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Can we accurately assess MS disease activity using 
automated methods in large real-life MRI databases?


Insights from the OFSEP HD database

Background: The systematic collection of MRI scans associated 
with large real-life clinical databases (DB) is still rare but offers 
the opportunity to directly extract a wide range of imaging 
metrics through the use of AI-based tools.

Objective: To compare the performance of an automatic tool that 
detects new lesions on FLAIR images vs radiological data 
entered in the clinical DB to classify MS patients as “active” or 
“inactive” in a large multicenter real-life DB.

Methods: We included 1412 pairs of brain MRI scans with both FLAIR 
images available in the French OFSEP HD multicentric imaging DB at 
two time points, and the radiological comparison captured in the OFSEP 
HD clinical DB. The data was heterogeneous (FLAIR images acquired on 
35 different types of scanners from 5 manufacturers). An automated 
tool was used to detect new lesions. A ground truth for 160 pairs of 
MRIs was built from two experts and differences in sensitivity, 
specificity and accuracy between the two methods were assessed.

Results:  
Figure 1: Overall, 222 out of 1412 (16%) intervals were 
considered active from the clinical DB, compared to 
467 (35%) from the automated method.  
Figure 2: The clinical DB was more specific, but the 
automated method was more sensitive and accurate 
(p<0.001) to classify MS patients.  
Figure 3: Under simplified assumptions, we 
extrapolate a sensitivity, specificity and accuracy of 
about 0.69, 0.99 and 0.92 for the clinical DB and 0.99, 
0.95 and 0.96 for the automated method.

Conclusion: The automated analysis of images collected in large real-
life databases increases the accuracy of MS patient classification as 
active or inactive compared to the clinical database and offers the 
possibility to extract other metrics such as lesion number or volume. 
These results should encourage us to develop the systematic 
collection and re-analysis of real-life imaging data linked to large 
clinical databases, in order, for example, to evaluate the effectiveness 
of treatments in real life.

Which method is the best?
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What is the sensitivity, specificity and accuracy 
of the two methods ?

Figure 4: Examples of false negatives generated by the clinical database (A, B) and false positives 
generated by the automatic tool (C, D). A: patient with 1 new lesion detected by the automatic tool 
and classified as inactive in the database; B: patient with 21 new lesions detected by the automatic 
tool and classified as inactive in the database; C: patient correctly classified as inactive in the 
database but where changes in image characteristics between two acquisitions leads to false 
detection of a new lesion by the automatic tool; D: patient correctly classified as inactive in the 
database but where image artifacts leads to false detection of two new lesions by the automatic tool.
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Analyze: 1412 pairs of brain MRI scans
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Ground truth: 
160 pairs of FLAIR

Two experts classify them as 
“active” or “inactive”.
 

To constitute this ground truth, 
the experts had access to all 
available information, i.e. 3D 
FLAIR at both time-points, 
patient classification in the 
clinical DB, new lesion maps 
produced by the automatic tool.
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Figure 2: Relative performance of the automatic tool versus the clinical database on the disagreement 
data set (N=160 intervals) and p-values for equality of sensitivity, specificity and accuracy.Figure 1: Creation of the ground truth from 160 intervals for which the clinical database and the automatic method disagree

Figure 3: Specificity, sensibility and accuracy as computed  i) by using the Bayesian Model assuming 
that the outcomes of the two classification methods (the clinical database and the automatic tool) are 
independent conditionally to the actual patient activeness and ii) by considering that when the two 
methods agreed, the patient was correctly classified.

i) Conservative model  
(Bayesian model, assuming 

that the probabilities of 
success/failure of the two 
classification methods are 

independent conditionally to 
the true patient activeness)

ii) Optimistic model 
(assuming correct 

classification in case of 
agreement)
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