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Abstract

We are interested in the high-order approximation of anisotropic, potential-driven advection-
diffusion models on general polytopal partitions. We study two hybrid schemes, both built upon
the Hybrid High-Order technology. The first one hinges on exponential fitting and is linear,
whereas the second is nonlinear. The existence of solutions is established for both schemes. Both
schemes are also shown to possess a discrete entropy structure, ensuring that the long-time be-
haviour of discrete solutions mimics the PDE one. For the nonlinear scheme, the positivity of
discrete solutions is a built-in feature. On the contrary, we display numerical evidence indicating
that the linear scheme violates positivity, whatever the order. Finally, we verify numerically that
the nonlinear scheme has optimal order of convergence, expected long-time behaviour, and that
raising the polynomial degree results, also in the nonlinear case, in an efficiency gain.

Keywords: High-order methods; Hybrid methods; Polytopal meshes; Structure-preserving schemes;
Potential-driven advection-diffusion; Long-time behaviour; Entropy methods.
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1 Motivations and context

We are interested in the polytopal discretisation of a linear potential-driven advection-diffusion equa-
tion using high-order schemes. Our goal is to compare an exponentially fitted linear method with
a nonlinear approach. Let Ω be an open, bounded, connected polytopal subset of Rd, d ∈ {2, 3},
with Lipschitz boundary. We consider the following anisotropic advection-diffusion problem with
homogeneous Neumann boundary conditions: find the density u : R+ × Ω→ R solution to

∂tu− div(Λ(∇u+ u∇φ)) = 0 in R?+ × Ω,

Λ(∇u+ u∇φ) · n = 0 on R?+ × ∂Ω,

u(0, ·) = u0 in Ω,

(1)

where n is the unit normal vector to ∂Ω pointing outward from Ω. We assume that the data satisfy:
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(i) Λ ∈ L∞(Ω)d×d is a uniformly elliptic anisotropy tensor: there exists λ[ > 0 such that, for a.e. x
in Ω, Λ(x)ξ · ξ ≥ λ[|ξ|2 for all ξ ∈ Rd;

(ii) φ ∈W 1,∞(Ω) is a regular potential;

(iii) u0 ∈ L1(Ω) is a non-negative initial datum, such that
∫

Ω u
0 log

(
u0
)
<∞.

The solution to (1) enjoys some specific and well-known properties. First, the mass is conserved along
time, i.e. for almost every t > 0, ∫

Ω
u(t) =

∫
Ω
u0 = M, (2)

where M > 0 is the initial mass. Second, the solution is positive:

for a.e. t > 0, u(t, ·) > 0 a.e. in Ω. (3)

Last, the solution converges exponentially fast when t→∞ towards the thermal equilibrium, unique
steady solution to (1), given by

u∞ =
M∫

Ω e−φ
e−φ . (4)

In order to compute a reliable numerical approximation of Problem (1), one should preserve at the
discrete level the three above-listed structural properties. In practice, our final target application
are drift-diffusion semiconductor models [50, 37] (and, in particular, anisotropic ones [36]). In these
models, the electric potential φ driving the drift is one of the unknowns of the problem, alongside
with the densities of charge carriers. It is solution to a Poisson equation. At the PDE level, the
thermal equilibrium is defined as the density u∞ > 0 for which the flux Λ(∇u∞ + u∞∇φ) identically
vanishes in Ω. This characterisation implies that the equilibrium quasi-Fermi potential log(u∞) + φ
shall be constant in Ω [43]. At the discrete level, this motivates the following definition.

Definition 1 (Preservation of the thermal equilibrium). A numerical scheme for (1) preserves the
thermal equilibrium if the corresponding discrete equilibrium quasi-Fermi potential is constant.

Note that this definition implies that the discrete equilibrium density has to be positive. In semi-
conductor models discretisations, the potential φ is sought as an element of the discrete space. By
Definition 1, preserving the thermal equilibrium then essentially requires to also seek log(u∞) as an
element of the latter discrete space. For the schemes we study in this work, the precise meaning of
Definition 1 will be made clear in Proposition 1 below.

In the realm of Two-Point Flux Approximation (TPFA) finite volume schemes, the so-called
Scharfetter–Gummel fluxes [47] are precisely devised so as to preserve the thermal equilibrium. They
naturally lead to linear structure-preserving discretisations of the problem (see [14, 15]). However,
TPFA methods can only be used on meshes satisfying orthogonality conditions (with respect to the
inner product induced by Λ, in case Λ is symmetric), which essentially restricts their use to isotropic
problems. On the other hand, a number of finite volume methods using auxiliary unknowns has
been introduced within the past twenty years or so for the discretisation of anisotropic problems on
general meshes. One can cite the Discrete Duality Finite Volume (DDFV) method [38, 27], with
additional unknowns attached to a dual mesh, the Vertex Approximate Gradient (VAG) scheme [34],
with auxiliary unknowns attached to the mesh vertices, or the Mimetic Finite Difference (MFD) and
Hybrid Finite Volume (HFV) methods [9, 33], with auxiliary unknowns attached to the mesh faces.
Such methods have proved to be relevant solutions to the anisotropy issue, but none of these linear
schemes preserves the positivity of the solutions (see [28]). A possible alternative was proposed in [13],
with the introduction and analysis of a nonlinear positivity-preserving VAG scheme. The design and
analysis of this scheme, as well as of its DDFV and HFV counterparts of [12, 11] and [16], leverage

2



the entropy structure of Problem (1): there exists some physically motivated quantity, called entropy,
which decays along time. Reproducing this structure at the discrete level is key to get stability,
convergence, and accurate time asymptotics. Other approaches to positivity preservation on general
meshes have been explored in the literature. Still in the realm of finite volume methods, one can cite
the works [49, 29, 5, 48, 46]. As opposed to [13], in which the nonlinearities are introduced at the
PDE level then discretised, the latter contributions introduce nonlinearities directly at the discrete
level. These nonlinearities, unfortunately, often do not lend themselves to a PDE re-interpretation,
making difficult to unravel the potential discrete entropy structures hidden behind. Arbitrary-order
positivity-preserving (or, more generally, discrete maximum principle preserving) methods have also
been studied in the literature. In the finite element context, one can cite the seminal works [17, 18] by
Ciarlet, as well as the more recent contributions [35, 2] (see also [3] for a comprehensive survey). These
approaches are, however, restricted to standard meshes. In addition, only algebraic positivity can
usually be enforced, that is positivity of the degrees of freedom, but not of the (piecewise polynomial)
functions themselves over the domain. Weak positivity enforcement has also been explored in the
Discontinuous Galerkin (DG) framework in [42, 41]: therein, positivity is enforced on the cell averages
of the piecewise polynomial solutions. Turning to pointwise positivity enforcement, let us mention
in the DG context the interesting contribution [7]. Therein, a nonlinear scheme is introduced for
the (reaction-diffusion) Fisher–KPP equation ∂tu−4u = u(1− u), in which the (positive) densities
are defined as u = eλ, with λ piecewise polynomial. This scheme is developed so as to preserve
the entropy structure of the PDE model. Compared to the high-order DG schemes of [42, 41],
the main improvement lies in the fact that the discrete solutions are positive everywhere. Such a
feature allows for a complete analysis of the scheme, including existence, long-time behaviour, and
convergence towards a semi-discretised solution. The analysis is based on the properties of a well-
chosen stabilisation term, whose expression implies L∞-norms of the polynomial unknowns over the
mesh faces. The results of [7], valid on simplicial meshes, have recently been extended (excluding the
long-time behaviour) to polytopal meshes in [22], still in the DG context. Along the same lines, yet
restricted to standard meshes, let us also cite the conforming space-time Galerkin discretisation of [8]
for cross-diffusion systems.

From the above literature review, it is quite clear that the landscape in terms of positivity-
preserving polytopal methods of arbitrarily high approximation order for advection-diffusion problems
is relatively scarce. Speaking of pointwise positivity enforcement, the only existing contribution we
are aware of is [22], in the DG context, and for reaction-diffusion equations. In the present work,
our aim is to study an arbitrary-order hybrid polytopal scheme for Problem (1), preserving the
three structural properties (2)–(3)–(4) listed above. One expected advantage of hybrid methods over
DG schemes is a reduction of the number of globally coupled unknowns in the linear systems to
be solved at each iteration of the Newton algorithm, which should be all the more substantial that
the order of approximation increases. Our (nonlinear) scheme has been briefly introduced, and a
first numerical assessment performed, in [44]. Our goal in the present article is twofold. First, we
want to provide our approach with theoretical foundations. Second, we aim to conduct an extensive
numerical validation of our method (convergence orders, efficiency, positivity, large time), including a
comparison in terms of structure preservation with a similar (in the spirit) high-order linear scheme.
One could indeed expect, at least in practice, that the use of a method (even linear) with sufficiently
high order (and thus accuracy), could already constitute in itself a solution to positivity violation
issues. The two (linear and nonlinear) methods we consider are built upon the Hybrid High-Order
(HHO) technology [25, 26], as natural extensions of the HFV schemes introduced in [16, 45]. The
linear scheme hinges on the exponential fitting strategy [10]. The key idea is the linear change of
unknown u = e−φ ρ, which allows one to reformulate (1) as an unconditionally coercive problem in
the variable ρ. As a by-product of this reformulation, the scheme naturally preserves the thermal
equilibrium. The nonlinear scheme relies on the nonlinear change of unknown u = e` (cf. [13]), which
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is designed so as to preserve the Boltzmann entropy structure of the PDE model and, as a by-product,
the positivity of solutions, the thermal equilibrium, and the long-time asymptotics. For the sake of
simplicity, both schemes rely on a mixed-order HHO space: given an integer k ≥ 0, the methods hinge
on face unknowns of polynomial degree k, and enriched cell unknowns of polynomial degree k+1. The
main interest of such a discrepancy in the degree between face and cell unknowns is a simplification
in the design of the higher-order bulk reconstruction and of the stabilisation, resulting in turn in a
simplification of the analysis. In the meantime, such a choice preserves optimal accuracy (order k+ 2
in L2-norm) and frugality (the face unknowns, of degree k, are the only globally coupled unknowns).
Since we are manipulating mixed-order spaces, following [20], we could also refer to our methods as
HDG methods. However, we prefer naming them HHO methods for the two following reasons (cf. [19,
Section 1.5.2]). First, HDG schemes are developed adopting a mixed-hybrid viewpoint, whereas we
adopt here the primal HHO viewpoint. Second, the analysis of HDG methods usually hinges on
specific (often simplex-based) projections, whereas our HHO analysis makes here a systematic use of
L2-orthogonal projectors (well-defined on polytopal cells). In any case, the two schemes we introduce
in this work are new in the HDG/HHO context. Our first theoretical results, stated in Propositions 2
and 3, concern the well-posedness and long-time behaviour of the (linear) exponential fitting scheme.
Regarding the nonlinear scheme, we prove the existence of (positive) solutions in Theorem 1. These
discrete solutions are further proved to converge (in large time) in Proposition 5 towards the discrete
equilibrium of the scheme. Note that we could also have compared our nonlinear scheme with the
linear HHO method for advection-diffusion of [24], which generalises to arbitrary approximation orders
the HMM scheme of [4] (both introduced for general advection fields). We have not pursued further
in this direction, this for two reasons. First, the stability of this scheme hinges on some coercivity
assumptions which constrain the variety of potentials that can be considered, and second it does not
preserve the thermal equilibrium (see [16] in the lowest-order case).

The rest of the article is organised as follows. In Section 2, we first introduce the discrete frame-
work, and describe the two schemes under consideration. Then, in Section 3, we discuss the main
properties of the two schemes, and we provide some elements of analysis regarding the well-posedness
and discrete long-time behaviours. Last, in Section 4, we discuss the implementation of the nonlinear
scheme, and we assess the behaviour of the methods on various test-cases.

2 Discrete setting and schemes

The two numerical schemes we consider in this article are based on a backward Euler discretisation
in time, with uniform time step ∆t > 0. The time discretisation is thus defined as (tn)n∈N, where
tn = n∆t. Note that it is straightforward to generalise the discussion below to a variable time step.
We focus in this section on space discretisation.

2.1 Polytopal meshes and anisotropy tensor

In the vein of [23, Definition 1.4], we define a discretisation of Ω as a couple D = (M, E), where:

• the meshM is a partition of Ω, i.e.M is a finite collection of disjoint, open, Lipschitz polytopes
K ⊂ Ω with |K|d > 0 (the cells) such that Ω =

⋃
K∈MK;

• the set E is a partition of the mesh skeleton ∂M =
⋃
K∈M ∂K, i.e. E is a finite collection

of disjoint, connected, relatively open subsets σ of Ω with |σ|d−1 > 0 (the faces) such that
∂M =

⋃
σ∈E σ. It is assumed that, for all σ ∈ E , σ is a Lipschitz polytopal subset of an affine

hyperplane of Rd. We assume that, for all K ∈ M, there exists a subset EK of E (the set of
faces of the cell K) such that ∂K =

⋃
σ∈EK σ. Finally, we let nK,σ ∈ Rd be the (constant) unit

normal vector to σ ∈ EK pointing outward from K.
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The diameter of a subset X ⊂ Ω is denoted by hX = sup{|x − y| | (x, y) ∈ X2}, and we define the
size of D (the mesh size) as hD = maxK∈M hK . For further use, we also introduce the smallest cell
diameter h[ = minK∈M hK of D.

When studying asymptotic behaviours with respect to the mesh size, one has to adopt a measure
of regularity for refined families of discretisations. We classically follow [23, Definition 1.9], in which
regularity for a refined mesh family is quantified by a uniform (with respect to the mesh size) parameter
θ ∈ (0, 1), called mesh regularity parameter. This parameter measures the chunkiness of the cells, but
also the diameter ratio between the cells and their faces. In what follows, to avoid the proliferation
of multiplicative constants, we write a . b in place of Ca ≤ b if C > 0 only depends on Ω, on the
mesh regularity parameter θ, and (if need be) on Λ, φ, and the underlying polynomial degree, but is
independent of both hD (and h[) and ∆t.

Remark 1 (Relaxation of the mesh regularity assumptions). Upon replacing the scalings hσ for
σ ∈ EK by hK in the stabilisations/discrete norms below, the analysis performed in this work remains
valid under the (much) less stringent mesh regularity assumptions of [30, Assumption 1] (cf. also [23,
Definition 1.41]). Contrary to [23, Definition 1.9], these relaxed mesh regularity assumptions allow
for small faces and cells with numerous faces, as they may appear in agglomeration-based meshing.

Last, we make an additional regularity assumption on the anisotropy tensor. We assume that

Λ|K ∈W 1,∞(K)d×d ∀K ∈M. (5)

2.2 Discrete space and operators

For q ∈ N, and X subset of Ω of Hausdorff dimension 1 ≤ l ≤ d, we let Pq(X) denote the vector
space of l-variate polynomial functions X → R of total degree at most q. We also define the L2(X)-
orthogonal projector Πq

X : L1(X) → Pq(X) such that, given any v ∈ L1(X), Πq
X(v) is the only

element in Pq(X) satisfying ∫
X

Πq
X(v)z =

∫
X
vz ∀z ∈ Pq(X).

Given any K ∈ M, we also introduce the vector space Pq(K)d of d-variate polynomial vector fields
K → Rd of total degree at most q, as well as the corresponding L2(K)d-orthogonal projector (denoted
as its scalar version) Πq

K : L1(K)d → Pq(K)d. For any σ ∈ EK and v ∈ W 1,1(K), we also introduce
the shortcut notation

Πq
σ(v) = Πq

σ

(
v|σ
)
.

Let k be a given non-negative integer. We introduce the mixed-order HHO space (see [19, 23]),
with face unknowns of degree k and (enriched) cell unknowns of degree k + 1:

V k
D =

{
vD =

(
(vK)K∈M, (vσ)σ∈E

) ∣∣∣∣ ∀K ∈M, vK ∈ Pk+1(K)
∀σ ∈ E , vσ ∈ Pk(σ)

}
.

Given a cell K ∈M, we let

V k
K = Pk+1(K)×

(
×
σ∈EK

Pk(σ)

)
be the restriction of V k

D to K, and for a generic discrete element vD ∈ V k
D, we denote by vK =(

vK , (vσ)σ∈EK
)
∈ V k

K its local restriction to the cell K. To any vD ∈ V k
D, we associate the two

piecewise polynomial functions vM : Ω→ R and vE : ∂M→ R such that

vM|K = vK for all K ∈M and vE |σ = vσ for all σ ∈ E .
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We also let 1D ∈ V k
D be the discrete element such that 1K = 1 for all K ∈ M and 1σ = 1 for all

σ ∈ E . Last, given a cell K ∈M, we define the local interpolator IkK : W 1,1(K)→ V k
K such that, for

any v ∈W 1,1(K),
IkK(v) =

(
Πk+1
K (v),

(
Πk
σ(v)

)
σ∈EK

)
.

Similarly, the global interpolator IkD : W 1,1(Ω)→ V k
D is defined, for any v ∈W 1,1(Ω), by

IkD(v) =
((

Πk+1
K (v|K)

)
K∈M,

(
Πk
σ(v|σ)

)
σ∈E

)
.

As standard in the HHO context, locally to any cell K ∈ M, we introduce a discrete gradient
operator GK : V k

K → Pk(K)d such that, for any vK ∈ V k
K , GK(vK) ∈ Pk(K)d satisfies∫

K
GK(vK) · τ = −

∫
K
vK ∇ · τ +

∑
σ∈EK

∫
σ
vσ τ · nK,σ ∀τ ∈ Pk(K)d. (6)

This operator is a consistent discrete counterpart of the gradient operator. It satisfies the following
commutation property:

∀v ∈W 1,1(K), GK ◦ IkK(v) = Πk
K(∇v).

Given a face σ ∈ EK , we also define the jump operator JK,σ : V k
K → Pk(σ) such that, for vK ∈ V k

K ,

JK,σ(vK) = Πk
σ(vK)− vσ. (7)

Based on the above ingredients, one can define an HHO counterpart of the local diffusion bilinear
form (z, v) 7→

∫
K Λ∇z · ∇v. We let aK : V k

K × V k
K → R be the bilinear form such that

aK : (zK , vK) 7→
∫
K

ΛGK(zK) ·GK(vK) +
∑
σ∈EK

ΛK,σ
hσ

∫
σ
JK,σ(zK)JK,σ(vK), (8)

where ΛK,σ = ‖Λ|KnK,σ · nK,σ‖L∞(σ) (recall the regularity assumption (5)). In the context of HDG
methods, the linear stabilisation used in (8) is often called Lehrenfeld–Schöberl stabilisation, as it was
first introduced in [39, 40]. Classically, one can then define a global bilinear form aD : V k

D×V k
D → R,

discretisation of (z, v) 7→
∫

Ω Λ∇z · ∇v, by summing the local contributions:

aD : (zD, vD) 7→
∑
K∈M

aK(zK , vK). (9)

For analysis purposes, we introduce a discrete H1-like semi-norm on V k
D. Given a cell K ∈ M,

we first let, for any vK ∈ V k
K ,

|vK |21,K = ‖∇vK‖2L2(K)d +
∑
σ∈EK

1

hσ
‖vK − vσ‖2L2(σ).

Then, at the global level, for any vD ∈ V k
D, we define

|vD|21,D =
∑
K∈M

|vK |21,K . (10)

Notice that |·|1,D is not a norm on V k
D, but any vD ∈ V k

D satisfying |vD|1,D = 0 is proportional to
1D. In particular, this implies that |·|1,D is a norm on the zero-mass subspace of V k

D defined by

V k
D,0 =

{
vD ∈ V k

D |
∫

Ω
vM = 0

}
.
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Standard HHO analysis implies the following stability estimate:

∀vD ∈ V k
D, |vD|21,D . aD(vD, vD), (11)

where the multiplicative constant is proportional to λ[. In particular, since |·|1,D is a norm on V k
D,0,

this estimate implies that aD is coercive on V k
D,0. Finally, we recall the following discrete Poincaré–

Wirtinger inequality (cf. [23, Theorem 6.5, p = q = 2] in the equal-order case):

∀vD ∈ V k
D,0, ‖vM‖L2(Ω) . |vD|1,D. (12)

2.3 Exponential fitting scheme

The construction extends the ideas from [16]. Our (linear) scheme hinges on the exponential fitting
strategy [10]. In a nutshell, the exponential fitting approach is based on the following rewriting of
the PDE flux: letting ω = e−φ, and introducing the Slotboom variable ρ = u/ω, one has

Λ(∇u+ u∇φ) = ωΛ∇ρ, (13)

which allows to transform an advection-diffusion equation in u into a purely diffusive, unconditionally
coercive (by regularity of φ, ω is a.e. uniformly bounded away from zero) problem in ρ. At the discrete
level, the problem is solved in the Slotboom variable, which is sought in V k

D. The discrete density is
then defined mimicking the relation u = ωρ.

In view of (13), in order to define our exponential fitting (mixed-order) HHO scheme, we need to
introduce a discrete counterpart of the bilinear form (ρ, v) 7→

∫
Ω ωΛ∇ρ ·∇v. To do so, given K ∈M,

and leveraging the definition (8) of aK , we let aωK : V k
K × V k

K → R be such that

aωK : (ρ
K
, vK) 7→

∫
K
ωΛGK(ρ

K
) ·GK(vK) +

∑
σ∈EK

ΛωK,σ
hσ

∫
σ
JK,σ(ρ

K
)JK,σ(vK), (14)

where ΛωK,σ = ‖ωΛ|KnK,σ · nK,σ‖L∞(σ). At the global level, as previously, we construct the bilinear
form aωD : V k

D × V k
D → R by summing the local contributions:

aωD : (ρD, vD) 7→
∑
K∈M

aωK(ρ
K
, vK). (15)

We can now introduce the exponential fitting HHO scheme for Problem (1): find (ρnD)n≥1 ∈
(
V k
D
)N?

such that, for all n ∈ N,

∑
K∈M

∫
K

uω,n+1
K − uω,nK

∆t
vK + aωD(ρn+1

D , vD) = 0 ∀vD ∈ V k
D,

uω,n+1
K = ω|Kρ

n+1
K ∀K ∈M,

uω,0K = u0
|K ∀K ∈M.

(16a)

(16b)

(16c)

For any solution (ρnD)n≥1 to (16), we define a sequence of corresponding densities (uω,nD )n≥1 as follows.
To the discrete Slotboom variable ρD ∈ V

k
D we associate the discrete density

uωD =
(
(uωK)K∈M, (u

ω
σ)σ∈E

)
,

defined, consistently with (16b), as the collection of (a priori non-polynomial) functions

uωK = ω|KρK for all K ∈M and uωσ = ω|σρσ for all σ ∈ E . (17)
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The non-polynomial nature of the components of uωD is, here and in what follows, emphasised by
the use of Gothic fonts. Finally, to any discrete density uωD, we associate the two piecewise smooth
functions uωM : Ω→ R and uωE : ∂M→ R such that

uωM|K = uωK for all K ∈M and uωE |σ = uωσ for all σ ∈ E .

Remark that uωM = ωρM in Ω and uωE = ω|∂MρE on ∂M.

Remark 2 (Non-polynomial definition). Here, we choose to define a discrete density with (a priori)
non-polynomial components. One could also think of defining a density with polynomial components,
by multiplying (component by component) ρD by IkD(ω). This is how the solution to the low-order HFV
exponential fitting scheme of [16] was defined (in that case, both cell/face unknowns were constants).

Remark 3 (Initial condition). Notice that we do not define uω,0M in the same way as uω,n+1
M . Indeed,

we directly use in the definition (16c) the initial datum u0. This choice is motivated by the following
observation. Define ρ0 = u0/ω, and let uω,0K = ω|KΠk+1

K (ρ0
|K) for all K ∈M in place of (16c). Then,

the resulting discrete solution’s mass is Mω =
∑

K∈M
∫
K uω,0K 6= M in general.

Recall that
∫

Ω u
0 = M > 0. Let ρ∞D ∈ V

k
D be defined as

ρ∞D = cMl 1D, with cMl =
M∫

Ω e−φ
> 0.

One can easily check that ρ∞D is the only steady solution to the exponential fitting scheme (16). Based
on (17), ρ∞D is associated to the discrete equilibrium density uω,∞D such that

uω,∞M = cMl e−φ in Ω and uω,∞E = cMl e−φ|∂M on ∂M. (18)

It follows that the reconstructed discrete equilibrium density uω,∞M (always) coincides with the thermal
equilibrium (4) in Ω. Such a striking property is, however, to be tempered by Remark 4 below.
Following Remark 2, notice that if we had adopted instead a polynomial definition for the discrete
densities, we would have obtained that uω,∞D = IkD(u∞) ∈ V k

D, as was the case for the low-order
exponential fitting HFV method of [16] (in that case, both cell/face unknowns were constants). A
drawback of such a definition, compared to (17), is that the components of IkD(u∞) are not necessarily
positive functions (note that this issue does not exist in the low- and equal-order HFV case).

Remark 4 (Alternative scheme definition). Let φD = IkD(φ) ∈ V k
D. Another definition of the expo-

nential fitting HHO scheme consists in replacing ω by e−φM in the expressions of both aωK (see (14))
and uω,n+1

K (see (16b)). Then, in place of (17), the following definition of discrete densities is adopted:

uωK = e−φK ρK for all K ∈M and uωσ = e−φσ ρσ for all σ ∈ E . (19)

Such a scheme is somewhat closer to what one would encounter in the context of semiconductor
models, since φ would be unknown, and sought, at the discrete level, in V k

D. In this case, the discrete
equilibrium density uω,∞D would satisfy, in place of (18), the same kind of relations as (26)–(27) below.
Here, we rather choose to exploit the full knowledge we have of the potential φ to define the scheme.

2.4 Nonlinear scheme

The construction extends the ideas from [16, 45]. Our nonlinear scheme relies on a nonlinear refor-
mulation of Problem (1) [13]. To do so, we introduce the logarithm potential ` = log(u) and the
quasi-Fermi potential w = `+ φ. At least formally, if u is positive, one has the following relation on
the PDE flux:

Λ
(
∇u+ u∇φ

)
= uΛ∇ (log(u) + φ) = e` Λ∇w. (20)
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We choose to discretise the potentials as piecewise polynomials, i.e. we approximate ` and w as
discrete unknowns in V k

D. Then, mimicking the relation u = e`, each discrete density component is
defined as the exponential of a polynomial, thus ensuring its positivity.

In view of (20), in order to define our nonlinear HHO scheme, we shall introduce a discrete
counterpart of the map (`;w, v) 7→

∫
Ω e` Λ∇w · ∇v. Locally to any cell K ∈ M, this discrete

counterpart is built as the sum of a consistent (21a) and a stabilising (21b) contributions: for all
`K , wK , vK ∈ V k

K , we let

CK(`K ;wK , vK) =

∫
K

e`K ΛGK(wK) ·GK(vK),

SK(`K ;wK , vK) =
∑
σ∈EK

ΛK,σ
hσ

∫
σ

eΠkσ(`K) + e`σ

2
JK,σ(wK)JK,σ(vK).

(21a)

(21b)

We then introduce the local map TK : V k
K × V k

K × V k
K → R such that

TK : (`K ;wK , vK) 7→ CK(`K ;wK , vK) + SK(`K ;wK , vK) + ε hk+2
K aK(wK , vK), (22)

where ε is a non-negative parameter and aK is the bilinear form defined by (8). At the global level,
we finally define the map TD : V k

D × V k
D × V k

D → R by summing the local contributions:

TD : (`D;wD, vD) 7→
∑
K∈M

TK(`K ;wK , vK). (23)

Remark 5 (Parameter ε). The map TD is to be understood as a discretisation of (`;w, v) 7→∫
Ω(e` +ε) Λ∇w · ∇v, with ε of magnitude εhk+2

D . At the theoretical level, this ε-perturbation of the
model is necessary, at the moment, to show the existence result of Theorem 1. From a more practical
viewpoint, the sensitivity of the method with respect to ε is not completely understood yet. First nu-
merical experiments tend to show that the choices ε = 1 and ε = 0 produce essentially similar results.
Concerning the choice of scaling factor hk+2

K in (22), it seems to yield in practice (when ε > 0) the
expected orders of convergence. The influence of the ε-term will be further investigated in future works.

Let φD = IkD(φ) ∈ V k
D. We can now introduce our nonlinear HHO scheme for Problem (1): find

(`nD)n≥1 ∈
(
V k
D
)N? such that, for all n ∈ N,

∑
K∈M

∫
K

un+1
K − unK

∆t
vK + TD(`n+1

D ; `n+1
D + φD, vD) = 0 ∀vD ∈ V k

D,

un+1
K = e`

n+1
K ∀K ∈M,

u0
K = u0

|K ∀K ∈M.

(24a)

(24b)

(24c)

For any solution (`nD)n≥1 to (24), we define a sequence of corresponding positive densities (unD)n≥1 as
follows. To the discrete logarithm potential `D ∈ V k

D we associate the discrete density

uD =
(
(uK)K∈M, (uσ)σ∈E

)
,

defined, consistently with (24b), as the collection of positive (non-polynomial) functions

uK = e`K for all K ∈M and uσ = e`σ for all σ ∈ E . (25)

The non-polynomial nature of the components of uD is, here also, emphasised by the use of Gothic
fonts. Finally, to any discrete density uD, we associate the two (positive) piecewise smooth functions
uM : Ω→ R? and uE : ∂M→ R? such that

uM|K = uK for all K ∈M and uE |σ = uσ for all σ ∈ E .

Remark that uM = e`M in Ω and uE = e`E on ∂M.
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Remark 6 (Initial condition). Remark that we do not define u0
M in the same way as un+1

M . We indeed
directly use in the definition (24c) the initial datum u0. This strategy allows one to circumvent the
definition of some `0M, cell interpolate of `0 = log(u0), the latter quantity being undefined in regions
where u0 vanishes. The question of defining an initial discrete logarithm potential remains however
a major difficulty when it comes to numerical implementation, since it is needed for the initialisation
of the Newton method when n = 0 (see Section 4.1.2).

Recall that
∫

Ω u
0 = M > 0. Let `∞D ∈ V k

D be defined as

`∞D = log(cMnl )1D − φD, with cMnl =
M∫

Ω e−φM
> 0.

It can be easily checked that `∞D is the only steady solution to the nonlinear scheme (24). Based
on (25), `∞D is associated to the discrete equilibrium density u∞D such that

u∞M = cMnl e−φM in Ω and u∞E = cMnl e−φE on ∂M. (26)

In a sense we make clear just below, the discrete equilibrium density u∞D is a reasonable approximation
of the thermal equilibrium u∞ defined by (4):

log(u∞K )−Πk+1
K

(
log(u∞)

)
= log

(∫
Ω

e−φ
)
− log

(∫
Ω

e−φM
)

∀K ∈M,

log(u∞σ )−Πk
σ

(
log(u∞)

)
= log

(∫
Ω

e−φ
)
− log

(∫
Ω

e−φM
)

∀σ ∈ E .

(27a)

(27b)

It follows that the reconstructed discrete equilibrium density u∞M satisfies: if φ|K ∈ Pk+1(K) for all
K ∈ M, then u∞M = u∞ in Ω. Remark that the discrete equilibrium density u∞D is not equal to
IkD(u∞) ∈ V k

D. This is in contrast with what held true for the low-order nonlinear HFV method
of [16] (in that case, both cell/face unknowns were constants). This can be explained by the choice
of discretisation for φ, which was taken as − log(ωD) (with ωD HFV interpolate of ω) in [16] in place
of φD here (the latter choice is inspired by [45] in the context of semiconductors). Remark that, in
practice, − log(ωD) and φD may coincide if the integrals are approximated using an evaluation at the
barycenter. This was the case in the numerical experiments of [16].

3 Main features of the schemes

We present in this section some theoretical results about the two schemes introduced above. We focus,
in particular, on the existence (and stability) of solutions, as well as on questions related to their long-
time behaviour. The results presented below generalise those obtained in [16] in the low-order HFV
context. In particular, the analysis strongly hinges on the entropy structure of both schemes.

Remark 7 (Lowest-order versions of the schemes (k = 0)). Note that the lowest-order versions of the
two schemes introduced above do not coincide with the exponential fitting and nonlinear HFV schemes
of [16]. Indeed, the lowest-order versions of the methods (16) and (24) make use of (enriched) affine
cell unknowns, whereas HFV schemes use constants. Also, whereas the nonlinear HFV method is
built upon a stable discrete gradient operator (defined on a pyramidal submesh), the present nonlinear
scheme is defined following the standard HHO philosophy of splitting consistency and (nonlinear)
stabilisation. Therefore, the results presented here are new, even for k = 0.

Before presenting individual results for each scheme, let us stress that both schemes exhibit a
similar important property: the preservation of the thermal equilibrium.
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Proposition 1 (Preservation of the thermal equilibrium). The alternative (fully discrete) exponential
fitting scheme of Remark 4 and the nonlinear scheme (24) preserve the thermal equilibrium in the sense
of Definition 1. More precisely,

• log(uω,∞D ) + φD is proportional to 1D;

• `∞D + φD is proportional to 1D.

For the original exponential fitting scheme (16), there holds that log(uω,∞M )+φ over Ω and log(uω,∞E )+
φ|∂M over ∂M are equal to the same constant.

3.1 Exponential fitting scheme

We present here the main properties of the exponential fitting HHO scheme (16), and give detailed
proofs of the results. As a preliminary remark, note that since φ ∈W 1,∞(Ω),

‖φ‖L∞(Ω) . 1. (28)

As a consequence, the tensor ωΛ is a.e. uniformly elliptic. Recalling (11), this implies the following
stability estimate:

∀vD ∈ V k
D, |vD|21,D . aωD(vD, vD), (29)

where the multiplicative constant is proportional to λ[. We first state a well-posedness result, which
is mainly a consequence of the previous stability estimate.

Proposition 2 (Well-posedness of the exponential fitting scheme). The exponential fitting scheme (16)
admits a unique solution (ρnD)n≥1. Moreover, the corresponding discrete densities (uω,nD )n≥1 have a
mass equal to M :

∀n ≥ 1,

∫
Ω
uω,nM =

∫
Ω
u0 = M. (30)

Proof. Let n ≥ 0, and assume that uω,nM is defined. We want to show that equations (16a)–(16b)
admit a unique solution. To do so, we first define, for any ρD ∈ V

k
D,

‖ρD‖
2
ω,∆t,D = ∆t|ρD|

2
1,D +

∫
Ω
ωρ2
M.

Since |·|1,D is a semi-norm on V k
D with zero set spanned by 1D, it follows that the map ‖·‖ω,∆t,D

defines a norm on V k
D. Thus, by (29), the bilinear form AωD : (ρD, vD) 7→

∫
Ω ωρMvM+ ∆taωD(ρD, vD)

satisfies the following coercivity property:

∀ρD ∈ V
k
D, ‖ρD‖

2
ω,∆t,D . AωD(ρD, ρD).

By the Lax–Milgram lemma, equations (16a)–(16b) therefore admit a unique solution ρn+1
D in V k

D,
from which one can uniquely define uω,n+1

D by (17). To prove mass conservation, we just test (16a)
by 1D to get ∫

Ω

uω,n+1
M − uω,nM

∆t
= 0.

We conclude by noticing that
∫

Ω uω,0M =
∫

Ω u
0 according to (16c).

We now state our main result about the exponential fitting scheme, which ensures that the solution
to (16) has similar long-time behaviour as the PDE solution. As usual with the entropy method, the
main idea is to get a control of the entropy by its dissipation. Here, such an estimate is a consequence
of the discrete Poincaré inequality (12).
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Proposition 3 (Long-time behaviour of the exponential fitting scheme). Assume that u0 ∈ L2(Ω).
Let (ρnD)n≥1 be the solution to the exponential fitting scheme (16). Then, the following discrete entropy
relation holds true:

∀n ∈ N,
En+1
ω − Enω

∆t
+ Dn+1

ω ≤ 0, (31)

where the discrete quadratic entropy is defined as

Enω =
1

2

∫
Ω
ω(ρnM − ρ∞M)2

with ρ0
M defined (with a slight abuse in notation, since ρ0

M is not piecewise polynomial) by ρ0
M = u0

ω ,
and the discrete dissipation is given by

Dnω = aωD(ρnD − ρ
∞
D , ρ

n
D − ρ

∞
D ) ∀n ≥ 1.

As a consequence, the reconstructed discrete density converges exponentially fast in time towards the
reconstructed discrete equilibrium density: there exists a positive constant νω, independent of both hD
and ∆t, such that

∀n ∈ N, ‖uω,nM − uω,∞M ‖L2(Ω) . (1 + νω∆t)−
n
2 ‖u0 − uω,∞M ‖L2(Ω). (32)

Proof. Let n ∈ N. By convexity of x 7→ x2 on R, one has

En+1
ω − Enω =

1

2

∫
Ω
ω
(
(ρn+1
M − ρ∞M)2 − (ρnM − ρ∞M)2

)
≤
∫

Ω
ω
(
ρn+1
M − ρnM

) (
ρn+1
M − ρ∞M

)
.

Therefore, testing (16a) against ρn+1
D − ρ∞D ∈ V

k
D, we get

En+1
ω − Enω

∆t
≤ −aωD(ρn+1

D , ρn+1
D − ρ∞D ).

Note that this estimate holds true also for n = 0 (using the definition of ρ0
M). On the other hand, by

the expression of ρ∞D (proportional to 1D), aωD(ρ∞D , ρ
n+1
D − ρ∞D ) = 0, hence by bilinearity of aωD,

Dn+1
ω = aωD(ρn+1

D , ρn+1
D − ρ∞D ),

which yields the entropy relation (31). To get the exponential decay, one needs to compare Dn+1
ω with

En+1
ω . To do so, we let vD = ρn+1

D − ρ∞D ∈ V
k
D, and we define the probability measure dµ =

cMl
M ωdx

on Ω. We define 〈vM〉µ as the mass of vM for the measure dµ, i.e.

〈vM〉µ =

∫
Ω
vMdµ.

The definition (17), and the mass preservation identity (30), imply that

〈vM〉µ =

∫
Ω
vMdµ =

cMl
M

∫
Ω
ωvM =

cMl
M

∫
Ω

(
uω,n+1
M − uω,∞M

)
= cMl

M −M
M

= 0.

Therefore, letting 〈vM〉 = 1
|Ω|d

∫
Ω vM, and applying [11, Lemma 5.2, q = 2], we get

cMl
M

∫
Ω
ωv2
M =

∫
Ω

(vM − 〈vM〉µ)2 dµ ≤ 4

∫
Ω

(vM − 〈vM〉)2 dµ.
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Using the definition of dµ, and the bound (28), yields∫
Ω
ωv2
M .

∫
Ω

(vM − 〈vM〉)2 = ‖vM − 〈vM〉‖2L2(Ω).

By definition of 〈vM〉, one has vD−〈vM〉1D ∈ V k
D,0, so we can apply the discrete Poincaré–Wirtinger

inequality (12) to infer that

‖vM − 〈vM〉‖2L2(Ω) . |vD − 〈vM〉1D|
2
1,D = |vD|21,D.

Combining the two previous estimates, we get

En+1
ω =

1

2

∫
Ω
ωv2
M . |vD|21,D.

Now, one can use the stability estimate (29) to infer that

|vD|21,D . aωD(vD, vD) = Dn+1
ω .

Therefore, combining the last two estimates, one infers the existence of νω > 0, independent of both
hD and ∆t, such that the following relation between the entropy and its dissipation holds true:

νωEn+1
ω ≤ Dn+1

ω .

Plugging this estimate into the entropy relation (31), we deduce that

(1 + νω ∆t)En+1
ω ≤ Enω.

This implies the exponential decay of the entropy:

∀n ≥ 0, Enω ≤ (1 + νω ∆t)−n E0
ω.

To conclude, we just use the definition (17) and the bound (28) to infer that

‖uω,nM − uω,∞M ‖2L2(Ω) . Enω . ‖uω,nM − uω,∞M ‖2L2(Ω),

which, combined with the fact that uω,0M = u0, finally yields (32).

Remark 8 (Regularity of the initial datum and topology of the convergence). Notice that in Proposi-
tion 3 we have made the extra assumption that u0 ∈ L2(Ω). The long-time analysis of the exponentially
fitted model indeed relies on the decay of the quadratic entropy (in the Slotboom variable)

Eω(t) =
1

2

∫
Ω
ω(ρ(t)− ρ∞)2.

In order to guarantee that the initial quadratic entropy is finite, assuming that the initial datum is in
L2(Ω) is a safe choice. At the end, as a reminiscence of the linearity of the model, the exponential
fitting approach gives a convergence (in time) result in the L2-topology (in space). In contrast, the
nonlinear approach will yield convergence in a weaker norm (typically L1), but can be used to deal
with less regular initial data, which are in L log(L) only.
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3.2 Nonlinear scheme

We present here some results regarding the analysis of the nonlinear HHO method (24). Since we
deal with a nonlinear scheme, unlike the exponential fitting scheme, the question of the existence of
solutions is the main difficulty here. As often for this type of method, we start by establishing some
a priori estimates. For the purpose of analysis, given a discrete logarithm potential `D ∈ V k

D, we
associate a discrete quasi-Fermi potential wD ∈ V k

D defined by

wD = `D + φD − log(cMnl )1D, (33)

where we recall that cMnl = M/
∫

Ω e−φM . By definition (25) and equation (26), one has

wM = log

(
uM
u∞M

)
in Ω and wE = log

(
uE
u∞E

)
on ∂M.

Note that, on the other hand, for any `D, vD ∈ V k
D, we have

TD(`D; `D + φD, vD) = TD(`D;wD, vD), (34)

since (`D + φD)− wD is proportional to 1D. Similarly to previous works on nonlinear HFV schemes
for semiconductor models [45], the discrete quasi-Fermi potentials are the key variables to perform
the analysis of the method. As a last remark, notice that since φ ∈ H1(Ω), by boundedness of the
interpolator (cf. [23, Proposition 5.3]),

|φD|1,D . 1. (35)

Let us now state some fundamental a priori relations. As for the exponential fitting scheme, the
discrete entropy structure of the nonlinear scheme mainly results from the convexity of the entropy.

Proposition 4 (Fundamental a priori relations). Let (`nD)n≥1 be a given solution to the nonlinear
scheme (24), and (unD)n≥1 be the corresponding discrete density. Then, the following a priori relations
hold true:

(i) the mass is preserved along time:

∀n ≥ 1,

∫
Ω
unM =

∫
Ω
u0 = M ; (36)

(ii) a discrete entropy/dissipation relation is satisfied:

∀n ∈ N,
En+1 − En

∆t
+ Dn+1 ≤ 0, (37)

where the discrete entropy and dissipation are non-negative quantities defined by

En =

∫
Ω
u∞MΦ1

(
unM
u∞M

)
and Dn = TD(`nD;wnD, w

n
D) for n ≥ 1,

with Φ1 : s 7→ s log(s)− s+ 1 (and Φ1(0) = 1).

Proof. Let n ≥ 0. Using 1D as a test function in (24a), we get that the mass is conserved:∫
Ω
un+1
M =

∫
Ω
unM.
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Therefore, by (24c), we infer (36). To establish the entropy relation, we first use the convexity of Φ1,
which yields

En+1 − En ≤
∫

Ω
u∞MΦ′1

(
un+1
M
u∞M

)
un+1
M − unM

u∞M
.

Then, since wn+1
M = log

(
un+1
M
u∞M

)
and Φ′1 = log, one has

En+1 − En ≤
∫

Ω
wn+1
M

(
un+1
M − unM

)
. (38)

On the other hand, testing (24a) with wn+1
D ∈ V k

D, and using (34), we get∫
Ω
wn+1
M

(
un+1
M − unM

)
= −∆t TD(`n+1

D ; `n+1
D + φD, w

n+1
D ) = −∆t TD(`n+1

D ;wn+1
D , wn+1

D ),

which finally yields (37) by definition of the discrete dissipation.

Remark that since u0
M = u0, and u0 ≥ 0 in Ω, u0 ∈ L1(Ω), and

∫
Ω u

0 log(u0) <∞, one has E0 <∞.
Note finally that the previous results hold true for any ε ≥ 0 in (22).

In the rest of this section, we focus on the existence of solutions and on their long-time behaviour.
We henceforth assume that ε > 0. The proofs for both results rely on a discrete a priori estimate,
which is obtained by means of a high-order counterpart of [16, Lemma 2]. In order to perform the
analysis, we first introduce an inner product 〈·, ·〉 on V k

D:

∀zD, vD ∈ V k
D, 〈zD, vD〉 =

∑
K∈M

(∫
K
zKvK +

∑
σ∈EK

hσ

∫
σ
(zK − zσ)(vK − vσ)

)
.

We denote by ‖·‖ the corresponding Euclidean norm:

∀vD ∈ V k
D, ‖vD‖2 =

∑
K∈M

(
‖vK‖2L2(K) +

∑
σ∈EK

hσ‖vK − vσ‖2L2(σ)

)
.

Lemma 1 (Discrete boundedness by mass and energy semi-norm). Let `D ∈ V k
D, and assume that

there exist C] > 0 and M] ≥M[ > 0 such that

M[ ≤
∫

Ω
e`M ≤M] and |`D|1,D ≤ C]. (39)

Then, there exists a positive constant C, only depending on M[, M], C], Ω, θ, k and h[ such that

‖`D‖ ≤ C.

Proof. Let us first remark that∑
K∈M

∑
σ∈EK

hσ‖`K − `σ‖2L2(σ) ≤ h
2
D
∑
K∈M

∑
σ∈EK

1

hσ
‖`K − `σ‖2L2(σ) ≤ h

2
D|`D|21,D ≤ diam(Ω)2C2

] .

Hence, to estimate ‖`D‖, all that remains to bound is ‖`M‖L2(Ω). Recalling the notation 〈z〉 =
1
|Ω|d

∫
Ω z, and applying the discrete Poincaré–Wirtinger inequality (12), it holds

‖`M − 〈`M〉‖L2(Ω) ≤ CPW |`D|1,D ≤ CPWC], (40)

15



with CPW > 0 only depending on Ω, θ and k. Thus, by the triangle inequality, we infer

‖`M‖L2(Ω) ≤ ‖`M − 〈`M〉‖L2(Ω) + ‖〈`M〉‖L2(Ω) ≤ CPWC] + |Ω|1/2d |〈`M〉|,

and we are only left with estimating |〈`M〉|. We proceed in two steps, showing first an upper bound
on 〈`M〉, and then a lower bound. Applying Jensen’s inequality, the upper bound can be readily
obtained:

e〈`M〉 ≤ 〈e`M〉 ≤
M]

|Ω|d
,

which yields 〈`M〉 ≤ log
( M]

|Ω|d

)
. To prove the lower bound, we start from (40), and we use local reverse

Lebesgue embedding (cf. [23, Lemmas 1.25 and 1.12]). This yields

‖`M − 〈`M〉‖L∞(Ω) ≤ CRLh
−d/2
[ ‖`M − 〈`M〉‖L2(Ω) ≤ CPWC]CRLh

−d/2
[ ,

where CRL > 0 only depends on d, θ and k. Then, remarking that

e`M = e〈`M〉 e(`M−〈`M〉) ≤ e〈`M〉 eCPWC]CRLh
−d/2
[ ,

and integrating over Ω, we get ∫
Ω

e`M ≤ e〈`M〉 |Ω|d eCPWC]CRLh
−d/2
[ .

Now, using the lower bound on
∫

Ω e`M , and taking the logarithm, we finally infer that

log

 M[

|Ω|d eCPWC]CRLh
−d/2
[

 ≤ 〈`M〉.
This concludes the proof.

We now state the existence result, which holds true for positive ε. The proof adopts the methodology
developed in [16] in the (nonlinear) HFV context.

Theorem 1 (Existence of solutions to the nonlinear scheme (24)). Assume that the stabilisation
parameter ε in (22) is positive. Then, there exists at least one solution (`nD)n≥1 to the scheme (24).
The corresponding discrete densities (unD)n≥1, defined by (25), are positive.

Proof. The proof proceeds by induction. Let n ∈ N, and assume that unM is well defined, follow-
ing (24b) (if n ≥ 1) or (24c) (if n = 0). We now prove the existence of a solution `n+1

D ∈ V k
D to (24a).

For convenience, instead of looking for the discrete logarithm potential, we will equivalently seek for
the discrete quasi-Fermi potential wn+1

D = `n+1
D + φD − log(cMnl )1D (cf. (33)).

First, notice that, given any wD ∈ V k
D, and corresponding discrete logarithm potential `D

(through (33)) and discrete density uD (through (25)), the map

vD 7→
∫

Ω

uM − unM
∆t

vM + TD(`D;wD, vD)

is a bounded linear form on V k
D. Therefore, by the Riesz–Fréchet representation theorem, there exists

a unique element GD(wD) ∈ V k
D such that

∀vD ∈ V k
D,

〈
GD(wD), vD

〉
=

∫
Ω

uM − unM
∆t

vM + TD(`D;wD, vD).
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Remark that wD 7→ GD(wD) is a continuous (nonlinear) map of V k
D. Note also that, for any discrete

quasi-Fermi potential wD ∈ V k
D such that GD(wD) = 0D, by (34), the corresponding discrete logarithm

potential `D solves (24a). Our aim from now on is thus to show that GD does vanish on V k
D.

To this purpose, we introduce a regularisation of GD: given any µ > 0, we let

GµD : V k
D → V k

D; wD 7→ GD(wD) + µwD.

By definition of GD, one has〈
GµD(wD), wD

〉
=
〈
GD(wD), wD

〉
+ µ‖wD‖2

=

∫
Ω

uM − unM
∆t

wM + TD(`D;wD, wD) + µ‖wD‖2.

As already shown in the proof of Proposition 4 (cf. (38)), by convexity of Φ1, one has∫
Ω

uM − unM
∆t

wM ≥
E(wD)− En

∆t
,

where the discrete entropies are defined by

E(wD) =

∫
Ω
u∞MΦ1

(
uM
u∞M

)
and En =

∫
Ω
u∞MΦ1

(
unM
u∞M

)
.

As already mentioned, since Φ1 is a non-negative function, these two quantities are non-negative.
Note that it may occur that En = 0 (which is equivalent to unM = u∞M in Ω for n ≥ 1, or u0 = u∞M
in Ω), in which case `D = `∞D is the unique solution to (24a) (uniqueness follows from the entropy
relation (37)). In the following, we therefore assume that En > 0. The previous identities, and the
non-negativity of the dissipation and entropy, imply that〈

GµD(wD), wD
〉
≥ E(wD)− En

∆t
+ TD(`D;wD, wD) + µ‖wD‖2

≥ µ‖wD‖2 −
En

∆t
.

(41)

Letting r =
√

En
µ∆t > 0, one has that

〈
GµD(wD), wD

〉
≥ 0 for all wD ∈ V k

D such that ‖wD‖ = r.
Therefore, according to [16, Lemma 1] (cf. also [32, Section 9.1]), which is a by-product of Brouwer’s
fixed-point theorem, there exists wµD ∈ V

k
D such that

GµD(wµD) = 0D and ‖wµD‖ ≤

√
En
µ∆t

. (42)

Now, plugging wµD in (41), and using that GµD(wµD) = 0D, we get

E(wµD)

∆t
+ TD(`µD;wµD, w

µ
D) + µ‖wµD‖

2 ≤ En

∆t
,

so that TD(`µD;wµD, w
µ
D) ≤ En

∆t . Thus, recalling the definition (22)–(23) of TD, as well as the stability
estimate (11) for aD, we infer that

ε hk+2
[ |wµD|

2
1,D .

En

∆t
.

On the one hand, by (33) and the estimate (35) on |φD|1,D, it holds

|`µD|1,D = |wµD − φD|1,D .

√
En

εhk+2
[ ∆t

+ 1. (43)
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On the other hand, by definition of GµD, one first infers that

0 =
〈
GµD(wµD), 1D

〉
=

∫
Ω

uµM − unM
∆t

+ TD(`µD;wµD, 1D) + µ
〈
wµD, 1D

〉
=

∫
Ω

uµM − unM
∆t

+ µ
〈
wµD, 1D

〉
.

Second, using the Cauchy–Schwarz inequality, followed by the bound (42) on ‖wµD‖, one gets∣∣∣∣∫
Ω

(
uµM − unM

)∣∣∣∣ ≤ µ∆t‖wµD‖‖1D‖ ≤
√
µ
√

∆tEn |Ω|d,

where we have also used that ‖1D‖ = |Ω|1/2d . Thus, letting Mn =
∫

Ω unM > 0 (recall that
∫

Ω u0
M =

M > 0), and µn = (Mn)2

4∆tEn|Ω|d > 0, for all 0 < µ ≤ µn one has

Mn

2
≤
∫

Ω
e`
µ
M ≤ 3Mn

2
. (44)

Leveraging (43) and (44), one can eventually apply Lemma 1 with M[ = Mn

2 , M] = 3Mn

2 , and C]

proportional to
√

En
εhk+2
[

∆t
+ 1 (note that these three constants do not depend on µ): there exists a

constant C > 0, independent of µ, such that

∀µ ∈ (0, µn], ‖`µD‖ ≤ C.

Then, by compactness, there exists `n+1
D ∈ V k

D such that, up to extraction (not relabelled), `µD → `n+1
D

when µ → 0. On the other hand, GµD tends to GD as µ tends to 0. Therefore, letting wn+1
D =

`n+1
D + φD − log(cMnl )1D, we have 0D = GµD(wµD)→ GD(wn+1

D ) as µ→ 0, which implies that

GD(wn+1
D ) = 0D.

It follows that `n+1
D is a solution to (24a).

Remark 9 (Uniqueness of the solution). As for the low-order nonlinear VAG, DDFV and HFV
schemes of [13, 12, 16], the uniqueness of the solution to (24) is still an open question. A possible
approach to show such a result could be to consider the relative discrete entropy of a solution with
respect to another solution, and show that this quantity vanishes.

Last, we study the long-time behaviour of the nonlinear HHO scheme.

Proposition 5 (Long-time behaviour of the nonlinear scheme). Assume that the stabilisation param-
eter ε in (22) is positive, and let (`nD)n≥1 be a solution to the scheme (24). Then, the discrete solution
converges in time towards the discrete equilibrium logarithm potential:

`nD −−−→n→∞
`∞D in V k

D. (45)

Consequently, the corresponding reconstructed discrete density (unM)n≥1 converges to u∞M in L∞(Ω).

Proof. First, remark that owing to the entropy relation (37), one has

∑
n≥1

Dn ≤
∑
n≥1

En−1 − En

∆t
≤ E0

∆t
.
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Thus, according to the definition of the discrete dissipation Dn, alongside with the definition (22)–(23)
of TD, and the stability estimate (11) for aD, we infer that∑

n≥1

|wnD|21,D .
E0

εhk+2
[ ∆t

.

This implies, in particular, that

∀n ≥ 1, |wnD|1,D .

√
E0

εhk+2
[ ∆t

and |wnD|1,D −−−→n→∞
0. (46)

Let n ≥ 1. By (33) and (35), one has |`nD|1,D .
√

E0

εhk+2
[

∆t
+ 1. On the other hand, by the mass

preservation (36), we have
∫

Ω e`
n
M = M > 0. Therefore, one can apply Lemma 1, and infer the

existence of a positive constant C (which is independent of n) such that

∀n ≥ 1, ‖`nD‖ ≤ C. (47)

It follows, by compactness, that there exists `D ∈ V k
D such that, up to extraction (not relabelled),

lim
n→∞

`nD = `D in V k
D.

By (46), (33), and continuity of |·|1,D on V k
D, we infer that

|`D + φD|1,D = 0.

This means that there exists a ∈ R such that `D + φD = a1D. By mass preservation, we get

M =

∫
Ω

e`
n
M −−−→

n→∞

∫
Ω

e`M ,

so that a = log(cMnl ), which implies that `D = log(cMnl )1D − φD = `∞D . By uniqueness of the limit,
we finally infer the convergence of the whole sequence (`nD)n≥1 towards `∞D in V k

D. This implies, in
particular, that `nM −−−→n→∞

`∞M in L∞(Ω), by norm equivalence in finite-dimensional vector spaces.
Then, by the mean value theorem, we deduce that

‖unM − u∞M‖L∞(Ω) = ‖ e`
n
M − e`

∞
M ‖L∞(Ω) ≤ emax(‖`nM‖L∞(Ω),‖`∞M‖L∞(Ω)) ‖`nM − `∞M‖L∞(Ω),

which implies, by uniform boundedness (in n) of (`nM)n≥1, the convergence of the reconstructed
discrete density in L∞(Ω).

Remark 10 (Non-uniformity of the bounds). Note that the estimate (47) on the solution to (24) is not
uniform with respect to the discretisation parameters hD and ∆t, nor with respect to the stabilisation
parameter ε. Indeed, having a closer look to the dependencies of the corresponding upper bound (using
Lemma 1), one realises that it blows up as soon as either hD, ∆t or ε tends to zero.

Remark 11 (Convergence to equilibrium). Notice that the time-asymptotic result of Proposition 5 is
relatively weaker than the one of Proposition 3 in the exponential fitting context. For the latter result,
the convergence to equilibrium is shown to be exponentially fast, and the decay rate νω uniform with
respect to the discretisation parameters. The numerical results of [44] and Section 4.4 indicate that,
also for the nonlinear scheme, the convergence is expected to be exponential, with seemingly uniform
(and close to the PDE model one) decay rate. At the theoretical level, to prove exponential conver-
gence to equilibrium, one has to establish a control of the discrete entropy by the discrete dissipation.
Adapting the arguments from [45, Theorem 3], such a control can actually be established in the present
context, but leads to a non-uniform decay rate (also depending on ε), and to a final result still only
valid in the case ε > 0. In order to showcase a uniform (and ε-independent) decay rate, and establish
a result also valid in the case ε = 0, a (high-order) uniform discrete Logarithmic-Sobolev inequality
needs to be available (cf. [16] in the low-order HFV context). This is the subject of ongoing research.
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4 Numerical results

In this section, we extensively assess the high-order nonlinear scheme (24). We study positivity
preservation, convergence, efficiency (accuracy vs. computational cost), and long-time behaviour. We
also compare it, in terms of structure preservation, with the linear high-order exponential fitting
scheme (16). All the test-cases considered below are set in the two-dimensional domain Ω = (0, 1)2,
and are (except for the last one) taken from [16], to which we refer for more detailed descriptions.
Given a (face) degree k ≥ 0, the nonlinear scheme (24) will be referred to as nlhho_k, whereas the
exponential fitting one (16) as expf_k. For the nonlinear scheme, we will always use below the value
ε = 1 for the parameter ε in (22). However, in some situations, we will compare the two values ε = 1
and ε = 0. The nonlinear scheme with ε = 0 will then be denoted nlhho_k_0.

4.1 Implementation

All numerical tests presented below have been run on a laptop equipped with an Intel Core i7-9850H
processor clocked at 2.60GHz and 32Gb of RAM. Our HHO implementation makes use of monomial
basis functions for both the cell and face unknowns. Such a choice is known to introduce numerical
instabilities for large values of k, we thus restrict our study to k ≤ 3. The use of orthonormal basis
functions, which is expected to improve on this situation (in particular for the convergence of the
Newton algorithm in the nonlinear case), shall be studied in future works. We use quadrature formulas
based on the Dunavant rules [31] (after subtessellation). To cope with non-polynomial integrands,
we employ quadrature formulas of order 2k + 5. We performed a few tests (not reported here) with
higher-order formulas, and did not observe any significant changes. Last, the local computations are
performed sequentially. One could expect a significant gain in terms of performances parallelising the
latter. We discuss below some important implementation aspects for both schemes.

4.1.1 Exponential fitting scheme

For the linear exponential fitting scheme, the implementation follows the classical HHO strategy for
linear diffusion problems. We directly solve for the discrete Slotboom variable (ρnD)n≥1. As standard
for skeletal methods, we do not solve the full linear system, but first perform static condensation,
which allows one to locally eliminate the cell unknowns. Since the scheme relies on the same LHS
matrix at each time step, we perform once and for all an LU decomposition of the matrix at the
beginning of the computation. At each time step, the solution is then inexpensive (the RHS has to
be updated, but only through a matrix-vector product).

We do not address in this work the main questions which were highlighted in [16, Section 5.1.2]
in the low-order HFV context, about the (harmonic) averaging of ω (which is related to the choice
of quadrature formulas for the high-order scheme), and the preconditioning of the system (which was
equivalent, in the simple HFV context, to choose to solve the system in the density variable). These
aspects shall be investigated in future works. Nonetheless, in view of the results obtained in [16] for
the HFV exponential fitting scheme, we believe these potential improvements will have no effect on
the positivity violation issues.

4.1.2 Nonlinear scheme

The numerical scheme (24) requires to solve a nonlinear system of equations at each time step. For
n ∈ N, one wants to find `n+1

D ∈ V k
D solution to (24): this scheme can be written as the equation

Gn,∆tD (`n+1
D ) = 0D,

with Gn,∆tD : V k
D → V k

D smooth (nonlinear) vector field. Numerically, to find a zero of Gn,∆tD , we use
a Newton method.
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In practice, the use of a naive method without any adaptation proves not to be enough to compute
a solution in general. In order to get a robust implementation, which can handle various data and
meshes, one has to deploy a few techniques. For further use, we let ‖`D‖l∞ denote the l∞-norm of the
coefficients of `D in the (cell and face) polynomial bases. The map ‖·‖l∞ is a norm on V k

D, which is
easily (and at very low cost) computable in practice. To fix the ideas and the notation, the Newton
method is defined as follows: given an initialisation `D,0 ∈ V k

D, and a time step 0 < δt ≤ ∆t, one
defines a sequence (`D,i)i≥0 of elements of V k

D such that

Jn,δt`D,i
(`D,i+1 − `D,i) = −Gn,δtD

(
`D,i
)
, (48)

where Gn,δtD is the vector field associated to the nonlinear scheme (24) with time step δt instead of
∆t, and Jn,δt`D,i

is the differential (Jacobian in practice) of Gn,δtD at `D,i. Note that, in practice, we do
not solve this linear system, but perform static condensation in order to (locally) eliminate the cell
unknowns. The resulting linear system is called "condensed system" in what follows. We discuss
below the main tricks deployed to reach robustness in the implementation of the Newton algorithm.

Stopping criterion. We define the relative norm of the residual ri+1, and the norm of the objective
function gi, as

ri+1 =
‖`D,i+1 − `D,i‖l∞
‖`D,i‖l∞

and gi = ‖Gn,δtD (`D,i)‖l∞ .

We consider that the Newton method has converged when either

(ri+1 ≤ 0.1× tol) or (ri+1 ≤ tol and gi ≤ tol) ,

with tol = 5.10−10, in which case we set `n+1
D = `D,i+1. On the other hand, if this criterion

is not met at i = 50, the method is considered as non-convergent (and we then proceed with
a time step reduction, see below). In practice, for the tests collected in this article, we never
reached i = 50, either because the method converged, or because of a loop break (see below).

Loop break for unreasonably large `D. The computations of Gn,δtD
(
`D,i
)
and Jn,δt`D,i

imply punc-

tual evaluations of e`K,i (for K ∈ M) and e`σ,i (for σ ∈ E) in the quadrature formulas. Such
computations can lead to severe numerical issues if the values at the quadrature nodes are too
large. Therefore, we declare that `D,i is unreasonably large for the computations if there exists
a cell quadrature node xK,q ∈ K, or a face quadrature node xσ,q ∈ σ, such that

|`K,i(xK,q)| ≥ 100 or |`σ,i(xσ,q)| ≥ 100.

In such a case, the method is immediately considered as non-convergent, and we proceed with
a time step reduction (see below). Note that the choice of the value 100 allows one to compute
densities uD over a range from 10−43 to 1043, and hence should not be a significant restriction in
practice. In the numerical simulations presented below, the use of this loop-breaking procedure
is absolutely necessary in order to avoid the evaluation of too large quantities, leading to some
“explosion” of the method and crash of the code. Moreover, we also operate a loop break if the
linear solver does not perform a successful resolution of the condensed linear system associated
to (48), which corresponds to situations for which either Jn,δt`D,i

or its condensed counterpart are
not invertible. Such situations occur in practice, essentially on very coarse meshes.

Adaptive time stepping. The previous strategies can lead to a solution failure for some given time
step δt. If the Newton method did not converge, we try to compute the solution for a smaller
time step δt/2. On the other hand, if the method did converge, we use for the subsequent time
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step the larger value 2δt. The maximal time step allowed is the initial one, denoted by ∆t. In
practice, the scheme may perform numerous time step reductions at the beginning (early times)
of the computation.

Initialisation by truncation and filtration. As for any Newton method, the question of the ini-
tialisation is fundamental in order to get a robust implementation. It appears that, for n ≥ 1,
the natural initialisation `D,0 = `nD is satisfactory when used with the adaptative time stepping
strategy. However, for n = 0, such a choice is not possible, since `0D does not exist in general
if u0 vanishes locally or is too small (cf. Remark 6). A first way of tackling this problem is to
define a truncated initial logarithm potential ˜̀0 as

˜̀0 = log
(
max(u0, 10−8)

)
,

and to initialise the Newton method with ˜̀0
D = IkD(˜̀0) ∈ V k

D, provided one can give a sense
to the face components. In fact, such a strategy entails another limitation: ˜̀0

D exhibits strong
oscillations in the regions where the truncation is performed (this is also true when u0 is dis-
continuous over Ω, as in Section 4.2). These oscillations usually make the method diverge,
even with extremely small time step. Therefore, we eventually initialise the method with a “fil-
tered” (non-oscillating) discrete logarithm potential `0D ∈ V k

D, which corresponds to a zero-order
polynomial projection of ˜̀0:

`0K = Π0
K(˜̀0

|K) ∀K ∈M and `0σ = Π0
σ(˜̀0
|σ) ∀σ ∈ E ,

still provided one can give a sense to the face components. In practice, using `D,0 = `0D as
the first initialisation (when n = 0) yields convergent Newton methods for all tests presented
below. The use of filtered initial discrete data seems particularly crucial for high-order schemes
(k ≥ 1). For the lowest-order version of the scheme (k = 0), the use of ˜̀0

D as a first initialisation
(for n = 0) often yields convergent Newton methods (up to time step reduction).

Of course, the chosen values for the stopping criterion and the thresholds are arbitrary and could be
modified. However, the set of values advocated here makes the scheme robust enough so as to be
capable of computing solutions for all the test-cases in this article.

Remark 12 (Potentials vs. densities). One of the main differences between the present nonlinear
scheme and the low-order HFV ones from [16] and [45] lies in the fact that we use here the potential ` as
our (piecewise polynomial) unknown, whereas the density u was used in the low-order schemes. Notice
that, in the present context, choosing u as the main variable would require to give a discrete meaning
to ∇ log(u), which is not obvious for the following reason: polynomials of degree ≥ 1 are not stable
by the log function. As a by-product of seeking for a potential, our stopping criterion only provides
information on `, while we are eventually interested in the corresponding density. Moreover, our
criterion only takes into account the coefficients of the polynomials (through the use of the norm ‖·‖l∞),
but such a measure does not give much information about the effective behaviour of the unknowns. A
more relevant stopping criterion could be to consider the residual in terms of densities

‖uM,i+1 − uM,i‖L2(Ω)

‖uM,i‖L2(Ω)

(and analogous definition for the face unknowns) in order to ensure a satisfying accuracy on u. How-
ever, the main drawback of such a criterion is its evaluation cost. In this work, we thus chose to
use instead a purely algebraic stopping criterion on `, whose cost is marginal. The testing of other
stopping criteria will be the subject of future investigations. Last, for the HFV schemes of [16, 45],
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the following loop-breaking strategy was used: when the computed density had almost-zero (or even
non-positive) components, one performed a time step reduction. Here, such a situation cannot oc-
cur, since ` is authorised to take any real value, but this apparent latitude on the potential is in fact
pernicious. Indeed, situations in which ` takes negative values with large magnitude are actually the
counterpart of an almost-zero u for the HFV schemes. Like their counterpart, they lead to divergent
Newton methods. The main difficulty then lies in the design of a relevant criterion in order to avoid
these situations.

4.2 Positivity

This first section is dedicated to assessing discrete positivity preservation. For the test considered
here, we set the advective potential and the anisotropy tensor to

φ(x1, x2) = −
(
(x1 − 0.4)2 + (x2 − 0.6)2

)
and Λ =

(
0.8 0
0 1

)
.

For the initial datum, we take u0 = 10−3 1B + 1Ω\B, where B is the Euclidean ball

B =
{

(x1, x2) ∈ R2 | (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.22
}
.

These data ensure that the solution u is positive on R+ × Ω. We perform the simulation on the
time interval [0, 5.10−4] with ∆t = 10−5, on a (fine) tilted hexagonal-dominant mesh featuring 4192
cells and 12512 edges. The computed discrete densities are denoted by (unD)1≤n≤Nf and (uω,nD )1≤n≤50.
Remark that the situation Nf > 50 may occur if the nonlinear scheme has to perform time step
adaptation.

In Table 1, we collect the minimal values reached by the discrete solutions. The values of mincellA
(for “average”) are defined by

min

{
1

|K|d

∫
K
unK | K ∈M, 1 ≤ n ≤ Nf

}
and min

{
1

|K|d

∫
K
uω,nK | K ∈M, 1 ≤ n ≤ 50

}
,

for, respectively, the nonlinear scheme and the exponential fitting scheme. The values of mincellQN
are the minimal values taken by the densities at the cell quadrature nodes. Analogous definitions
hold for the faces. The values of #resol correspond to the number of linear systems solved during
the computation. Note that the size of these systems depends on the value of k, so it is not a relevant
information to compare the cost of the schemes for different values of k. Last, walltime is the total
time (in s) needed to compute the discrete solution (it includes the pre-computation steps, such as the
computation of the matrices representing GK). Recall that the exponential fitting scheme is linear

scheme walltime #resol mincellA minfaceA mincellQN minfaceQN
nlhho_0 7.17e+01 224 1.00e-03 1.01-03 2.41e-06 1.01e-03
nlhho_1 4.13e+02 248 6.65e-04 2.05e-05 1.78e-04 3.57e-08
nlhho_2 1.45e+03 251 9.50e-04 5.99e-04 2.67e-07 1.06e-05
nlhho_3 3.87e+03 254 9.85e-04 8.58e-04 1.10e-05 1.79e-05
expf_0 5.66e-01 50 1.02e-03 1.89e-03 -3.78e-01 1.89e-03
expf_1 2.23e+00 50 -1.29e-02 -2.40e-01 -4.91e-01 -3.71e-01
expf_2 6.34e+00 50 -6.14e-03 -1.02e-01 -5.08e-01 -5.35e-01
expf_3 1.53e+01 50 -3.24e-04 -1.02e-02 -5.52e-01 -4.05e-01

Table 1: Positivity of discrete solutions.

(with corresponding matrix not depending on time), whence its extremely low cost compared to the
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nonlinear scheme. Note, however, that when an LU decomposition is unaffordable and an iterative
solver has to be used instead, nlhho_k is approximately “only” five times more costly than expf_k.
The results of Table 1 first indicate that, as expected, all nonlinear schemes preserve the positivity of
the discrete solution. On the other hand, none of the linear schemes preserves positivity on the whole
domain Ω. In fact, except expf_0, all linear schemes studied here do not even preserve the average
positivity on each cell, in the sense that there exists K0 ∈M and n0 integer such that∫

K0

uω,n0

K0
< 0.

Moreover, it is interesting to note that the positivity violation peak (which can be approximated by
|mincellQN| and |minfaceQN|) increases as k increases, whereas in average (values of |mincellA| and
|minfaceA|) the lack of positivity becomes smaller as the order increases.

At this stage, it is worth pointing out the fact that quantifying the negativity of the solution is
much more difficult for high-order schemes, since it is not possible to “count” the number of negative
values (which correspond to the degrees of freedom for low-order schemes). While the mincellQN
value gives information about the minimum value reached on the whole domain, it does not give any
indication about the measure of the set {x ∈ Ω | uω,nM (x) < 0} where the discrete cell unknown takes
negative values. The same remark applies to mincellA. As an attempt to provide an idea of the size
of this set, we display in Table 2 the number of cells with negative average over the whole simulation,
defined as the cardinal of the set{

(K,n) ∈M× [[1; 50]] |
∫
K
uω,nK < 0

}
.

These data reveal that, excluding expf_0 which performs quite well on this particular test, the higher
the order, the smaller the size of the negative-average set.

scheme expf_0 expf_1 expf_2 expf_3

#cells with negative average 0 824 136 1

Table 2: Number of negative cell averages.

The previous observations seem to indicate a competition between two phenomena for linear
methods. As k increases, the accuracy is improved, and therefore the discrete solution becomes closer
to the exact one. Hence, in average, high-order schemes compute solutions with smaller area of
negativity, and lesser positivity violation. However, high values of k induce larger oscillations for the
polynomial solution: the computed solution takes negative values on smaller sets, but the (pointwise)
undershoots become bigger as k increases. At the end, it seems that there is no hope to get a positive
discrete solution on the whole domain Ω with a linear method.

Remark 13 (An accuracy criterion taking into account positivity). The previous observations suggest
that, for applications in which preserving the positivity of the solution is an essential feature, the
accuracy of the scheme should not simply be defined as an Lp-distance between the reconstructed
discrete solution uM and the exact one u. We believe that a relevant criterion in order to take into
account both “classical accuracy” (distance between uM and u) and positivity is to look at the relative
Boltzmann entropy (or other kinds of relative Φ-entropies as defined in [6]) with respect to the exact
solution, that is

Err(uM) =

∫
Ω
uΦ1

(uM
u

)
, (49)

where Φ1(s) = s log(s) − s + 1 for s > 0, Φ1(0) = 1, and Φ1(s) takes large values for s < 0. The
interest of such a definition is twofold. First, the negativity of uM is penalised. Second, if uM is

24



positive and
∫

Ω uM =
∫

Ω u (which is the case in practice for problems with homogeneous Neumann
boundary conditions), by Csiszár–Kullback inequality (see e.g. [11, Lemma 5.6]), one has

‖uM − u‖L1(Ω) ≤
√

2‖u‖L1(Ω)Err(uM).

4.3 Convergence and efficiency

We here study the convergence as (hD,∆t) → (0, 0) of the nonlinear scheme for different values of
the polynomial degree k. We consider a test-case with known exact solution. We set the advective
potential and anisotropy tensor to

φ(x1, x2) = −x1 and Λ =

(
lx1 0
0 1

)
for lx1 > 0. The exact solution is then given by

u(t, x1, x2) = C1 e−αt+
x1
2 (2π cos(πx1) + sin(πx1)) + 2C1π ex1− 1

2 , (50)

where C1 > 0 and α = lx1

(
1
4 + π2

)
. Note that u0 vanishes on {x1 = 1}, but for any t > 0, u(t, ·) > 0.

Here, our experiments are performed using lx1 = 1 and C1 = 10−1.
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Figure 1: Accuracy vs. mesh size. Relative errors on triangular meshes.

We compute the discrete solutions on the time interval [0, 0.1], and we denote by (unD)1≤n≤Nf
the corresponding discrete densities. We monitor the relative L2

t (L
2
x)-error and L2

t (H
1
x)-error on the

solution, respectively defined by√√√√√∑Nf
n=1 δt

n‖unM − u(tn, ·)‖2
L2(Ω)∑Nf

n=1 δt
n‖u(tn, ·)‖2

L2(Ω)

and

√√√√√∑Nf
n=1 δt

n‖GM(unD)−∇u(tn, ·)‖2
L2(Ω)d∑Nf

n=1 δt
n‖∇u(tn, ·)‖2

L2(Ω)d

,

where δtn = tn − tn−1, and
∑

1≤n≤Nf δt
n = 0.1. The discrete gradient of the densities GM(unD) is

defined as follows. For all K ∈ M, (GM(unD))|K = GK(unK), where GK(unK) is a smooth vector field
on K defined by mimicking at the discrete level the relation ∇u = e`∇`:

GK(unK) = e`
n
K GK(`nK) in K. (51)
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Notice that, with the chosen error measures, we do not take into account the time t = 0. We perform
our simulations on a triangular mesh family (Di)1≤i≤5, such that hDi/hDi+1 = 2. Since the time
discretisation is of order one, in L∞t (L2

x)-norm, we expect the error to decrease as

Error ≤ CT∆t+ CS(k)hk+2
Di ,

where CT , CS(k) > 0 are multiplicative constants respectively related to time and space discreti-
sations, with k 7→ CS(k) decreasing. We have hDi = hD1/2

i−1, so to balance the time and space
contributions of the error upper bound, we need to take

∆t(i, k) ∼ ∆t(1, k)

2(i−1)(k+2)
,

where ∆t(1, k) = CS(k)
CT

hk+2
D1

. For the values of k we consider, we assume (and we verify in practice
that it is relevant) that ∆t(1, k) ≥ 0.05/2k+2 (see [1] for a theoretical study of k 7→ CS(k) in the HHO
context). Thus, for given i and k, we define our (maximal) time step as

∆t(i, k) =
0.05

2i(k+2)
.

On Figure 1, we plot the relative errors as functions of the mesh size hD for k ∈ {0, 1, 2, 3}.
For completeness, we also include the scheme nlhho_2_0 (i.e. with ε = 0 in (22) for k = 2) in our
comparison. First, we observe that nlhho_2 and nlhho_2_0 have the same behaviour (the two plots
are superimposed). Tests with other values of k, not shown here, indicate that the influence of ε
(0 or 1) on the accuracy of the scheme is not noticeable. Second, we see that, as one could expect,
the method nlhho_k converges at order k + 2 in L2

t (L
2
x)-norm. In the L2

t (H
1
x)-norm, if the expected

convergence order of k + 1 is attained for k = 0 and k = 1, then some sort of saturation appears for
k = 2 and k = 3. Since this saturation does not show up in L2

t (L
2
x)-norm, we suspect this might be

due to our definition (51) of the discrete density gradient. Indeed, remark that, at the discrete level,
the chain rule is violated, thus (51) is not exactly a discrete version of ∇ e`.

We now study efficiency, that is to say accuracy for a given computational cost. On Figure 2,
we plot the relative errors as functions of the simulation walltime (in s). Here again, the results
for the schemes nlhho_2 and nlhho_2_0 are superimposed. It is quite remarkable to observe that,
even with a low-order discretisation in time, significant efficiency gains can be obtained using a larger
value of k, at least for values of k ≤ 2. The gain is expected to be even larger after parallelising
the local computations. Of course, the use of higher-order time-stepping methods should also lead to
significant gains of efficiency. This will be investigated in future works.

Remark 14 (High-order schemes in time and space). The extension of the nonlinear scheme (24)
to arbitrary orders in time and space is a rather natural goal in order to achieve optimal efficiency.
However, even with a time discretisation of order 2 (like for example Crank–Nicolson, which is per-
haps the most natural extension to backward Euler), there is currently no successful approach retaining
the discrete entropy structure. Since this structure is the cornerstone of the analysis (including the
existence of solutions), it is of utmost importance to preserve it. Some numerical investigations on
nonlinear entropic TPFA schemes for diffusive problems with BDF2 time discretisation have been per-
formed in [21, Chapter 3], and indicate that such a time discretisation could also be a good candidate,
even in regard of long-time behaviour (see [21, Chapter 3.4.4]). An alternative approach is to consider
space-time methods, as in [8] in the context of conforming Galerkin discretisations of cross-diffusion
systems. The extension of space-time techniques to polytopal grids is currently an active research area.

For completeness, we finally perform simulations on distorted quadrangular meshes, and display
the relative L2

t (L
2
x)-errors on Figure 3. Note that we use the same time step definition as for the
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Figure 2: Accuracy vs. computational cost. Relative errors on triangular meshes.

previous simulations, whereas the initial mesh is coarser. As expected, the behaviour of the schemes
is not strongly impacted by the mesh geometry, and nlhho_k converges at order k+2 in L2

t (L
2
x)-norm.

When it comes to efficiency, increasing the value of k leads to better accuracy for fixed computational
cost, but the efficiency gain saturates for k ≥ 2. It is also worth noting that on the coarsest mesh,
nlhho_3 has to perform more time step reductions than the other schemes, because at some iterations
the linear solver is unable to perform LU decomposition. These time step reductions occur not only
at the beginning of the simulation, and are probably related to the bad conditioning of the system for
high-order polynomials (we use here monomial bases). Based on these observations, using nlhho_2
seems to be a sound choice to optimise efficiency while ensuring a good numerical stability.
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Figure 3: Accuracy on general meshes. Relative L2
t (L

2
x)-error on distorted quadrangular meshes.

4.4 Discrete long-time behaviour

We are now interested in the long-time behaviour of discrete solutions.
We first use the same test-case as in Section 4.3, but this time with an anisotropic tensor: we set
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lx1 = 10−2. The corresponding steady-state is

u∞(x1, x2) = 2C1π ex1− 1
2 .

We compute the discrete solutions on the time interval [0, 350], with ∆t = 10−1, on two Kershaw
meshes of sizes 0.02 and 0.006. On Figure 4, we display the evolution along time of the L1-distance
between the reconstructed discrete densities and u∞, computed as

‖uω,nM − u∞‖L1(Ω) and ‖unM − u∞‖L1(Ω) (52)

for, respectively, the exponential fitting scheme, and the nonlinear scheme. We here focus on expf_1,
and on nlhho_k for k ∈ {0, 1, 2} (as well as on nlhho_1_0). For all schemes, we observe the exponential
convergence towards the thermal equilibrium, until machine precision is reached. Remark that, for the
test-case considered here, φ ∈ P1(Ω), therefore φM = φ for all k ≥ 0. It follows that u∞M = u∞ (recall
that we always have uω,∞M = u∞). This is exactly what we observe in the numerical experiments.
As previously, nlhho_1 and nlhho_1_0 exhibit an extremely similar behaviour. Also, for k ≥ 1, we
observe that the decay rates are similar to the exact one α, and do not seem to depend on the size
of the mesh. For k = 0, the decay rate differs a bit from α on the coarsest mesh, but these two rates
seem to coincide on a sufficiently refined mesh.
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Figure 4: Long-time behaviour of discrete solutions. L1-distance to u∞ on Kershaw meshes.

As a last test-case, we consider an advective potential and an anisotropy tensor set to

φ(x1, x2) = −1

2
log
(
1 + (x1 − x2)2 + 3x2

2

)
and Λ =

(
103 0
0 1

)
.

Our initial datum is
u0(x1, x2) = 1 +

1

2
cos(2πx1) sin(2πx2).

The corresponding thermal equilibrium therefore reads

u∞(x1, x2) =
1∫

(0,1)2 e−φ

√
1 + (x1 − x2)2 + 3x2

2.

Remark that the potential φ is not (piecewise) polynomial. As previously, we investigate the long-
time behaviour of the schemes. We compute the discrete solutions on the time interval [0, 5], with
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∆t = 0.2, on two distorted quadrangular meshes featuring, respectively, 64 and 1024 cells. On
Figure 5, we display the evolution of the L1-distance to equilibrium, as defined in (52), for both
the expf_k and nlhho_k schemes, for k ∈ {0, 1, 2, 3}. For all schemes, we observe the exponential
convergence towards the thermal equilibrium, until some precision is reached. For the exponential
fitting schemes, machine precision is attained (which is expected since uω,∞M = u∞), whereas for the
nonlinear schemes (for which u∞M is an approximation of u∞), the precision increases, as expected,
with the polynomial degree and as the mesh is refined. Also, all schemes with k ≥ 1 seem to exhibit
a similar, meshsize-independent decay rate. For k = 0, the decay rate seems slightly sensitive to the
mesh size, but tends to reach the expected value on a sufficiently refined mesh.
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Figure 5: Long-time behaviour of discrete solutions. L1-distance to u∞ on distorted quadran-
gular meshes.

5 Conclusion

In this paper, we have studied two arbitrary-order hybrid methods for the approximation of linear,
anisotropic, potential-driven advection-diffusion equations on general polytopal meshes. The first one
is a linear scheme, which is based on the exponential fitting strategy, whereas the second is a nonlinear
scheme, whose building principles are adapted from the low-order constructions of [13, 12, 16]. We
proved that both schemes admit solutions, possess a discrete entropy structure, and preserve the mass,
the thermal equilibrium, and the long-time asymptotics. Moreover, the solutions to the nonlinear
scheme are positive by construction. We have validated these theoretical results on a set of numerical
test-cases. We have unraveled the positivity violation of the linear methods, which justifies the use
of (more costly) nonlinear methods. In the meantime, the use of nonlinear schemes with polynomial
unknowns of higher degree results in an important gain of efficiency (accuracy vs. computational
cost). These results confirm the benefits of using high-order nonlinear schemes in order to get reliable
approximations of dissipative problems. Future research directions include a full analysis of the
nonlinear scheme, in particular of its convergence (with respect to the discretisation parameters) and
time-asymptotic properties, as well as the development of similar schemes for more complex, nonlinear
problems, like semiconductor models (based on [45]).
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