

4π (µc + µe) (κe + µe)
ln r .

The first two terms in the displacements (68) are the classical linear elasticity terms (see (65)) but with the
micro Lamé moduli (µm, κm) instead of the macro ones. The other two terms depend also upon the rest of
the parameters.

Furthermore, we obtain the components of the micro-distortion tensor P depending only on the micro-
scopic moduli (µm, κm) as

P11 =
κmx2(x

2
2 − x2

1)

4π µm(κm + µm)r4
, P12 = − κmx1(x

2
2 − x2

1)

4π µm(κm + µm)r4
,

P21 = −x1(x
2
1 (κm + 2µm) + x2

2 (3κm + 2µm))

4π µm(κm + µm)r4
, P22 =

x2

(
x2
1 (κm − 2µm)− x2

2 (κm + 2µm)
)

4πµm (κm + µm) r4
.

(69)

It is worth noting that letting additionally µe → ∞ in the displacements (68) the last terms vanish and
we finally derive the classical solution involving now exclusively the micro-moduli

u1 =
(λm + µm)

4π µm (λm + 2µm)

x1x2

r2
, u2 =

(λm + µm)

4πµm (λm + 2µm)

x2
2

r2
− (λm + 3µm)

4π µ(λm + 2µm)
ln r (70)

and the continuum rotation is

ϑ3 = − x1

4π µm r2
. (71)

4.2 Concentrated couple

We consider again a body occupying the full plane under plane-strain conditions. The body is now acted
upon by a concentrated line unit couple situated at the origin of the coordinate system. In this case, we
have

f =

(
0
0

)
, M =

(
0 1/2

−1/2 0

)
δ(x1)δ(x2) , (72)

such that M12 −M21 = 1 · δ(x1)δ(x2).
Applying the Fourier transform on the equilibrium equations (29) and solving the non-homogeneous

algebraic system yields the following solutions for the transformed field variables

û1 = − iξ2
2µMξ2

+
iξ2

2µe

(
ℓ−2
2 + ξ2

) , û2 =
iξ1

2µMξ2
− iξ1

2µe

(
ℓ−2
2 + ξ2

) , (73)

P̂11 = −P̂22 = − ξ1ξ2
2µmξ2

, P̂12 = − ξ22
2µmξ2

− 1

ãµM L2
c

(
ℓ−2
2 + ξ2

) , P̂21 =
ξ21

2µmξ2
+

1

ãµM L2
c

(
ℓ−2
2 + ξ2

) .
Note that the solution does not depend upon the parameters λe and λm, which is to be expected due to the
dominant shear character of the loading. Inverting the transformed fields we obtain the following solution
for the kinematical fields

u1 = − x2

4πr2

(
1

µM
− 1

µe

r

ℓ2
K1

[
r

ℓ2

])
, u2 =

x1

4πr2

(
1

µM
− 1

µe

r

ℓ2
K1

[
r

ℓ2

])
,

P11 = −P22 =
x1x2

2π µmr4
, (74)

P12 =
x2
2 − x2

1

4π µmr4
− 1

2π ã µML2
c

K0

[
r

ℓ2

]
, P21 =

x2
2 − x2

1

4π µmr4
+

1

2π ã µML2
c

K0

[
r

ℓ2

]
.
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The micro-rotation is given as

ϑ3 =
1

2
(P21 − P12) =

1

2π ã µML2
c

K0

[
r

ℓ2

]
. (75)

The stresses and higher order stresses can be derived from the constitutive relations (30).
Regarding the asymptotic behaviour of the kinematical fields, we remark that as r → 0 the displace-

ments behave as r−1, the micro-distortions P behave as r−2, and the micro-rotation exhibits a logarithmic
singularity due to the K0-Bessel function. In particular, the modulus of the displacement vector depends
(in all theories) only upon the radial distance r and there is no angular dependence (see Figure 2 and Fig-
ure 3). Interestingly, according to the equations (30), the stress components (σ11, σ22) are bounded at the
point of application of the concentrated couple whereas the shear stresses (σ12, σ21) exhibit a logarithmic
singularity as r → 0. Finally, the higher order moment stresses (m13,m23) behave as O(r−1) at the origin.
All quantities converge to the classical linear elasticity solution (c.f. section 4.2.2.3) as we move away from
the concentrated load.

4.2.1 The pure relaxed micromorphic continuum with symmetric force stress tensor

The special case of a pure relaxed micromorphic continuum with symmetric force stress tensor is derived by
setting µc = 0 (ℓ2 → ∞). In this case, we have according to (37) that (see Appendix A.5)

lim
µc→0

1

ℓ2
= lim

µc→0

√
4µeµc

ãµM(µe + µc)
= 0, lim

µc→0

1

ℓ2
K1

[
r

ℓ2

]
=

1

r
lim
µc→0

r

ℓ2
K1

[
r

ℓ2

]
=

1

r
, (76)

since lim
z→0

z K1(z) = 1 (cf. (161)) and employing (74) together with (19), we finally derive

u1 = − x2

4π µm r2
, u2 =

x1

4π µm r2
, tr(Du) = divu = 0 , (77)

P11 = −P22 =
x1x2

2π µmr4
, P12 =

x2
2 − x2

1

4π µmr4
+

1

2π ã µM L2
c

(ln r + b), P21 =
x2
2 − x2

1

4π µmr4
− 1

2π ã µM L2
c

(ln r + b),

where the last two expressions for P12 and P21 were derived by taking the limit µc → 0 directly in the
transformed expressions of the pertinent field variables: Indeed, in the case of a concentrated couple (72),
the Fourier system (33) has a solution of the form:

û1 =
iξ2

2µmξ2
, û2 =

iξ1
2µmξ2

,

P̂11 = −P̂22 =
ξ1ξ2

2µmξ2
, P̂12 = −2µm + ãµM L2

cµMξ22
2ãµM L2

cµmµMξ2
, P̂21 =

2µm + ãµM L2
cµMξ21

2ãµM L2
cµmµMξ2

.

(78)

Using the results in (44) we can readily invert the above expressions and obtain the results in (77).
Finally, the micro-rotation is given as

ϑ3 = − 1

2π ã µM L2
c

(ln r + b). (79)

According to (79), the constant term related to the Euler’s constant b corresponds to a constant (rigid)
micro-rotation and does not affect the stresses or higher order stresses in (30), therefore it can be ignored.
It is interesting to note that the displacement field in the pure relaxed micromorphic case (77) does not
converge to the classical macroscopic elasticity one (see (82)) far away from the concentrated couple. Indeed,
the former has in the denominator µm and the latter µM which means that limits are different as r → ∞.
This is not the case however with the complete relaxed micromorphic model (with µc > 0) where, as r → ∞
the Bessel functions in (77)1 and (77)2 tend to zero and the classical linear elasticity solution is restored.

It is intriguing to see that setting µc = 0 in the concentrated couple problem acts like a zoom into the
microstructure and activates the microscale shear modulus µm in the displacement solution, which is not
the case in the concentrated force problem.

4.2.2 Limiting cases

From the general relaxed micromorphic solution we can derive the fundamental solutions in other generalized
continua as singular limiting cases.
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Figure 2: Inhomogeneous displacement solution for the
concentrated couple. Circles are rotated and expanded by
the deformation around zero.

1
r

Figure 3: ∥u∥ behaves like 1
r
in all theories.

4.2.2.1 Micro-stretch, micropolar and couple stress elasticity

As µm → ∞ we have that: µe → µM and

u1 = − x2

4π µM r2

(
1− r

ℓ2
K1

[
r

ℓ2

])
, u2 =

x1

4π µM r2

(
1− r

ℓ2
K1

[
r

ℓ2

])
,

P11 = P22 = 0, P12 = −P21 = − µc + µe

8π µcµeℓ22
K0

[
r

ℓ2

]
.

(80)

This is the micro-stretch solution. Further, if we identify µc = α the solution transforms to the micropolar
solution with the characteristic length given by (60) [8, 58]. Next, taking µc → ∞ we derive the couple
stress solution [23, 82] which is identical in form with the micro-stretch/micropolar solution but with the
characteristic length given by (62). It is worth noting that in the micro-stretch, micropolar, and couple stress
theories the displacement field remains bounded and in particular becomes zero at the point of application of
the concentrated couple (i.e. r → 0) which is in marked contrast with the respective relaxed micromorphic
behaviour. As ℓ2 → ∞ all the fields become null. Finally, the micro-rotation is given by (75) in all cases
and exhibits a logarithmic singularity at the origin. As we move away from the load all solutions converge
to the classical elasticity solution (section 4.2.2.3).

4.2.2.2 Classical linear elasticity (Lc → 0) - lower bound macroscopic stiffness

As Lc → 0 at µc > 0 we have that ℓ2 → 0, and also (see Appendix A.5)

lim
ℓ2→0

ℓ−2
2 K0

[
r

ℓ2

]
= 0 , lim

ℓ2→0

1

ℓ2
K1

[
r

ℓ2

]
= 0. (81)

Accordingly, from (74), we obtain the standard classical elasticity result for the displacements4

u1 = − x2

4π µM r2
, u2 =

x1

4π µM r2
, (82)

see Fig. 2. In addition,

P11 = −P22 =
x1x2

2π µmr4
, P12 = P21 =

x2
2 − x2

1

4π µmr4
. (83)

4.2.2.3 Classical linear elasticity (Lc → ∞) - upper bound microscopic stiffness

As Lc → ∞ (ℓ2 → ∞) we have that

lim
ℓ2→∞

ℓ−2
2 K0

[
r

ℓ2

]
= 0 , lim

ℓ2→∞

1

ℓ2
K1

[
r

ℓ2

]
=

1

r
. (84)

4Timoshenko and Goodier [80, p. 131]; Love [40, p. 214].
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Accordingly, from (74), we obtain the classical elasticity solution for the displacements but now with µm

instead of µM

u1 = − x2

4π µmr2
, u2 =

x1

4π µmr2
. (85)

In addition, we derive again

P11 = −P22 =
x1x2

2π µmr4
, P12 = P21 =

x2
2 − x2

1

4π µmr4
, (86)

also only depending on the microscopic modulus µm.

5 Fundamental solution for an isotropic gauge-invariant incom-
patible elasticity model in plane strain

We consider the gauge-invariant incompatible linear elasticity model [28, 33, 51]

Ce sym e+ Cc skew e+ µML2
c Curl (Lc Curl e) = M, e× n|∂Ω = 0 . (87)

where e := Du − P : Ω ∈ R3 → R3×3 is the incompatible elastic distortion, and Ce,Cc,L are fourth order
tensors as in (1), while M is similar as in (8). Due to DivCurl = 0, smooth solutions of (87) satisfy the
additional balance equation

Div
(
Ce sym e+ Cc skew e︸ ︷︷ ︸

=:σ

)
= DivM =: f. (88)

Formally, (87) and (88) appear as Euler-Lagrange equations of (1) with Cmicro ≡ 0. Substituting a compat-
ible elastic distortion, e = Du, we retrieve from (87) linear Cauchy elasticity with stiffness tensor Ce

DivCe symDu = f , Du× n|∂Ω = 0 . (89)

Observe that the boundary value problem (87) is still well-posed in terms of the elastic distortion e, due to
the generalized incompatible Korn’s inequality [13]. In the isotropic case (87) reduces to

2µe dev sym e+ 2µc skew e+ κe tr(e)13 (90)

+ 2µML2
cCurl

(
a1 dev symCurl e+ a2 skewCurl e+

a3
3

tr (Curl e)1
)
= M ,

and this is the second balance equation from (8)2 for µm → 0, κm → 0 and therefore σmicro ≡ 0.
Fundamental solutions to (90) in the three-dimensional case have been obtained by Lazar [34] under the
constitutive assumption of a strictly positive Cosserat couple modulus, µc > 0. The latter condition entails
that

σ = 2µe dev sym e+ 2µc skew e+ κe tr(e)13 (91)

can be algebraically inverted, i.e. we can express e = G(σ) if µe, µc, κe > 0, see ([51]). Here, we will consider
the fundamental solution to (90) in plane strain, but we allow for µc ≥ 0. The plane strain version of (90)
is obtained by considering the following energy, connected to (90), namely∫

Ω

µe ∥dev sym ẽ∥2 + κe

2
tr2 (ẽ) (92)

+
µM L2

c

2

(
a1 ∥dev symCurl ẽ∥2 + a2 ∥skewCurl ẽ∥2 + a3

3
tr2 (Curl ẽ)− ⟨M, ẽ⟩

)
dx → min ẽ.

As can be seen, letting Lc → ∞ while assuming a1, a2, a3 > 0 implies Curl ẽ ≡ 0 and therefore ẽ = Dũ on
contractible domains. We will consider (92) in an unbounded domain with given M = δ × M̃ . Similarly, as
in section 3, the plane strain energy becomes∫

Ω

µe

∥∥dev2 sym ẽ♯
∥∥2 + κe

2
tr2 (ẽ♯) + µML2

c ã ∥Curl2D ẽ♯∥2 − ⟨M, ẽ♯⟩dx → min ẽ♯. (93)
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and we obtain the plane strain equations in components

−1

2
µM L2

c(a1 + a2) (e11,22 − e12,12) + (λe + 2µe)e11 + λee22 = M11 ,

1

2
µM L2

c(a1 + a2) (e11,12 − e12,11) + (µc + µe)e12 + (µe − µc)e21 = M12 ,

−1

2
µM L2

c(a1 + a2) (e21,22 − e22,12) + (µe − µc)e12 + (µc + µe)e21 = M21 ,

1

2
µM L2

c(a1 + a2) (e21,12 − e22,11) + λee11 + (λe + 2µe)e22 = M22 .

(94)

We consider again the case of a concentrated line unit couple situated at the origin of the coordinate
system. In this case, the components of the body volume moment M are given by (72). Following an
analogous Fourier transform analysis as in the previous cases we derive the fundamental solution for a
concentrated couple in gauge-invariant incompatible elasticity. The incompatible elastic distortions read
then

e11 = −e22 = − x1x2

4π(µc + µe)ℓ22 r
2
K2

[
r

ℓ2

]
,

e12 =
µe

8π µc(µc + µe)ℓ22
K0

[
r

ℓ2

]
+

x2
1 − x2

2

8π(µc + µe)ℓ22 r
2
K2

[
r

ℓ2

]
,

e21 = − µe

8π µc(µc + µe)ℓ22
K0

[
r

ℓ2

]
+

x2
1 − x2

2

8π(µc + µe)ℓ22 r
2
K2

[
r

ℓ2

]
.

(95)

It is interesting to note that the solution does not depend upon the elastic bulk modulus κe and that the
elastic distortion tensor for the case of a concentrated couple is traceless (i.e. tr(ẽ♯) = e11 + e22 = 0).

6 Numerical results and discussion

We will now present some results regarding the behaviour of the relaxed micromorphic solution near the
application of the applied loads. A comparison of the results with other well known generalized continua
obtained as limiting cases of the general relaxed micromorphic model will also be performed.

The relaxed micromorphic continua under plane strain conditions can be fully described by four dimen-
sionless parameters. In order to have a unified treatment for all the above cases, the following dimensionless
quantities gi (i = 1, 2, 3, 4) are introduced:

µe = g1 µM, µc = g2 µM, κe = g3 µM, κM = g4 µM. (96)

In view of (40), we have that: g1 > 1, g2 ≥ 0, and g3 > g4 > 0. We also recall that λi = κi − µi with
i ∈ {e,m,M} and using (96) that

µm =
g1

g1 − 1
µM, κm =

g3
g3 − g4

κM. (97)

Further, for comparison purposes all distances from the origin are normalized with respect to the charac-
teristic length ℓ2 of the relaxed micromorphic model. Results for the cases of a concentrated force and
concentrated couple will be shown separately.

6.1 Concentrated force

Figure 4 shows contours of the normalized displacements and micro-rotation due to a concentrated line force
acting at the origin for a relaxed micromorphic material characterized by (g1 = 1.2, g2 = 3, g3 = 5, g4 = 3).
This implies, according to (97), that µm = 6µM and κm = 2.5κM. A comparison of the relaxed micromorphic
continua with other generalized continua that can be obtained as limiting cases is shown in Figure 5. In
particular, in Fig. 5, the normalized displacement u2 µM

F and the normalized micro-rotation ϑ3 µMℓ2
F (F = 1)

are plotted along the positive x1-axis (i.e. for x2 = 0) . The u2 displacement has a logarithmic singularity
at the origin in all theories. It is observed that deviations from the classical elasticity solution (dashed line)
are more noticeable within a range of |x1| ≤ 2ℓ2 from the point of application of the concentrated force.
All solutions converge quickly to the classical elasticity solution as we move away from the origin. It is also
shown that the classical elasticity and the couple stress elasticity serve as the upper and lower bounds for
the solutions. In fact, couple stress elasticity predicts more pronounced size effects as compared to the other
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generalized continuum theories. The micropolar solution is in-between the classical and the couple stress
solution. Also, we note that the relaxed micromorphic and the pure relaxed micromorphic are closer to the
classical elasticity one.

Regarding the behaviour of the micro-rotation we remark that the classical elasticity and the relaxed
micromorphic elasticity predict unbounded micro-rotation at the origin which is in marked contrast with
couple stress, micropolar, and micro-stretch theories that predict zero micro-rotation at the origin. In all
theories the micro-rotation decays as O(x−1

1 ) when x1 → ∞. However, as it can be seen from Figure 5b,
in the pure relaxed micromorphic model and in the classical elasticity model with Lc → ∞ (upper bound
microscopic stiffness) the solution does not converge in the standard classical elasticity solution (Lc → 0)
as all other theories do.

Figure 4: Contours of the normalized displacements ui µM
F

and micro-rotation ϑ3 µMℓ2
F

due to a concentrated unit
line force (F = 1) acting at the origin of relaxed micromorphic medium. The material is characterized by g1 = 1.2,
g2 = 3, g3 = 5 and g4 = 3.

Figure 5: Variation of the normalized displacement u2µM
F

and the normalized micro-rotation ϑ3µMℓ2
F

along the
positive x1-axis due to a concentrated unit line force (F = 1) in various generalized continuum theories. The relaxed
micromorphic material is characterized by g1 = 1.2, g2 = 3, g3 = 5 and g4 = 3.

6.2 Concentrated couple

Figure 6 shows contours of the normalized displacements and micro-rotation for the case of a concentrated
couple. In this case, only the parameters g1 and g2 need to be specified. A comparison of the relaxed
micromorphic continua with other generalized continua obtained as limiting cases is also shown in Figure 7.
In particular, in Fig. 7, the normalized modulus of the displacement vector ∥u∥ is plotted against the radial
distance r. The material parameters for the relaxed micromorphic material are: g1 = 3 and g2 = 2 (which
implies µm = 1.5µM). All distances are normalized with respect to characteristic length of the relaxed
micromorphic theory ℓ2.

It is noted that ∥u∥ has a Cauchy type singularity O(r−1) in the relaxed micromorphic theory, in the
pure relaxed micromorphic, and in the classical elasticity theory (Lc → 0 and Lc → ∞) but the strengths
of the singularities are different. In marked contrast, ∥u∥ is bounded and becomes zero at the origin in
micro-stretch, micropolar and couple stress theory. As it was shown analytically (see sections 4.2.1 and
4.2.2.3), only the pure relaxed micromorphic solution and the classical elasticity solution with Lc → ∞
(green and dashed-gray lines in Fig. 7) do not converge to the standard classical elasticity (Lc → 0) as
r → ∞. This is to be expected since the latter solutions depend only upon the micro shear modulus µm.
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Figure 6: Contours of the normalized displacements and micro-rotation due to a concentrated unit line couple
(M = 1) acting at the origin. The relaxed micromorphic material is characterized by g1 = 3 and g2 = 2.

Figure 7: Variation of the normalized modulus of the displacement vector ∥u∥µMℓ2
M

along the positive x1-axis due
to a concentrated unit line couple (M = 1) in various generalized continuum theories. The relaxed micromorphic
material is characterized by g1 = 3 and g2 = 2. The gap between the green and black line at the right is due to
µm > µM. We note the fundamental qualitative difference between the relaxed micromorphic model and the other
generalized continua (microstretch, micropolar, couple stress) in their behaviour near to the singularity.

Finally, a comparison of the incompatible elastic distortions e12 = u1,2 −P12 and e21 = u2,1 −P21 in the
relaxed micromorphic theory and the gauge invariant dislocation model is shown in Figure 8. It is observed
that as g1 increases as compared to g2 (i.e. µe ≫ µM and µe ≫ µc), the solutions for the gauge invariant
dislocation model and the relaxed micromorphic model converge.
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Figure 8: Variation of the normalized incompatible elastic shear distortions along the positive axis x1-axis due to a
concentrated unit line couple (M = 1) in the relaxed micromorphic theory and the gauge invariant dislocation model
for g2 = 2 and various values of the parameter g1.
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7 Tree of limit cases of the isotropic relaxed micromorphic model
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Figure 9: Tree of the limit cases of the relaxed micromorphic model in statics. These limits apply strictly only for
weak solutions (u, P ) ∈ H1 × H(Curl). Here, for the considered singular solutions certain artifacts may appear,
notably in the concentrated couple case.
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A Appendix

In this appendix, for the convenience of the reader, we exhibit the two-scale nature of the relaxed micromorphic model in three
and two dimensions together with the form of equations and constitutive tensors in plane-strain.
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A.1 A true two-scale model: the relaxed micromorphic limit for Lc → 0 and
Lc → ∞ in three dimensions

The relaxed micromorphic model reduces to a classical Cauchy elasticity model for both Lc → 0 and Lc → ∞ but with two
different well-defined stiffnesses, Cmacro and Cmicro, respectively. The expressions of these stiffnesses in the isotropic case are
presented in the next two sections for the convenience of the reader.

A.1.1 Limit for Lc → 0: lower bound macroscopic stiffness Cmacro

For the limit Lc → 0, the equilibrium equations (8) reduce to

Div
[
2µe sym(Du− P ) + 2µc skew(Du− P ) + λetr(Du− P )1

]
= f , (98)

2µe sym(Du− P ) + λetr(Du− P )1+ 2µc skew(Du− P )− 2µmicro symP − λmicrotr (P )1 = M . (99)

The equation (99) is now algebraic in P . Due to the orthogonality of the “sym/skew” decomposition, the equation (99) requires
that

2µc skew(Du− P ) = skewM , (100)

2µe sym(Du− P ) + λetr(Du− P )1− 2µmicro symP − λmicrotr (P )1 = symM .

Since the “sym” operator is not orthogonal to the “tr” operator, we further decompose “sym” into “dev sym” and “tr sym”
so that

2µc skew(Du− P ) = skewM ,

2µe dev sym(Du− P ) +
2

3
µe tr(Du− P )1+ λetr(Du− P )1 (101)

−2µmicro dev symP −
2

3
µmicro tr (P )1− λmicrotr (P )1 = dev symM +

1

3
tr (M)1 ,

note that “tr sym” is the same as “tr”. We also recall here the definition of the volumetric part, the deviatoric part, and the
skew-symmetric parts in the 3D case

3D volumetric part :=
1

3
tr(P )1 ,

3D deviatoric symmetric part :=
P + PT

2
−

1

3
tr(P )1 ,

3D skew symmetric part :=
P − PT

2
.

(102)

With further manipulations and thanks to the orthogonality of the operator “skew”, “dev sym”, and “tr”, the system (101)
requires that

2µc skew(Du− P ) = skewM ,

2µe dev sym(Du− P )− 2µmicro dev symP = dev symM , (103)(
2

3
µe + λe

)
tr(Du− P )1−

(
2

3
µmicro + λmicro

)
tr (P )1 =

1

3
tr (M)1 .

From equation (103) we can evaluate the expressions for skewP , dev symP , and tr(P ) individually as

skewDu−
1

2µc
skewM = skewP ,

µe

µe + µmicro
dev symDu−

1

2(µe + µmicro)
symM = dev symP , (104)

κe

κe + κmicro
trDu−

1

3(κe + κmicro)
tr(M) = tr(P ) ,

where κe = 2µe+3λe
3

and κmicro = 2µmicro+3λmicro
3

are the 3D-elastic and micro bulk modulus, respectively. The contribution
of the body volume moment M can be incorporated in the classical body volume force f∗, but f∗ is now dependent on the
elastic coefficients. Substituting back the relations (104) in the equation (98) while also applying the “dev sym”, and “tr”
decomposition, allows us to write

Div
[
2µe dev sym

(
Du−

(
µe

µe + µmicro
Du

))
+ κe tr

(
Du−

(
κe

κe + κmicro
Du

))
1
]
= f∗ ,

⇐⇒ Div
[
2

µe µmicro

µe + µmicro
dev symDu+

κe κmicro

κe + κmicro
tr (Du)1

]
= f∗ , (105)

⇐⇒ Div
[
2µmacro dev symDu+ κmacro tr (Du)1

]
= f∗ .

where f∗ is defined as

f∗ := f −Div
[µmacro

µmicro
dev symM + skewM +

1

3

κmacro

κmicro
tr(M)1

]
. (106)

It is noted that f∗ depends on skewM without any multiplicative elastic coefficient. This limit with a concentrated double
body force may be instrumental in order to identify the micro parameters. The equation (105)3 is the equilibrium equation
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for a classical isotropic linear elastic Cauchy continuum with stiffness µmacro and κmacro. The relations for the macroscopic
Lamé parameters (µmacro, λmacro) and the macroscopic bulk modulus (κmacro) are then

µmacro :=
µe µmicro

µe + µmicro
, κmacro :=

κe κmicro

κe + κmicro
,

λmacro :=
1

3
(3κmacro − 2µmacro) (3D medium) ,

(107)

where κmacro is the macroscopic bulk modulus. Relations (107) are the specialization of relation (2) to the isotropic case [1].
In order to have λmacro = λmicro = 0, the only possible condition is λmicro = λe = 0. Note that the macroscopic stiffness
Cmacro (here µmacro, κmacro) is uniquely identified from classical homogenization techniques [69].

A.1.2 Limit for Lc → ∞: upper bound microscopic stiffness Cmicro

The minimization of an energy functional that incorporates µML2
c ∥CurlP∥2, for the limit Lc → ∞, requires CurlP = 0, and

this implies that the micro-distortion tensor P has to reduce to a gradient field P → Dv on a simply connected domain such
that

CurlDv = 0 ∀ v ∈ [C∞(Ω)]3 , (108)

thus asserting finite energies of the relaxed micromorphic model for arbitrarily large characteristic length values Lc. The
corresponding strain energy density in terms of the reduced kinematics {u, v} : Ω → R3 now reads

W (Du,Dv) =µe ∥sym(Du−Dv)∥2 + µc ∥skew(Du−Dv)∥2 +
λe

2
tr2(Du−Dv) + µmicro ∥symDv∥2 +

λmicro

2
tr2(Dv) . (109)

The first variation of the strain energy I =

∫
Ω
W dx with respect to the two independent vector fields u and v leads to

δIu =

∫
Ω

(
2µe ⟨sym(Du−Dv),Dδu⟩+ 2µc ⟨skew(Du−Dv),Dδu⟩+ λe⟨tr(Du−Dv)1,Dδu⟩+ ⟨f, δu⟩

)
dx ,

δIv =

∫
Ω

(
− 2µe ⟨sym(Du−Dv),Dδv⟩ − 2µc ⟨skew(Du−Dv),Dδv⟩ − λe⟨tr(Du−Dv)1,Dδv⟩ (110)

+ 2µmicro⟨symP,Dδv⟩+ λmicro⟨tr(Dv)1,Dδv⟩
)
dx .

The equilibrium equations are now obtained by requiring

δIu = ⟨f, δu⟩ , ∀ δu and δIv = ⟨M,Dδv⟩ , ∀ δv . (111)

where the contributions on the right sides are the virtual work of the external forces f (classical body force) and M (non-
symmetric second order double body force tensor), and the equilibrium equations read

Div
[
2µe sym(Du−Dv) + 2µc skew(Du−Dv) + λe tr(Du−Dv)1

]
= f , (112)

−Div
[
2µe sym(Du−Dv) + 2µc skew(Du−Dv) + λe tr(Du−Dv)1

]
+Div

[
2µmicro symDv + λmicro tr(Dv)1

]
= DivM , (113)

where the constraint M n = 0 is required on the boundary, with n the normal to the boundary. The term on the left-hand side
of equation (113) can be substituted with the right-hand side of (112) and, while keeping the equation (112), we can re-write
the system of equations (112)-(113) as

Div
[
2µe sym(Du−Dv) + 2µc skew(Du−Dv) + λe tr(Du−Dv)1

]
= f , (114)

Div
[
2µmicro symDv + λmicrotr (Dv)1

]
= f +DivM ,

The only case in which v = u is an admissible solution is if the classical body forces f are zero. In this case equations (114)
reduces to

Divσmicro = Div
[
2µmicro symDu+ λmicro tr(Du)1

]
= DivM , (115)

which is an equilibrium equation of the classical elasticity type with a microscopic stiffness given by µmicro and λmicro and a
body force vector equal to DivM .

A.1.3 Limit for Ce → +∞ with µc = 0: lower bound macroscopic stiffness Cmacro

Thanks to the relations (107) we have formally Cmicro = Cmacro as Ce → +∞. The strain energy density (7) is again reported
here

W (Du, P,CurlP ) =µe ∥sym(Du− P )∥2 + µc ∥skew(Du− P )∥2 +
λe

2
tr2(Du− P ) + µmicro ∥symP∥2 +

λmicro

2
tr2 (P )

+
µM L2

c

2

(
a1 ∥dev symCurlP∥2 + a2 ∥skewCurlP∥2 +

a3

3
tr2 (CurlP )

)
→ min(u, P ) . (116)

As µe, λe → ∞, in order to remain with a bounded strain energy density, it is required that symP = symDu. This, and µc = 0,
reduces the variational problem to∫

Ω
µmicro∥symDu∥2 +

λmicro

2
tr2(symDu) (117)

+
µM L2

c

2

(
a1 ∥dev symCurlP∥2 + a2 ∥skewCurlP∥2 +

a3

3
tr2 (CurlP )

)
dx −→ min(u, P ).
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The curvature part
µM L2

c
2

(
a1 ∥dev symCurlP∥2 + a2 ∥skewCurlP∥2 + a3

3
tr2 (CurlP )

)
can be annihilated by choosing CurlP =

0 which implies

P = Dη (118)

on a simply connected domain. Moreover, the remaining minimization in (117), using the consistent coupling condition delivers
the unique solution u. Gathering, we have

symDu = symDη ⇐⇒ sym(D(u− η)) = 0 ⇐⇒ D(u− η) = A(x) , A ∈ so(3)

=⇒ 0 = CurlD(u− η) = CurlA(x)

=⇒ A(x) = A “rigidity”[54] (119)

Du(x)−Dη(x) = A ∈ so(3) =⇒ P = Dη = Du−A and CurlP = 0 .

This leads to

I(u, P ) =

∫
Ω
µmacro

∥∥sym (Du−A)
∥∥2 +

λmacro

2
tr2

(
Du−A

)
+ 0dx (120)

=

∫
Ω
µmacro ∥symDu∥2 +

λmacro

2
tr2 (Du) dx → minu .

Therefore Ce → +∞ gives size-independent linear elasticity with stiffness Cmacro, as expected. Note that, in contrast, the
same limit of Ce → +∞ would lead to a gradient elasticity formulation for the classical Eringen-Mindlin micromorphic model
[4] .

A.2 A true two-scale model: the relaxed micromorphic model limit for Lc → 0
and Lc → ∞ in plane strain

The relaxed micromorphic model reduces to a classical Cauchy model for both Lc → 0 and Lc → ∞ but with two different
stiffnesses, Cmacro and Cmicro, respectively. The expressions of such stiffnesses are presented in the next two sections for the
plane strain problem.

A.2.1 Limit for Lc → 0: lower bound macroscopic stiffness Cmacro

For the limit Lc → 0, the equilibrium equations (27) reduce to

Div
[
2µe sym(Dũ♯ − P̃ ♯) + 2µc skew(Dũ♯ − P̃ ♯) + λetr(Dũ♯ − P̃ ♯)12

]
= f̃ , (121)

2µe sym(Dũ♯ − P̃ ♯) + 2µc skew(Dũ♯ − P̃ ♯) + λetr(Dũ♯ − P̃ ♯)12 − 2µmicro sym P̃ ♯ − λmicrotr(P̃
♯)12 = M̃ .

The equation (121)2 is now algebraic in P̃ ♯. Thanks to the orthogonality of the “sym/skew” decomposition, the equation
(121)2 requires that

2µc skew(Dũ♯ − P̃ ♯) = sym M̃ , (122)

2µe sym(Dũ♯ − P̃ ♯) + λetr(Dũ♯ − P̃ ♯)12 − 2µmicro sym P̃ ♯ − λmicrotr(P̃
♯)12 = skew M̃ .

Since the “sym” operator is not ortogonal to the “tr” operator, we further decompose “sym” into “dev sym” and “tr sym” so
that

2µc skew(Dũ♯ − P̃ ♯) = skew M̃ ,

2µe dev2 sym(Dũ♯ − P̃ ♯) + µe tr(Dũ♯ − P̃ ♯)12 + λetr(Dũ♯ − P̃ ♯)12 (123)

−2µmicro dev2 sym P̃ ♯ − µmicro tr (P̃
♯)12 − λmicrotr(P̃

♯)12 = sym M̃ .

note that “tr sym” is the same as “tr”. We also recall here the definition of the volumetric part, the deviatoric part, and the
skew-symmetric parts in plane strain case

2D volumetric part :=
1

2
tr(P̃ ♯)12 , 12 =

(
1 0
0 1

)
,

2D deviatoric symmetric part :=
P̃ ♯ + P̃ ♯T

2
−

1

2
tr(P̃ ♯)12 = dev2 sym P̃ ♯ ,

2D skew symmetric part :=
P̃ ♯ − P̃ ♯T

2
. (124)

With further manipulations and thanks to the orthogonality of the operator “skew”, “dev sym”, and “tr”, the system (123)
requires that

2µc skew(Dũ♯ − P̃ ♯) = skew M̃ ,

µe dev2 sym(Dũ♯ − P̃ ♯)− µmicro dev2 sym P̃ ♯ = dev sym M̃ , (125)

(µe + λe) tr(Dũ♯ − P̃ ♯)12 − (µmicro + λmicro) tr (P̃ ♯)12 =
1

2
tr(M̃)12 .

From equation (125) we can evaluate the expressions for skew P̃ ♯, dev sym P̃ ♯, and tr(P̃ ♯) as

skewDũ♯ −
1

2µc
skew M̃ = skew P̃ ♯ ,

µe

µe + µmicro
dev2 symDũ♯ −

1

2(µe + µmicro)
dev2 sym M̃ = dev2 sym P̃ ♯ , (126)

κ̃e

κ̃e + κ̃micro
trDũ♯ −

1

2(κ̃e + κ̃micro)
tr M̃ = tr(P̃ ♯) .
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where κ̃e = µe + λe and κ̃micro = µmicro + λmicro are the plane strain bulk moduli.
Substituting back the relations (126) in the equation (121)1 while also applying the “dev sym”, and “tr” decomposition,

we have

Div
[
2µe dev sym

(
Dũ♯ −

(
µe

µe + µmicro
Dũ♯

))
+ κ̃e tr

(
Dũ♯ −

(
κ̃e

κ̃e + κ̃micro
Dũ♯

))
12

]
= f̃∗ ,

⇐⇒ Div
[
2

µe µmicro

µe + µmicro
dev2 symDũ♯ +

κ̃e κ̃micro

κ̃e + κ̃micro
tr

(
Dũ♯

)
12

]
= f̃∗ , (127)

⇐⇒ Div
[
2µmacro dev2 symDũ♯ + κ̃macro tr(Dũ♯)12

]
= f̃∗ .

where f̃∗ is defined as

f̃∗ := f̃ −Div
[µmacro

µmicro
dev2 sym M̃ + skew M̃ +

1

2

κ̃macro

κ̃micro
tr(M̃)12

]
. (128)

It is noted that f̃∗ depends on skew M̃ without any multiplicative elastic coefficient because of the choice of an isotropic
constitutive law (an isotropic second order skew-symmetric tensor depends on one coefficient). This limit with a concentrated
double body force may be instrumental in order to identify the micro parameters. The equation (127)3 is the equilibrium
equation for a classical linear elastic isotropic Cauchy continuum with stiffness µmacro and κmacro.

The relations for the macro Lamé parameters (µmacro, λmacro) and the macroscopic bulk modulus for plane strain (κ̃macro)
are then

µmacro :=
µe µmicro

µe + µmicro
, κ̃macro :=

κ̃e κ̃micro

κ̃e + κ̃micro
, (129)

λ̃macro :=
(µe + λe)(µmicro + λmicro)

(µe + λe) + (µmicro + λmicro)
−

µe µmicro

µe + µmicro
,

where κ̃macro = µmacro + λ̃macro. In order to have λ̃macro = λmicro = 0, the only possible condition is again λmicro = λe = 0.

A.2.2 Limit for Lc → ∞: upper bound microscopic stiffness Cmicro

The minimization of an energy functional that incorporate µM L2
c ∥CurlP̃ ♯∥2, for the limit Lc → ∞, requires CurlP̃ ♯ = 0, and

this implies that the micro-distortion tensor P has to reduce to a gradient field P̃ ♯ → Dṽ♯ on a simply connected domain and

CurlDṽ♯ = 0 ∀ ṽ♯ ∈ [C∞(Ω)]3 , (130)

thus asserting finite energies of the relaxed micromorphic model for arbitrarily large characteristic length values Lc. The
corresponding strain energy density in terms of the reduced kinematics {ũ, ṽ♯} : Ω → R3 now reads

W
(
Dũ,Dṽ♯

)
=µe

∥∥∥sym(Dũ♯ −Dṽ♯)
∥∥∥2 + µc

∥∥∥skew(Dũ♯ −Dṽ♯)
∥∥∥2 +

λe

2
tr2(Dũ♯ −Dṽ♯) (131)

+ µmicro

∥∥∥symDṽ♯
∥∥∥2 +

λmicro

2
tr2

(
Dṽ♯

)
.

The first variation of the strain energy I =

∫
Ω
W dx with respect to the two independent vector fields ũ♯ and ṽ♯ leads to

δIũ =

∫
Ω

(
2µe ⟨sym(Dũ♯ −Dṽ♯),Dδũ♯⟩+ 2µc ⟨skew(Dũ♯ −Dṽ♯),Dδũ♯⟩+ λe⟨tr(Dũ♯ −Dṽ♯)12,Dδũ♯⟩

)
dx , (132)

δI ṽ
♯
=

∫
Ω

(
− 2µe ⟨sym(Dũ♯ −Dṽ♯),Dδṽ♯⟩ − 2µc ⟨skew(Dũ♯ −Dṽ♯),Dδṽ♯⟩ − λe⟨tr(Dũ♯ −Dṽ♯)12,Dδṽ♯⟩ (133)

+ 2µmicro⟨symDṽ♯,Dδṽ♯⟩+ λmicro⟨tr(Dṽ♯)12,Dδṽ♯⟩
)
dx .

The equilibrium equations are now obtained by requiring

δIũ
♯
= ⟨f̃ , δũ♯⟩ , ∀ δũ♯ and δI ṽ

♯
= ⟨M̃,Dδṽ♯⟩ , ∀ δṽ♯ . (134)

where the contributions on the right sides are the virtual work of the external forces f̃ (classical body force) and M̃ (non-
symmetric second order double body force tensor), and the equilibrium equations read

Div
[
2µe sym(Dũ♯ −Dṽ♯) + 2µc skew(Dũ♯ −Dṽ♯) + λe tr(Dũ♯ −Dṽ♯)12

]
= f̃ , (135)

−Div
[
2µe sym(Dũ♯ −Dṽ♯) + 2µc skew(Dũ♯ −Dṽ♯) + λe tr(Dũ♯ −Dṽ♯)12

]
+Div

[
2µmicro symDṽ♯ + λmicro tr(Dṽ♯)12

]
= Div M̃ ,

where the constraint M̃ n = 0 is required on the boundary, with n the normal to the boundary. The term on the left-hand
side of equation (135)2 can be substituted with the right-hand side of (135)1 and, while keeping the equation (135)1, we can
re-write the system of equations (135) as

Div
[
2µe sym(Dũ♯ −Dṽ♯) + 2µc skew(Dũ♯ −Dṽ♯) + λe tr(Dũ♯ −Dṽ♯)12

]
= f̃ , (136)

Div
[
2µmicro symDṽ♯ + λmicrotr (Dṽ♯)12

]
= f̃ +Div M̃ .

The only case in which ṽ♯ = ũ♯ is an admissible solution is if the classical body forces f̃ are zero. In this case (136) reduces to

Divσmicro = Div
[
2µmicro symDũ♯ + λmicro tr(Dũ♯)12

]
= Div M̃ , (137)

which is an equilibrium equation of the classical elasticity type with a micro stiffness given by µmicro and λmicro and a body

force vector equal to Div M̃ .
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A.3 Some particular cases of the relaxed micromorphic model

A.3.1 The pure relaxed micromorphic equations

If we set µc = 0, the force stress tensor σ becomes symmetric and the model reduces to

Div
[ σ:=︷ ︸︸ ︷
2µe sym(Dũ♯ − P̃ ♯) + λetr(Dũ♯ − P̃ ♯)12

]
= f̃ ,

σ − 2µmicro sym P̃ ♯ − λmicrotr(P̃
♯)12 − µML2

c ãCurlCurl2D P̃ ♯ = M̃ , (138)

M̃ =

 M11 M12 0
M21 M22 0
0 0 0

 , f̃ =

 f1
f2
0

 .

In components we have

(λe + 2µe) (u1,11 − P11,1) + λe (u2,12 − P22,1) + µe (−P12,2 − P21,2 + u1,22 + u2,12) = f1 ,

(λe + 2µe) (u2,22 − P22,2) + λe (u1,12 − P11,2) + µe (−P12,1 − P21,1 + u1,12 + u2,11) = f2 ,

µ̃M L2
c ã (P11,22 − P12,12)− P11(λe + λm + 2(µe + µm))− (λe + λm)P22 + (λe + 2µe)u1,1 + λeu2,2 = M11 , (139)

−µ̃M L2
c ã (P11,12 − P12,11)− (µe + µm)P12 − (µe + µm)P21 + µe (u1,2 + u2,1) = M12 ,

µ̃M L2
c ã (P21,22 − P22,12)− (µe + µm)P12 − (µe + µm)P21 + µe (u1,2 + u2,1) = M21 ,

−µ̃M L2
c ã (P21,12 − P22,11)− P22(λe + λm + 2(µe + µm))− (λe + λm)P11 + (λe + 2µe)u2,2 + λeu1,1 = M22 .

A.3.2 The relaxed micromorphic model with zero micro and macro Poisson’s ratio

If we set λmicro = λe = 0, which implies λmacro = 0, the equilibrium equations (27) reduce to

Div
[
2µe sym(Dũ♯ − P̃ ♯) + 2µc skew(Dũ♯ − P̃ ♯)

]
= f̃ , (140)

2µe sym(Dũ♯ − P̃ ♯) + 2µc skew(Dũ♯ − P̃ ♯)− 2µmicro sym P̃ ♯ − µM L2
c ãCurlCurl2D P̃ ♯ = M̃ .

Componentwise we have

µc (u1,22 − u2,12 + P21,2 − P12,2) + µe (u1,22 + 2u1,11 + u2,12 − 2P11,1 − P12,2 − P21,2) = f1 ,

µc (P12,1 − P21,1 − u1,12 + u2,11) + µe (u1,12 + 2u2,22 + u2,11 − P12,1 − P21,1 − 2P22,2) = f2 ,

ãµM L2
c (P11,22 − P12,12) + 2µe (u1,1 − P11)− 2µmP11 = M11 ,

ãµM L2
c (P12,11 − P11,12) + µc (u1,2 − u2,1 − P12 + P21) + µe (u1,2 + u2,1 − P12 − P21)− µm(P12 + P21) = M12 ,

ãµM L2
c (P21,22 − P22,12) + µc (u2,1 − u1,2 + P12 − P21) + µe (u1,2 + u2,1 − P12 − P21)− µm(P12 + P21) = M21 ,

ãµM L2
c (P22,11 − P21,12) + 2µe (u2,2 − P22)− 2µmP22 = M22 ,

(141)

where we used the abbreviation µm = µmicro. The conditions for existence and uniqueness for the model in (140) are

µe > 0 , µmicro > 0 , µM L2
c ã > 0 , µc ≥ 0 . (142)

For µc ≡ 0, in order to guarantee existence and uniqueness, one needs tangential boundary conditions for P̃ , while for µc > 0,
one does not need boundary conditions for P̃ in order to guarantee existence and uniqueness.

A.3.3 The relaxed micromorphic model with one curvature parameter, a zero Cosserat couple
modulus, and a zero micro and macro Poisson’s ratio

If in addition to the simplifications of Sec. A.3.2 we also set µc = 0, the equilibrium equations (140) further reduce to

Div
[
2µe sym(Dũ♯ − P̃ ♯)

]
= f̃ , 2µe sym(Dũ♯ − P̃ ♯)− 2µmicro sym P̃ ♯ − µM L2

c ãCurlCurl2D P̃ ♯ = M̃ . (143)

This represents the most simple set of equations for the plane strain relaxed micromorphic model. In components we have

µe (−2P11,1 − P12,2 − P21,2 + u1,22 + 2u1,11 + u2,12) = f1 ,

µe (−P12,1 − P21,1 − 2P22,2 + u1,12 + 2u2,22 + u2,11) = f2 ,

µM L2
c ã (P11,22 − P12,12)− 2(µe + µm)P11 + 2µeu1,1 = M11 , (144)

−µM L2
c ã (P11,12 − P12,11)− (µe + µm)P12 − (µe + µm)P21 + µe (u1,2 + u2,1) = M12 ,

µM L2
c ã (P21,22 − P22,12)− (µe + µm)P12 − (µe + µm)P21 + µe (u1,2 + u2,1) = M21 ,

−µM L2
c ã (P21,12 − P22,11)− 2(µe + µm)P22 + 2µeu2,2 = M22 .
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A.4 Subclasses of the relaxed micromorphic model as singular limits

A.4.1 The isotropic micro-stretch model in dislocation form as a particular case of the relaxed
micromorphic model

The micro-stretch model in dislocation format [5, 27, 49, 52, 70] can be obtained from the relaxed micromorphic model by
letting formally µmicro → ∞, while κmicro < ∞. For bounded energy, the micro-distortion tensor P must be devoid from the
deviatoric component dev symP = 0 ⇔ P = A+ ω1, A ∈ so(3), ω ∈ R. The expression of the strain energy for this model in
dislocation format can then be written as [52] (using Curl as the curvature measure)

W (Du,A, ω,Curl (A+ ω1)) =µmacro ∥dev symDu∥2 +
κe

2
tr2 (Du− ω1) + µc ∥skew (Du−A)∥2 +

9

2
κmicro ω

2 (145)

+
µM L2

c

2

(
a1 ∥dev symCurlA∥2 + a2 ∥skewCurl (A+ ω1)∥2 +

a3

3
tr2 (CurlA)

)
,

since Curl (ω1) ∈ so(3). The equilibrium equations, in the absence of body forces, are obtained by variation of (u,A, ω)
respectively and read

Div

σ̃:=︷ ︸︸ ︷
[2µmacro dev symDu+ κetr (Du− ω1)1+ 2µc skew (Du−A)] = f ,

2µc skew (Du−A)− µM L2
c skewCurl

(
a1 dev symCurlA + a2 skewCurl (A+ ω1) +

a3

3
tr (CurlA)1

)
= skewM , (146)

tr

[
κetr (Du− ω1)1− κmicrotr (ω1)1− µM L2

c a2 Curl skewCurl (ω1+A)

]
= tr(M) .

Under the plane-strain hypothesis only the in-plane components of the kinematic fields are different from zero and they only
depend on (x1, x2). The structure of the kinematic fields (ũ,Ã,ω) are

ũ =

 u1

u2

0

 , Ã =

 0 A12 0
−A22 0 0

0 0 0

 , ω1̃2 = ω

 1 0 0
0 1 0
0 0 0

 ,

Curl(Ã+ ω1̃2) =

 0 0 A12,1 − ω,2

0 0 A12,2 + ω,1

0 0 0

 , (147)

Curl Curl(Ã+ ω1̃2) =

 A12,12 − ω,22 ω,12 −A12,11 0
A12,11 + ω,12 −A12,12 − ω,11 0

0 0 0

 .

Under the plane-strain assumption, the equilibrium equations in components read now

−2µcA12,2 + (κe + µe)u1,11 + κeu2,12 − 2κeω,1 + (µc + µe)u1,22 − µcu2,12 = f1 ,

2µcA12,1 + (κe − µc)u1,12 + (κe + µe)u2,22 − 2κeω,2 + (µc + µe)u2,11 = f2 , (148)

1

2
µM L2

c ã (A12,22 +A12,11) + µc (−2A12 + u1,2 − u2,1) =
M12 −M21

2
,

1

2
µM L2

c ã (ω,22 + ω,11)− 2(κe + κm)ω + κe (u1,1 + u2,2) =
M11 +M22

2
.

A.4.2 The isotropic Cosserat model in dislocation form as a particular case of the relaxed
micromorphic model

If we take the limit for λmicro, µmicro → ∞ (Cmicro → ∞), the isotropic relaxed micromorphic model is particularised to the
linear Cosserat model [12, 52]. The expression of the strain energy for the isotropic Cosserat continuum can be equivalently
written in dislocation format as (using Curl as the curvature measure)

W (Du,A,CurlA) =µmacro ∥symDu∥2 + µc ∥skew (Du−A)∥2 +
λmacro

2
tr2 (Du) (149)

+
µM L2

c

2

(
a1 ∥dev symCurlA∥2 + a2 ∥skewCurlA∥2 +

a3

3
tr2 (CurlA)

)
,

The Cosserat model features the classical displacement filed u ∈ R3 and the infinitesimal micro-rotation tensor A ∈ so(3), i.e.
A is a skew-symmetric second order tensor. The system of equilibrium equations reads

Div
[ σ:=︷ ︸︸ ︷
2µe symDu+ 2µc skew (Du−A) + λe tr(Du)1

]
= f ,

2µc skew (Du−A)− skewCurl
(
µM L2

c

(
a1 dev symCurlA+ a2 skewCurlA+

a3

3
tr (CurlA)1

)
︸ ︷︷ ︸

m:=

)
= skewM . (150)

Here, µc > 0 is called the Cosserat couple modulus. The skew-operator in equation (150)2 appears because of the reduced
kinematics and skewM is the skew-symmetric part of the body volume moment tensor. Note that there is no equation like
Divσmicro = Div skewM here and taking µc > 0 is mandatory for coupling both equations in (150).
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Under the plane-strain hypothesis only the in-plane components are different from zero and they only depend on (x1, x2).
The structure of the kinematic fields are reported below in (151)

u = [u1 , u2 , 0]
T , Du =

 u1,1 u1,2 0
u2,1 u2,2 0
0 0 0

 , Ã =

 0 A12 0
−A12 0 0

0 0 0

 , (151)

Curl Ã =

 0 0 A12,1

0 0 A21,2

0 0 0

 , skewCurl Curl Ã =

 0 −(A12,11 +A12,22) 0
A12,11 +A12,22 0 0

0 0 0

 .

Moreover, since

tr(Curl Ã) = 0 , and
∥∥∥dev symCurl Ã

∥∥∥2 =
∥∥∥symCurl Ã

∥∥∥2 =
∥∥∥skewCurl Ã

∥∥∥2 =
1

2

∥∥∥Curl Ã
∥∥∥2 , (152)

under the plane-strain hypothesis, the model will just depend on one cumulative parameter ã :=
(a1+a2)

2
, and the equilibrium

equations (150) reduce to (see the ♯-notation in (14))

Div
[ σ:=︷ ︸︸ ︷
2µe symDũ♯ + 2µc skew

(
Dũ♯ − Ã♯

)
+ λe tr(Dũ♯)1

]
= f̃ ,

2µc skew
(
Dũ♯ − Ã♯

)
− µM L2

c ã skewCurl Curl2D Ã♯︸ ︷︷ ︸
m:=

= skew M̃ . (153)

Note the additional appearance of the skew-operator due to the reduced kinematics of the Cosserat model. Moreover, the
Cosserat model is only operative for positive Cosserat couple modulus µc > 0, in contrast to the relaxed micromorphic model.
Finally, the equilibrium equations in component form read

−2µcA12,2 + (λe − µc + µe)u2,12 + (λe + 2µe)u1,11 + (µc + µe)u1,22 = f1,

2µcA12,1 + (λe − µc + µe)u1,12 + (λe + 2µe)u2,22 + (µc + µe)u2,11 = f2,

1

2
µM L2

c ã(A12,22 +A12,11) + µc(−2A12 + u1,2 − u2,1) =
M12 −M21

2
.

(154)

A.4.3 Classical isotropic linear elasticity in plane strain

The plane-strain system of standard classical linear elasticity (Lc → 0) reads

Div
[ σ:=︷ ︸︸ ︷
2µeM symDũ♯ + λM tr(Dũ♯)1

]
= f̃ , (155)

and the component form is

(λM + µM)u2,12 + (λM + 2µM)u1,11 + µMu1,22 = f1,

(λM + µM)u1,12 + (λM + 2µM)u2,22 + µMu2,11 = f2,

The Fourier system in this case assumes the well-known form

−
(
(λM + 2µM)ξ21 + µMξ22

)
û1 − (λM + µM)ξ1ξ2û2 = f̂1,

−(λM + µM)ξ1ξ2û1 −
(
(λM + 2µM)ξ22 + µMξ21

)
û2 = f̂2,

(156)

and the Fourier determinant becomes
detAlin.elast(ξ) = µM(λM + 2µM)ξ4. (157)

A.5 Properties of the second kind modified Bessel functions

Here we show some well known relations regarding the second kind modified Bessel functions Kn[z] that have been used in the
derivation of the Green’s functions in (46) and (74) of the relaxed micromorphic medium. Also we derive some useful limits
that were employed for passing from the general relaxed micromorphic model to other generalized continua.

The modified Bessel functions Kn[r] are solutions of the ODE

z2u′′(z) + zu′(z)− (z2 + n2)u(z) = 0. (158)

Some useful recurrence relations for the second kind modified Bessel functions Kn[r] are [20]:

Kn+1[z] = Kn−1[z] +
2n

z
Kn[z], Kn[z] = K−n[z], n ≥ 0 (159)

If z = (x2
1 + x2

2)
1/2 > 0, we derive the first and second derivatives of Kn[z] w.r.t xi as{

∂xiKn[z] = − xi
2z

(Kn+1[z] +Kn−1[z])

∂xi∂xjKn[z] =
xixj

4z2
(Kn+2[z] + 2Kn[z] +Kn−2[z])− 1

2z

(
δij − xixj

z2

)
(Kn+1[z] +Kn−1[z])

, n ≥ 0. (160)

where δij is the Kronecker delta. These equations have been employed for the derivation of the Green’s functions of the relaxed
micromorphic plane strain theory.

For small argument z → 0 we have the asymptotic relation [20]:

Kn[z] ∼
{
− ln z

2
− b, for n = 0 ,

Γ[n]
2

(
2
z

)n
for n > 0 ,

(161)
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where b is the Euler constant and Γ[·] is the Gamma function.
For large argument z → ∞ we have the asymptotic relation [20]:

Kn[z] ∼
√

π

2z
e−z for n ≥ 0 , (162)

which show that all Kn functions become quickly zero at infinity with exponential rate.
We now prove some limits that appear in the main text.

lim
z→0

(
2

z2
−K2[z]

)
=

1

2
, lim

z→0

(
1

z
−K1[z]

)
= 0 , lim

z→0
zK1[az] = a−1 , lim

z→0
z2K0[z] = 0 , lim

z→0
K0[z] = − ln z. (163)

Now the first three limits are easily derived by expanding K2[z] and K1[z] in series as z → 0. We have: K2[z] = 2/z2 − 1/2 +
O(z2) and K1[z] = 1/z+O(z). The last limit is a direct consequence of(161) and the fact that limz→0 zn ln z = 0, n > 0. The
above results cover the limit cases (52), (76), (84) where ℓ2 → ∞ or µc = 0.

Accordingly, we have

lim
z→∞

z2 K0[z] = 0 , lim
z→∞

z K1[z] = 0, lim
z→∞

(
2

z2
−K2[z]

)
= 0 , (164)

which are direct consequence of (162). The above results cover the limit cases (64), (81) where ℓj → 0.
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