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Abstract. The last decades have seen a growth in the number of cyber-
attacks with severe economic and privacy damages, which reveals the
need for network intrusion detection approaches to assist in preventing
cyber-attacks and reducing their risks. In this work, we propose a novel
network representation as a graph of flows that aims to provide relevant
topological information for the intrusion detection task, such as malicious
behavior patterns, the relation between phases of multi-step attacks, and
the relation between spoofed and pre-spoofed attackers’ activities. In
addition, we present a Graph Neural Network (GNN) based-framework
responsible for exploiting the proposed graph structure to classify com-
munication flows by assigning them a maliciousness score. The frame-
work comprises three main steps that aim to embed nodes’ features and
learn relevant attack patterns from the network representation. Finally,
we highlight a potential data leakage issue with classical evaluation pro-
cedures and suggest a solution to ensure a reliable validation of intrusion
detection systems’ performance. We implement the proposed framework
and prove that exploiting the flow-based graph structure outperforms the
classical machine learning-based and the previous GNN-based solutions.

Keywords: Intrusion Detection · Cybersecurity · Artificial
Intelligence · Graph Neural Network · Graph Theory

1 Introduction

During the last decades, with the emergence of Internet of Things (IoT), cloud,
and edge computing, cyber-attacks have increased exponentially in frequency
and complexity. Accordingly, adopting the industry 4.0 technologies has opened
the doors for attackers to take advantage of many security breaches [9]. Indeed,
some characteristics of industry 4.0 are considered highly appealing targets for
cyber-attackers, for example: 1) Industry 4.0 technologies are usually imple-
mented over an old isolated system, thus increasing the attack surface and giving
more opportunities to the attackers, 2) a massive number of connected devices
are considered potential attack risks, 3) lack of visibility across isolated environ-
ments and separate systems can lead to critical security issues.
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Cyber-criminals attempt to use these vulnerabilities to carry out malicious
activities [10] and gain access to unauthorized information, such as ransomware
and man-in-the-middle attacks, disrupt services, such as Distributed Denial of
Service (DDoS), Denial of Service (DoS), and botnet attacks, or destructive
attacks using malware. The attacks can be costly for companies and govern-
ments. For instance, the ransomware attack that scoped JBS S.A company on
May 30, 2021, was solved only by paying 11 million dollars to the attackers to
regain access to all internal data. The Harris Federation, a school group in the
United Kingdom, was hit by ransomware and was threatened to release sensitive
data. Therefore, governments and companies support the development of efficient
solutions to alleviate the risks of these attacks [10]. In addition, cyber-attacks
are getting increasingly sophisticated, and hackers employ several techniques to
evade the existing Intrusion Detection Systems (IDSs). For this reason, appro-
priate reactive schemes are needed to go along with the attacks’ evolution pace.

To ensure more protection and detect these attacks, companies considers two
main types of IDSs [4]:

– Signature-based intrusion detection systems: These systems aim to detect
attacks by comparing network traffic to predefined patterns of attacks that
are already known.

– Anomaly-based intrusion detection systems: These systems monitor the traf-
fic to detect any abnormal behavior. They use statistical and machine learning
techniques to classify the traffic into normal and anomalous (binary cluster-
ing), or into normal and attack(s) (classification).

The existing signature-based IDSs are efficient in detecting the known attacks
with a low false-positive rate but fail to detect any new type of attacks [4]. There-
fore, during the last few years, researchers started to exploit anomaly detection
approaches using Machine Learning (ML) and Deep Learning (DL) algorithms
to identify any abnormal behavior in the network. On the one hand, these tech-
niques show promising results in detecting unseen attacks. Yet, on the other
hand, it is difficult to achieve a low false-positive rate using these algorithms.
One of the reasons behind this issue is the poor quality of the models being used,
partly due to the lack of high-quality datasets. Indeed, these datasets are gener-
ally biased towards including mostly regular traffic at the expense of malicious
traffic.

This work addresses the problem of detecting cyber-attacks at the network
edge using an anomaly-based intrusion detection approach. The detection con-
sists in classifying the communication flows into normal and anomalous. We pro-
pose an efficient network representation that provides relevant information about
cyber-attacks, enabling Artificial Intelligence (AI) algorithms to detect malicious
patterns. Our structure provides important structural information about attack-
ers’ behavior, such as the iterative malicious routines, connections between sev-
eral malicious activities, and the existence of multi-step attacks or distributed
attacks. Moreover, we propose a framework for detecting network-level attacks
based on Graph Neural Networks (GNN) to exploit our network representa-
tion. The framework comprises three main steps that aim to extract and embed
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attacks topological features with flow’s attributes. The obtained information
characterizes the graph’s topology with the nodes’ attributes and enhances the
capabilities of the decision-making module in distinguishing between normal and
malicious flows. The availability of datasets for the flow classification problem
and the high complexity of packet-level IDSs endorses our choice to work on a
flow-based approach.

Our main contributions can be summarized as follows:

• We propose a novel flow-based graph structure that provides relevant infor-
mation about malicious behavior patterns and enables the model to attend a
higher accuracy in distinguishing between normal and malicious flows.

• We devise a graph-based framework to extract and exploit the spatial infor-
mation of our network representation to detect malicious flows.

• We analyze the currently used validation techniques to ensure a reliable val-
idation of the IDS.

• We evaluate our proposed model by comparing it with previous intrusion
detection works. We show that our results are promising and outperform the
existing ML-based and graph-based works.

The remainder of this paper is structured as follows. First, the related work is
reviewed in Sect. 2. Section 3 then presents and explains the preliminaries needed
to understand the rest of the work. Section 4 introduces the proposed framework
and its different phases. Section 5 discusses the existing evaluation techniques.
Finally, the obtained results are presented in Sect. 6, and the conclusion is given
in Sect. 7.

2 Related Work

The problem of intrusion detection has been widely investigated in the literature.
We review in this section the most latent works that proposed or used graph
structures to perform intrusion detection.

Josep Soler Garrido et al. [6] proposed to use relational learning on knowl-
edge graphs to ensure security monitoring and accomplish intrusion detection.
They apply ML techniques on knowledge graphs to detect unexpected activity
in industrial automation systems. The knowledge graphs provide relevant infor-
mation, but they cause considerable memory consumption, and due to using IP
addresses as an identifier, they can be eluded easily using IP spoofing1.

The authors of [15] exploited the CICIDS 2017 dataset to create a host-
connection graph. They first propose to create a heterogeneous graph where
they introduce two types of nodes; the first type represents users, and the second
represents the flows. This structure is more complicated to handle, and hence
authors were obliged to propose their message-passing [14] procedure in order to
be able to exploit their network representation. Moreover, this structure could

1 IP address spoofing refers to the creation of Internet Protocol (IP) packets with a
false source IP address to evade the detection by intrusion detection systems.
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also be evaded using IP spoofing since it is based on IP addresses as an identifier
of users’ nodes.

Yulong Pei et al. [13] proposed to use a Graph Convolutional Network (GCN)
to address the anomaly detection problem on attributed networks. The same
problem is studied in [16], where the authors exploit the node attention mecha-
nism to better obtain the network’s embedding representation. Ultimately, they
use a multi-layer perceptron algorithm to train data to detect any malicious
activity. However, these works use the classical sub-efficient graph structure
where nodes represent users and flows are the edges of the graph. Saber Zer-
houdi et al. [18] suggested enhancing intrusion detection systems using zero-shot
learning. Their framework aims to improve insider threat detection performance
for cases where historical user data is unavailable. Specifically, they used graph
embeddings to encode relations from the organization structure. In [11], the
authors proposed to apply the predefined E-GraphSage algorithm to the previ-
ously described classical graph structure to achieve intrusion detection.

The works in [11,13,16,18] use the classical graph representation which char-
acterizes the users as nodes and communication flows as edges. This structure
has several drawbacks, for example, it can be evaded since it is based on IP
addresses, a pre-processing phase is required to make it consumable by GNN
algorithms, and it does not provide relevant topological information about dis-
tributed or multi-steps attacks.

Our network representation provides more relevant information in compari-
son with the graph structures of the previously cited works. Moreover, our struc-
ture is not affected by IP spoofing and it gives the possibility to link several steps
of multi-step attacks.

Table 1 summarizes the distinguishing features of our network representation
compared to the aforementioned papers.

3 Preliminaries

This section introduces and explains some concepts needed for a better under-
standing of the paper.

3.1 NIDS Problem Statement

Our objective is to propose a Network-level IDS (NIDS), as illustrated in Fig. 1.
The NIDS’s role is to classify the network flows into normal and malicious and
report any abnormal behavior to the system administrator (SA). The SA is
then responsible for analyzing the reported network flows and reacting to pre-
vent potential attacks. Meanwhile, the flows classified as malicious are stored
in a specific dataset for further processing. The NIDS collects packets from the
network in the firewall’s internal interface. The collected packets will then be
transformed into communication flows, identified by the source Internet Proto-
col (IP) address, source port number, destination IP address, destination port
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Table 1. High-level comparison of the proposed graph representation features with
previous structures used for intrusion detection

Feature Proposed structure [6] [11] [13] [15] [16] [18]

Exploitability by
GNN-based models

� � � � � � �

Flow-based graph
structure

� ✗ ✗ ✗ ✗ ✗ ✗

Relevant topological
information

� � ✗ ✗ � ✗ ✗

Cover Multi-step
attacks

� ✗ ✗ ✗ ✗ ✗ ✗

IP Spoofing immunity � ✗ ✗ ✗ ✗ ✗ ✗

Simplicity of
exploitation

� ✗ ✗ ✗ ✗ ✗ ✗

Lower memory
consumption

� ✗ � ✗ ✗ � �

number, and timestamp. Several statistical features related to the packets can
be extracted during the flows creation, such as the used protocols, SSL activity,
and connection activity. These features are assigned to flows as attributes.

3.2 General Graph Definition

In this study, we define a graph as a mathematical structure G = (V,E,R,X)
where V = {v1, v2, . . . , vN} is the set of nodes in the graph, E = {e1, e2, . . . , eN ′}
is the edge set associated with V , and R = {r1, r2, . . . , rN ′} represents the edges’
attributes of size N ′′. N = |V | and N ′ = |E| denote the total number of nodes
and edges, respectively. X = {x1, x2, . . . , xN ′′} is the set of node features of size
N ′′.

3.3 Graph-Line Representation

The graph-line transformation of an undirected graph G is another graph L(G)
that represents the adjacencies between edges of G. L(G) is created in the fol-
lowing manner: for each edge in G, create a vertex in L(G); for every two edges
in G that have a vertex in common, create an edge between their corresponding
vertices in L(G). For directed graphs, which is our case, nodes are considered
adjacent in L(G) exactly when the edges they represent form a directed path
of length two. A directed path is defined as a path in which the edges are all
oriented in the same direction.
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Fig. 1. Illustration of the network intrusion detection

Fig. 2. Illustration of the graph-line transformation

3.4 Graph Neural Network

The Graph Neural Network GNN is a specific type of artificial intelligence tech-
nique mainly designed to exploit non-structural data, more specifically, graph-
based data. The GNN performs several types of tasks, such as node-level tasks
(e.g., node classification), edge-level tasks (e.g., link prediction), and graph-level
tasks (e.g., graph classification). Lately, AI researchers have given substantial
attention to graph theory in general and graph neural networks in particular,
driven by the promising results of employing GNNs in several applications such
as molecular analysis, social networks, etc.

The main idea of GNNs is to update each graph node by aggregating the
features of the neighbor’s features iteratively. After K iterations, each node is
assigned the aggregation of the K-hop neighbor’s features. So, for example, if
K = 2, each node will have the aggregation of its neighbors and the neighbors’
neighbors. GNNs are considered outstanding data embedders and feature extrac-
tors. They can extract relevant structural information and detect patterns in the
graph topology alongside the nodes’ features.

4 Proposed Framework

In Fig. 3, we present a flowchart of the proposed IDS framework where we high-
light the main steps. The goal is to detect abnormal network behavior and alert
the SA to intervene and prevent possible attacks. To this end, data-extraction
devices collect information regarding all the communication flows in the net-
work. The collected data contains several types of information that will be used
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Fig. 3. The proposed GNN-based IDS framework classifying edge communication flows
into normal and abnormal behaviors. The model has three main steps. It receives as
input network flows to alert the system administrator of any possible attack

by the model to detect malicious activities. These features provide information
about the used protocols, such as the time of the packet connections, the number
of original packets, SSL activity, HTTP activity, DNS activity, violation activ-
ity, etc. This information is fed then to the IDS framework, which detects any
malicious activity and reports it to the SA administrator.

Prior to the IDS, in the pre-processing phase, the data is processed and trans-
formed into a format consumable by the IDS. The first step of the IDS, namely
the graph creation phase, is responsible for processing and transforming the data
into a flow-based graph. This graph is structured in a specific manner that will
be described later in Sect. 4.2. The second step of the IDS exploits the flow-based
graph to extract and embed relevant spatial and non-spatial information. In this
step, we have three main modules:

– Graph Structure-Agnostic (GSA): this module is responsible for embedding
the node attributes (flows-related features) to extract the most relevant infor-
mation.

– Attention-based Feature extractor (AFE): this module exploits the embed-
ded features generated by the GSA layer to aggregate neighbors data while
assigning an importance score to each one of them.

– Spatial Feature Extractor (SFE): this module extracts the spatial information
from the graph using a convolutional graph network GCN.

The outputs of AFE and SFE are then combined by the representation combiner
and fed to a decision-making module to identify any unusual flows.

In the following sections, we explain, in a more detailed manner, each phase
of the proposed IDS framework.

4.1 Data Pre-processing Phase

Data pre-processing is crucial for all AI algorithms. Indeed, during the training
or testing phase, the data must be pre-processed before being forwarded to the
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model. In our work, the pre-processing module adapts the flows’ features to
be processable by the GNN-based algorithms. It mainly aims at alleviating the
data-related problems that may later cause issues with the model, ensuring more
stable learning and obtaining a higher level of accuracy.

We foremost perform standard normalization of all the features to transform
the data to the same scale. This technique prevents the model from prioritizing
some features over others. Afterward, we encode the non-numerical data using
one-hot encoding since the majority of AI models do not accept string format
categorical features.

In this work, we investigate two datasets: CICIDS 2017 dataset [12] and ToN
IoT dataset [1]. For instance, both datasets are highly unbalanced, which makes
the model biased toward the majority class, the normal flows in our case. The
undersampling technique will reduce the number of the normal flows only to
have a lesser degree of unbalance for the training and the testing. It is worth
mentioning that it is not recommended to perform harsh undersampling and
transform the data to be fully balanced. In this latter case, the risk is that
the transformed data would no more accurately represent real-world scenarios.
Hence, the obtained results would be worthless in practice.

4.2 Phase 1: Graph Creation

The graph creation step consists in transforming a batch of flows into a flow-
based graph. Previous works, such as the ones mentioned in Sect. 2 [3], represent
the network as a graph where the nodes are the users, each identified with an IP
address only or combined with a port number as a second identifier. However,
this representation is too straightforward and has several drawbacks. First, using
this structure, the problem is transformed into an edge classification task, but
network intrusion detection is about capturing the malicious flows and not the
attackers. Indeed, detecting users with malicious behavior is more complicated
than detecting malicious flows and can be evaded easily. For this, the attackers
usually change their IP addresses using virtual private networks. In addition,
the edge classification task is not yet well investigated using GNN theory, and
hence, the state-of-the-art results are not encouraging [7]. Therefore, recent work
in [3] transformed this graph structure into its line-graph representation, where
the nodes are transformed into edges and vice-versa, as described in Sect. 3.3.
However, this line-graph transformation can be computationally costly and does
not work well for all graph types (e.g. heterogeneous graphs).

In general, the classification between normal and malicious traffic in intrusion
detection can be done using the classical representation through two methodolo-
gies: 1) apply the graph-line (defined in Subsect. 3.3) transformation to convert
the problem to a node-classification task since the flows are classically repre-
sented as edges. 2) Classify flows as an edge classification problem. Note that
the node classification is better developed than the edge classification task in
the literature. Hence, it is sometimes preferred to model the problem as node
classification to ensure satisfactory performance.
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In order to improve the performance of graph-based intrusion detection, we
seek to find a new graph structure with less complexity than the classical network
representation while providing more relevant topological information. There-
fore, we introduce in this paper a novel flow-based graph structure that models
the flows as nodes of the graph. The new network representation allows the
application of several graph neural networks efficiently. Indeed, having a simple
and flow-based structure (nodes represent flows) allows us to avoid graph-line
transformation (i.e., graph edge-to-node transformation) or edge classification
techniques.

The proposed new graph structure aims to model the inter-relation between
flows. Thus, we model the network as a weighted graph where each node repre-
sents a flow, and the edges are created to link the flows that originated from the
same user or are directed to the same user. Our structure fixes the previously
cited issues, enabling the model to attain a high accuracy by providing relevant
topological information.

The edges’ weights aim to enhance the GNN-based models’ pattern recog-
nition by providing information about the two connected nodes (i.e., the two
connected flows). For example, our experimental results allowed us to notice
that in iterative behavior flows are highly similar, and hence we aimed to assign
a similarity score to the edge. Empirically, we chose to assign each edge a weight
that consists of cosine similarity score ζ(u,v) defined as follows:

ζ(u,v) =
uT v

‖u‖‖v‖ =
∑Nf

k=1 ukvk
√

∑Nf

k=1(uk)2
√

∑Nf

k=1(vk)2
, (1)

where u and v are two vectors representing flows’ attributes that contain, respec-
tively, the features uk and vk extracted while creating the communication flows.
Nf is the number of extracted features. Indeed, attack traffic would likely exhibit
a certain similarity among its involved flows, whether these latter are probing
traffic, DoS payloads, or bound to a single, propagating attack.

The created graph is then forwarded to the feature extraction modules.
In Fig. 4, we compare our proposed graph representation with the state-of-

the-art representations. On the left, we find the classical structure where nodes
represent users and edges represent communication flows. On the right, we visu-
alize our structure and the one proposed in [15].

In the classical representation (the graph on the left), we have one user (IP2
colored in red) who has malicious communication flows with several users (IP1,
IP3, and IP4 colored in blue). In our corresponding proposed graph, flows F1,
F2, and F4 are interconnected because they originated from the same source
user (IP2). Likewise, flows F4 and F5 are connected because they are going
to the same user (IP4). The same concept applies to the rest of the flows and
weights are assigned to the edges. The representation proposed in [15], shows a
heterogeneous graph with two types of nodes. The first type characterizes the
users (blue nodes) and the second type represents the flows (grey nodes).
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Fig. 4. High level comparison of our flow-based graph structure with classical repre-
sentation (Color figure online)

In Fig. 5, we present a multi-step attack scenario, and its equivalent repre-
sentation using the classical representation (on the left) and our graph structure
(on the right). The attack scenarios depicted in the example of Fig. 5 correspond
to the following time sequence:

• At time t1, the attacker IP0 collects information simultaneously on several
network devices IP1, IP2, IP3, and IP4. Thus it generates flows F1, F2, F3,
and F4. This step is represented by the graph entitled “Reconnaissance phase
graph”.

• At time t2, the attacker performs an SQL injection attack to exploit a secu-
rity flaw in one of the IP1 devices. For this, attacker IP0 generates streams
F 1
1 , F 2

1 , F 3
1 to target IP1. This step is represented by the graph portion enti-

tled “SQL injection attack”.
• At time t3, the attacker tries to crack a password of user IP4 to gain access

to the network. For this, it generates the flows F 1
4 , F 2

4 , F 3
4 , F 4

4 , F 5
4 towards the

target IP4. This step is represented by the graph entitled “Password cracking
attempt”.

• At time t4, the attacker spoofs his own IP address to avoid detection by
classical IDS after several unsuccessful connection attempts. Hence, he creates
the flows F ′

4
1
, F ′

4
2
, F ′

4
3
, F ′

4
4
, F ′

4
5 towards the target IP4. The portion of the

graph that represents the flows after the IP-spoofing is entitled “Password
cracking attempt with spoofed IP”.

In this scenario, our representation links the spoofed behavior with previous
steps of the attack enabling the GNN algorithms’ spatial aggregators to link
the flows belonging to the same attack or related to the same attack through
the clusters created in the graph structure (e.g. SQL injection attack and the
password cracking attack). Notice that even after performing IP spoofing, the
model can still link the spoofed and pre-spoofed flows.
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Fig. 5. Illustration of the proposed network representation in case of a multi-step
attack. We represent each step of the attack using classical representation (on the left)
and the proposed graph representation (on the right). NB: some edges and weights
were not presented in the figure for simplicity reasons.

– Relevant topological information about malicious behavior patterns that
assists models in distinguishing malicious flows from normal flows accurately.

– Flows-based representation: IP-based solution could be evaded easily using
techniques similar to IP spoofing. However, our structure is immune to IP
spoofing.

– Relevant information about multi-step attacks which creates a link between
each attack step.

– Lower memory consumption in comparison to the solution presented in [15]
since it has less nodes and edges. Hence, our solution is more efficient regard-
ing computational power.

– Easier exploitation by the GNN algorithms since the problem is directly for-
mulated as a node classification task. There does not require to pass through
graph transformation, such as graph line transformation.

The phases of the proposed framework, described in the subsequent subsec-
tions, are created in a way to sufficiently exploit the new graph structure and
attain a high precision level.

4.3 Phase 2: Feature Extraction Phase

This phase exploits the graph structure and the nodes’ features to extract per-
tinent information to be fed to the decision-making module for the intrusion
detection task. The feature extraction is performed using three different mod-
ules: the graph structure-agnostic module, the attention-based feature extractor,
and the spatial feature extractor. These models are detailed in what follows.
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Graph Structure-Agnostic (GSA) Module: The nodes’ attributes of mali-
cious flows are similar to those of normal flows. Thus, learning a discriminative
embedding is required to enable the model to distinguish between normal and
abnormal flows. The graph structure-agnostic module, as the name states, does
not rely on the topological information of the graph. Instead, it considers only
the flow data to extract a discriminative embedding of ordinary and malicious
behaviors.

In this module, the flows’ attributes are fed to a Multi-Layer Perceptron
(MLP) which embeds the data to a lower space in a data-driven manner and
learns a discriminative representation between the extracted data of normal and
malicious flows. Consequently, the similarity between normal users flows and
camouflaged attacker’s flows is less significant. Therefore, starting with a dis-
criminative embedding will enhance the model’s ability to differentiate between
normal and abnormal flows.

Spatial Feature Extractor (SFE): Graph convolutional network GCN is a
GNN that can extract spatial information from graph data. It applies convolution
operation on graphs and iteratively updates each node’s features by aggregating
its neighbors’ node and edges features. This module comprises a two-layer GCN
model to convolute on the graph. These layers embed and extract the relevant
information in the topology. The convolution calculation process in the GCN is
defined as follows:

H(l+1) = σ
(
D̂− 1

2 ÂD̂
1
2H(l)W(l)

)
, (2)

where H(l+1) is the lth layer output; Â ∈ R
n×n is the adjacency matrix defined

as Â = A + I, with A the classical adjacency matrix and I the identity matrix.
As a matter of fact, the diagonal elements of Â are equal to 1 to include the
investigated node features during the aggregation procedure. D̂ ∈ R

n×n is the
diagonal node degree matrix of Â; n is the size of the nodes set; W(l) is the
trainable weight matrix of the lth layer; σ(•) represents the ReLu activation
function defined as Relu = max(0, •). We denote the output of the SFE module
h′

SFE = [h′
1, h

′
2, . . . , h

′
N ] where h′

i indicates the output embedding of the ith

entity, and N here is size of the SFE output embedding space.
The two GCN layers learn low-dimensional representations to capture the

graph topology, node-to-node relationship, patterns, and other pertinent infor-
mation about graphs, such as sub-components and vertices. The classical
machine learning models are not capable of extracting such topology-related
features, and hence GCN algorithms are more efficient wherever we have graph-
structured data.

Attention-Based Feature Extractor (AFE). This module exploits the
graph topology to extract an embedding of nodes’ attributes. This phase is
based on the Graph Attention layer (GAT). The GAT layer takes as input an
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embedding vector h = [h1, h2, . . . , hN ] and outputs a features embedding vec-
tor h′

AFE = [h′
1, h

′
2, . . . , h

′
N emb] where hi and h′

i indicate the input and output
embeddings of the ith entity, respectively, N the size of the input space and Nemb

the size of the output embedding space. The attention value of an entity can be
formalized as follows:

hij = a(W’hi,W’hj), (3)

where a(•) is a mapping function to project the spliced high-dimensional feature
to a real value, and W’ is a linear transformation matrix. The attention value
represents the importance of the edge (hi, hj), which can be employed to estimate
the importance of the head node hi. The attention model learns a weight of
attention for each edge and then collects information from neighbors using the
calculated priorities as:

h′
i = σ

⎛

⎝
∑

j∈Ωi

αijW’hj

⎞

⎠ , (4)

where αij represents relative attention weights computed by applying softmax
function over all the neighbors’ values using the following formula:

αij = softmaxj(hij) =
exp(hij)∑

n∈Ωi

∑

r∈�in

exp(hin)
(5)

where Ωi denotes the neighbors set of nodes hi, �in denotes the relations set
which connects between hi and hn.

The GAT’s main goal is to assign importance to different neighboring nodes
rather than giving an analogous weight to all of them. This concept is essential
for the detection of intrusions. In fact, it allows the models to detect unusual
flows where the user conceals its malicious activity by building several normal
communications with normal users. At this level, the similarity score is used to
provide the model with more information about the similarity of the flows.

4.4 Phase 3: Flows Classification

The decision-making and alerting functionalities of the proposed IDS are per-
formed in this module. The combined embedding of the spatial and non-spatial
information is used to calculate a maliciousness score Pm. The higher Pm is, the
likelier the investigated flow is a potential attack. The Pm is calculated using
a multi-layer perceptron MLP network, precisely a 3-layer MLP, trained to dis-
tinguish between the normal and malicious flows from the previously combined
data. Each layer of the MLP is defined as follows:

Zl = f(Wl
mZl−1 + bl + �l

ee), (6)

where Wl
m and bl are respectively the weight and bias in the lth layer, e is

the re-construction error, �l
e its corresponding weight, and f is the activation



Efficient Network Representation for GNN-Based Intrusion Detection 545

function which typically a non-linear function such as the sigmoid, ReLU, or
tanh. After the computation of Pm, any flow with a score Pm > S is considered
an attack, with S a given threshold score. S is a crucial parameter for controlling
the sensitivity of the proposed IDS. Indeed, the higher S is, the more sensitive
the IDS is to any abnormal behavior, and hence the higher the false-positive
ratio as well.

5 Evaluation Procedure

In this section, we present and analyze two of the most used datasets in previous
works to assess the quality of their proposed IDS solutions. We also discuss
the existing evaluation approaches and highlight their drawbacks. Two major
datasets are exploited in the literature:

– CICIDS 2017 dataset [12]: CICIDS2017 is a labeled network flows dataset
alongside a full packet version in PCAP format. It covers the most common
network attacks such as DoS, HULK, DDoS, FTP-Patator, DoS Slowloris, and
SSH-Patator attacks. CICIDS 2017 is created by capturing five days network
stream. CICIDS 2017 flow-based version is created using the CIC-FlowMeter
[12].

– ToN IoT dataset [1]: ToN IoT is a heterogeneous dataset released in 2020
by the Intelligent security group UNSW Canberra, Australia. The dataset
contains a huge number of realistic attack scenarios such as scanning, DoS,
Ransomware, and Backdoor attacks. Ton IoT network flow-based version is
created using the NetFlow.

By reviewing the literature on these datasets, we find some flaws with the
creation procedure of the CICIDS 2017 dataset. For example, the authors in
[5] stated that the creation procedure has some issues in the CICFlowMeter
tool that violate the correct implementation of network traffic. Moreover, they
mentioned that CICFlowMeter suffers from an inaccurate labeling strategy that
caused several mislabeled flows, which could mislead the learning of ML mod-
els. The ToN IoT dataset is more recent, and no previous work highlights any
problem that could affect the performance of machine learning models.

We have conducted a thorough analysis of both datasets. For the CICIDS
2017, we notice that elementary models, like the decision tree-based model,
can perfectly distinguish malicious flows. Moreover, these models have relatively
good validation metrics since their first iterations, which is unusual in the learn-
ing process of ML models. Furthermore, we notice that during training, the vali-
dation metrics are higher than the training metrics. This behavior of ML models
alerts on significant issues with the dataset or the validation methodology.

In addition, for the CICIDS 2017, we observe a high similarity between flows
of the same user. We explain this by the improper termination of TCP ses-
sions as explained in [5]. Indeed, due to these issues, a single attack could be
segmented into several flows, and evidently, these segments would be highly cor-
related. The ToN IoT is also slightly affected by this issue. It is tough to avoid
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Table 2. Distribution of flows labeled as attacks per each attacker IP in the TON
IoT and the CICIDS 2017. NB: The ToN IoT contains 19 attackers, but we presented
the main 10 attackers. The 127.16.0.1 IP address in the CICIDS 2017 belongs to the
firewall. It was assigned to all packets coming from the external network, specifically the
4 users with the following IP addresses: 205.174.165.73, 205.174.165.69, 205.174.165.70,
205.174.165.71

ToN IoT

IP Address №of flows

192.168.1.192 23047

192.168.1.30 61585

192.168.1.31 30355

192.168.1.32 27227

192.168.1.33 9439

192.168.1.34 528

192.168.1.36 631

192.168.1.37 7500

192.168.1.38 10

192.168.1.39 692

CICIDS 2017

IP Address №of flows

172.16.0.1 554561

192.168.10.12 2

192.168.10.14 209

192.168.10.15 366

192.168.10.17 2

192.168.10.5 179

192.168.10.50 3

192.168.10.8 307

192.168.10.9 226

205.174.165.73 701

such a problem while transforming the packet-based dataset into the flow-based
one. Nevertheless, the problem is boosted in the case of CICIDS 2017 since the
distribution of malicious flows per attacker is highly unbalanced. This means
that some attackers are responsible for most of the attacks.

Table 2 presents the number of flows labeled as malicious per attacker for
both datasets. We notice that the distribution of attackers is not balanced for
the case of CICIDS 2017, and we have one single IP address (the firewall IP
address) assigned to the four exterior IP addresses. Hence, this is a massive issue
in the graph structure because one node represents all the external users. More
specifically, in the CICIDS 2017, all the flows come from the external network
(.i.e, users with IP addresses: 205.174.165.73, 205.174.165.69, 205.174.165.70,
205.174.165.71) are assigned the 127.16.0.1 IP address. The ToN IoT dataset
has better distributed malicious flows per attacker, which is clearly observed in
Table 2.

The classic evaluation procedure that randomly splits users’ flows between
training and testing sets is not recommended in this situation. In fact, due to
the similarity between the flows of the same user and the segmentation of a
single communication into multiple flows, we can conclude that this procedure
is biased by seeing correlated data in the training and testing. To ensure reliable
validation, we evaluate our model using an IP-based evaluation procedure. The
idea consists in splitting the datasets into train and test sub-data using the
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distribution of malicious flows per attacker and the type of attacks. Consequently,
we obtain separate train and test data regarding the investigated users and the
type of attacks. More precisely, we have a list of training IP addresses and another
different one for the testing, where the attack types in the training set differ from
those in the testing set. This methodology fixes the issue of flows’ similarity and
validates the capability of the model to detect new types of attacks. Indeed, the
model will be evaluated on new IP addresses with unseen types of attacks.

6 Results and Discussion

6.1 Experimental Settings

We have implemented the proposed framework in a python environment. The
Pytorch Geometric and Netwrokx libraries are used to develop the proposed
GNN-based algorithms. The training and testing are performed using an Nvidia
GTX 1080 Ti graphic card. Table 3 presents the parameters required to rebuild
our proposed work. The model comprises 2 MLP layers for the discriminative
layers, 2 GCN layers, and one GATv2 layer. The score generation is performed
using a 3-layer MLP. For the training, we employ the Cross-Entropy Loss as
the performance measure of the classification problem [15] and Adam as the
parameters’ optimizer.

Table 3. Development Environment Settings

Learning rate Adam’s
betas

Adam’s eps Adam’s
weight
decay

Pytorch
version

CUDA
version

PYG
version

0.0001 0.98 1e-8 1e-6 1.11.0 11.1 1.9

6.2 Evaluation Metrics

In order to show the efficiency of the proposed models, we use several metrics
that provide several evaluation aspects. To calculate these metrics, we define
the true positive value as the model’s output, where it correctly predicts the
malicious class. Similarly, a true negative is where the model correctly predicts
the benevolent class. On the other side, the false positive is a model’s outcome
where the model incorrectly predicts the malicious class, and a false negative
is where the model incorrectly predicts the benevolent class. The metrics used
during the evaluation are defined as follows:

– Precision: The ratio of correctly predicted positive observations to the total
predicted positive observations.

Precision =
True Positive

True Positive + False Positive
.
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Fig. 6. Illustration of the proposed graph structure created from a sample of ToN IoT
dataset’s flows

– Recall (Sensitivity): The ratio of correctly predicted positive observations to
all observations in the actual class.

Recall =
True Positive

True Positive + False Negative
.

– F1-score: The harmonic mean of Precision and Recall. In other words, it
considers both false positives and false negatives into account.

F1 Score = 2 × (Recall × Precision)
(Recall + Precision)

.

– Area-Under-Curve (AUC): The area between the ROC curve (.i.e the curve
plotting the true positive rate vs. the False Positive Rate (FPR)) and the x-
axis. Indeed, it is a measure of the ability of a classifier to distinguish between
classes. The higher the AUC, the better the model distinguishes between the
classes.

6.3 Results

This section presents the numerical and graphical results to illustrate the per-
formance of our intrusion detection framework and highlight its efficiency. First,
we illustrate, in Fig. 6, a visualization of a flows subset taken from the Ton IoT
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dataset using our proposed representation described in Subsect. 4.2 (i.e. weights
are not presented in the Figure). In this Figure, we have nodes colored in red
that represent the malicious flows in the network and nodes colored in green
that represent normal flows. The graph of flows provides several spatial informa-
tion, including clusters, sparse nodes, inter-cluster relations through nodes, etc.
The spatial information does not have a unique explanation. In other words,
the cluster, for example, could be created if a group of flows are included in
the same communication, in different communications but related between each
other (e.g. distributed attacks), or in successive related communication (e.g.
multi-step attacks), etc. Moreover, we can notice the presence of nodes that link
two clusters, and their flows are related to several flows from different clusters.
The creation of these spatial components can be understood from the discussion
of Fig. 5.

The GNN algorithms exploit the statistical attributes attached to neighbor-
ing flows alongside the previously mentioned spatial information for learning
attack patterns. Indeed, there are several patterns in the graph, and the model
is responsible for learning and detecting these patterns using the topological
information and flows attributes.

Table 4. High-level Runtime Performance Comparison

Metrics Memory
Consumption
(MB)

Energy
Consumption
(Kw/h)

Processing
time (min)

Our network representation 11.3 0.02 3.14

Classical network representation 9.17 0.04 3.7

Network representation proposed by [15] 17.6 0.05 4.2

In Table 4, we conducted a performance analysis from memory and energy
consumption point of view. The results confirmed the aforementioned character-
istics of our network structure. The Table 4 proves that our structure outperforms
the classical graph structure in terms of energy consumption and the required
time to process the structure in order to make it consumable by the GNN algo-
rithms. On the other hand, the classical network representation is the one that
ensures the lowest level of memory consumption, but it does not provide relevant
features in comparison to our graph representation or the one proposed by [15].

Figure 7 shows the evolution of the loss function, the F1-score, and the AUC
score during the framework training. Figure 7a presents the cross-entropy loss
function. The loss decreases until it converges after almost 100 iterations. This
smooth decrease in the curve demonstrates the stability of the model’s training.
Meanwhile, in Fig. 7b, the validation metrics F1-score and AUC increase to reach
93.7 and 96.6, respectively.

To endorse the graphical results and compare our model performance with
other benchmark models, we have trained and tested several state-of-the-art
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Fig. 7. The evolution of training loss, and two validation metrics (F1-score and Area-
Under-Curve

models using the described IP-based evaluation. Specifically, an MLP-based
model [8], an ML-based model [17] (.i.e., XGboost-based model), and two GNN-
based models [11,15]. The results of this comparison are presented in Table 5.
The table exhibits several metrics [2] used to compare the investigated mod-
els’ performance to our proposed framework applied to the graph representation
with/without the similarity weights ζ. Our model outperforms the previously
stated models in terms of F1-score and false positive rate. The high F1-score
of our model proves its capability to accurately classify the flows, and the FPR
rate demonstrates its ability to distinguish between normal and malicious flows.
The model performs better when applied on a weighted graph than without
the weights, highlighting that ζ provides relevant information about attacks,
specifically, iterative malicious behavior.

In addition, in Table 5, the ML-based model [8] reaches a higher recall metric
compared to our framework. Indeed, the recall metric is defined as the ratio of
correctly predicted positive observations to all observations in the actual class.
The precision metric is the ratio of correctly predicted positive observations
to the total predicted positive observations. In other words, the recall metric
is penalized whenever a false negative is predicted, and precision is penalized
whenever a false positive is predicted. Thus, the more we increase the precision,
the more we reduce the false positive rate. Conversely, a higher recall means that
our machine learning model will have a lower false negative rate. The model pro-
posed in [8] focused on reducing the false negative rate only during the learning
phase, and hence it has a high false positive rate. This model should be avoided
in practice since having a high FPR will cause tremendous computational power
and human resources (i.e. cybersecurity engineers’ efforts), which can be wasted
on irrelevant alerts.

The presence of data leakage issue is clearly seen when performing an evalu-
ation of several models using the classical validation procedure. To lucidly show
the presence of the issue, we select several models in a manner to have a basic
model (i.e., XGBoost model), a deep learning model (i.e., MLP-based model),
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Table 5. IP-based numerical validation

Metrics F1-score AUC Recall Precision FPR

Our work without ζ 0.915 0.954 0.992 0.848 0.083

Our work with ζ 0.937 0.965 0.991 0.886 0.057

E-graphsage model [11] 0.88 0.92 0.962 0.82 0.087

GNN-based model [15] 0.902 0.932 0.981 0.835 0.093

ML-based model [8] 0.4807 0.7693 0.9957 0.3168 0.14

MLP-based Model [17] 0.3438 0.8225 0.9483 0.3622 0.12

and two advanced models (i.e., GNN-based models). For each model, we calculate
the F1-score on the testing subset that contains flows chosen randomly from the
ToN IoT dataset. The results showed that all the evaluated models reached high
F1-scores. For example the model proposed in [3,15] reached respectively 0.998
and 0.99, the two benchmark models described in [8,17] achieved respectively,
0.996 and 0.989. As a matter of fact, the high performance of all these models
indicates either the triviality of the intrusion detection task, which is clearly not
true, or an inappropriate evaluation procedure. The latter case seems more likely
as the task is considered one of the most burdensome tasks in the cybersecurity
field, and a high level of accuracy is hard to reach.

On the other hand, the results of the IP-based splitting methodology pre-
sented in Table 5 show that our model achieves a precision of 88.6%, meaning
that 88.6% of the framework’s alerts raised to the SA is correct. In addition, the
recall value of 99.1% shows the capability of our framework to detect 99.1% of
the attacks correctly. The AUC metric of 96.6%, calculated from the ROC curve
presented in Fig. 8, confirms that our proposed architecture (i.e., GSA module,
AFE, and similarity metric) enables the model to differentiate between normal
and malicious flows, even for those that belong to camouflaged users.

We recommend using the IP-based splitting methodology over the random
splitting for the intrusion detection task. The previous results show that the
IP-based validation technique is more reliable than the classical one. Moreover,
the IP-based evaluation procedure consists of choosing training and testing IP
addresses to have different attacks in both training and testing sets. Conse-
quently, it evaluates the model’s ability to recognize new attack patterns. Accord-
ingly, the achieved results of our framework, exploiting the proposed graph struc-
ture, using the IP splitting evaluation prove that our model is capable of detect-
ing new attack patterns that were not included in the training phase.

Finally, Fig. 9 illustrates three evaluation metrics evolution as a function of
the sensitivity parameter S. We notice that for a small value of S we have a high
recall, a high false-positive rate, and a low precision. If S is high, we obtain high
precision, a low false-positive rate, and a low recall. To ensure a high precision, a
low-false positive rate, and a high recall, S should be in the range [3.5, . . . , 6.5].
At this range, we obtain a 0.057 as a false positive rate FPR. Note that the SA
changes the parameter S to control the sensitivity of the IDS. For example, the
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Fig. 8. Receiver Operating Character-
istic (ROC) curve

Fig. 9. Illustration of S value effect

SA can choose to increase S if they think an attack is happening and want to
detect any miniature anomaly in the network. Thus, the FPR will increase, but
the SA will be sure to detect any abnormal activity.

7 Conclusion

In this paper, we have proposed a novel flow-based graph structure to rep-
resent network communications. This graph structure provides relevant topo-
logical information regarding attackers’ behavioral patterns, iterative malicious
behavior, the link between successive and parallel attacks, etc. Our proposed
GNN-based intrusion detection framework manipulates this structure to learn a
generalization of malicious behavior patterns. The created graph is exploited in
the first step by a graph structure agnostic module responsible for embedding the
nodes’ features. This embedding is performed by learning a discriminative rep-
resentation of the flows’ features in order to maximize the dissimilarity between
the normal and malicious flows. Then, two GNN-based feature extractors extract
relevant topology-related information by exploiting the graph attention mech-
anism and graph convolutional network. The extracted features are combined
and forwarded to a decision-making module responsible for detecting potential
attacks. To ensure an efficient evaluation, we have analyzed the existing val-
idation methodologies and operated an IP-based evaluation procedure that is
more representative of practical IDS scenarios. We have conducted experiments
that quantify the framework’s accuracy in distinguishing between normal and
anomalous flows. Finally, we have compared our model to other ML-based and
Graph-based solutions, showing that it outperforms these existing solutions. In
future work, we plan to enhance the graph structure to cover any potential
information loss and to provide more information about specific attacks. Fur-
thermore, we will extend this IDS to its distributed version in order to improve
energy efficiency, memory consumption and reduce ML footprints.
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