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Introduction

The relaxed micromorphic is a new generalised continuum model that allows to describe size-effects and band-gaps appearing in metamaterials [START_REF] Demore | Unfolding engineering metamaterials design: Relaxed micromorphic modeling of large-scale acoustic meta-structures[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Ramirez | Multi-element metamaterial's design through the relaxed micromorphic model[END_REF][START_REF] Rizzi | Exploring metamaterials' structures through the relaxed micromorphic model: switching an acoustic screen into an acoustic absorber[END_REF][START_REF] Rizzi | Boundary and interface conditions in the relaxed micromorphic model: Exploring finite-size metastructures for elastic wave control[END_REF][START_REF] Rizzi | Metamaterial shields for inner protection and outer tuning through a relaxed micromorphic approach[END_REF][START_REF] Rizzi | Towards the conception of complex engineering meta-structures: Relaxedmicromorphic modelling of low-frequency mechanical diodes/high-frequency screens[END_REF][START_REF] Voss | Modeling a labyrinthine acoustic metamaterial through an inertia-augmented relaxed micromorphic approach[END_REF] (in its dynamic setting). The relaxed micromorphic model belongs to the family of micromorphic models [START_REF] Eringen | Microcontinuum Field Theories. I. Foundations and Solids[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] in that the kinematics is given by the classical displacement u : Ω → R 3 and the non-symmetric micro-distortion P : Ω → R 3×3 , and the solution is determined from the variational two-field problem

I(u, P ) = Ω 1 2
⟨C e sym(Du -P ), sym(Du -P )⟩ + ⟨C c skew(Du -P ), skew(Du -P )⟩

+ ⟨C micro sym P, sym P ⟩ + µ macro L 2 c ⟨L Curl P, Curl P ⟩ dx -→ min (u, P ) .

Here C e , C micro , L are positive-definite fourth-order tensors, and L c is a characteristic length and µ macro = µ M is the macroscopic shear modulus. C c is a positive semi-definite fourth order tensor and we note the homogenization relation [START_REF] Neff | Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization[END_REF][START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]]

C e = C micro C micro -C macro -1 C macro ⇐⇒ C macro = C micro C micro + C e -1 C e , (2) 
C micro = C e C e -C macro -1
C macro , connecting the macroscopic stiffness C macro uniquely known from classical homogenization for a periodic metamaterial to the stiffness tensors C micro and C e of the relaxed micromorphic model. This new model leverages some of the main shortcomings of the classical Eringen-Mindlin micromorphic model (unbounded stiffness, multitude of parameters). This is achieved by reducing the complexity of the strain energy function in two ways: first (i) by excluding some generalities in the local part of the energy, and second and foremost (ii) by reducing the dependency of the curvature energy acting on a full gradient of the micro-distortion in the classical Mindlin-Eringen model to only a dependency on its Curl. The consequences of this choice are remarkable: the additional balance equation remains of the second order (Curl is a second order tensor) and the model still includes the better known micro-stretch and Cosserat (micropolar) models (which can be alternatively written in dislocation format with a Curl in the curvature part [START_REF] Ghiba | Cosserat micropolar elasticity: classical Eringen vs. dislocation form[END_REF]). Compared to the classical Eringen-Mindlin micromorphic model, note the absence of mixed coupling terms between the elastic strain sym (Du -P ) and the microstrain sym P , i.e, terms like ⟨ C sym(Du -P ), sym(Du -P )⟩. This is the reason for which the crucial homogenization formula [START_REF] Bigoni | Folding and faulting of an elastic continuum[END_REF] for L c → 0 can be obtained. Unlike for the linear Cosserat (micropolar) model, the relaxed micromorphic model remains operative and well posed [START_REF] Agostino | The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of parameters[END_REF][START_REF] Ghiba | The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics[END_REF][START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]] also for zero Cosserat couple modulus µ c ≡ 0 (C c ≡ 0), in which case the force stress tensor remains symmetric.

The well-posedness is established using novel generalized Korn's inequalities for incompatible tensor fields [START_REF] Lewintan | Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy[END_REF][START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF][START_REF] Lewintan | L p -versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative[END_REF][START_REF] Lewintan | Neças-Lions lemma revisited: An L p -version of the generalized Korn inequality for incompatible tensor fields[END_REF][START_REF] Neff | Maxwell meets Korn: A new coercive inequality for tensor fields in R n×n with square-integrable exterior derivative[END_REF][START_REF] Neff | Poincaré meets Korn via Maxwell: extending Korn's first inequality to incompatible tensor fields[END_REF], whereby sharp criteria for the validity of such coercivity estimates were given in the recent work [START_REF] Gmeineder | Korn-Maxwell-Sobolev inequalities for general incompatibilities[END_REF][START_REF] Gmeineder | Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions[END_REF][START_REF] Gmeineder | On Korn-Maxwell-Sobolev inequalities[END_REF]. In addition, the relaxed micromorphic model now operates as a true two-scale model between two clearly defined scales: the macroscopic scale with stiffness tensor C macro appearing for the characteristic length L c → 0 (arbitrary large sample) and the microscopic scale with stiffness tensor C micro appearing for L c → ∞. Again, see Fig. 1, the limit L c → ∞ diverges as such in the classical micromorphic, second gradient, Cosserat model, along with others. Figure 1: The stiffness of the relaxed micromorphic model (RMM) is bounded from above and below. Other generalized continua exhibit unbounded stiffness for small sizes. For large values of the characteristic length Lc, linear elasticity with a micro elasticity tensor is recovered (one RVE) while linear elasticity with a macro elasticity tensor is obtained for small values of the characteristic length (many RVEs).

The above mentioned advantages have led to a multitude of investigations in short-time from the numerical side [START_REF] Sarhil | Size-effects of metamaterial beams subjected to pure bending: on boundary conditions and parameter identification in the relaxed micromorphic model[END_REF][START_REF] Schröder | Lagrange and H (curl, B) based finite element formulations for the relaxed micromorphic model[END_REF][START_REF] Sky | On [H 1 ] 3×3 ,[H(curl)] 3 and H(sym Curl) finite elements for matrix-valued Curl problems[END_REF][START_REF] Sky | Novel H(symCurl)-conforming finite elements for the relaxed micromorphic sequence[END_REF][START_REF] Sky | A hybrid H 1 × H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear[END_REF][START_REF] Sky | Primal and mixed finite element formulations for the relaxed micromorphic model[END_REF], from the modelling side [START_REF] Demore | Unfolding engineering metamaterials design: Relaxed micromorphic modeling of large-scale acoustic meta-structures[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Ramirez | Multi-element metamaterial's design through the relaxed micromorphic model[END_REF][START_REF] Rizzi | Exploring metamaterials' structures through the relaxed micromorphic model: switching an acoustic screen into an acoustic absorber[END_REF][START_REF] Rizzi | Boundary and interface conditions in the relaxed micromorphic model: Exploring finite-size metastructures for elastic wave control[END_REF][START_REF] Rizzi | Metamaterial shields for inner protection and outer tuning through a relaxed micromorphic approach[END_REF][START_REF] Rizzi | Towards the conception of complex engineering meta-structures: Relaxedmicromorphic modelling of low-frequency mechanical diodes/high-frequency screens[END_REF][START_REF] Voss | Modeling a labyrinthine acoustic metamaterial through an inertia-augmented relaxed micromorphic approach[END_REF], analytical solutions [START_REF] Rizzi | Analytical solution of the cylindrical torsion problem for the relaxed micromorphic continuum and other generalized continua (including full derivations)[END_REF][START_REF] Rizzi | Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua[END_REF][START_REF] Rizzi | Analytical solutions of the simple shear problem for micromorphic models and other generalized continua[END_REF][START_REF] Rizzi | Analytical solution of the uniaxial extension problem for the relaxed micromorphic continuum and other generalized continua (including full derivations)[END_REF], regularity of solutions [START_REF] Knees | A global higher regularity result for the static relaxed micromorphic model on smooth domains[END_REF][START_REF] Knees | A local regularity result for the relaxed micromorphic model based on inner variations[END_REF], and many others.

In this paper we continue our investigations from the theoretical side by determining the Green's functions for the case of a concentrated force and a concentrated couple in an infinite relaxed micromorphic medium. Closed form solutions are derived using a Fourier transform analysis and results from generalized functions. It is shown that several well known generalized continuum fundamental solutions can be obtained as singular limiting cases of the relaxed micromorphic solution. In particular, from the relaxed micromorphic solutions we can readily derive the couple-stress, Cosserat-micropolar, micro-stretch, micro-void, and classical elasticity fundamental solutions ( [START_REF] Cowin | Singular stress concentrations in plane Cosserat elasticity[END_REF][START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF][START_REF] Hattori | An isogeometric boundary element formulation for stress concentration problems in couple stress elasticity[END_REF][START_REF] Huilgol | On the concentrated force problem for two-dimensional elasticity with couple stresses[END_REF][START_REF] Ieşan | On the plane strain of microstretch elastic solids[END_REF][START_REF] Khan | Singular solutions and Green's method in micropolar theory of elasticity[END_REF][START_REF] Lakes | Physical meaning of elastic constants in Cosserat, void, and microstretch elasticity[END_REF][START_REF] Liang | Boundary element method for micropolar elasticity[END_REF][START_REF] Mindlin | Stress functions for a Cosserat continuum[END_REF][START_REF] Mindlin | Influence of couple-stresses on stress concentrations[END_REF][START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF][START_REF] Sandru | On some problems of the linear theory of the asymmetric elasticity[END_REF][START_REF] Timoshenko | Theory of Elasticity[END_REF][START_REF] Weitsman | A note on singularities in a Cosserat continuum[END_REF]), showing thus how versatile the relaxed micromorphic theory is. On the other hand, the full Eringen-Mindlin micromorphic model is at present too complicated for analytical or even numerical solutions to be sought. Here we take again advantage of the relaxed micromorphic model which drastically simplifies the situation in the isotropic planar case (only one curvature parameter remains operative). In the appendix we exhibit the two-scale elasticity nature relaxed micromorphic model. Moreover, we show how other generalised continua (micro-stretch, micro-void, Cosserat-micropolar) appear as limits of the relaxed micromorphic model.

Notation

For vectors a, b ∈ R n , we define the scalar product ⟨a, b⟩ := n i=1 a i b i ∈ R, the (squared) euclidean norm ∥a∥ 2 := ⟨a, a⟩ and the dyadic product a ⊗ b := (a i b j ) ij ∈ R n×n . In the same way, for tensors P, Q ∈ R n×n , we define the scalar product ⟨P, Q⟩ := n i,j=1 P ij Q ij ∈ R and the (squared) Frobenius-norm ∥P ∥ 2 := ⟨P, P ⟩. Moreover, P T := (P ji ) ij denotes the transposition of the matrix P = (P ij ) ij , which decomposes orthogonally into the skew-symmetric part skew P := 1 2 (P -P T ) and the symmetric part sym P := 1 2 (P + P T ). The identity matrix is denoted by 1, so that the trace of a matrix P is given by trP := ⟨P, 1⟩, while the deviatoric component of a matrix is given by dev P := P -tr(P ) 3 1. Given this, the orthogonal decomposition possible for a matrix is P = dev sym P + skew P + tr(P ) 3 1. The Lie-Algebra of skew-symmetric matrices is denoted by so(3

) := {A ∈ R 3×3 | A T = -A}.
Using the one-to-one map axl : so(3) → R 3 we have

A b = axl(A) × b ∀ A ∈ so(3) , b ∈ R 3 . ( 3 
)
where × denotes the cross product in R 3 . The inverse of axl is denoted by Anti: R 3 → so(3). The derivative Du and the curl of a vector field u are defined as

Du =   u 1,1 u 1,2 u 1,3 u 2,1 u 2,2 u 2,3 u 3,1 u 3,2 u 3,3   , curl u = ∇ × u =   u 3,2 -u 2,3 u 1,3 -u 3,1 u 2,1 -u 1,2   . (4) 
We also introduce the Curl and the Div operators for P ∈ R 3×3 

) T    . (5) 
The cross product between a second order tensor and a vector is also needed and is defined row-wise as follow

m × b =   (b × (m 11 , m 12 , m 13 ) T ) T (b × (m 21 , m 22 , m 23 ) T ) T (b × (m 31 , m 32 , m 33 ) T ) T   = m • ϵ • b = m ik ϵ kjh b h , (6) 
where m ∈ R 3×3 , b ∈ R 3 , and ϵ is the Levi-Civita tensor.

The isotropic relaxed micromorphic model

It has the kinematics of the classical Eringen-Mindlin micromorphic isotropic model [START_REF] Eringen | Microcontinuum Field Theories. I. Foundations and Solids[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], i.e. the displacement u ∈ R 3 and the non-symmetric micro-distortion P ∈ R 3×3 as independent fields. The strain energy density reads

W (Du, P, Curl P ) = µ e ∥sym(Du -P )∥ 2 + µ c ∥skew(Du -P )∥ 2 + λ e 2 tr 2 (Du -P ) + µ micro ∥sym P ∥ 2 + λ micro 2 tr 2 (P ) (7) 
+ µ macro L 2 c 2 a 1 ∥dev sym Curl P ∥ 2 + a 2 ∥skew Curl P ∥ 2 + a 3 3 tr 2 (Curl P ) ,
while the two equilibrium equations are

Div σ = f , σ -σ micro -Curl m = M , (8) 
with σ := 2µ e sym(Du -P ) + 2µ c skew(Du -P ) + λ e tr(Du -P )1 , σ micro := 2µ micro sym P + λ micro tr (P ) 1 , 

m := µ M L 2 c a 1 dev sym Curl P + a 2 skew Curl P + (9) 
Dirichlet: u = u , and

Q = P × n , (11) 
where the higher-order Dirichlet boundary conditions in [START_REF] Ghiba | The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics[END_REF] can be particularised to

P × n = Q = Du × n , (12) 
formally called "consistent coupling boundary conditions" [START_REF] Agostino | The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of parameters[END_REF]. The following additional equilibrium equation can be derived combining the two equilibrium equations ( 8) thanks to the fundamental property of differential operators Div Curl (•) = 0

Div

σ micro = f -Div M . (13) 
A similar additional equilibrium equation for σ micro does not exist at all e.g. in the classical Eringen-Mindlin model or the Cosserat model.

The isotropic relaxed micromorphic model in plane-strain

Under the plane-strain hypothesis only the in-plane components of the kinematic fields are different from zero and they only depend on (x 1 , x 2 ). The structure of the kinematic fields ( u, P ) are [START_REF] Ieşan | On the plane strain of microstretch elastic solids[END_REF] 

u =   u 1 u 2 0   , u ♯ =
while the structures of the gradient of the displacement D u, of the Curl of the micro distortion tensor Curl P , and of the double Curl of the micro distortion tensor Curl Curl P are (15) Because of the nature of the Curl operator, it is noted that Curl P just has out of plane components that depend on the in-plane components of P , while Curl Curl P fully preserves the in-plane structure. Moreover, since tr(Curl P ) = 0, ( 16)

D u =   u 1,1 u 1,2 0 u 2,1 u 2,2 0 0 0 0   , D u ♯ = u 1,1 u 1,2 u 2,1 u 2,2 , Curl P =   0 0 P 12,1 -P 11,2 0 0 P 22,1 -P 21,2 0 0 0   =   0 0 0 0 Curl 2D P ♯ 0 0 0   ,
dev sym Curl P 2 = sym Curl P 2 = skew Curl P 2 = 1 2 Curl P 2 = 1 2 Curl 2D P ♯ 2 ,
the plane strain isotropic relaxed micromorphic model will just depend on one cumulative dimensionless parameter a := a1+a2

2

, and the strain energy density in (7) reduces to

W (D u, P , Curl P ) = µ e sym(D u -P ) 2 + µ c skew(D u -P ) 2 + λ e 2 tr 2 (D u -P ) + µ micro sym P 2 + λ micro 2 tr 2 ( P ) + µ M L 2 c 2 a Curl P 2 , = µ e sym(D u ♯ -P ♯ ) 2 + µ c skew(D u ♯ -P ♯ ) 2 + λ e 2 tr 2 (D u ♯ -P ♯ ) (17) + µ micro sym P ♯ 2 + λ micro 2 tr 2 ( P ♯ ) + µ macro L 2 c 2 a Curl 2D P ♯ 2 = µ e dev 2 sym(D u ♯ -P ♯ ) 2 + µ c skew(D u ♯ -P ♯ ) 2 + κ e 2 tr 2 (D u ♯ -P ♯ ) + µ micro dev 2 sym P ♯ 2 + κ micro 2 tr 2 ( P ♯ ) + µ M L 2 c 2 a Curl 2D P ♯ 2 ,
where dev 2 X := X -1 2 tr(X) • 1 2 and µ M = µ macro for better readability. Moreover, under plane-strain conditions, the bulk micro-moduli κ e and κ micro are related with the respective Lamé type micro-moduli through the 2D relations κ e := λ e + µ e , κ micro := λ micro + µ micro .

Accordingly, the relations between the macro moduli (µ macro , λ macro , κ macro ) and the micro-moduli in plane strain become (see Appendix A2)

µ macro := µ e µ micro µ e + µ micro ⇔ 1 µ macro = 1 µ e + 1 µ micro , κ macro := κ e κ micro κ e + κ micro ⇔ 1 κ macro = 1 κ e + 1 κ micro , (19) 
λ macro := (µ e + λ e )(µ micro + λ micro ) (µ e + λ e ) + (µ micro + λ micro ) - µ e µ micro µ e + µ micro ,
where κ macro = µ macro + λ macro . The 3D relations for the macro and micro moduli are given in Appendix A. From here and onwards, unless otherwise stated, the macro and micro moduli will refer to the case of plane strain and will be defined through equations ( 18) and [START_REF] Gourgiotis | The Hertz contact problem in couple-stress elasticity[END_REF].

Taking the first variation of the strain energy I = Ω W dx under the plane strain hypothesis with respect to ( u ♯ , P ♯ ) leads to

δI u ♯ = Ω 2µ e ⟨sym(D u ♯ -P ♯ ), Dδ u ♯ ⟩ + 2µ c ⟨skew(D u ♯ -P ♯ ), Dδ u ♯ ⟩ + λ e ⟨tr(D u ♯ -P ♯ )1 2 , Dδ u ♯ ⟩ dx , δI P ♯ = Ω -2µ e ⟨sym(D u ♯ -P ♯ ), δ P ♯ ⟩ -2µ c ⟨skew(D u ♯ -P ♯ ), δ P ♯ ⟩ -λ e ⟨tr(D u ♯ -P ♯ )1 2 , δ P ♯ ⟩ (20) 
+ 2µ micro ⟨sym P ♯ , δ P ♯ ⟩ + λ micro ⟨tr( P ♯ )1 2 , δ P ♯ ⟩ + µ M L 2 c a ⟨Curl 2D P ♯ , Curl 2D δ P ♯ ⟩ dx .

The equilibrium equation are now obtained by requiring

δI u ♯ = ⟨ f , δ u ♯ ⟩ , ∀ δ u ♯ and δI P ♯ = ⟨ M , δ P ♯ ⟩ , ∀ δ P ♯ . ( 21 
)
We define the following quantities

σ := 2µ e sym(D u ♯ -P ♯ ) + 2µ c skew(D u ♯ -P ♯ ) + λ e tr(D u ♯ -P ♯ )1 2 , σ micro := 2µ micro sym P ♯ + λ micro tr( P ♯ )1 2 ∈ R 2×2 , (22) 
m := µ M L 2 c a Curl 2D P ♯ ∈ R 2 ,
where we used the tilde σ and σ micro to emphasize that here we are only considering the in-plane components.

We can rewrite the first variation δI u as

δI u ♯ = Ω ⟨ σ, Dδ u ♯ ⟩ dx = Ω div( σ T δ u ♯ ) -⟨Div σ, δ u ♯ ⟩ dx = ∂Ω ⟨ σ T δ u ♯ , n⟩ ds - Ω ⟨Div σ, δ u ♯ ⟩ dx (23) = ∂Ω ⟨ σ n, δ u ♯ ⟩ ds - Ω ⟨Div σ, δ u ♯ ⟩ dx ,
and that, because of the equation ( 21), and highlighting that u is orthogonal with respect to the out-of-plane displacement, implies

Div σ = f in Ω , σ n = 0 on ∂Ω . ( 24 
)
where the out-of-plane components of Div σ and σ n must not be considered. We can now rewrite the first variation δI P as

δI P ♯ = Ω -⟨ σ, δ P ♯ ⟩ + ⟨ σ micro , δ P ♯ ⟩ + ⟨µ M L 2 c a Curl 2D P ♯ , Curl 2D δ P ♯ ⟩ dx = Ω ⟨-σ + σ micro , δ P ♯ ⟩ + ⟨µ M L 2 c a Curl 2D P ♯ , Curl 2D δ P ⟩ dx = Ω ⟨-σ + σ micro , δ P ♯ ⟩ + ⟨µ M L 2 c a Curl Curl 2D P , δ P ♯ ⟩ -div[ 3 i=1 (µ M L 2 c a Curl 2D P ) i × ( P ♯ ) i ] dx (25) = Ω ⟨-σ + σ micro + µ M L 2 c a Curl Curl 2D P ♯ , δ P ♯ ⟩ - ∂Ω ⟨ 3 i=1 (µ M L 2 c a Curl 2D P ♯ ) i × ( δP ♯ ) i , n⟩ ds = Ω ⟨-σ + σ micro + µ M L 2 c a Curl Curl 2D P ♯ , δ P ♯ ⟩ - ∂Ω ⟨(µ M L 2 c a Curl 2D P ♯ ) × n, δ P ♯ ⟩ ds ,
which, because of (21), and recalling that P is orthogonal with respect to the out-of-plane micro-distortion tensor P (their scalar product is zero), implies

σ -σ micro -µ M L 2 c a Curl Curl 2D P ♯ = M in Ω , (µ M L 2 c a Curl 2D P ♯ ) × n = 0 on ∂Ω . ( 26 
)
where the out-of-plane components of (26) 1 and (26) 2 must not be considered. We can now collect all the homogeneous equilibrium equations obtained and the homogeneous Neumann boundary conditions

Div σ = f σ -σ micro -L 2 c a Curl Curl 2D P = M in Ω , σ n = 0 (L 2 c a Curl 2D P ) × n = 0 on ∂Ω . ( 27 
)
Since Div (µ M L 2 c a Curl Curl 2D P ) = 0, combining the two equation in [START_REF] Kirchner | Mechanics of extended continua: modeling and simulation of elastic microstretch materials[END_REF] 1 gives rise to another equilibrium equation that depends only on sym P

Div σ = f σ -σ micro -µ M L 2 c a Curl Curl 2D P = M {Div σ micro = f + Div M }      in Ω , σ n = 0 (L 2 c a Curl 2D P ) × n = 0 on ∂Ω . ( 28 
)
The extra equation Div σ micro = f + Div M is not independent with respect the other two, and any smooth solution of (27) 1 will automatically satisfy it. This equation can nevertheless substitute Div σ = f , but, although it depends solely on sym P , it is an undetermined system of equations since we just have two equations for three unknown functions (P 

+ (µ c + µ e )u 1,2 + (µ e -µ c )u 2,1 = M 12 , µ M L 2 c a (P 21,22 -P 22,12 ) +(µ c -µ e -µ m )P 12 -(µ c + µ e + µ m )P 21 + (µ e -µ c )u 1,2 + (µ c + µ e )u 2,1 = M 21 , -µ M L 2 c a (P
4 Fundamental solutions for the relaxed micromorphic continuum under plane strain conditions 4.1 Concentrated force: The Kelvin problem

The Kelvin problem [START_REF] Thompson | Note on the integration of the equations of equilibrium of an elastic solid[END_REF] provides the solution of a point force acting in the interior of an infinite elastic medium [START_REF] Timoshenko | Theory of Elasticity[END_REF]. The solution is of fundamental importance since it provides the plane strain Green's function for the relaxed micromorphic theory. Lord Kelvin (William Thompson, 1824Thompson, -1907) ) solved the problem for classical isotropic linear elasticity that was later named after him in 1848.

We consider a body occupying the full plane (-∞ < x 1 < ∞, -∞ < x 2 < ∞) under plane-strain conditions. The body is acted upon by a concentrated line force situated at the origin of the coordinate system. There is no loss of generality if we assume that the direction of the line force coincides with the x 2 -axis of the coordinate system due to isotropy. In this case, we have that

f = 0 -1 δ(x 1 )δ(x 2 ) , M = 0 0 0 0 , (31) 
with δ(x) being the Dirac delta function.

For the solution of the problem the 2D Fourier transform will be employed. The direct (FT) and inverse (FT -1 ) double Fourier transforms are defined, respectively, as

y(ξ) = FT{y(x)} = x∈R 2 y(x) e i ⟨x,ξ⟩ dx, y(x) = FT -1 { y(ξ)} = 1 (2π) 2 ξ∈R 2 y(ξ) e -i ⟨x,ξ⟩ dξ, (32) 
where ξ = (ξ 1 , ξ 2 ) is the 2D Fourier vector with ∥ξ∥ ≡ ξ = ξ 2 1 + ξ 2 2 and i is the imaginary unit [START_REF] Debnath | Integral Transforms and their Applications[END_REF]. Applying the Fourier transform on the equilibrium equations ( 29) and noting that FT{δ(x 1 )δ(x 2 )} = 1, yields 1

-(λ e + 2µ e )ξ 2 1 + (µ c + µ e )ξ 2 2 u 1 -(λ e + µ e -µ c ) ξ 1 ξ 2 u 2 + i(λ e + 2µ e )ξ 1 P 11 +iλ e ξ 1 P 22 + i (µ c + µ e ) ξ 2 P 12 -i (µ c -µ e ) ξ 2 P 21 = 0 , -(λ e + µ e -µ c ) ξ 1 ξ 2 u 1 -(λ e + 2µ e )ξ 2 2 + (µ c + µ e )ξ 2 1 u 2 + iλ e ξ 2 P 11 +i(λ e + 2µ e )ξ 2 P 22 + i(µ e -µ c )ξ 1 P 12 + i (µ c + µ e ) ξ 1 P 21 = -1 , -i(λ e + 2µ e )ξ 1 u 1 -iλ e ξ 2 u 2 -λ e + 2µ e + λ m + 2µ m + aµ M L 2 c ξ 2 2 P 11 -(λ e + λ m ) P 22 + aµ M L 2 c ξ 1 ξ 2 P 12 = 0 , -iλ e ξ 1 u 1 -i(λ e + 2µ e )ξ 2 u 2 -λ e + 2µ e + λ m + 2µ m + aµ M L 2 c ξ 2 1 P 22 -(λ e + λ m ) P 11 + aµ M L 2 c ξ 1 ξ 2 P 21 = 0 , -i (µ c + µ e ) ξ 2 u 1 -iξ 1 (µ e -µ c ) u 2 + aµ M L 2 c ξ 1 ξ 2 P 11 -(µ c + µ e + µ m ) + aµ M L 2 c ξ 2 1 P 12 -(µ e + µ m -µ c ) P 21 = 0 , -i (µ e -µ c ) ξ 2 u 1 -i (µ e + µ c ) ξ 1 u 2 + aµ M L 2 c ξ 1 ξ 2 P 22 -(µ c + µ e + µ m ) + aµ M L 2 c ξ 2 2 P 21 -(µ e + µ m -µ c ) P 12 = 0, (33) 
where we recall that a := (a 1 + a 2 )/2 > 0. The algebraic system can be written in the following form

A(ξ) u = v, (34) 
where u = { u 1 , u 2 , P 11 , P 12 , P 21 , P 22 } T , v = {0, -1, 0, 0, 0, 0} T , and the symmetric Fourier matrix A is given as

A(ξ) = (35)         -ξ 2 2 (µc + µe) -ξ 2 1 (λe + 2µe) -(ξ1ξ2 (-µc + λe + µe)) iξ1 (λe + 2µe) iξ2 (µc + µe) -iξ2 (µc -µe) iξ1λe -(ξ1ξ2 (-µc + λe + µe)) -ξ 2 1 (µc + µe) -ξ 2 2 (λe + 2µe) iξ2λe -iξ1 (µc -µe) iξ1 (µc + µe) iξ2 (λe + 2µe) iξ1 (λe + 2µe) iξ2λe aµM L 2 c ξ 2 2 + λe + 2 (µe + µm) + λm -aµM L 2 c ξ1ξ2 0 λe + λm iξ2 (µc + µe) iξ1 (µe -µc) -aµM L 2 c ξ1ξ2 aµM L 2 c ξ 2 1 + µc + µe + µm -µc + µe + µm 0 -iξ2 (µc -µe) iξ1 (µc + µe) 0 -µc + µe + µm aµM L 2 c ξ 2 2 + µc + µe + µm -aµM L 2 c ξ1ξ2 iξ1λe iξ2 (λe + 2µe) λe + λm 0 -aµM L 2 c ξ1ξ2 aµM L 2 c ξ 2 1 + λe + 2 (µe + µm) + λm        
The determinant of the Fourier matrix

A(ξ) becomes det A(ξ) = a 2 L 4 c µ 2 M µ m (µ e + µ c )(λ e + 2µ e )(λ m + 2µ m )(ℓ -2 1 + ξ 2 )(ℓ -2 2 + ξ 2 )ξ 4 , µ c > 0, a 2 L 4 c µ 2 M µ m µ e (λ e + 2µ e )(λ m + 2µ m )(ℓ -2 1 + ξ 2 )ξ 6 , µ c = 0, (36) 
where ℓ 1 and ℓ 2 are two characteristic lengths related with the internal length L c as

ℓ 1 = L c a βµ M 4(λ M + 2µ M ) , ℓ 2 = L c a µ M (µ e + µ c ) 4µ c µ e . ( 37 
)
We recall also that the macroscopic moduli (λ M , µ M , κ M ) are related to microscopic-moduli of the relaxed micromorphic medium through equations ( 18) and [START_REF] Gourgiotis | The Hertz contact problem in couple-stress elasticity[END_REF]. Further, the dimensionless parameter β is defined as

β := (κ e + µ e )(κ m + µ m ) (κ e + κ m )(µ e + µ m ) > 0. ( 38 
)
It is interesting to note that det A(ξ) is an 8 th -order polynomial of ξ with corresponding terms {ξ 8 , ξ 6 , ξ 4 }, whereas in classical isotropic linear elasticity the Fourier determinant assumes the form

det A lin.elast (ξ) = µ M (λ M + 2µ M )ξ 4 . (39) 
The positive definiteness conditions for the system (29) read simply

µ m > 0, µ c ≥ 0, µ e > 0, κ m > 0, κ e > 0, a L 2 c > 0, (40) 
which according to [START_REF] Gourgiotis | The Hertz contact problem in couple-stress elasticity[END_REF], imply that µ e > µ M > 0 and κ e > κ M > 0.

Looking at [START_REF] Lewintan | L p -trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions[END_REF], the plane(-strain) ellipticity conditions can be readily obtained as (cf. [START_REF] Neff | Real wave propagation in the isotropicrelaxed micromorphic model[END_REF])

µ M > 0, µ m > 0, µ e + µ c > 0, µ c ≥ 0, 2µ e + λ e > 0, 2µ m + λ m > 0, a L 2 c > 0 . ( 41 
)
From the solution of the above non-homogeneous system [START_REF] Lazar | The gauge theory of dislocations: static solutions of screw and edge dislocations[END_REF] we derive the solutions for the transformed field variables. These can be written in the following form which is amenable for analytical treatment:

u 1 = - κ M µ M (κ M + µ M ) ξ 1 ξ 2 ξ 4 - aµ M L 2 c 4 ζ κ M + µ M 2 ξ 1 ξ 2 ϕ 1 (ξ) + aµ M L 2 c 4µ 2 e ξ 1 ξ 2 ϕ 2 (ξ) , u 2 = 1 µ M ξ 2 - κ M µ M (κ M + µ M ) ξ 2 2 ξ 4 - aµ M L 2 c 4 ζ κ M + µ M 2 ξ 2 2 ϕ 1 (ξ) - aµ M L 2 c 4µ 2 e ξ 2 1 ϕ 2 (ξ) , P 11 = i κ M µ m (κ M + µ M ) ξ 2 1 ξ 2 ξ 4 + iζξ 2 ε aµ M L 2 c ξ 2 1 + 2(κ m + µ m ) 4(κ M + µ M )(κ m + µ m ) ϕ 1 (ξ) , P 12 = i κ M µ m (κ M + µ M ) ξ 1 ξ 2 2 ξ 4 + iζε aµ M L 2 c ξ 1 ξ 2 2 4(κ M + µ M )(κ m + µ m ) ϕ 1 (ξ) + iξ 1 2µ e ϕ 2 (ξ) , P 21 = - iξ 1 (κ M + µ M ) ξ 2 1 + µ M ξ 2 2 µ m (κ M + µ M ) ξ 4 + iζε aµ M L 2 c ξ 1 ξ 2 2 4(κ M + µ M )(κ m + µ m ) ϕ 1 (ξ) - iξ 1 2µ e ϕ 2 (ξ) , P 22 = -i κ M µ m (κ M + µ M ) ξ 2 1 ξ 2 ξ 4 - iξ 2 (κ m + µ m ) ξ 2 - iζξ 2 ε aµ M L 2 c ξ 2 1 + 2(κ m -µ m ) 4(κ M + µ M )(κ m + µ m ) ϕ 1 (ξ) , (42) 
where the transformed functions ϕ j (ξ) (j = 1, 2) and dimensionless parameters (ζ, ε) are defined as

ϕ j (ξ) = 1 ξ 2 - ℓ 2 j 1 + ℓ 2 j ξ 2 , ζ = µ e µ e + µ m - κ e κ e + κ m , ε = κ m κ M + µ M β. (43) 
We employ now some useful classical results (see e.g. [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF], [START_REF] Nowacki | On discrete dislocations in micropolar elasticity[END_REF]):

I 1 = FT -1 { ξ 2 1 + ξ 2 2 -1 } = - 1 2π (b + ln r) , I 2 = FT -1 { ξ 2 1 + ξ 2 2 -2 } = 1 8π r 2 (b + ln r) , (44) 
I 3 = FT -1 { ℓ -2 + ξ 2 1 + ξ 2 2 -1 } = 1 2π K 0 r ℓ ,
and

∂ m x1 ∂ n x2 I j = (-iξ 1 ) m (-iξ 2 ) n I j , (m, n = 0, 1, 2, ...), (j = 1, 2, 3) (45) 
where

r = x 2 1 + x 2 2 , K n [•]
is the n-th order second kind modified Bessel functions and b = 0.57... is Euler's constant [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]. It should be noted that the integrals in [START_REF] Mindlin | Stress functions for a Cosserat continuum[END_REF] are defined as the finite part integrals2 .

Using the above results, the definitions of the characteristic lengths ℓ 1 , ℓ 2 and ignoring rigid body motions in the displacement field, we obtain after some rather extensive algebra the following expressions for the displacement and micro-distortion fields

u 1 = κ M x 1 x 2 4π µ M (κ M + µ M ) r 2 + ζ 2 x 1 x 2 2πβ (κ M + µ M ) r 2 Φ 1 - µ c x 1 x 2 2π µ e (µ c + µ e ) r 2 Φ 2 , u 2 = κ M x 2 2 4πµ M (κ M + µ M ) r 2 - (κ M + 2µ M ) 4π µ M (κ M + µ M ) ln r - ζ 2 4πβ (κ M + µ M ) (x 2 1 -x 2 2 ) r 2 Φ 1 + K 0 r ℓ 1 + µ c 4π µ e (µ c + µ e ) (x 2 1 -x 2 2 ) r 2 Φ 2 -K 0 r ℓ 2 , P 11 = - κ M x 2 x 2 1 -x 2 2 4π µ m (κ M + µ M )r 4 + ζx 2 4π (κ M + µ M ) r Ψ 1 - ζεx 2 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 + ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x1 Φ 1 , P 12 = κ M x 1 x 2 1 -x 2 2 4π µ m (κ M + µ M ) r 4 + x 1 4π µ e r Ψ 2 + ζεx 1 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 + ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x2 Φ 1 , P 21 = κ M x 1 x 2 1 -x 2 2 4π µ m (κ M -µ M ) r 4 - x 1 4π µ e r Ψ 2 + ζεx 1 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 + ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x2 Φ 1 - x 1 2π µ m r 2 , P 22 = - x 2 2π(κ m + µ m )r 2 + κ M x 2 x 2 1 -x 2 2 4π µ m (κ M + µ M ) r 4 - ζ(κ m -µ m )x 2 4π (κ M + µ M ) (κ m + µ m )r Ψ 1 + ζεx 2 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 - ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x1 Φ 1 , (46) 
where the functions Φ j and Ψ j (j = 1, 2) are defined as

Φ j ≡ Φ j (r) = 2ℓ 2 j r 2 -K 2 r ℓ j , Ψ j ≡ Ψ j (r) = 1 r 1 - r ℓ j K 1 r ℓ j . (47) 
Some useful relations and limits for the second kind modified Bessel functions that have been used for the derivation of our equations can be found in Appendix A.5. Equations [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF] are the basic results of this paper and constitute the Green's functions for the general relaxed isotropic micromorphic continuum under plane strain conditions for the case of a concentrated force acting in the x 2 -direction. The Green's functions for the case where the concentrated force acts in the x 1 -direction can be readily derived from the above solution by interchanging the indices 1 ↔ 2.

The micro-rotation for the relaxed micromorphic medium in the case of plane strain is defined as the skew-symmetric part of P (see (124))

ϑ 3 = 1 2 (P 21 -P 12 ) = - x 1 4πr 2 µ e + µ m µ m µ e - 1 µ e r ℓ 2 K 1 r ℓ 2 = - x 1 4πr 2 1 µ M - 1 µ e r ℓ 2 K 1 r ℓ 2 . ( 48 
)
Finally, it is noted that the stresses and higher order stresses can be derived from the constitutive relations [START_REF] Koiter | Couple-stress in the theory of elasticity[END_REF].

Using now the asymptotic properties of the second kind modified Bessel functions as z → 0 [20]

K n [z] ∼ -ln z 2 -b, for n = 0 , Γ[n] 2 2 z n for n > 0 , (49) 
we may readily deduce that as r → 0 the displacement field becomes logarithmically unbounded as in the classical linear elastic theory and the micro-distortion field P exhibits an r -1 singularity consistent with the additive coupling Du -P . This in turn implies that, according to (9) 1 , the components of the stress tensor σ behave also as O(r -1 ) as r → 0. The same singular asymptotic behaviour is exhibited by the microrotation ϑ 3 . In particular, the second term in ( 48) is bounded as r → 0 but the first term behaves as r -1 . Interestingly, the micro-rotation becomes bounded if µ micro = µ m → ∞ which is the case of micro-stretch, micropolar and couple stress elasticity as we shall see next. Interestingly, it turns out that the components of CurlP have at most a logarithmic singularity which implies, according to (9) 3 , that the higher order stresses m exhibit also a O(log r) behaviour as r → 0. The above results corroborate uniqueness for our solutions. Indeed, for a unique solution of the concentrated load problem the conventional and higher order stress singularities must behave at most as O(r -1 ) when r → 0, where r is the distance from the point of application of the concentrated loads (see Hartranft and Shi [START_REF] Hartranft | Uniqueness of the concentrated-load problem in the linear theory of couple-stress elasticity[END_REF] and Sternberg [START_REF] Sternberg | Couple-stresses and singular stress concentrations in elastic solids[END_REF] for the case of couple stress elasticity and Eubanks and Sternberg [START_REF] Sternberg | On the concept of concentrated loads and an extension of the uniqueness theorem in the linear theory of elasticity[END_REF] for the classical elasticity case). This is due to the fact that the tractions on a circle surrounding and separating the concentrated load point from the rest of the medium must be statically equivalent to the concentrated force at that point. This is a general requirement and is independent of the elasticity theory that is employed.

The relaxed micromorphic continuum with zero micro and macro Poisson's ratio

A simpler case arises for zero micro and macro Poisson's ratio so that λ e = λ m = 0 which implies λ M = 0 and ζ = 0. In this case, we derive

u 1 = x 1 x 2 8πr 2 1 µ M - 4µ c µ e (µ e + µ c ) Φ 2 , u 2 = x 2 2 8π µ M r 2 - 3 8π µ M ln r + µ c 4π µ e (µ c + µ e ) (x 2 1 -x 2 2 ) r 2 Φ 2 -K 0 r ℓ 2 , (50) 
P 11 = - x 2 x 2 1 -x 2 2 8π µ m r 4 , P 12 = x 1 x 2 1 -x 2 2 8π µ m r 4 + x 1 4π µ e r Ψ 2 , P 22 = - x 2 x 2 1 + 3x 2 2 8π µ m r 4 , P 21 = - x 1 3x 2 1 + 5x 2 2 8π µ m r 4 - x 1 4π µ e r Ψ 2 .
It is evident that u 2 retains the logarithmic singularity but the detailed field is different, in particular

u 2 = - 3µ c µ e + µ c µ m + 3µ 2 e + 3µ e µ m 8πµ e µ m (µ c + µ e ) ln r, as r → 0. ( 51 
)
4.1.2 The pure relaxed micromorphic continuum with symmetric force stress tensor

Another special case of interest is the pure relaxed micromorphic continuum with symmetric force stress tensor σ. In this case we have that the Cosserat modulus µ c = 0 (which implies that ℓ 2 → ∞) and accordingly (see Appendix A.5)

lim µc→0 µ c Φ 2 = 0 , lim µc→0 Ψ 2 = 0 , lim µc→0 µ c K 0 r ℓ 2 = 0 , (52) 
and we derive

u 1 = κ M x 1 x 2 4π µ M (κ M + µ M ) r 2 + ζ 2 x 1 x 2 2πβ (κ M + µ M ) r 2 Φ 1 , u 2 = κ M x 2 2 4πµ M (κ M + µ M ) r 2 - (κ M + 2µ M ) 4π µ M (κ M + µ M ) ln r - ζ 2 4πβ (κ M + µ M ) (x 2 1 -x 2 2 ) r 2 Φ 1 + K 0 r ℓ 1 , P 11 = - κ M x 2 x 2 1 -x 2 2 4π µ m (κ M + µ M )r 4 + ζx 2 4π (κ M + µ M ) r Ψ 1 - ζεx 2 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 + ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x1 Φ 1 , P 12 = κ M x 1 x 2 1 -x 2 2 4π µ m (κ M + µ M ) r 4 + ζεx 1 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 + ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x2 Φ 1 , P 21 = κ M x 1 x 2 1 -x 2 2 4π µ m (κ M -µ M ) r 4 + ζεx 1 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 + ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x2 Φ 1 - x 1 2π µ m r 2 , P 22 = - x 2 2π(κ m + µ m )r 2 + κ M x 2 x 2 1 -x 2 2 4π µ m (κ M + µ M ) r 4 - ζ(κ m -µ m )x 2 4π (κ M + µ M ) (κ m + µ m )r Ψ 1 + ζεx 2 x 2 1 -x 2 2 2π (κ m + µ m ) βr 4 Φ 1 - ζεx 1 x 2 2π (κ m + µ m ) βr 2 ∂ x1 Φ 1 . (53)

Limiting cases

It is shown here that the fundamental solutions of several well-known generalized continua can be obtained as singular limiting cases of the general relaxed micromorphic fundamental solution for a concentrated force.

Micro-stretch elasticity

In order to pass from the general relaxed micromorphic continua to the micro-stretch continua we let µ m → ∞ which, according to [START_REF] Gourgiotis | The Hertz contact problem in couple-stress elasticity[END_REF], implies that: µ e → µ M , and

lim µm→∞ ζ = - κ e κ e + κ m , lim µm→∞ β = κ e + µ e κ e + κ m . (54) 
In this case, the kinematical fields read

u 1 = κ M x 1 x 2 4π µ M (κ M + µ M ) r 2 + κ M κ e 2πκ m (κ M + µ M )(κ e + µ M ) x 1 x 2 r 2 Φ 1 - µ c x 1 x 2 2π µ e (µ c + µ e ) r 2 Φ 2 , u 2 = κ M x 2 2 4πµ M (κ M + µ M ) r 2 - (κ M + 2µ M ) 4π µ M (κ M + µ M ) ln r + µ c 4π µ M (µ c + µ M ) (x 2 1 -x 2 2 ) r 2 Φ 2 -K 0 r ℓ 2 - κ M κ e 4πκ m (κ M + µ M )(κ e + µ M ) (x 2 1 -x 2 2 ) r 2 Φ 1 + K 0 r ℓ 1 , P 11 =P 22 = - κ M x 2 4πκ m (κ M + µ M ) r Ψ 1 , P 12 = -P 21 = - x 1 4π µ M r Ψ 2 , (55) 
and the micro-rotation is given as

ϑ 3 = 1 2 (P 21 -P 12 ) = - x 1 4π µ M r 2 1 - r ℓ 2 K 1 r ℓ 2 , ( 56 
)
where the characteristic lengths are now defined as

ℓ 1 = L c a µ M (κ e + µ M ) 4(κ M + µ M ) (κ e + κ m ) , ℓ 2 = L c a (µ M + µ c ) 4µ c . (57) 
We note again that ℓ 2 → ∞ as µ c → 0.

Cosserat (micropolar) elasticity

As (µ m , κ m ) → ∞ we have that: µ e → µ M , κ e → κ M , λ e → λ M , and also ζ → 0, β → 0 which implies further that ℓ 1 → 0. Furthermore, by recalling that κ M = λ M + µ M , and identifying (using Nowacki's notation [58])

µ c = α, a 1 µ M L 2 c = 2γ, a 2 µ M L 2 c = 2ε
, the relaxed micromorphic solution degenerates to the known micropolar solution ( [START_REF] Liang | Boundary element method for micropolar elasticity[END_REF], [START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF])

3 u 1 = (λ M + µ M ) 4π µ M (λ M + 2µ M ) x 1 x 2 r 2 - α 2π µ M (µ M + α) x 1 x 2 r 2 2ℓ 2 r 2 -K 2 r ℓ , u 2 = (λ M + µ M ) 4πµ M (λ M + 2µ M ) x 2 2 r 2 - (λ M + 3µ M ) 4π µ M (λ M + 2µ M ) ln r - α 4π µ M (α + µ M ) K 0 r ℓ + α 4π µ M (α + µ M ) (x 2 1 -x 2 2 ) r 2 2ℓ 2 r 2 -K 2 r ℓ , P 11 = P 22 = 0, A 12 = P 12 = -P 21 = -A 21 = x 1 4π µ M r 2 1 - r ℓ K 1 r ℓ (58) 
with the micro-rotation ϑ 3 given as

ϑ 3 = 1 2 (P 21 -P 12 ) = - x 1 4π µ M r 2 1 - r ℓ K 1 r ℓ (59) 
where

ℓ ≡ ℓ 2 = (γ + ε)(µ M + α) 4 α µ M = L c a (µ M + µ c ) 4µ c , (60) 
is the known characteristic length of the Cosserat (micropolar) theory.

Couple stress elasticity -the indeterminate couple stress model

As (µ m , κ m , µ c ) → ∞ we have that: µ e → µ M , λ e → λ M , and also ζ → 0, β → 0 which implies further that ℓ 1 → 0. In this case, we pass to Mindlin's [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF] and Koiter's [START_REF] Koiter | Couple-stress in the theory of elasticity[END_REF] theory of couple stress elasticity (see also [START_REF] Ghiba | A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions[END_REF][START_REF] Gourgiotis | The Hertz contact problem in couple-stress elasticity[END_REF][START_REF] Madeo | A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model[END_REF][START_REF] Münch | The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[END_REF][START_REF] Soldatos | Determination of the spherical couple-stress in polar linear isotropic elasticity[END_REF][START_REF] Zisis | Some basic contact problems in couple stress elasticity[END_REF]). Indeed, identifying a 1 µ M L 2 c = 4η, a 2 µ M L 2 c = 4η, we derive the fundamental solution in couple stress theory [START_REF] Hattori | An isogeometric boundary element formulation for stress concentration problems in couple stress elasticity[END_REF] which assumes the following form

u 1 = (λ M + µ M ) 4π µ M (λ M + 2µ M ) x 1 x 2 r 2 - 1 2π µ M x 1 x 2 r 2 2ℓ 2 r 2 -K 2 r ℓ , u 2 = (λ M + µ M ) 4πµ M (λ M + 2µ M ) x 2 2 r 2 - (λ M + 3µ M ) 4π µ M (λ M + 2µ M ) ln r - 1 4π µ M K 0 r ℓ , + 1 4π µ M (x 2 1 -x 2 2 ) r 2 2ℓ 2 r 2 -K 2 r ℓ , P 11 = P 22 = 0, P 12 = -P 21 = x 1 4π µ M r 2 1 - r ℓ K 1 r ℓ (61) 
where the characteristic length of the couple stress elasticity model is defined as

ℓ ≡ ℓ 2 = η µ M = L c a 4 . ( 62 
)
As expected, the continuum-rotation ϑ 3 coincides with the skew symmetric part of P (i.e. the micro-rotation ϑ 3 ). Indeed,

ϑ 3 = 1 2 ∂u 2 ∂x 1 - ∂u 1 ∂x 2 = 1 2 (P 21 -P 12 ) = - x 1 4π µ M r 2 1 - r ℓ K 1 r ℓ . (63) 
Fundamental solutions for orthotropic couple stress materials under static and dynamic conditions can be found in [START_REF] Bigoni | Folding and faulting of an elastic continuum[END_REF][START_REF] Gourgiotis | Stress channelling in extreme couple-stress materials Part I: Strong ellipticity, wave propagation, ellipticity, and discontinuity relations[END_REF][START_REF] Gourgiotis | Stress channelling in extreme couple-stress materials Part II: Localized folding vs faulting of a continuum in single and cross geometries[END_REF][START_REF] Gourgiotis | The dynamics of folding instability in a constrained Cosserat medium[END_REF].

Classical linear elasticity (L c → 0) -lower bound macroscopic stiffness

As L c → 0 we have also that ℓ j → 0 (j = 1, 2) if µ c > 0, and in this case we obtain that (see Appendix A.5)

lim ℓj →0 Φ j = 0 , lim ℓj →0 ∂ xi Φ j = 0 , (i = 1, 2) , lim ℓj →0 Ψ j = 1 r , lim ℓj →0 K 0 r ℓ j = 0 . (64) 
Moreover, by using κ M = λ M + µ M , we finally derive

u 1 = (λ M + µ M ) 4π µ M (λ M + 2µ M ) x 1 x 2 r 2 , u 2 = (λ M + µ M ) 4πµ M (λ M + 2µ M ) x 2 2 r 2 - (λ M + 3µ M ) 4π µ(λ M + 2µ M ) ln r , (65) 
which is the standard classical linear elasticity fundamental solution for the displacements [START_REF] Timoshenko | Theory of Elasticity[END_REF]. Moreover, the continuum rotation is given as

ϑ 3 = - x 1 4 π µ M r 2 . ( 66 
)
In addition,

P 11 = ζx 2 4π (λ M + 2µ M ) r 2 - (λ M + µ M )x 2 x 2 1 -x 2 2 4π µ m (λ M + 2µ M )r 4 , P 12 = x 1 4π µ e r 2 + (λ M + µ M )x 1 x 2 1 -x 2 2 4π µ m (λ M + 2µ M ) r 4 , P 21 = - x 1 4π µ e r 2 - x 1 2π µ m r 2 + (λ M + µ M )x 1 x 2 1 -x 2 2 4π µ m (λ M + 2µ M ) r 4 , P 22 = - (ζλ m + 2 (λ M + 2µ M ))x 2 4π (λ m + 2µ m ) (λ M + 2µ M ) r 2 + (λ M + µ M )x 2 x 2 1 -x 2 2 4π µ m (λ M + 2µ M ) r 4 . (67) 
4.1.3.5 Classical linear elasticity (L c → ∞) -upper bound microscopic stiffness

As L c → ∞ we have also that ℓ j → ∞ (j = 1, 2), and in this case we obtain that (see Appendix A.5)

u 1 = (λ m + µ m ) 4π µ m (λ m + 2µ m ) x 1 x 2 r 2 + (κ e -µ c ) 4π (µ c + µ e ) (κ e + µ e ) x 1 x 2 r 2 , u 2 = (λ m + µ m ) 4πµ m (λ m + 2µ m ) x 2 2 r 2 - (λ m + 3µ m ) 4π µ(λ m + 2µ m ) ln r + (κ e -µ c ) 4π (µ c + µ e ) (κ e + µ e ) x 2 2 r 2 (68) 
µ c + κ e + 2µ e 4π (µ c + µ e ) (κ e + µ e ) ln r .

The first two terms in the displacements [START_REF] Sandru | On some problems of the linear theory of the asymmetric elasticity[END_REF] are the classical linear elasticity terms (see [START_REF] Rizzi | Analytical solution of the uniaxial extension problem for the relaxed micromorphic continuum and other generalized continua (including full derivations)[END_REF]) but with the micro Lamé moduli (µ m , κ m ) instead of the macro ones. The other two terms depend also upon the rest of the parameters. Furthermore, we obtain the components of the micro-distortion tensor P depending only on the microscopic moduli (µ m , κ m ) as

P 11 = κ m x 2 (x 2 2 -x 2 1 ) 4π µ m (κ m + µ m )r 4 , P 12 = - κ m x 1 (x 2 2 -x 2 1 ) 4π µ m (κ m + µ m )r 4 , P 21 = - x 1 (x 2 1 (κ m + 2µ m ) + x 2 2 (3κ m + 2µ m )) 4π µ m (κ m + µ m )r 4 , P 22 = x 2 x 2 1 (κ m -2µ m ) -x 2 2 (κ m + 2µ m ) 4πµ m (κ m + µ m ) r 4 . (69) 
It is worth noting that letting additionally µ e → ∞ in the displacements (68) the last terms vanish and we finally derive the classical solution involving now exclusively the micro-moduli

u 1 = (λ m + µ m ) 4π µ m (λ m + 2µ m ) x 1 x 2 r 2 , u 2 = (λ m + µ m ) 4πµ m (λ m + 2µ m ) x 2 2 r 2 - (λ m + 3µ m ) 4π µ(λ m + 2µ m ) ln r (70) 
and the continuum rotation is

ϑ 3 = - x 1 4 π µ m r 2 . (71) 

Concentrated couple

We consider again a body occupying the full plane under plane-strain conditions. The body is now acted upon by a concentrated line unit couple situated at the origin of the coordinate system. In this case, we have

f = 0 0 , M = 0 1/2 -1/2 0 δ(x 1 )δ(x 2 ) , (72) 
such that M 12 -M 21 = 1 • δ(x 1 )δ(x 2 ).
Applying the Fourier transform on the equilibrium equations ( 29) and solving the non-homogeneous algebraic system yields the following solutions for the transformed field variables

u 1 = - iξ 2 2µ M ξ 2 + iξ 2 2µ e ℓ -2 2 + ξ 2 , u 2 = iξ 1 2µ M ξ 2 - iξ 1 2µ e ℓ -2 2 + ξ 2 , (73) 
P 11 = -P 22 = - ξ 1 ξ 2 2µ m ξ 2 , P 12 = - ξ 2 2 2µ m ξ 2 - 1 aµ M L 2 c ℓ -2 2 + ξ 2 , P 21 = ξ 2 1 2µ m ξ 2 + 1 aµ M L 2 c ℓ -2 2 + ξ 2 .
Note that the solution does not depend upon the parameters λ e and λ m , which is to be expected due to the dominant shear character of the loading. Inverting the transformed fields we obtain the following solution for the kinematical fields

u 1 = - x 2 4πr 2 1 µ M - 1 µ e r ℓ 2 K 1 r ℓ 2 , u 2 = x 1 4πr 2 1 µ M - 1 µ e r ℓ 2 K 1 r ℓ 2 , P 11 = -P 22 = x 1 x 2 2π µ m r 4 , (74) 
P 12 = x 2 2 -x 2 1 4π µ m r 4 - 1 2π a µ M L 2 c K 0 r ℓ 2 , P 21 = x 2 2 -x 2 1 4π µ m r 4 + 1 2π a µ M L 2 c K 0 r ℓ 2 .
The micro-rotation is given as

ϑ 3 = 1 2 (P 21 -P 12 ) = 1 2π a µ M L 2 c K 0 r ℓ 2 . ( 75 
)
The stresses and higher order stresses can be derived from the constitutive relations [START_REF] Koiter | Couple-stress in the theory of elasticity[END_REF].

Regarding the asymptotic behaviour of the kinematical fields, we remark that as r → 0 the displacements behave as r -1 , the micro-distortions P behave as r -2 , and the micro-rotation exhibits a logarithmic singularity due to the K 0 -Bessel function. In particular, the modulus of the displacement vector depends (in all theories) only upon the radial distance r and there is no angular dependence (see Figure 2 and Figure 3). Interestingly, according to the equations [START_REF] Koiter | Couple-stress in the theory of elasticity[END_REF], the stress components (σ 11 , σ 22 ) are bounded at the point of application of the concentrated couple whereas the shear stresses (σ 12 , σ 21 ) exhibit a logarithmic singularity as r → 0. Finally, the higher order moment stresses (m 13 , m 23 ) behave as O(r -1 ) at the origin. All quantities converge to the classical linear elasticity solution (c.f. section 4.2.2.3) as we move away from the concentrated load.

The pure relaxed micromorphic continuum with symmetric force stress tensor

The special case of a pure relaxed micromorphic continuum with symmetric force stress tensor is derived by setting µ c = 0 (ℓ 2 → ∞). In this case, we have according to (37) that (see Appendix A.5)

lim µc→0 1 ℓ 2 = lim µc→0 4µ e µ c aµ M (µ e + µ c ) = 0, lim µc→0 1 ℓ 2 K 1 r ℓ 2 = 1 r lim µc→0 r ℓ 2 K 1 r ℓ 2 = 1 r , (76) 
since lim

z→0 z K 1 (z) = 1 (cf. ( 161 
)
) and employing [START_REF] Sky | A hybrid H 1 × H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear[END_REF] together with [START_REF] Gourgiotis | The Hertz contact problem in couple-stress elasticity[END_REF], we finally derive

u 1 = - x 2 4π µ m r 2 , u 2 = x 1 4π µ m r 2 , tr(Du) = div u = 0 , (77) 
P 11 = -P 22 = x 1 x 2 2π µ m r 4 , P 12 = x 2 2 -x 2 1 4π µ m r 4 + 1 2π a µ M L 2 c (ln r + b), P 21 = x 2 2 -x 2 1 4π µ m r 4 - 1 2π a µ M L 2 c (ln r + b),
where the last two expressions for P 12 and P 21 were derived by taking the limit µ c → 0 directly in the transformed expressions of the pertinent field variables: Indeed, in the case of a concentrated couple (72), the Fourier system (33) has a solution of the form:

u 1 = iξ 2 2µ m ξ 2 , u 2 = iξ 1 2µ m ξ 2 , P 11 = -P 22 = ξ 1 ξ 2 2µ m ξ 2 , P 12 = - 2µ m + aµ M L 2 c µ M ξ 2 2 2 aµ M L 2 c µ m µ M ξ 2 , P 21 = 2µ m + aµ M L 2 c µ M ξ 2 1 2 aµ M L 2 c µ m µ M ξ 2 . ( 78 
)
Using the results in [START_REF] Mindlin | Stress functions for a Cosserat continuum[END_REF] we can readily invert the above expressions and obtain the results in [START_REF] Sternberg | On the concept of concentrated loads and an extension of the uniqueness theorem in the linear theory of elasticity[END_REF]. Finally, the micro-rotation is given as

ϑ 3 = - 1 2π a µ M L 2 c (ln r + b). (79) 
According to [START_REF] Thompson | Note on the integration of the equations of equilibrium of an elastic solid[END_REF], the constant term related to the Euler's constant b corresponds to a constant (rigid) micro-rotation and does not affect the stresses or higher order stresses in [START_REF] Koiter | Couple-stress in the theory of elasticity[END_REF], therefore it can be ignored.

It is interesting to note that the displacement field in the pure relaxed micromorphic case [START_REF] Sternberg | On the concept of concentrated loads and an extension of the uniqueness theorem in the linear theory of elasticity[END_REF] does not converge to the classical macroscopic elasticity one (see [START_REF] Weitsman | Two dimensional singular solutions in infinite regions with couple-stresses[END_REF]) far away from the concentrated couple. Indeed, the former has in the denominator µ m and the latter µ M which means that limits are different as r → ∞. This is not the case however with the complete relaxed micromorphic model (with µ c > 0) where, as r → ∞ the Bessel functions in (77) 1 and (77) 2 tend to zero and the classical linear elasticity solution is restored.

It is intriguing to see that setting µ c = 0 in the concentrated couple problem acts like a zoom into the microstructure and activates the microscale shear modulus µ m in the displacement solution, which is not the case in the concentrated force problem.

Limiting cases

From the general relaxed micromorphic solution we can derive the fundamental solutions in other generalized continua as singular limiting cases. 

Micro-stretch, micropolar and couple stress elasticity

As µ m → ∞ we have that: µ e → µ M and

u 1 = - x 2 4π µ M r 2 1 - r ℓ 2 K 1 r ℓ 2 , u 2 = x 1 4π µ M r 2 1 - r ℓ 2 K 1 r ℓ 2 , P 11 = P 22 = 0, P 12 = -P 21 = - µ c + µ e 8π µ c µ e ℓ 2 2 K 0 r ℓ 2 . ( 80 
)
This is the micro-stretch solution. Further, if we identify µ c = α the solution transforms to the micropolar solution with the characteristic length given by ( 60) [START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF]58]. Next, taking µ c → ∞ we derive the couple stress solution [START_REF] Hattori | An isogeometric boundary element formulation for stress concentration problems in couple stress elasticity[END_REF][START_REF] Weitsman | Two dimensional singular solutions in infinite regions with couple-stresses[END_REF] which is identical in form with the micro-stretch/micropolar solution but with the characteristic length given by [START_REF] Rizzi | Analytical solution of the cylindrical torsion problem for the relaxed micromorphic continuum and other generalized continua (including full derivations)[END_REF]. It is worth noting that in the micro-stretch, micropolar, and couple stress theories the displacement field remains bounded and in particular becomes zero at the point of application of the concentrated couple (i.e. r → 0) which is in marked contrast with the respective relaxed micromorphic behaviour. As ℓ 2 → ∞ all the fields become null. Finally, the micro-rotation is given by ( 75) in all cases and exhibits a logarithmic singularity at the origin. As we move away from the load all solutions converge to the classical elasticity solution (section 4.2.2.3).

Classical linear elasticity (L c → 0) -lower bound macroscopic stiffness

As L c → 0 at µ c > 0 we have that ℓ 2 → 0, and also (see Appendix A.5)

lim ℓ2→0 ℓ -2 2 K 0 r ℓ 2 = 0 , lim ℓ2→0 1 ℓ 2 K 1 r ℓ 2 = 0. ( 81 
)
Accordingly, from [START_REF] Sky | A hybrid H 1 × H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear[END_REF], we obtain the standard classical elasticity result for the displacements4 

u 1 = - x 2 4π µ M r 2 , u 2 = x 1 4π µ M r 2 , ( 82 
)
see Fig. 2. In addition,

P 11 = -P 22 = x 1 x 2 2π µ m r 4 , P 12 = P 21 = x 2 2 -x 2 1 4π µ m r 4 . ( 83 
)

Classical linear elasticity (L c → ∞) -upper bound microscopic stiffness

As L c → ∞ (ℓ 2 → ∞) we have that lim ℓ2→∞ ℓ -2 2 K 0 r ℓ 2 = 0 , lim ℓ2→∞ 1 ℓ 2 K 1 r ℓ 2 = 1 r . ( 84 
)
Accordingly, from [START_REF] Sky | A hybrid H 1 × H(curl) finite element formulation for a relaxed micromorphic continuum model of antiplane shear[END_REF], we obtain the classical elasticity solution for the displacements but now with

µ m instead of µ M u 1 = - x 2 4π µ m r 2 , u 2 = x 1 4π µ m r 2 .
(85)

In addition, we derive again

P 11 = -P 22 = x 1 x 2 2π µ m r 4 , P 12 = P 21 = x 2 2 -x 2 1 4π µ m r 4 , (86) 
also only depending on the microscopic modulus µ m .

Fundamental solution for an isotropic gauge-invariant incompatible elasticity model in plane strain

We consider the gauge-invariant incompatible linear elasticity model [START_REF] Knees | A global higher regularity result for the static relaxed micromorphic model on smooth domains[END_REF][START_REF] Lazar | Is incompressible elasticity a conformal field theory?[END_REF][START_REF] Neff | The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations[END_REF]]

C e sym e + C c skew e + µ M L 2 c Curl (L c Curl e) = M, e × n| ∂Ω = 0 . ( 87 
)
where e := Du -P : Ω ∈ R 3 → R 3×3 is the incompatible elastic distortion, and C e , C c , L are fourth order tensors as in ( 1), while M is similar as in [START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF]. Due to Div Curl = 0, smooth solutions of ( 87 (91) can be algebraically inverted, i.e. we can express e = G(σ) if µ e , µ c , κ e > 0, see ( [START_REF] Neff | The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations[END_REF]). Here, we will consider the fundamental solution to (90) in plane strain, but we allow for µ c ≥ 0. The plane strain version of (90) is obtained by considering the following energy, connected to (90), namely

Ω µ e ∥dev sym e∥ 2 + κ e 2 tr 2 ( e) (92) 
+ µ M L 2 c 2 a 1 ∥dev sym Curl e∥ 2 + a 2 ∥skew Curl e∥ 2 + a 3 3 tr 2 (Curl e) -⟨M, e⟩ dx → min e.
As can be seen, letting L c → ∞ while assuming a 1 , a 2 , a 3 > 0 implies Curl e ≡ 0 and therefore e = D u on contractible domains. We will consider (92) in an unbounded domain with given M = δ × M . Similarly, as in section 3, the plane strain energy becomes

Ω µ e dev 2 sym e ♯ 2 + κ e 2 tr 2 ( e ♯ ) + µ M L 2 c a ∥Curl 2D e ♯ ∥ 2 -⟨M, e ♯ ⟩ dx → min e ♯ . ( 93 
)
and we obtain the plane strain equations in components (94)

- 1 2 µ M L 2 c (a 1 + a 2 ) (e
We consider again the case of a concentrated line unit couple situated at the origin of the coordinate system. In this case, the components of the body volume moment M are given by [START_REF] Sky | On [H 1 ] 3×3 ,[H(curl)] 3 and H(sym Curl) finite elements for matrix-valued Curl problems[END_REF]. Following an analogous Fourier transform analysis as in the previous cases we derive the fundamental solution for a concentrated couple in gauge-invariant incompatible elasticity. The incompatible elastic distortions read then

e 11 = -e 22 = - x 1 x 2 4π(µ c + µ e )ℓ 2 2 r 2 K 2 r ℓ 2 , e 12 = µ e 8π µ c (µ c + µ e )ℓ 2 2 K 0 r ℓ 2 + x 2 1 -x 2 2 8π(µ c + µ e )ℓ 2 2 r 2 K 2 r ℓ 2 , e 21 = - µ e 8π µ c (µ c + µ e )ℓ 2 2 K 0 r ℓ 2 + x 2 1 -x 2 2 8π(µ c + µ e )ℓ 2 2 r 2 K 2 r ℓ 2 . ( 95 
)
It is interesting to note that the solution does not depend upon the elastic bulk modulus κ e and that the elastic distortion tensor for the case of a concentrated couple is traceless (i.e. tr( e ♯ ) = e 11 + e 22 = 0).

Numerical results and discussion

We will now present some results regarding the behaviour of the relaxed micromorphic solution near the application of the applied loads. A comparison of the results with other well known generalized continua obtained as limiting cases of the general relaxed micromorphic model will also be performed.

The relaxed micromorphic continua under plane strain conditions can be fully described by four dimensionless parameters. In order to have a unified treatment for all the above cases, the following dimensionless quantities g i (i = 1, 2, 3, 4) are introduced:

µ e = g 1 µ M , µ c = g 2 µ M , κ e = g 3 µ M , κ M = g 4 µ M . (96) 
In view of (40), we have that: g 1 > 1, g 2 ≥ 0, and g 3 > g 4 > 0. We also recall that λ i = κ i -µ i with i ∈ {e, m, M} and using (96) that

µ m = g 1 g 1 -1 µ M , κ m = g 3 g 3 -g 4 κ M . (97) 
Further, for comparison purposes all distances from the origin are normalized with respect to the characteristic length ℓ 2 of the relaxed micromorphic model. Results for the cases of a concentrated force and concentrated couple will be shown separately.

Concentrated force

Figure 4 shows contours of the normalized displacements and micro-rotation due to a concentrated line force acting at the origin for a relaxed micromorphic material characterized by (g 1 = 1.2, g 2 = 3, g 3 = 5, g 4 = 3). This implies, according to (97), that µ m = 6µ M and κ m = 2.5κ M . A comparison of the relaxed micromorphic continua with other generalized continua that can be obtained as limiting cases is shown in Figure 5. In particular, in Fig. 5, the normalized displacement u2 µM F and the normalized micro-rotation ϑ3 µMℓ2 F (F = 1) are plotted along the positive x 1 -axis (i.e. for x 2 = 0) . The u 2 displacement has a logarithmic singularity at the origin in all theories. It is observed that deviations from the classical elasticity solution (dashed line) are more noticeable within a range of |x 1 | ≤ 2ℓ 2 from the point of application of the concentrated force. All solutions converge quickly to the classical elasticity solution as we move away from the origin. It is also shown that the classical elasticity and the couple stress elasticity serve as the upper and lower bounds for the solutions. In fact, couple stress elasticity predicts more pronounced size effects as compared to the other generalized continuum theories. The micropolar solution is in-between the classical and the couple stress solution. Also, we note that the relaxed micromorphic and the pure relaxed micromorphic are closer to the classical elasticity one.

Regarding the behaviour of the micro-rotation we remark that the classical elasticity and the relaxed micromorphic elasticity predict unbounded micro-rotation at the origin which is in marked contrast with couple stress, micropolar, and micro-stretch theories that predict zero micro-rotation at the origin. In all theories the micro-rotation decays as O(x -1 1 ) when x 1 → ∞. However, as it can be seen from Figure 5b, in the pure relaxed micromorphic model and in the classical elasticity model with L c → ∞ (upper bound microscopic stiffness) the solution does not converge in the standard classical elasticity solution (L c → 0) as all other theories do. 

Concentrated couple

Figure 6 shows contours of the normalized displacements and micro-rotation for the case of a concentrated couple. In this case, only the parameters g 1 and g 2 need to be specified. A comparison of the relaxed micromorphic continua with other generalized continua obtained as limiting cases is also shown in Figure 7. In particular, in Fig. 7, the normalized modulus of the displacement vector ∥u∥ is plotted against the radial distance r. The material parameters for the relaxed micromorphic material are: g 1 = 3 and g 2 = 2 (which implies µ m = 1.5µ M ). All distances are normalized with respect to characteristic length of the relaxed micromorphic theory ℓ 2 .

It is noted that ∥u∥ has a Cauchy type singularity O(r -1 ) in the relaxed micromorphic theory, in the pure relaxed micromorphic, and in the classical elasticity theory (L c → 0 and L c → ∞) but the strengths of the singularities are different. In marked contrast, ∥u∥ is bounded and becomes zero at the origin in micro-stretch, micropolar and couple stress theory. As it was shown analytically (see sections 4.2.1 and 4.2.2.3), only the pure relaxed micromorphic solution and the classical elasticity solution with L c → ∞ (green and dashed-gray lines in Fig. 7) do not converge to the standard classical elasticity (L c → 0) as r → ∞. This is to be expected since the latter solutions depend only upon the micro shear modulus µ m . 

M

along the positive x1-axis due to a concentrated unit line couple (M = 1) in various generalized continuum theories. The relaxed micromorphic material is characterized by g1 = 3 and g2 = 2. The gap between the green and black line at the right is due to µm > µM. We note the fundamental qualitative difference between the relaxed micromorphic model and the other generalized continua (microstretch, micropolar, couple stress) in their behaviour near to the singularity.

Finally, a comparison of the incompatible elastic distortions e 12 = u 1,2 -P 12 and e 21 = u 2,1 -P 21 in the relaxed micromorphic theory and the gauge invariant dislocation model is shown in Figure 8. It is observed that as g 1 increases as compared to g 2 (i.e. µ e ≫ µ M and µ e ≫ µ c ), the solutions for the gauge invariant dislocation model and the relaxed micromorphic model converge. A.1 A true two-scale model: the relaxed micromorphic limit for L c → 0 and L c → ∞ in three dimensions

C micro L c → ∞ relaxed micro- morphic (u, P ) ∈ R 3 ×R 3×3 L c → 0 linear Cauchy elasticity with C macro µ micro → ∞ κ micro < ∞ divergent: un- bounded stiffness L c → ∞ micro-stretch (u, ω 1 + A) ∈ R 3 × (R • 1+so (3)) 
L c → 0 linear Cauchy elasticity with C macro κ micro → ∞ divergent: un- bounded stiffness L c → ∞ Cosserat (micropolar) (u, A) ∈ R 3 ×so (3) 
The relaxed micromorphic model reduces to a classical Cauchy elasticity model for both Lc → 0 and Lc → ∞ but with two different well-defined stiffnesses, Cmacro and C micro , respectively. The expressions of these stiffnesses in the isotropic case are presented in the next two sections for the convenience of the reader.

A.1.1 Limit for L c → 0: lower bound macroscopic stiffness C macro For the limit Lc → 0, the equilibrium equations ( 8 (99)

The equation ( 99) is now algebraic in P . Due to the orthogonality of the "sym/skew" decomposition, the equation (99) requires that 2µc skew(Du

-P ) = skew M , (100) 
2µe sym(Du -P ) + λetr(Du -P )1 -2µ micro sym P -λ micro tr (P ) 1 = sym M .

Since the "sym" operator is not orthogonal to the "tr" operator, we further decompose "sym" into "dev sym" and "tr sym" so that 

With further manipulations and thanks to the orthogonality of the operator "skew", "dev sym", and "tr", the system (101) requires that where f * is defined as

f * := f -Div µmacro µ micro dev sym M + skew M + 1 3 κmacro κ micro tr(M )1 . (106) 
It is noted that f * depends on skew M without any multiplicative elastic coefficient. This limit with a concentrated double body force may be instrumental in order to identify the micro parameters. 

where κmacro is the macroscopic bulk modulus. Relations (107) are the specialization of relation [START_REF] Bigoni | Folding and faulting of an elastic continuum[END_REF] to the isotropic case [START_REF] Barbagallo | Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics[END_REF].

In order to have λmacro = λ micro = 0, the only possible condition is λ micro = λe = 0. Note that the macroscopic stiffness Cmacro (here µmacro, κmacro) is uniquely identified from classical homogenization techniques [START_REF] Sarhil | Size-effects of metamaterial beams subjected to pure bending: on boundary conditions and parameter identification in the relaxed micromorphic model[END_REF].

A.1.2 Limit for L c → ∞: upper bound microscopic stiffness C micro

The minimization of an energy functional that incorporates µ M L 2 c ∥CurlP ∥ 2 , for the limit Lc → ∞, requires CurlP = 0, and this implies that the micro-distortion tensor P has to reduce to a gradient field P → Dv on a simply connected domain such that 

Curl Dv = 0 ∀ v ∈ [C ∞ (Ω)] 3 , (108) 
where the constraint M n = 0 is required on the boundary, with n the normal to the boundary. The term on the left-hand side of equation ( 113) can be substituted with the right-hand side of (112) and, while keeping the equation (112), we can re-write the system of equations ( 112 

which is an equilibrium equation of the classical elasticity type with a microscopic stiffness given by µ micro and λ micro and a body force vector equal to Div M .

A. Therefore Ce → +∞ gives size-independent linear elasticity with stiffness Cmacro, as expected. Note that, in contrast, the same limit of Ce → +∞ would lead to a gradient elasticity formulation for the classical Eringen-Mindlin micromorphic model [START_REF] Agostino | The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of parameters[END_REF] .

η)) = 0 ⇐⇒ D(u -η) = A(x) , A ∈ so(3) =⇒ 0 = Curl D(u -η) = CurlA(x) =⇒ A(x) = A "rigidity"[54] (119 
A.2 A true two-scale model: the relaxed micromorphic model limit for L c → 0 and L c → ∞ in plane strain

The relaxed micromorphic model reduces to a classical Cauchy model for both Lc → 0 and Lc → ∞ but with two different stiffnesses, Cmacro and C micro , respectively. The expressions of such stiffnesses are presented in the next two sections for the plane strain problem.

A.2.1 Limit for L c → 0: lower bound macroscopic stiffness C macro For the limit Lc → 0, the equilibrium equations ( 27) reduce to Div 2µe sym(D u ♯ -P

♯ ) + 2µc skew(D u ♯ -P ♯ ) + λetr(D u ♯ -P ♯ )1 2 = f , (121) 2µe sym 
(D u ♯ -P ♯ ) + 2µc skew(D u ♯ -P ♯ ) + λetr(D u ♯ -P ♯ )1 2 -2µ micro sym P ♯ -λ micro tr( P ♯ )1 2 = M .
The equation (121) 2 is now algebraic in P ♯ . Thanks to the orthogonality of the "sym/skew" decomposition, the equation (121

) 2 requires that 2µc skew(D u ♯ -P ♯ ) = sym M , (122) 
2µe sym(D u ♯ -P ♯ ) + λetr(D u ♯ -P ♯ )1 2 -2µ micro sym P ♯ -λ micro tr( P ♯ )1 2 = skew M .

Since the "sym" operator is not ortogonal to the "tr" operator, we further decompose "sym" into "dev sym" and "tr sym" so that

2µc skew(D u ♯ -P ♯ ) = skew M , 2µe dev 2 sym(D u ♯ -P ♯ ) + µe tr(D u ♯ -P ♯ )1 2 + λetr(D u ♯ -P ♯ )1 2 (123) 
-2µ micro dev 2 sym P ♯ -µ micro tr ( P ♯ )1 2 -λ micro tr( P ♯ )1 2 = sym M .

note that "tr sym" is the same as "tr". We also recall here the definition of the volumetric part, the deviatoric part, and the skew-symmetric parts in plane strain case 2D volumetric part := 1 2

tr( P ♯ )1 2 , 1 2 = 1 0 0 1 , 2D deviatoric symmetric part := P ♯ + P ♯ T 2 - 1 2 tr( P ♯ )1 2 = dev 2 sym P ♯ , 2D skew symmetric part := P ♯ -P ♯ T 2 . ( 124 
)
With further manipulations and thanks to the orthogonality of the operator "skew", "dev sym", and "tr", the system (123) requires that

2µc skew(D u ♯ -P ♯ ) = skew M , µe dev 2 sym(D u ♯ -P ♯ ) -µ micro dev 2 sym P ♯ = dev sym M , (125) 
(µe + λe) tr(D u ♯ -P ♯ )1 2 -(µ micro + λ micro ) tr ( P ♯ )1 2 = 1 2 tr( M )1 2 .
From equation (125) we can evaluate the expressions for skew P ♯ , dev sym P ♯ , and tr( P ♯ ) as

skew D u ♯ - 1 2µc skew M = skew P ♯ , µe µe + µ micro dev 2 sym D u ♯ - 1 2(µe + µ micro ) dev 2 sym M = dev 2 sym P ♯ , (126) 
κe κe + κ micro tr D u ♯ - 1 2( κe + κ micro )
tr M = tr( P ♯ ) .

where κe = µe + λe and κ micro = µ micro + λ micro are the plane strain bulk moduli. Substituting back the relations (126) in the equation (121) 1 while also applying the "dev sym", and "tr" decomposition, we have

Div 2µe dev sym D u ♯ - µe µe + µ micro D u ♯ + κe tr D u ♯ - κe κe + κ micro D u ♯ 1 2 = f * , ⇐⇒ Div 2 µe µ micro µe + µ micro dev 2 sym D u ♯ + κe κ micro κe + κ micro tr D u ♯ 1 2 = f * , (127) ⇐⇒ Div 2µmacro dev 2 sym D u ♯ + κmacro tr(D u ♯ )1 2 = f * .
where f * is defined as

f * := f -Div µmacro µ micro dev 2 sym M + skew M + 1 2 κmacro κ micro tr( M )1 2 . ( 128 
)
It is noted that f * depends on skew M without any multiplicative elastic coefficient because of the choice of an isotropic constitutive law (an isotropic second order skew-symmetric tensor depends on one coefficient). This limit with a concentrated double body force may be instrumental in order to identify the micro parameters. The equation (127) where κmacro = µmacro + λmacro. In order to have λmacro = λ micro = 0, the only possible condition is again λ micro = λe = 0.

A.2.2 Limit for L c → ∞: upper bound microscopic stiffness C micro

The minimization of an energy functional that incorporate µ M L 2 c ∥Curl P ♯ ∥ 2 , for the limit Lc → ∞, requires Curl P ♯ = 0, and this implies that the micro-distortion tensor P has to reduce to a gradient field P ♯ → D v ♯ on a simply connected domain and The equilibrium equations are now obtained by requiring

Curl D v ♯ = 0 ∀ v ♯ ∈ [C ∞ (Ω)] 3 , (130) 
δI u ♯ = ⟨ f , δ u ♯ ⟩ , ∀ δ u ♯ and δI v ♯ = ⟨ M , Dδ v ♯ ⟩ , ∀ δ v ♯ . ( 134 
)
where the contributions on the right sides are the virtual work of the external forces f (classical body force) and M (nonsymmetric second order double body force tensor), and the equilibrium equations read 

which is an equilibrium equation of the classical elasticity type with a micro stiffness given by µ micro and λ micro and a body force vector equal to Div M .

A.3 Some particular cases of the relaxed micromorphic model In components we have (λe + 2µe) (u 

where we used the abbreviation µm = µ micro . The conditions for existence and uniqueness for the model in (140) are µe > 0 , µ micro > 0 , µ M L 2 c a > 0 , µc ≥ 0 .

For µc ≡ 0, in order to guarantee existence and uniqueness, one needs tangential boundary conditions for P , while for µc > 0, one does not need boundary conditions for P in order to guarantee existence and uniqueness. 

  other generalized continua (Eringen-Mindlin, Cosserat, second gradient)

a 3 3 tr (Curl P ) 1 ,

 31 where σ is the non-symmetric elastic force stress tensor, m is the non-symmetric moment tensor, f is the standard body force vector and M is the body volume moment tensor. The homogeneous Neumann and the Dirichlet boundary conditions are Neumann:t := σ n = 0 , and η := m × n = 0 ,

  to (9), are accompanied by the following constitutive plane strain equations σ 11 = (λ e + 2µ e )u 1,1 + λ e u 2,2 -(λ e + 2µ e )P 11 -λ e P 22 , σ 22 = (λ e + 2µ e )u 2,2 + λ e u 1,1 -(λ e + 2µ e )P 22 -λ e P 11 , σ 12 = (µ e + µ c )u 1,2 + (µ e -µ c )u 2,1 -(µ e + µ c )P 12 -(µ e -µ c )P 21 , σ 21 = (µ e + µ c )u 2,1 + (µ e -µ c )u 1,2 -(µ e + µ c )P 21 -(µ e -µ c )P 12 , m 13 = -µ M L 2 c a (P 11,2 -P 12,1 ) , m 23 = -µ M L 2 c a (P 21,2 -P 22,1 ) .

Figure 2 :Figure 3 :

 23 Figure 2: Inhomogeneous displacement solution for the concentrated couple. Circles are rotated and expanded by the deformation around zero.

3 ( 90 )+ 2µ M L 2 c

 3902 ) satisfy the additional balance equation Div C e sym e + C c skew e =:σ = Div M =: f . (88) Formally, (87) and (88) appear as Euler-Lagrange equations of (1) with C micro ≡ 0. Substituting a compatible elastic distortion, e = Du, we retrieve from (87) linear Cauchy elasticity with stiffness tensor C e Div C e sym Du = f , Du × n| ∂Ω = 0 .(89)Observe that the boundary value problem (87) is still well-posed in terms of the elastic distortion e, due to the generalized incompatible Korn's inequality[START_REF] Gmeineder | Korn-Maxwell-Sobolev inequalities for general incompatibilities[END_REF]. In the isotropic case (87) reduces to 2µ e dev sym e + 2µ c skew e + κ e tr(e) 1 Curl a 1 dev sym Curl e + a 2 skew Curl e + a 3 3 tr (Curl e) 1 = M , and this is the second balance equation from (8) 2 for µ m → 0, κ m → 0 and therefore σ micro ≡ 0. Fundamental solutions to (90) in the three-dimensional case have been obtained by Lazar[START_REF] Lazar | The gauge theory of dislocations: static solutions of screw and edge dislocations[END_REF] under the constitutive assumption of a strictly positive Cosserat couple modulus, µ c > 0. The latter condition entails that σ = 2µ e dev sym e + 2µ c skew e + κ e tr(e) 1 3

Figure 4 : 2 F

 42 Figure 4: Contours of the normalized displacements u i µ M F and micro-rotation ϑ 3 µ M ℓ 2 F due to a concentrated unit line force (F = 1) acting at the origin of relaxed micromorphic medium. The material is characterized by g1 = 1.2, g2 = 3, g3 = 5 and g4 = 3.

Figure 5 : 2 F

 52 Figure 5: Variation of the normalized displacement u 2 µ M F and the normalized micro-rotation ϑ 3 µ M ℓ 2 F along the positive x1-axis due to a concentrated unit line force (F = 1) in various generalized continuum theories. The relaxed micromorphic material is characterized by g1 = 1.2, g2 = 3, g3 = 5 and g4 = 3.
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 6 Figure 6: Contours of the normalized displacements and micro-rotation due to a concentrated unit line couple (M = 1) acting at the origin. The relaxed micromorphic material is characterized by g1 = 3 and g2 = 2.
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 7 Figure 7: Variation of the normalized modulus of the displacement vector ∥u∥µ M ℓ 2

Figure 8 :

 8 Figure 8: Variation of the normalized incompatible elastic shear distortions along the positive axis x1-axis due to a concentrated unit line couple (M = 1) in the relaxed micromorphic theory and the gauge invariant dislocation model for g2 = 2 and various values of the parameter g1.

Figure 9 :

 9 Figure9: Tree of the limit cases of the relaxed micromorphic model in statics. These limits apply strictly only for weak solutions (u, P ) ∈ H 1 × H(Curl). Here, for the considered singular solutions certain artifacts may appear, notably in the concentrated couple case.

  ) reduce to Div 2µe sym(Du -P ) + 2µc skew(Du -P ) + λetr(Du -P )1 = f , (98) 2µe sym(Du -P ) + λetr(Du -P )1 + 2µc skew(Du -P ) -2µ micro sym P -λ micro tr (P ) 1 = M .

3 µ 1 ,

 31 2µc skew(Du -P ) = skew M , 2µe dev sym(Du -P ) + 2 3 µe tr(Du -P )1 + λetr(Du -P )1 (101)-2µ micro dev sym P -2 micro tr (P )1 -λ micro tr (P ) 1 = dev sym M + 1 3 tr (M )1 , note that "tr sym" is the same as "tr". We also recall here the definition of the volumetric part, the deviatoric part, and the skew-symmetric parts in the 3D case 3D volumetric part :3D skew symmetric part := P -P T 2 .

1 .where κe = 2µe+3λe 3 and κ micro = 2µ micro +3λ micro 3 are

 133 2µc skew(Du -P ) = skew M , 2µe dev sym(Du -P ) -2µ micro dev sym P = dev sym M , From equation (103) we can evaluate the expressions for skew P , dev sym P , and tr(P ) individually as skew Du -1 2µc skew M = skew P , µe µe + µ micro dev sym Du -1 2(µe + µ micro ) sym M = dev sym P , (104) κe κe + κ micro tr Du -1 3(κe + κ micro ) tr(M ) = tr(P ) , the 3D-elastic and micro bulk modulus, respectively. The contribution of the body volume moment M can be incorporated in the classical body volume force f * , but f * is now dependent on the elastic coefficients. Substituting back the relations (104) in the equation (98) while also applying the "dev sym", and "tr" decomposition, allows us to write Div 2µe dev sym Du -µe µe + µ micro Du + κe tr Du -κe κe + κ micro Du 1 = f * , ⇐⇒ Div 2 µe µ micro µe + µ micro dev symDu + κe κ micro κe + κ micro tr (Du) 1 = f * , (105) ⇐⇒ Div 2µmacro dev symDu + κmacro tr (Du) 1 = f * .

  thus asserting finite energies of the relaxed micromorphic model for arbitrarily large characteristic length values Lc. The corresponding strain energy density in terms of the reduced kinematics {u, v} : Ω → R 3 now readsW (Du, Dv) = µe ∥sym(Du -Dv)∥ 2 + µc ∥skew(Du -Dv)∥ 2 + λe 2 tr 2 (Du -Dv) + µ micro ∥sym Dv∥ 2 + λ micro 2 tr 2 (Dv) . (109)The first variation of the strain energy I = Ω W dx with respect to the two independent vector fields u and v leads to δI u = Ω 2µe ⟨sym(Du -Dv), Dδu⟩ + 2µc ⟨skew(Du -Dv), Dδu⟩ + λe⟨tr(Du -Dv)1, Dδu⟩ + ⟨f, δu⟩ dx , δI v = Ω -2µe ⟨sym(Du -Dv), Dδv⟩ -2µc ⟨skew(Du -Dv), Dδv⟩ -λe⟨tr(Du -Dv)1, Dδv⟩ (110) + 2µ micro ⟨sym P, Dδv⟩ + λ micro ⟨tr(Dv)1, Dδv⟩ dx . The equilibrium equations are now obtained by requiring δI u = ⟨f, δu⟩ , ∀ δu and δI v = ⟨M, Dδv⟩ , ∀ δv . (111) where the contributions on the right sides are the virtual work of the external forces f (classical body force) and M (nonsymmetric second order double body force tensor), and the equilibrium equations read Div 2µe sym(Du -Dv) + 2µc skew(Du -Dv) + λe tr(Du -Dv)1 = f , (112) -Div 2µe sym(Du -Dv) + 2µc skew(Du -Dv) + λe tr(Du -Dv)1 +Div 2µ micro sym Dv + λ micro tr(Dv)1 = Div M ,

  )-(113) as Div 2µe sym(Du -Dv) + 2µc skew(Du -Dv) + λe tr(Du -Dv)1 = f , (114) Div 2µ micro sym Dv + λ micro tr (Dv)1 = f + Div M , The only case in which v = u is an admissible solution is if the classical body forces f are zero. In this case equations (114) reduces to Div σ micro = Div 2µ micro sym Du + λ micro tr(Du)1 = Div M ,

2 (

 2 ) Du(x) -Dη(x) = A ∈ so(3) =⇒ P = Dη = Du -A and Curl P = 0 . Du) dx → min u .

2 + 2 + λe 2 tr 2 (

 222 thus asserting finite energies of the relaxed micromorphic model for arbitrarily large characteristic length values Lc. The corresponding strain energy density in terms of the reduced kinematics { u, v ♯ } : Ω → R 3 now readsW D u, D v ♯ = µe sym(D u ♯ -D v ♯ ) µc skew(D u ♯ -D v ♯ ) D u ♯ -D v ♯ ) (131) + µ micro sym D v ♯ 2 + λ micro 2 tr 2 D v ♯ .The first variation of the strain energy I = Ω W dx with respect to the two independent vector fields u ♯ and v ♯ leads toδI u = Ω 2µe ⟨sym(D u ♯ -D v ♯ ), Dδ u ♯ ⟩ + 2µc ⟨skew(D u ♯ -D v ♯ ), Dδ u ♯ ⟩ + λe⟨tr(D u ♯ -D v ♯ )1 2 , Dδ u ♯ ⟩ dx ,(132)δI v ♯ = Ω -2µe ⟨sym(D u ♯ -D v ♯ ), Dδ v ♯ ⟩ -2µc ⟨skew(D u ♯ -D v ♯ ), Dδ v ♯ ⟩ -λe⟨tr(D u ♯ -D v ♯ )1 2 , Dδ v ♯ ⟩(133)+ 2µ micro ⟨sym D v ♯ , Dδ v ♯ ⟩ + λ micro ⟨tr(D v ♯ )1 2 , Dδ v ♯ ⟩ dx .

  Div 2µe sym(D u ♯ -D v ♯ ) + 2µc skew(D u ♯ -D v ♯ ) + λe tr(D u ♯ -D v ♯ )1 2 = f ,(135)-Div 2µe sym(D u ♯ -D v ♯ ) + 2µc skew(D u ♯ -D v ♯ ) + λe tr(D u ♯ -D v ♯ )1 2 +Div 2µ micro symD v ♯ + λ micro tr(D v ♯ )1 2 = Div M ,where the constraint M n = 0 is required on the boundary, with n the normal to the boundary. The term on the left-hand side of equation (135) 2 can be substituted with the right-hand side of (135) 1 and, while keeping the equation (135) 1 , we can re-write the system of equations (135) asDiv 2µe sym(D u ♯ -D v ♯ ) + 2µc skew(D u ♯ -D v ♯ ) + λe tr(D u ♯ -D v ♯ )1 2 = f ,(136)Div 2µ micro sym D v ♯ + λ micro tr (D v ♯ )1 2 = f + Div M .The only case in which v ♯ = u ♯ is an admissible solution is if the classical body forces f are zero. In this case (136) reduces to Div σ micro = Div 2µ micro sym D u ♯ + λ micro tr(D u ♯ )1 2 = Div M ,

A. 3 . 1

 31 The pure relaxed micromorphic equationsIf we set µc = 0, the force stress tensor σ becomes symmetric and the model reduces to Divσ:= 2µe sym(D u ♯ -P ♯ ) + λetr(D u ♯ -P ♯ )1 2 = f , σ -2µ micro sym P ♯ -λ micro tr( P ♯ )1 2 -µ M L 2 c a Curl Curl 2D P ♯ = M ,

  If we set λ micro = λe = 0, which implies λmacro = 0, the equilibrium equations (27) reduce toDiv 2µe sym(D u ♯ -P ♯ ) + 2µc skew(D u ♯ -P ♯ ) = f , (140) 2µe sym(D u ♯ -P ♯ ) + 2µc skew(D u ♯ -P ♯ ) -2µ micro sym P ♯ -µ M L 2 c a Curl Curl 2D P ♯ = M .Componentwise we have µc (u

A. 3 . 3

 33 The relaxed micromorphic model with one curvature parameter, a zero Cosserat couple modulus, and a zero micro and macro Poisson's ratio If in addition to the simplifications of Sec. A.3.2 we also set µc = 0, the equilibrium equations (140) further reduce toDiv 2µe sym(D u ♯ -P ♯ ) = f , 2µe sym(D u ♯ -P ♯ ) -2µ micro sym P ♯ -µ M L 2 c a Curl Curl 2D P ♯ = M .(143)This represents the most simple set of equations for the plane strain relaxed micromorphic model. In components we have µe (-2P

  Curl Curl 2D P ♯ := P 12,12 -P 11,22 P 11,12 -P 12,11 P 22,12 -P 21,22 P 21,12 -P 22,11 .

							Curl 2D P ♯ :=	P 12,1 -P 11,2 P 22,1 -P 21,2	,
	Curl Curl P =	 	P 12,12 -P 11,22 P 11,12 -P 12,11 0 P 22,12 -P 21,22 P 21,12 -P 22,11 0	  =	 	Curl Curl 2D P ♯	0 0	  ,
			0	0	0			0	0	0

  11 , P 22 , P 12 ). The governing equilibrium equations (27) 1 in components are (λ e + 2µ e ) (u 1,11 -P 11,1 ) + λ e (u 2,12 -P 22,1 ) +µ c (u 1,22 -u 2,12 -P 12,2 + P 21,2 ) + µ e (u 1,22 + u 2,12 -P 12,2 -P 21,2 ) = f 1 , (λ e + 2µ e ) (u 2,22 -P 22,2 ) + λ e (u 1,12 -P 11,2 ) +µ c (u 2,11 -u 1,12 -P 21,1 + P 12,1 ) + µ e (u 2,11 + u 1,12 -P 21,1 -P 12,1 ) = f 2 , µ M L 2 c a (P 11,22 -P 12,12 ) -P 11 (λ e + λ m + 2(µ e + µ m )) -(λ e + λ m )P 22 + (λ e + 2µ e )u 1,1 + λ e u 2,2 = M 11 , -µ M L 2 c a (P 11,12 -P 12,11 ) -(µ c + µ e + µ m )P 12 + (µ c -µ e -µ m )P 21

  21,12 -P 22,11 ) -P 22 (λ e + λ m + 2(µ e + µ m )) -(λ e + λ m )P 11 + (λ e + 2µ e )u 2,2 + λ e u 1,1 = M 22 .

  11,22 -e 12,12 ) + (λ e + 2µ e )e 11 + λ e e 22 = M 11 , 1 2 µ M L 2 c (a 1 + a 2 ) (e 11,12 -e 12,11 ) + (µ c + µ e )e 12 + (µ e -µ c )e 21 = M 12 , + a 2 ) (e 21,22 -e 22,12 ) + (µ e -µ c )e 12 + (µ c + µ e )e 21 = M 21 , 1 2 µ M L 2 c (a 1 + a 2 ) (e 21,12 -e 22,11 ) + λ e e 11 + (λ e + 2µ e )e 22 = M 22 .

	-	1 2	µ M L 2 c (a 1

  The equation (105) 3 is the equilibrium equation for a classical isotropic linear elastic Cauchy continuum with stiffness µmacro and κmacro. The relations for the macroscopic Lamé parameters (µmacro, λmacro) and the macroscopic bulk modulus (κmacro) are then

	µmacro :=	µe µ micro µe + µ micro	,	κmacro :=	κe κ micro κe + κ micro	,
	λmacro :=	1 3	(3κmacro -2µmacro) (3D medium) ,

  1.3 Limit for C e → +∞ with µ c = 0: lower bound macroscopic stiffness C macro Thanks to the relations (107) we have formally C micro = Cmacro as Ce → +∞. The strain energy density (7) is again reported here ∥dev sym Curl P ∥ 2 + a 2 ∥skew Curl P ∥ 2 + a 3 3 tr 2 (Curl P ) can be annihilated by choosing Curl P = 0 which implies Moreover, the remaining minimization in (117), using the consistent coupling condition delivers the unique solution u. Gathering, we have sym Du = sym Dη ⇐⇒ sym(D(u -

	The curvature part	µ M L 2 c 2	a 1 P = Dη	(118)
	on a simply connected domain.		
	W (Du, P, Curl P ) = µe ∥sym(Du -P )∥ 2 + µc ∥skew(Du -P )∥ 2 +	λe 2	tr 2 (Du -P ) + µ micro ∥sym P ∥ 2 +	λ micro 2	tr 2 (P )
			+	µ M L 2 c 2	a 1 ∥dev sym Curl P ∥ 2 + a 2 ∥skew Curl P ∥ 2 +	a 3 3	tr 2 (Curl P ) → min(u, P ) .	(116)
					λ micro 2	tr 2 (sym Du)	(117)
	+	µ M L 2			

As µe, λe → ∞, in order to remain with a bounded strain energy density, it is required that sym P = sym Du. This, and µc = 0, reduces the variational problem to Ω µ micro ∥sym Du∥ 2 + c 2 a 1 ∥dev sym Curl P ∥ 2 + a 2 ∥skew Curl P ∥ 2 + a 3 3 tr 2 (Curl P ) dx -→ min(u, P ).

  [START_REF] Cowin | Singular stress concentrations in plane Cosserat elasticity[END_REF] is the equilibrium equation for a classical linear elastic isotropic Cauchy continuum with stiffness µmacro and κmacro.The relations for the macro Lamé parameters (µmacro, λmacro) and the macroscopic bulk modulus for plane strain ( κmacro) are then λe)(µ micro + λ micro ) (µe + λe) + (µ micro + λ micro ) -µe µ micro µe + µ micro ,

	µmacro :=	µe µ micro µe + µ micro	,	κmacro :=	κe κ micro κe + κ micro	,	(129)
	λmacro :=	(µe +					

  1,11 -P 11,1 ) + λe (u 2,12 -P 22,1 ) + µe (-P 12,2 -P 21,2 + u 1,22 + u 2,12 ) = f 1 , (λe + 2µe) (u 2,22 -P 22,2 ) + λe (u 1,12 -P 11,2 ) + µe (-P 12,1 -P 21,1 + u 1,12 + u 2,11 ) = f 2 , µ M L 2 c a (P 11,22 -P 12,12 ) -P 11 (λe + λm + 2(µe + µm)) -(λe + λm)P 22 + (λe + 2µe)u 1,1 + λeu 2,2 = M 11 , (139) -µ M L 2 c a (P 11,12 -P 12,11 ) -(µe + µm)P 12 -(µe + µm)P 21 + µe (u 1,2 + u 2,1 ) = M 12 , µ M L 2 c a (P 21,22 -P 22,12 ) -(µe + µm)P 12 -(µe + µm)P 21 + µe (u 1,2 + u 2,1 ) = M 21 , -µ M L 2 c a (P 21,12 -P 22,11 ) -P 22 (λe + λm + 2(µe + µm)) -(λe + λm)P 11 + (λe + 2µe)u 2,2 + λeu 1,1 = M 22 . A.3.2 The relaxed micromorphic model with zero micro and macro Poisson's ratio

  1,22 -u 2,12 + P 21,2 -P 12,2 ) + µe (u 1,22 + 2u 1,11 + u 2,12 -2P 11,1 -P 12,2 -P 21,2 ) = f 1 , µc (P 12,1 -P 21,1 -u 1,12 + u 2,11 ) + µe (u 1,12 + 2u 2,22 + u 2,11 -P 12,1 -P 21,1 -2P 22,2 ) = f 2 , aµ M L 2 c (P 11,22 -P 12,12 ) + 2µe (u 1,1 -P 11 ) -2µmP 11 = M 11 , aµ M L 2 c (P 12,11 -P 11,12 ) + µc (u 1,2 -u 2,1 -P 12 + P 21 ) + µe (u 1,2 + u 2,1 -P 12 -P 21 ) -µm(P 12 + P 21 ) = M 12 , aµ M L 2 c (P 21,22 -P 22,12 ) + µc (u 2,1 -u 1,2 + P 12 -P 21 ) + µe (u 1,2 + u 2,1 -P 12 -P 21 ) -µm(P 12 + P 21 ) = M 21 , aµ M L 2 c (P 22,11 -P 21,12 ) + 2µe (u 2,2 -P 22 ) -2µmP 22 = M 22 ,

  11,1 -P 12,2 -P 21,2 + u 1,22 + 2u 1,11 + u 2,12 ) = f 1 , µe (-P 12,1 -P 21,1 -2P 22,2 + u 1,12 + 2u 2,22 + u 2,11 ) = f 2 , µ M L 2 c a (P 11,22 -P 12,12 ) -2(µe + µm)P 11 + 2µeu 1,1 = M 11 , (144) -µ M L 2 c a (P 11,12 -P 12,11 ) -(µe + µm)P 12 -(µe + µm)P 21 + µe (u 1,2 + u 2,1 ) = M 12 , µ M L 2 c a (P 21,22 -P 22,12 ) -(µe + µm)P 12 -(µe + µm)P 21 + µe (u 1,2 + u 2,1 ) = M 21 , -µ M L 2 c a (P 21,12 -P 22,11 ) -2(µe + µm)P 22 + 2µeu 2,2 = M 22 .

For better readability in component form we abbreviate the λmicro as λm and λmacro as λM, similarly for the other appearing parameters.

The concept of a finite-part integral has been first introduced by Hadamard[START_REF] Hadamard | Lectures on Cauchy's Problem in Linear Partial Differential Equations[END_REF] in 1923. These integrals have stronger singularities than Cauchy principal value integrals and they exist in the finite part sense[START_REF] Kutt | On the numerical evaluation of finite-part integrals involving an algebraic singularity[END_REF][START_REF] Monegato | Definitions, properties and applications of finite-part integrals[END_REF].

It should be noted that in[START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF] there is a misprint in the plane strain fundamental solution(3.78). In particular, the term (1 -ν) should be replaced with (1 -ν) -1 . Also, the solution in[START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF] is for a horizontal force which can be transformed to the solution for a vertical force solution as in the present case by interchanging the indices 1 ↔ 2.

Timoshenko and Goodier [80, p. 131]; Love[40, p. 214].
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A Appendix

In this appendix, for the convenience of the reader, we exhibit the two-scale nature of the relaxed micromorphic model in three and two dimensions together with the form of equations and constitutive tensors in plane-strain.

A.4 Subclasses of the relaxed micromorphic model as singular limits A.4.1 The isotropic micro-stretch model in dislocation form as a particular case of the relaxed micromorphic model

The micro-stretch model in dislocation format [START_REF] Cicco | Torsion and flexure of microstretch elastic circular cylinders[END_REF][START_REF] Kirchner | Mechanics of extended continua: modeling and simulation of elastic microstretch materials[END_REF][START_REF] Neff | Mean field modeling of isotropic random Cauchy elasticity versus microstretch elasticity[END_REF][START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF][START_REF] Scalia | Extension, bending and torsion of anisotropic microstretch elastic cylinders[END_REF] can be obtained from the relaxed micromorphic model by letting formally µ micro → ∞, while κ micro < ∞. For bounded energy, the micro-distortion tensor P must be devoid from the deviatoric component dev sym P = 0 ⇔ P = A + ω1, A ∈ so(3), ω ∈ R. The expression of the strain energy for this model in dislocation format can then be written as [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] (using Curl as the curvature measure)

since Curl (ω1) ∈ so(3). The equilibrium equations, in the absence of body forces, are obtained by variation of (u, A, ω) respectively and read Div

Under the plane-strain hypothesis only the in-plane components of the kinematic fields are different from zero and they only depend on (x 1 , x 2 ). The structure of the kinematic fields ( u, A,ω) are

Under the plane-strain assumption, the equilibrium equations in components read now

A.4.2 The isotropic Cosserat model in dislocation form as a particular case of the relaxed micromorphic model

If we take the limit for λ micro , µ micro → ∞ (C micro → ∞), the isotropic relaxed micromorphic model is particularised to the linear Cosserat model [START_REF] Ghiba | Cosserat micropolar elasticity: classical Eringen vs. dislocation form[END_REF][START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]. The expression of the strain energy for the isotropic Cosserat continuum can be equivalently written in dislocation format as (using Curl as the curvature measure)

The Cosserat model features the classical displacement filed u ∈ R 3 and the infinitesimal micro-rotation tensor A ∈ so(3), i.e.

A is a skew-symmetric second order tensor. The system of equilibrium equations reads Div

Here, µc > 0 is called the Cosserat couple modulus. The skew-operator in equation (150) 2 appears because of the reduced kinematics and skew M is the skew-symmetric part of the body volume moment tensor. Note that there is no equation like Div σ micro = Div skew M here and taking µc > 0 is mandatory for coupling both equations in (150).

Under the plane-strain hypothesis only the in-plane components are different from zero and they only depend on (x 1 , x 2 ). The structure of the kinematic fields are reported below in (151)

Moreover, since tr(Curl A) = 0 , and dev sym Curl

under the plane-strain hypothesis, the model will just depend on one cumulative parameter a := (a 1 +a 2 )

2

, and the equilibrium equations (150) reduce to (see the ♯-notation in ( 14)) Div 

(154)

A.4.3 Classical isotropic linear elasticity in plane strain

The plane-strain system of standard classical linear elasticity (Lc → 0) reads Div σ:=

and the component form is

The Fourier system in this case assumes the well-known form

and the Fourier determinant becomes det

A.5 Properties of the second kind modified Bessel functions

Here we show some well known relations regarding the second kind modified Bessel functions Kn[z] that have been used in the derivation of the Green's functions in [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF] and ( 74) of the relaxed micromorphic medium. Also we derive some useful limits that were employed for passing from the general relaxed micromorphic model to other generalized continua.

The modified Bessel functions Kn[r] are solutions of the ODE

Some useful recurrence relations for the second kind modified Bessel functions Kn[r] are [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]:

2 ) 1/2 > 0, we derive the first and second derivatives of Kn[z] w.r.t x i as

where δ ij is the Kronecker delta. These equations have been employed for the derivation of the Green's functions of the relaxed micromorphic plane strain theory. For small argument z → 0 we have the asymptotic relation [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]:

where b is the Euler constant and Γ[•] is the Gamma function.

For large argument z → ∞ we have the asymptotic relation [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]:

which show that all Kn functions become quickly zero at infinity with exponential rate. We now prove some limits that appear in the main text. Now the first three limits are easily derived by expanding K 2 [z] and K 1 [z] in series as z → 0. We have: K 2 [z] = 2/z 2 -1/2 + O(z 2 ) and K 1 [z] = 1/z + O(z). The last limit is a direct consequence of(161) and the fact that lim z→0 z n ln z = 0, n > 0. The above results cover the limit cases ( 52), ( 76), [START_REF] Zisis | Some basic contact problems in couple stress elasticity[END_REF] where ℓ 2 → ∞ or µc = 0. Accordingly, we have lim z→∞

which are direct consequence of (162). The above results cover the limit cases ( 64), [START_REF] Voss | Modeling a labyrinthine acoustic metamaterial through an inertia-augmented relaxed micromorphic approach[END_REF] where ℓ j → 0.