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ABSTRACT
Structured knowledge bases (KBs) are the backbone of many know-
ledge-intensive applications, and their automated construction has
received considerable attention. In particular, open information
extraction (OpenIE) is often used to induce structure from a text.
However, although it allows high recall, the extracted knowledge
tends to inherit noise from the sources and the OpenIE algorithm.
Besides, OpenIE tuples contain an open-ended, non-canonicalized
set of relations, making the extracted knowledge’s downstream
exploitation harder. In this paper, we study the problem of mapping
an open KB into the fixed schema of an existing KB, specifically for
the case of commonsense knowledge. We propose approaching the
problem by generative translation, i.e., by training a language model
to generate fixed-schema assertions from open ones. Experiments
show that this approach occupies a sweet spot between traditional
manual, rule-based, or classification-based canonicalization and
purely generative KB construction like COMET. Moreover, it pro-
duces higher mapping accuracy than the former while avoiding the
association-based noise of the latter. Code and data are available at
julienromero.fr/data/GenT.
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1 INTRODUCTION

Motivation and Problem.. Open Information Extraction (Ope-
nIE) automatically extracts knowledge from a text. The idea is to
find explicit relationships, together with the subject and the object
they link. For example, from the sentence “In nature, fish swim
freely in the ocean.”, OpenIE could extract the triple (fish, swim in,
the ocean). Here, the text explicitly mentions the subject, the predi-
cate, and the object. Therefore, if one uses OpenIE to construct a
knowledge base (we call it an Open Knowledge Base, open KB) from
a longer text, one obtains many predicates, redundant statements,
and ambiguity.

OpenIE is often used for commonsense knowledge base (CSKB)
construction. Previous works such as TupleKB [20], Quasimodo [29,
30] or Ascent [21–23] use OpenIE to extract knowledge from dif-
ferent textual sources (textbooks, query logs, question-answering
forums, search engines, or the Web), and then add additional steps
to clean and normalize the obtained data. Another example is Re-
Verb [10], which was used to get OpenIE triples from a Web crawl.
The output of OpenIE typically inherits noise from sources and
extraction, and the resulting KBs contain an open-ended set of
predicates. This generally is not the case for knowledge bases with

a predefined schema. Famous instances of this type are manu-
ally constructed, like ConceptNet [33] and ATOMIC [15]. They
tend to have higher precision. Besides, they are frequently used
in downstream applications such as question-answering [11, 44],
knowledge-enhanced text generation [45], image classification [42],
conversation recommender systems [49], or emotion detection [48].
These applications assume there are few known predicates so that
we can learn specialized parameters for each relation (a matrix or
embeddings with a graph neural network). This is not the case for
open KBs.

Still, many properties of open KBs, such as high recall and ease of
construction, are desirable. In this paper, we study how to transform
an open KB into a KB with a predefined schema. More specifically,
we study the case of commonsense knowledge, where ConceptNet
is by far the most popular resource. From an open KB, we want to
generate a KB with the same relation names as ConceptNet. This
way, we aim to increase precision and rank the statements better
while keeping high recall. Notably, as we reduce the number of
relations, we obtain the chance to make the statements corroborate.
For example, (fish, live in, water, freq:1), (fish, swim in, water, freq:1)
and (fish, breath in, water, freq:1) can be transformed into (fish,
LocatedIn, water, freq:3), and therefore they all help to consolidate
that statement. Besides, we make new KBs available to work with
many existing applications originally developed for ConceptNet.

Transforming open triples to a predefined schema raises several
challenges. In the simplest case, the subject and object are conserved,
and we only need to predict the correct predefined predicate. This
would be a classification task. For example, (fish, live in, water)
can be mapped to (fish, LocatedAt, water) in ConceptNet. We could
proceed similarly in cases where subject and object are inverted,
like mapping (ocean, contain, fish) to (fish, LocatedAt, ocean), with
just an order detection step. However, in many cases, the object is
not expressed in the same way or only partially: (fish, live in, the
ocean) can be mapped to (fish, LocatedAt, ocean). In other cases, part
or all of the predicate is in the object, like (fish, swim in, the ocean)
that can be mapped to (fish, CapableOf, swim in the ocean). Here,
the initial triple could also be mapped to (fish, LocatedAt, ocean),
showing that the mapping is not always unique. Other problems
also arise, like with (near) synonyms. For example, we might want
to map (fish, live in, sea) to (fish, LocatedAt, ocean).

Approach and Contribution.. We propose to approach the map-
ping of an open KB to a predefined set of relations as a translation
task. We start by automatically aligning triples from the source and
target KB. Then, we use these alignments to finetune a generative
language model (LM) on the translation task: Given a triple from
an open KB, the model produces one or several triples in the target
schema. The generative nature of the LM allows it to adapt to the
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abovementioned problems while keeping a high faithfulness w.r.t.
the source KB. Besides, we show that this improves the precision
of the original KB and provides a better ranking for the statements
while keeping a high recall.

We first introduce previous works in Section 2. Then, we define
our problem formally in Section 3. In Section 4, we present our
methodology with the model we use and howwe construct a dataset
automatically. In Section 5, we describe the setup of our experiments.
In Section 6, we compare the models and see the advantages of
using an LM-based translation model.

Our contributions are:

(1) We define the problem of open KB mapping, delineating it
from the more generic KB canonicalization and the more
specific predicate classification.

(2) We propose a generative translation model based on pre-
trained languagemodels trained on automatically constructed
training data.

(3) We experimentally verify the advantages of this method
compared to traditional manual and rule-based mapping,
classification, and purely generative methods like COMET.

2 PREVIOUS WORK
2.1 Commonsense Knowledge Bases

ConceptNet. ConceptNet [33], built since the late 1990s via crowd-
sourcing, is arguably today’s most used commonsense knowledge
base. Due to user-based construction, it has high precision. Concept-
Net comprises a limited set of predefined relations and contains
non-disambiguated entities and concepts. For example, we find
(mouse, PartOf, computer) and (mouse, PartOf, rodent family). Thus,
when mapping an open KB to ConceptNet, one needs to focus
mainly on the predicates and, to some extent, the modification of
the subject and object.

Open Knowledge Base. An open knowledge base (open KB) is a
collection of SPO triples (subject, predicate, object) with no further
constraints on the components. This means that they are not canon-
icalized. For example, the triples (The Statue of Liberty, is in, New
York) and (Statue of Liberty, located in, NYC), although equivalent,
could be present in the same knowledge base. The subject and the
object are noun phrases (NP), whereas the predicate is a relational
phrase (RP). As a comparison, knowledge bases with a predefined
schema like Wikidata [38], YAGO [35] or ConceptNet [33] come
with a set of predefined predicates and/or entities for the subjects
and the objects. This paper will call such a knowledge base a Closed
Knowledge Base (closed KB).

Construction of open KBs. The construction of open KBs re-
lies on Open Information Extraction (OpenIE) algorithms. These
algorithms take as input a text and return a set of open triples such
that the subject, the predicate, and the object are explicitly men-
tioned in the text. There exist several systems like CoreNLP [19] or
OpenIE6 [16].

This paper will use two open KBs: Quasimodo and Ascent++.
Quasimodo [30] is an open commonsense knowledge base con-
structed automatically from query logs and question-answering
forums. Ascent++ [21] is also an open commonsense knowledge

base created from Web content. The extraction follows a classical
pipeline and outputs an open KB in both cases.

2.2 From Open KBs to Closed KBs

Open Knowledge Base Canonicalization. The task of open
KB canonicalization [12] consists of turning an open triple (s, p,
o), where s and o are an NP and p is an RP, into an equivalent
(semantically) new triple (𝑠𝑒 , 𝑝𝑒 , 𝑜𝑒 ), where 𝑠𝑒 and 𝑜𝑒 represent
entities (generally through a non-ambiguous NP), and 𝑝𝑒 is a non-
ambiguous and unique representation of a predicate. It means there
is no other 𝑝′𝑒 such that (𝑠𝑒 , 𝑝𝑒 , 𝑜𝑒 ) is semantically equivalent to (𝑠𝑒 ,
𝑝′𝑒 , 𝑜𝑒 ). For example, we would like to map (Statue of Liberty, located
in, NYC) to (The Statue of Liberty, AtLocation, New York City), where
“The Statue of Liberty” represents only the famous monument in
New York City, “New York City” represents the American city
unambiguously, and “AtLocation” is a predicate used to give the
location of the subject.

NP canonicalization is more studied than RP canonicalization,
but the task is generally treated as a clusterization problem [12].
It is essential to notice that an NP or an RP does not necessarily
belong to a single cluster, as this cluster may depend on the context.
For example, in (Obama, be, president of the US), “Obama” refers to
the entity “Barack Obama”, whereas in (Obama, wrote, Becoming),
“Obama” refers to “Michele Obama”. Also, we must notice that
canonicalization does not have a target: The transformation does not
try to imitate the schema of an existing knowledge base. The main
goal is to reduce redundancy, but the number of predicates (and
entities) might remain high.

Entity Linking. Entity Linking is the task of mapping an entity
name to an entity in a knowledge base. For example, we would like
to map Paris in (Paris, be, city of love) to Q90 in Wikidata, the entity
that represents the capital of France. In the triple (Paris, be, a hero),
Paris should be mapped to Q167646 in Wikidata, the entity that
represents the son of Priam. When mapping an open KB to a closed
KB, most systems first perform entity linking before processing
the predicate [6, 46]. This supposes that the subject and the object
remain unchanged during the mapping. This is a problem when we
want to map to ConceptNet as this KB is not canonicalized, and the
subject and object might be modified.

Knowledge Base Construction. Knowledge base construction
can be done manually by asking humans to fill in the KB [15, 33] or
automatically using pattern matching [1, 35] or OpenIE [20, 21, 30].
In general, manual approaches have higher accuracy but struggle
to scale. Translating an open KB to a closed KB can be seen as an
additional stage in an OpenIE extraction pipeline like Quasimodo or
Ascent++. By doing so, we make the KB match a predefined schema.
The same result would be possible directly from the corpus using
traditional IE techniques. However, this approach is more human-
labor intensive, depends on the domain, and does the scale [50].

Ontology Matching. Ontology matching is the task of mapping
one structured schema into another [9]. This task has a long history
in databases and semantic web research. However, due to the input
being of little variance in predicates, it is typically approached as
a structured graph alignment problem [5, 8]. We cannot simply
map one predicate on another in the present problem, as textual

https://www.wikidata.org/wiki/Q90
https://www.wikidata.org/wiki/Q167646
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predicates are generally ambiguous. The mapping may differ for
different s-o-pairs with the same p.

2.3 Existing Systems
In this paper, we are interested in a task that was barely tackled
by previous works: We want to map an entire open KB to the
schema of an existing closed KB. In the Ascent++ paper [21], the
authors noticed that using an open KB in practice was difficult
due to the lack of existing frameworks. Therefore, they proposed
to map Ascent++ to ConceptNet’s schema. However, they did a
straightforward manual mapping that involved translating as many
relations as possible manually. This approach is simplistic and does
not yield good results, as we will see later. KBPearl [18] did a
variation of the manual mapping in which they used the existing
labels of entities and predicates, which greatly limits the system.

When we look at similar tasks, we find two main ideas to tran-
sition between an open KB and a closed KB. First, some authors
approached this problem via rule mining, a generalization of the
manual mapping of predicates. Previous systems [6, 31, 32] often
use a rule mining system (automatic or manual) that relies on the
type of subject and object and keywords in the triple. They often
return a confidence score. The main issues with these frameworks
are that they generalize poorly (particularly to unseen predicates)
and require significant human work.

The second way to see our problem is as a classification task:
Given an open triple (s, p, o), we want to predict a semantically
equivalent/related triple (s, p’, o) that would be in the considered
closed KB. OpenKI [46] used neighbor relations as input of their
classifier. Later [43], word embeddings were included to represent
the predicate and help with the generalization. However, their
training and testing dataset is constructed using an open KB and
a closed KB with entities already aligned by humans (ReVerb [10]
and Freebase in the original paper). This is not generally the case
in practice. Besides, this approach considers that the subject and
object remain the same, thus ignoring modification of the subject
and object, inverse relations, or closely related entities.

In [26], the authors propose a method to compute the similarity
between a triple in an open KB and a triple in a closed KB. This
differs from our approach because we do not know potential candi-
dates in the closed KB in advance. Indeed, the closed KB is often
incomplete, and we want to generate new triples thanks to the open
KB. Therefore, we focus more on the generation rather than the
comparison. However, it is essential to notice that this approach
integrates word embeddings for comparison. Besides, the authors
use the distant supervision approach to create a dataset automati-
cally: Given a close triple, they find sentences (in a different corpus)
containing both entities from the triple. Then, they apply an OpenIE
algorithm to obtain an open triple. This triple is used as a ground
truth. In our case, we do not have this additional textual source:
The inputs are the open KB and the closed KB.

T-REx [7] aligns Wikipedia abstracts with the Wikidata triples
using a rule-based system. However, it comes with several limita-
tions. First, it takes as input text and not open triples. Even if we
were to take the documents used for constructing Ascent++ (a web
crawl), the computation time would be much longer because of the
difference in scale. Second, T-REx needs to perform named-entity

recognition which does not apply to commonsense. Third, there
is a strong dependency between Wikipedia and Wikidata. Some
pages are even created automatically from Wikidata. Despite these
limitations, we can consider the rule-based alignment presented in
Section 4.1 as a generalization of their AllEnt aligner. T-REx was
used for evaluating language models in a zero-shot fashion [25, 40],
or for OpenIE [39].

In [13], the authors introduce a methodology to manually eval-
uate the alignment of triples from an open KB with a closed KB.
Besides, they studied how much an open KB (OPIEC [14] in their
case) can be expressed by a closed KB (DBpedia [1]). They found
that the open triples can often be aligned to DBpedia facts, but
they are generally more specific. Also, one can usually express an
OpenIE fact in the DBpedia schema. Still, this expressivity is limited
if we consider only a single relation rather than a conjunction (or
even a more expressive logical formula).

3 PROBLEM FORMULATION
An open triple 𝑡 consists of a subject 𝑠 , a predicate 𝑝 , and an object
𝑜 . An open knowledge base K𝑂 is a set of open triples. A closed
schema R𝐶 is a set of relations {𝑅1, . . . , 𝑅𝑛}. A triple mapping𝑚 is
a function that takes an open triple 𝑡 and a closed schema R𝐶 and
produces a set of triples with predicates from R𝐶 .

Note that𝑚 is not defined as producing a single output triple
per input triple - depending on the closed schema’s structure, some
open triples may give rise to several closed triples. Besides, the
subject and object are not guaranteed to remain the same.
Problem. Given an open KB K𝑂 and a closed set of relations R𝐶 ,
the task is to find a mapping𝑚 that enables to build a closed KB
K𝐶 =𝑚(K𝑂 ,R𝐶 ), with the following properties:

(1) Preserves source recall. In other words, ensure that as
many triples as possible are mapped to a nonempty set,
maximizing | {𝑡𝑂 ∈ K𝑂 | 𝑚(𝑡𝑂 ,R𝐶 ) ≠ ∅) | .

(2) Remains source-faithful. In other words, ensure that
each triple in the output stems from one or several seman-
tically similar statements in the input, that is, that for each
𝑡𝑐 ∈ K𝐶 ,𝑚−1 (𝑡𝐶 ,R𝐶 ) is semantically similar to 𝑡𝐶 .

(3) Corrects errors. In other words, the goal is to minimize
the set of triples in K𝐶 that are factually wrong.

The definition above hinges on the concept of semantic similarity.
In line with previous work [13], we specifically refer to semantic
equivalence or entailment: The truth of 𝑡𝑂 should be a sufficient
condition for the truth of 𝑡𝐶 . However, our method does not de-
sire the opposite direction, producing 𝑡𝐶 statements that are only
sufficient conditions for 𝑡𝑂 .

4 METHODOLOGY
As we saw in Section 2 and will describe in more detail in Sec-
tion 5.2, previous works propose to tackle the open KB mapping
task in three different ways: manual mapping, rule mining mapping,
or classifier mapping. However, these methods all come with chal-
lenges: They require much human work, cannot modify the subject
and the object, cannot cover all cases, and, as we will see, have low
performance. Therefore, we introduce here a new methodology
to tackle these issues. We present in Figure 1 our approach. It is
composed of four steps:
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Figure 1: Our Methodology.

(1) Alignment: We automatically create a dataset of alignments
using the open KB and the closed KB.

(2) Finetuning: We use this dataset to finetune a generative
language model (GPT-2 here) to generate alignments.

(3) Generation: We generate one or several mappings for each
triple in the open KB.

(4) Ranking: Using the score in the original KB, the generation
score, and the rank of the generated alignment, we create a
final score for each closed triple.

This section describes in more detail how we implemented these
steps.

4.1 Creating Weakly-Labelled Training Data
The generative translation mapping and existing classification and
rule mining approaches require a training dataset of alignments,
that is, pairs of open triples and semantically equivalent or entailed
closed triples. Creating this at scale manually is hardly feasible.
Therefore, we decided to adopt two automatic approaches to gener-
ate a broader dataset, even if they contain some noise.

4.1.1 Rule-Based Alignment. The first approach we consider is
based on rules. To align an open KB with ConceptNet, we used the
following algorithm:

(1) Lemmatization and stopwords removal.
(2) For each triple (𝑠, 𝑝, 𝑜) in our open KB, we create one or

several alignments if (we used _ as a general placeholder):
• s, _, o is in Conceptnet (standard alignment)
• o, _, s is in Conceptnet (reverse alignement)
• s, _, p + o is in Conceptnet (predicate in the object)
• p + o, _, s is in Conceptnet (reverse predicate in the

object)
This approach has the advantage of not creating divergence in

the alignment: We have hard constraints (words) that do not allow
us to align statements that are too different. However, this is not
true with the following technique.

4.1.2 LM-Based Alignment. Here, we propose an entirely unsuper-
vised method. First, we compute the embeddings of each triple in
both KBs and then align each open triple with the nearest close
triple. For computing the triple embeddings, we used a sentence
embeddings neural network fed with the subject, the predicate,
and the object, separated by a comma. The Python library SBert
provides a MiniLM [41] model finetuned on a paraphrasing task.
Then, we used Scikit-learn [24] K-nearest neighbor algorithm to
find the nearest neighbor in a closed KB for each triple in an open
KB (or the opposite, marked as INV later) and the distance between
the two triples. Finally, as considering all the alignments might
introduce noise, we assess several scenarios in which we only take

the top 1k, 10k, and 100k alignments according to the distance score.
As generating the mapping is expensive, we will not finetune this
parameter more.

With this technique, we might have alignments that are not
related. However, compared to the previous method, we will be
able to have a larger dataset, and we might get semantic relatedness
coming from using different wording (e.g., with synonyms) that
was not captured before.

4.2 Generative Translation Mapping
The second step consists in finetuning a generative language model
to generate the mappings. This can be seen as a translation problem,
similar to machine translation. We formatted our input by separat-
ing the OpenIE triple and its aligned ConceptNet triple with a [SEP]
token. In our experiments, we used the GPT-2 model [27] and the
script provided by HuggingFace to finetune GPT-2. Unfortunately,
GPT-3 [3] is not publicly available. We also tried T5 [28], but we did
not obtain better results (see T5-GenT in Table 2). We also accessed
a very large language model, LLaMa [37], following Alpaca [36, 47].
However, this model failed to adapt to the structure of the closed
KB, even when given various explicit prompts. We hypothesize
that such a model lost flexibility as it better understood natural lan-
guage. Succeeding in reintroducing structured information in very
large LM can lead to exciting future works. Another disadvantage
of very large LMs is their computation cost at training and during
inference.

The third step is the actual generation. We used a beam search
for the generation part to obtain the top 𝐾 results for each state-
ment in our knowledge base. We filter the results to keep only
well-formed triples and triples so that the subject and object differ.
Considering more than one alignment per triple can help in many
ways. First, a triple can have several translations. Second, the sys-
tem learned to generate related statements that might help rank
the final statements.

Finally, once we have all the translations to ConceptNet triples,
we compute a score for each triple based on the frequency at which
it appeared (several OpenIE triples generally generate the same
closed triple) and the inverse rank among the predictions. More
formally, we obtain the score of a triple 𝑡 using:

FinalScore(𝑡) =
∑︁

t’ generates t

score(𝑡 ′)
rank(𝑡 ′, 𝑡) + 1

(1)

We will also consider two other scores in Section 6. The first only
considers the open KB score part of the previous formula (a sum
of scores), while the second only considers the ranks (a sum of
reciprocal ranks). Here, it is essential to notice that the score of an
open triple is provided by the open KB. Therefore, if the open KB
is not good at scoring triples, we will inherit negative signals that
we hope to compensate with the ranks.

In the end, we can generate a ranking for all our statements.
Moreover, using a generative LM allows for having friendly prop-
erties missing in previous works. For example, it can adapt the
subject and the object to match the new predicate. Besides, it can
also correct the original statement if it contains a mistake (spelling
or truth). Furthermore, it can inverse the subject and the object
without additional help. Finally, it can generate multiple outputs
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from one input, bringing value to the end KB. We will demonstrate
these properties in Section 6.

5 EXPERIMENT SETUP
5.1 Evaluation
5.1.1 Automatic Global Metrics. To get a general understanding
of the generated KB after the mapping, we compute the size of the
KB. However, as the size is insufficient to evaluate the recall [30],
we consider that ConceptNet is our gold standard as humans filled
it. Then, we measure the number of triples from ConceptNet we
can generate. We call it the automatic recall. Likewise, we create
the automatic precision:

𝑅𝑎 (𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ) =
|𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ∩ 𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡 |

|𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡 |
(2)

𝑃𝑎 (𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ) =
|𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ∩ 𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡 |

|𝐾𝐵𝑡𝑟𝑎𝑛𝑠 |
(3)

As a part of the target KB can be used in the training dataset, we
also define 𝑅𝑎 as:

𝑅𝑎 (𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ) =
|𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ∩ 𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐷𝑡𝑟𝑎𝑖𝑛 |

|𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐷𝑡𝑟𝑎𝑖𝑛 |
(4)

We also define 𝑃𝑎 following the same rationale as 𝑅𝑎 . However,
this metric does not capture the ranking of our statements. The
ranking is crucial in open KBs as these KBs are often noisy. Ideally,
we want to have correct and important statements with a high
score. We introduce metrics to measure that property. First, we will
also use an automatic precision at 𝐾 where, instead of considering
the entire 𝐾𝐵𝑡𝑟𝑎𝑛𝑠 , we will only consider its top 𝐾 statements.
However, these metrics do not consider the entire KB. Therefore,
we introduce a generalized mean reciprocal rank of the final ranked
KB as follows:

𝑀𝑅𝑅(𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ) =
∑
𝐾𝐵𝑡𝑟𝑎𝑛𝑠 [𝑖 ]∈𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡

1
𝑖∑

𝑖∈[1, |𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡 | ]
1
𝑖

(5)

𝑀𝑅𝑅(𝐾𝐵𝑡𝑟𝑎𝑛𝑠 ) =
∑
𝐾𝐵𝑡𝑟𝑎𝑛𝑠 [𝑖 ]∈𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡−𝐷𝑡𝑟𝑎𝑖𝑛

1
𝑖∑

𝑖∈[1, |𝐾𝐵𝑡𝑎𝑟𝑔𝑒𝑡−𝐷𝑡𝑟𝑎𝑖𝑛 | ]
1
𝑖

(6)

These metrics allow us to measure the recall, but it gives more
weight to correct high-ranked statements.

All the metrics presented depend on the quality and coverage of
the original open knowledge base. Therefore, when considering a
translated KB, we prefer relative metrics where the metric is divided
by the metric computed for the open knowledge base, ignoring the
relations.

5.1.2 Automatic Triple Alignment Metrics. In Section 4.1, we sug-
gested methods to align an open KB with a closed KB. These tech-
niques generate a dataset of alignments that can be split into a
training and a testing set used to evaluate the MRR, the precision
(@K), and the recall (@K).

5.1.3 Manual Metrics. The automatic metrics we presented above
are cheap to run but give a coarse approximation of the quality of
the resulting knowledge. Therefore, we introduce manual metrics
here. They are more expensive to run as they require human work
but will provide a more precise evaluation.
Manual Triple Metrics. Inspired by [13], we would like to evalu-
ate the quality of the triple mapping according to three parameters:

• Correct mapping: Is the generated triple a correct mapping
of the open triple, i.e., is it semantically equivalent/related
to the original triple?

• Correct prediction: Is the resulting triple true? Independently
of whether the mapping is correct, we would like to know if
the resulting triple is accurate. This can be useful for several
reasons. First, even if the mapping is incorrect, we would
prefer that it does not hurt the quality of the knowledge base
we construct next. Second, as the input triple may be noisy
and incorrect, we would prefer that the system generates
a correct statement rather than a correct mapping. Finally,
if such a property holds, it will prove that the system has
some cleaning properties that will help improve the quality
of the open KB.

• Correct open triple: Is the original open triple correct? This
information will help evaluate what the system predicts
depending on the quality of the input triple (see the point
above).

Knowledge Base Level Metrics. Precision and recall are crude
automated heuristics w.r.t. another data source. To evaluate the
quality of novel CSK resources meaningfully, we rely on the typi-
cality notion of previous works [22, 30]: We ask humans how often
a statement holds for a given subject. Possible answers are: Invalid
(the statement makes no sense) or Never / Rarely / Sometimes / Of-
ten / Always. Each answer has a score between 0 and 4 to compute
a mean.

5.2 Baselines
5.2.1 Manual Mapping. For this baseline, we manually map the
relations in an open KB to relations in ConceptNet. It is inspired
by an idea from [21]. Given a predicate p in an open knowledge
base, we ask humans to turn it into a predicate p’ in ConceptNet
(including inverse relations). There are many relations in an open
KB, so we only mapped the top relations. We also notice that, in
many cases, a triples (s, p, o) can directly be mapped to the triple (s,
CapableOf, p + o). For example, (elephant, live in, Africa) could be
mapped to (elephant, CapableOf, live in Africa). If we cannot find a
better translation, we default to this translation. This approach is
a simple rule system. In our case, we annotated 100 predicates for
Quasimodo and Ascent++. By doing so, we cover 82% of triples in
Quasimodo and 57% of triples in Ascent++.

5.2.2 Rule Mining. We propose a rule mining approach inspired by
previous works [6, 31, 32]. Our method requires a training dataset
of mappings. In our case, this dataset was constructed automati-
cally (see Section 4.1) using the rule-based alignment method. The
LM-based alignment is inappropriate as the subject and object must
remain unchanged with the rule mining approach. Then, we con-
struct a meta-knowledge base. Given a mapping from (s, p, o) to
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(s’, p’, o’) represented by a unique identifier 𝑀 , we generate the
following statements:

• (s’ + M, p’, o’ + M). Here, we append the mapping identifier
to the subject and object to prevent the rule mining system
from using s’ and o’ as a constant.

• If 𝑠′ (resp. 𝑜′) matches 𝑠 (𝑠′ is in 𝑠 , after lemmatization and
without stopwords), we create the statement (M, INSUBJ, s’
+ M) (resp. (M, INSUBJ, o’ + M)).

• If 𝑠′ (resp. 𝑜′) matches 𝑜 , we create the statement (M, INOBJ,
s’ + M) (resp. (M, INOBJ, o’ + M)).

• For each hypernymℎ of 𝑠′ (resp. 𝑜′) obtained withWordNet,
we create the statement (s’ + M, ISA, h). Here, we considered
only hypernyms appearing at least ten times and in less
than 50%

• We take the 100 more frequent tokens in the predicates of
the open KB (e.g., “in”, “of”, “be”). Then, if one of these to-
kens 𝑡 appears in 𝑝 , we create the statement (M, CONTAINS,
t).

Once we have this new KB, we use AMIE [17] to mine Horn
rules of the form 𝐵 ⇒ 𝑟 (𝑥,𝑦). The PCA confidence proposed in
AMIE yields poor results. Therefore, we used the standard confi-
dence. Besides, we modify the rule generation system so that the
body cannot contain twice the same relation. These are the kind of
rules we want in practice, and it allows us to mine the rules with
many atoms much faster. Ultimately, we only keep rules with a
confidence score greater than 0.5. An advantage of this method is
that it provides high interpretability: For each final generation, we
can see which open triples were used to generate it and which rules
were applied.

Rule Confidence
Quasimodo

?i CONTAINS cause ∧ ?i INOBJ ?b ∧ ?i INSUBJ ?a ∧ ?b ISA activity.n.01⇒ ?a Causes ?b 1.0
?i INOBJ ?a ∧ ?i INSUBJ ?b ∧ ?b ISA structural_member.n.01⇒ ?a DistinctFrom ?b 0.947580645
?i INOBJ ?b ∧ ?i INSUBJ ?a ∧ ?b ISA representational_process.n.01⇒ ?a HasA ?b 0.86440678

Ascent++
?i INOBJ ?a ∧ ?i INSUBJ ?b ∧ ?b ISA abstraction.n.01⇒ ?a Desires ?b 0.769230769

?i INOBJ ?a ∧ ?i INSUBJ ?b ∧ ?b ISA religious_person.n.01⇒ ?a DistinctFrom ?b 0.745454545
?i INOBJ ?b ∧ ?i INSUBJ ?a ∧ ?b ISA administrative_district.n.01⇒ ?a AtLocation ?b 0.737051793

Table 1: Top Rules Obtained With Rule Mining.

We applied the rule mining system and obtained 72 rules for
Quasimodo and 50 for ASCENT++. We show the best rules in Ta-
ble 1. We observed that the system had difficulties generating good
rules and finding suitable types for the subject or the object. This
might come from several factors. First, the rules might not be com-
plex enough and, therefore, cannot express a complicated mapping.
Second, the standard confidence score might not be the best option.
Indeed, if a rule applies very few times but is always right, it gets a
high score, whereas it goes not give much information. Although
we set a minimal support, we still observe this problem. Third, the
complexity of the subjects and objects makes applying a taxonomy
like WordNet difficult. So we will not get relevant type data. Finally,
the system cannot adapt the subject and the object to match the
new predicate better.

Looking at Table 2, we observe that the system has trouble gen-
eralizing, i.e., generating statements not in the original training
dataset. This is confirmed by the relatively low MRR, precision,

and recall reported in Table 4 when we evaluate the system on the
testing set. The rules apply to a few cases, which explains the small
size of the generated knowledge base.

5.2.3 Classification Task. For this baseline inspired by OpenKI [46],
we want to use a classifier to predict the ConceptNet relation of
an open triple. Given a triple (s, p, o) in an open KB, we want to
predict a relation 𝑝′ (including inverse relations) in ConceptNet
such that (𝑠, 𝑝′, 𝑜) would be in ConceptNet. To do so, we used a
classifier based on BERT [4] and trained it with a dataset created
automatically (see Section 4.1). Building this dataset by hand would
be possible, but it would takemuch time, andwewould get problems
getting enough examples for each predicate. Besides, we will use
the same training dataset with the translation models.

5.3 Implementation
We implemented the baselines using Python3 (except for AMIE,
written in Java). For the generative LM, we used GPT-2-large given
byHuggingface.We ran our code onmachineswithNVIDIAQuadro
RTX 8000 GPUs. Finetuning a language model required a single
machine for a maximum of two days. We used three training epochs
in our experiments. However, mapping an open KB to ConceptNet
was much longer and took up to 30 days on a single GPU. Neverthe-
less, the computations can easily be parallelized on several GPUs
by splitting the input data, which allows us to speed up the process.
In our experiments, we used Quasimodo and ASCENT++ as open
KBs and mapped them to ConceptNet commonsense relations. We
make the code and data available (julienromero.fr/data/GenT).

6 RESULTS AND DISCUSSION
This section will study several research questions investigating
how our new model works. We will first look at the best mapping
algorithm and then focus on finding the best alignment method,
as this step of our pipeline has the most impact on the final result.
Then, we will look at the properties of our model.

6.1 Comparison With Baselines
Table 2 shows the results of the automated metrics for all baselines.
The first thing to notice is that the metrics seem “low”. We recall
that they are, in fact, relative to the open KB with the relations
ignored, as mentioned in Section 5.1. Therefore, they only have a
relative interpretation. Even with the generous evaluation of the
open KB, many metrics have a value of more than one, showing a
significant improvement, particularly for the recall. For precision,
a value less than one mainly comes with the growth of the KB size.

Our proposed approach clearly outperforms the various base-
lines. The basic models are not flexible and do not tackle the chal-
lenges we mentioned earlier. For manual mapping, the annotation
process depends on humans and is not trivial, as translating a pred-
icate often depends on the context. The classifier model performs
better than the two other baselines when we look at the recall. Still,
we observe problems to generalize as 𝑅𝑎 is low.

6.2 What is the best mapping method?
In Table 2, we present the main results of our paper with a compar-
ison with other baselines. We called our approach GenT@K (for

https://julienromero.fr/data/GenT
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KB Method Training data 𝑅𝑎 𝑅𝑎 𝑃𝑎 𝑃𝑎 𝑃𝑎@10𝑘 𝑃𝑎@10𝑘 MRR 𝑀𝑅𝑅 Size
ConceptNet KB itself - - - - - - - - - 232,532
Quasimodo KB itself - 2.54%∗ - 0.271%∗ - 4.79%∗ - 8.32%∗ - 5,930,628
Ascent++ KB itself - 1.63%∗ - 0.430%∗ - 3.13%∗ - 6.40% ∗ - 1,967,126

KB Method Training data 𝑅𝑎,𝑟𝑒𝑙 𝑅𝑎,𝑟𝑒𝑙 𝑃𝑎,𝑟𝑒𝑙 𝑃𝑎,𝑟𝑒𝑙 𝑃𝑎,𝑟𝑒𝑙@10𝑘 𝑃𝑎,𝑟𝑒𝑙@10𝑘 MRR𝑟𝑒𝑙 𝑀𝑅𝑅𝑟𝑒𝑙 Size

Quasimodo

Manual Mapping [21] - 0.231 - 0.103 - 0.315 - 0.592 - 4,925,792
Rule Mining [6, 31, 32] Rule-based 0.161 0.006 0.509 0.020 0.365 0.004 1.259 0.002 689,146

Classifier [46] Rule-based 0.752 0.042 0.299 0.016 0.672 0.002 1.419 0.001 5,478,028
GenT@1 Rule-based 1.465 0.425 0.771 0.217 3.361 0.201 4.816 0.098 4,135,349
GenT@10 Rule-based 2.563 1.319 0.176 0.085 3.612 0.234 4.968 0.097 33,425,732
GenT@10 LM-based@10k 2.370 1.677 0.347 0.235 2.777 0.357 2.505 0.069 15,647,853
GenT@10 LM-based@10k-INV 2.787 1.933 0.241 0.162 1.939 0.660 1.333 0.216 25,798,594

T5-GenT@10 LM-based@10k-INV 1.843 1.020 0.123 0.065 1.094 0.236 0.670 0.070 33,874,204

Ascent++

Manual Mapping [21] - 0.287 - 0.205 - 0.415 - 0.351 - 1,228,001
Rule Mining [6, 31, 32] Rule-based 0.223 0.060 0.705 0.190 0.511 0.045 1.306 0.034 277,835

Classifier [46] Rule-based 0.663 0.180 0.340 0.105 0.649 0.026 0.784 0.016 1,722,441
GenT@1 Rule-based 1.706 0.785 1.147 0.523 2.722 0.396 2.949 0.278 1,277,065
GenT@10 Rule-based 3.055 1.933 0.260 0.160 3.073 0.454 3.989 0.500 10,193,040
GenT@10 LM-based@10k 3.497 2.546 0.444 0.319 3.450 1.096 4.494 0.216 7,000,135
GenT@10 LM-based@10k-INV 4.000 2.613 0.428 0.272 3.450 1.326 2.736 0.556 8,305,861

Table 2: Automatic (Relative) Recall And Precision (∗ ignores the predicates).

KB Alignment Typicality
ConceptNet - 3.18
Quasimodo - 2.70
Quasimodo Rule-based 2.91
Quasimodo GenT@10k-INV 2.88
Ascent++ - 2.31
Ascent++ Rule-based 2.68
Ascent++ GenT@10k-INV 2.88
Table 3: Manual annotation.

KB Method Dataset MRR 𝑅@1 𝑅@5 𝑅@10 𝑃@1 𝑃@5 𝑃@10

Q
ua
si
m
od

o

Manual Manual 1.56𝑒−2 1.51% - - 1.56% - -
Rule Mining Rule-based 5.96𝑒−2 5.55% 17.8% 24.8% 5.68% 3.63% 2.52%
Classifier Rule-based 0.194 19.0% - - 19.4% - -
GenT@10 Rule-based 0.381 31.6% 46.7% 49.5% 31.1% 9.67% 5.12%
GenT@10 LM-based@10k 0.279 23.1% 34.5% 36.9% 23.1% 6.91% 3.69%
GenT@10 LM-based@100k 0.319 27.5% 38.0% 39.8% 27.5% 7.60% 3.98%
GenT@10 LM-based@1k-INV 0.211 15.4% 26.9% 34.6% 15.4% 5.38% 3.46%
GenT@10 LM-based@10k-INV 0.123 8.48% 17.1% 20.4% 8.77% 3.51% 2.09%

T5-GenT@10 LM-based@10k-INV 0.129 10.0% 16.6% 19.9% 10.1% 3.40% 2.05%

Table 4: Automatic Triple Alignment MRR, Recall And Pre-
cision (as usually defined).

First gen. At least one gen. All gens.
Alignment S O SO S O SO S O SO
Rule-based 36.8% 48.5% 26.6% 57.9% 76.2% 48.3% 25.0% 35.3% 12.4%

LM-based@1k 27.5% 21.0% 7.37% 45.3% 41.7% 17.9% 22.3% 12.3% 2.37%
LM-based@1k-INV 38.7% 53.6% 22.4% 55.2% 77.5% 42.0% 27.0% 31.9% 5.84%

Table 5: SO Conservation For Quasimodo.

Generative Translation with K as a parameter for the number of
closed triples per open triple), and we show here the results from
some of the best automatic alignments we found (more about this
later). GenT@K outperforms the other baselines for both Quasi-
modo and Ascent++. For the rule mining approach, 𝑃𝑎 has a high
value. This is due to the generated KB’s small size, which comes
from the difficulty of finding good rules. However, when we look at
𝑃𝑎 , we see that the rule mining approach clearly does not generalize.

Figure 2: Impact of the number of generated triples K for
each open triple - Quasimodo - LM-based@10-INV

More generally, GenT methods really shine when we look at
the metrics that do not consider training data. It confirms our
hypothesis that we can build models that generalize better and
can adapt to more situations with generative translation.

6.2.1 What is the influence of the number of generations? A key
parameter for the GenT@K method is the number of generations 𝐾
we consider for each triple. In Figure 2, we make 𝐾 vary from 1 to
10. We see that 𝑅𝑎 continuously increases, and this was expected:
The more generations, the higher the chance to overlap with Con-
ceptNet. However, this metric has not plateaued yet, indicating that
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we could increase the number of generations (but with a higher
computational cost).

A good recall is not helpful if we cannot differentiate good triples
from bad triples. So, it is essential to also look at the precision. Here,
we observe that the 𝑀𝑅𝑅 and the 𝑃𝑎@10𝑘 remain stable when
considering a score with the weight and the rank. On the one hand,
it is a good sign because it shows that we do not add noise, but, on
the other hand, we would have wished that the precision metrics
increase thanks to the corroboration. This result suggests we must
design a more advanced scoring method to leverage the multiple
generations fully.

Looking more closely at our scoring methods, we can see that
using both the weight and the rank gives better results than using
them separately. This suggests that they are both critical elements
of the scoring function.

6.3 What is the best alignment method?
In Section 4.1, we presented two automatic alignment methods. The
first is based on a rule system, whereas the second aligns with the
closest triples in a latent space using embeddings. We refer to the
first as Rule-based and the second as LM-based@K(-INV) when we
used top K statements of the complete dataset obtained by aligning
each open triple with a close triple (INV means we align each close
triple with an open triple).

Dataset Sem. Rel. Open Correct Close Correct Both Correct
Rule-based 53.0% 85.3% 69.3% 64.8%
GenT@10k 45.7% 85.3% 75.7% 68.0%

GenT@10k-INV 55.3% 85.3% 77.3% 69.7%

Table 6: Manual Alignment Evaluation On Quasimodo.

6.3.1 Do they allow the model to generate accurate alignments?
Table 4 gives the performance of the model on a test dataset derived
from the complete dataset. Therefore, it is not the same for all
models and depends on the alignment method. Still, it gives us
some valuable insights. We can see that the Rule-based alignment
is the easiest to learn. This is due to the strong correlation created
by the rules between the open and the closed triples. According to
the metrics, the INV methods perform worse than non-INV ones.
A reason might be that the INV alignment has more diversity: A
triple from ConceptNet can appear only once in the dataset (we
align each close triple with a single open triple). Therefore, it might
be harder to learn.

Table 5 shows the conservation of the subject S and object O
during the generation phase. We want to observe if they remain
the same for the first generation, for at least one generation, or for
all generations. The rule-based system encodes these constraints
and should therefore outperform the other baselines. However,
interestingly, we observe that the INV methods have excellent
conservation, competing with the rule-based system (except for
SO conservation), and largely beating non-INV alignments. This is
surprising as it contains no prior constraint. It is a property that
we expect from a good alignment method as we do not want the
generated close triples to diverge from the original triples.

Figure 3: Impact of Training Dataset Size - Quasimodo

All these evaluations are automatic and only approximate the
model’s capabilities. We additionally performed manual annota-
tions of the generations to check if the generated close triples are
correct alignments (according to semantic relatedness, as discussed
in Section 5.1). We sampled 300 triples from the top 10k triples in
Quasimodo and looked at the first generation for three models. The
results are presented in Table 6. We observed that the rule-based
and INV alignments have similar performances for generating re-
lated close triples. Only the non-INV model underperforms, which
matches what we noticed for SO conservation. Here, semantic relat-
edness is relatively low because it is quite constraining. However,
we observe that the generated triples share most of the time part
of the subject or object with the original triple.

6.3.2 What is the impact of the training dataset size? We sampled
the top-𝐾 samples with 𝐾 ∈ {1𝑘, 10𝑘, 100𝑘} in the training dataset
(see Figure 3) and picked the best size. We observed that the model
performs best for 10k samples. Note that finding the optimal size
would take too much time as, with these metrics, we need to gener-
ate the entire mapping. The testing dataset used in Table 4 gives a
faster heuristic for finding a good K.

6.4 What are the properties of our model?
In Section 1 and Section 3, we described properties we want our
new system to have, such as high recall and precision, flexibility
thanks to the LM, and good generalization. We will investigate
these advantages here in more detail.

6.4.1 What are the advantages of using a generative translation
model? When we use traditional models like manual mapping, rule
mining, or classifiers, we encounter problems coming from their
lack of flexibility: The subject and object often remain unchanged,
the mapping is often unique, mistakes are not corrected, etc. With
a generative translation model, we can tackle some of these chal-
lenges. In Table 7, we present examples of nice and unique prop-
erties we observed in the final results. This shows that using LMs
with open KBs lets us get the best of both worlds. LMs are more
flexible and contain knowledge that is not easily extractable [25].
The open KB helps guide the LM.
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Property Open triple Generated closed triple
The mapping depends on
the context (elephant, has_property, decorated) (elephant, ReceivesAction, decorated)
Adapt the subject/object (elephant, be in, africa killed) (elephant, AtLocation, africa)

(doctor, write, prescription) (doctor, CapableOf, prescribe)
(doctor, be in, training) (doctor, AtLocation, medical school)

(doctor, keep, from getting sick) (doctor, CapableOf, keep patient healthy)
Inversion subject/object (elephant, have, tusks) (tusk, PartOf, elephant)
Correct the subject/object (elephant, have, ivory tusks answers) (elephant, HasA, ivory tusk)
Put the predicate in the object (doctor, wear, coat) (doctor, CapableOf, wear coat)
Good triples from nonsense (doctor, has_property, as a career) (doctor, HasProperty, well respected)
Generate related triples (doctor, wear, mask) (doctor, CapableOf, wear lab coat)
Turn s/o into standard form (apartment, be in, nyc) (apartment, AtLocation, new york city)

Table 7: Examples of Mappings from GenT.

6.4.2 Can we improve the quality of an open KB with a genera-
tive translation model? To evaluate the evolution of the quality of
an open KB, we asked humans to annotate the typicality of state-
ments. We sampled 300 statements out of the top 10k statements
for each KB and then computed the mean typicality. The results
are reported in Table 3. As we can see, the generative translation
methods significantly improve the quality of the statements. The
best-performing alignment method seems to depend on the open
KB. As expected, ConceptNet still outperforms our approach as
it was manually generated. However, it does not have the same
scaling capabilities.

6.4.3 Can GenT generalize across open KBs? Table 8 shows the
results of models trained on one open KB, Quasimodo or Ascent++,
and used to generate a closed KB from triples in another open
KB. We chose the LM-based@10k-INV alignment. In most cases,
the original model trained with the same open KB outperforms
the foreign model. This is understandable as the data sources and
processing steps used to generate the open KBs differ, and therefore
the style of the open triples is different. So, the model might have
difficulties adapting. Still, the new results are close to the original
ones, showing that we can have the reusability of our models with
entirely new data. Finally, some metrics seem less impacted by the
change of the original open KBs. Fromwhat we can see, the ranking
capabilities, expressed through 𝑃𝑎 and𝑀𝑅𝑅, vary but not necessary
for the worst. It shows that the generation and the scoring stage
allow selecting good close triples, whatever the new data is.

6.4.4 Generalization To Sentences. In Table 9, we took sentences
or paragraphs from several sources (Wikipedia, New York Times,
GenericsKB [2]) and used our model trained on Quasimodo with
the LM-based@10k-INV alignment method. Surprisingly, the model
can correctly extract knowledge from sentences. This could lead
to several interesting future works: Information extraction directly
from sentences, aligning sentences rather than open triples, or
commonsense inference.

6.5 How does GenT compare with direct LM
generation methods?

As previous works like LAMA [25] suggested, a powerful language
model could serve as a knowledge base. Then, aligning this “knowl-
edge base” with a target knowledge base requires finetuning the lan-
guage model. COMET [15] finetunes GPT-2 [27] to generate triples

in ConceptNet. Here, we consider two kinds of input: A subject
alone (denoted as COMET S) or a subject/predicate pair (designated
as COMET SP). COMET initially accepted only subject/predicates
pairs. However, it makes the generation of relevant triples harder
as it is not always possible to associate all subjects to all predicates
(for example, “elephant” and “HasSubEvent”). Then, we generate
ten candidate statements for each subject or subject/predicate pair
in ConceptNet. They all come with a generation score that we use
for an overall ranking. In addition to the raw COMET, we used
the translation models described above to generate a KB (GenT
COMET). The inputs are the same as COMET. We additionally
parse the output to keep the triple on the right of the [SEP] token.

It turns out that our translation model is a clever scheme in be-
tween traditional IE-based KB construction and a general COMET-
style generation. It overcomes the limitation of IE that requires a
text as input (it can generate more triples without requiring that
each is seen in input text). It also tackles some COMET challenges
by providing more robust guidance on what to generate based on
the input triples.

In Table 10, we observe that GenT consistently outperforms
COMET in all metrics but 𝑅𝑎 . This is easily understandable: As
COMET does not require alignments, we can get 5 to 10 times more
training data than the translation models. These data points are
guaranteed to represent different ConceptNet triples (not necessar-
ily the case for the translation models). However, if we look at 𝑅𝑎 ,
the translation models generalize better. Besides, we have a ranking
capability lacking in the original COMET. This could be explained
by the fact that the translation models first try to generate an open
triple closer to natural language and then map this triple to Con-
ceptNet. Therefore, it can better leverage its prior knowledge to
focus on what is essential.

7 CONCLUSION
We studied the problem of mapping an open commonsense knowl-
edge base to a fixed schema. We proposed a generative translation
approach that carries novel properties such as flexibility and clean-
ing ability. In the process, we compared different ways to create
training data and analyzed their advantages and disadvantages.
Finally, we experimentally verified the strengths of the proposed
approach both in automated and manual evaluation.

We provided the first solution for the mapping task, and there is
still room for improvement. For example, we could study how to
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KB Method 𝑅𝑎,𝑟𝑒𝑙 𝑅𝑎,𝑟𝑒𝑙 𝑃𝑎,𝑟𝑒𝑙 𝑃𝑎,𝑟𝑒𝑙 𝑃𝑎,𝑟𝑒𝑙@10𝑘 𝑃𝑎,𝑟𝑒𝑙@10𝑘 𝑀𝑅𝑅𝑟𝑒𝑙 𝑀𝑅𝑅𝑟𝑒𝑙
Quasimodo GenT@1 1.54 0.89 1.15 0.65 1.95 0.65 1.27 0.21
Quasimodo GenT@10 2.79 1.93 0.24 0.16 1.94 0.66 1.33 0.22
Quasimodo GenT@1 1.35 0.81 0.77 0.46 0.73 0.76 4.28 0.98
Quasimodo GenT@10 2.44 1.77 0.18 0.13 2.92 0.84 4.41 0.96
Ascent++ GenT@1 2.06 1.09 1.84 0.96 3.32 1.23 2.80 2.61𝑒−6

Ascent++ GenT@10 4.00 2.61 0.43 0.27 3.45 1.33 2.74 0.56
Ascent++ GenT@1 1.95 0.77 1.28 0.50 3.17 0.38 4.69 0.08
Ascent++ GenT@10 3.62 1.96 0.30 0.16 3.87 0.44 5.37 0.10

Table 8: Performances when evaluating with a model trained for another KB. (grey = the original results)

Source First Generation
Elephants are the largest existing land animals. (elephants, DefinedAs, largest land animal)
A lawyer or attorney is a person who practices law. (lawyer, CapableOf, represent client)
Elon Musk Races to Secure Financing for Twitter Bid. (elon musk, CapableOf, bid for twitter)
South Africa’s Government Shifts to Rebuilding After (people, CapableOf, die from flooding)
Disastrous Flooding. Nearly 4,000 homes have been
destroyed and more than twice as many damaged in the
Durban area after a week of punishing rains and mudslides.
The death toll is now 448, with about four dozen people
unaccounted for.
Some air pollutants fall to earth in the form of acid rain. (air pollution, CapableOf, cause acid rain)

Table 9: Examples of Generations From Sentences.

KB Method Dataset 𝑅𝑎 𝑅𝑎 𝑃𝑎 𝑃𝑎 𝑃𝑎@10𝑘 𝑃𝑎@10𝑘 MRR 𝑀𝑅𝑅

Quasimodo GenT COMET S Rule-based 1.09% 0.222% 3.72% 0.137% 13.3% 1.66% 46.6% 0.46%
Quasimodo GenT COMET SP Rule-based 2.33% 0.803% 0.403% 0.782% 11.3% 1.24% 14.7% 0.41%
Quasimodo GenT COMET S LM-based@10-INV 0.657% 0.285% 2.20% 0.975% 7.14% 2.86% 17.2% 8.57%
Quasimodo GenT COMET SP LM-based@10-INV 1.71% 1.07% 0.261% 0.163% 6.46% 3.12% 12.9% 0.60%
Ascent++ GenT COMET S Rule-based 0.977% 0.358% 3.10% 1.15% 12.5% 3.90% 47.3% 4.45%
Ascent++ GenT COMET SP Rule-based 2.15% 1.11% 0.345% 0.177% 12.6% 4.14% 20.0% 11.2%
Ascent++ GenT COMET S LM-based@10-INV 0.825% 0.326% 2.74% 0.326% 8.94% 3.50% 11.6% 2.09%
Ascent++ GenT COMET SP LM-based@10-INV 2.09% 1.10% 0.340% 0.178% 10.7% 4.69% 15.7% 5.84%

- Comet S ConceptNet 1.11% 0.144% 2.96% 0.401% 7.65% 0.891% 11.3% 0.12%
- Comet SP ConceptNet 2.87% 0.504% 0.179% 0.504% 3.36% 0.510 2.57% 0.05%

Table 10: Direct Generation Comparison, non-relative metrics

adapt state-of-the-art translation models. We could also check how
the output of the generative model can be constrained to provide
closed triples that are not too far from the original triples. Also, as
we observed that LM-based models have cleaning capabilities, we
could include a negative sample in the training dataset to predict
cases where a triple has no translation (e.g. because it is incorrect).

We providemappings to ConceptNet of Quasimodo andAscent++
as additional resources in addition to the code and input data (julien-
romero.fr/data/GenT). We hope they will help improve tasks such
as commonsense question answering that currently use Concept-
Net, which can sometimes be problematic as some of these datasets
are constructed from ConceptNet (e.g., CommonsenseQA [34]).
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