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Abstract: This paper presents a comparison of some classical metaheuristic (Particle Swarm
Optimsation, Simulated Anneling) and deterministic (Branch & Bound, Pattern Search)
algorithms for the optimization of the storage control of a microgrid over a whole year with
real data. These algorithms are compared on the relevance of the controls in terms of energy
autonomy, power losses and wear of the hydrogen chain as well as on the computational burden
for a small embedded controller. This allows to highlight a type of algorithm adapted to a
limited time and means of calculation that we find in real conditions. This study also points out
the importance of prediction errors and their impacts when controlling real systems.

Keywords: Smart grids, Optimal operation and control of power systems, Predictive control,

Energy management

1. INTRODUCTION
1.1 Context & motivation

By relying on renewable generations and storage instead
of diesel generators, it is possible to supply loads while
reducing logistics, operating costs and greenhouse gas
emissions on islanded grids. A microgrid aggregates gener-
ations, storage and consumption in the same architecture.
It allows gathering information and control to consider
a unified management strategy Farhangi (2010); Olivares
et al. (2014), this is smartgrid.

The main difficulty of islanding is autonomy and reliability.
Renewable generation periods are decoupled from con-
sumption periods with intermittency. Thanks to its high
energy density, hydrogen is a promising energy vector for
storage, but H2 chain control remains under study Arsad
et al. (2022). This is why an Energy Management System
(EMS) provides a strategy to store energy Bukar and Tan
(2019) while taking into account technical and econom-
ical objectives. Moreover, EMS framework, optimization
techniques and computational approaches have impacts
on efficient and reliable operations Salehi et al. (2022).
In addition, a low computational burden to determine
controls is required to provide commands in a reasonable
time at lower power consumption.
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France through the program CIFRE under grant 2020/0995.
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1.2 Literature review

Raya-Armenta et al. (2021) produced a review on isolated
microgrids and their control by EMS systems, outlining
the landscape of the techniques, future trends and possible
improvements. The definition of microgrid is discussed
and authors explore 6 control aspects : constraints, time-
frame, objective functions, frameworks, uncertainty and
formulation. The key findings reside in the highlighting of
new metaheuristics (e.g. Jaya) and outline of the future
challenges to improve EMS: microgrids modelling, fore-
casting and learning, lower level controllers, decentralized
EMS, communication and proof of concept.

Indeed, there are two main possibilities of optimization for-
mulation: a full analytical mathematical definition (white
box) or a partial definition based on Black Box Opti-
mization (BBO) Boukouvala et al. (2016). With BBO,
solvers improve local solutions without any insight about
information in the black box (like derivatives), thus no
global optimum guarantee can be provided Boukouvala
et al. (2016). With white boxes, the analytical definition of
the problem allows to use its mathematical properties to
converge and prove the global optimality of the computed
result Conn et al. (2009). Even non-linear behaviors (i.e.
generation, unit commitment) can be expressed Knueven
et al. (2020). When dealing with the optimal control of
complex systems, using a simulation model is often the pre-
ferred way to evaluate their behavior. Moreover, the BBO
framework offers a flexible way to solve an optimization
problem without eliciting the whole mathematical model,
then it easily adapts to various microgrid structures.
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Most recent works implement an EMS based on MPC, the
most widespread management method Arsad et al. (2022).
The EMS frameworks are often single-level, but they can
be bi-level as in Ma et al. (2021), where the upper-level
minimizes the overall cost, then the lower-level optimizes
the storage operation strategy. We note that optimization
problems are often economic or technical (operation cost,
dumped energies, etc.). Usually uncertain values (solar
irradiance, consumption) are forecasted and used as de-
terministic in MPC Morin et al. (2018, 2019), but some
studies take into account more finely their randomness,
e.g. IGTD Tostado-Véliz et al. (2022). Garrido et al.
(2021) used a simulation model and then Reinforcement
Learning to learn the best commands. The MPC remains
better than the RL control when the horizon is correctly
predicted, i.e. the prediction error is moderate. Here com-
ponents considered for generation are solar panel (PV),
Wind Turbine (WT) and Thermal Generators (TG), such
as diesel engine and microturbine. Considered storage are
Battery (BT) and H2 (hydrogen chain, at lease Hydrogen,
ELectrolyzer EL or/and Fuel Cell FC). Some microgrids
can be islanded Ma et al. (2021) or connected to another
grid.

As inferred by numerous reviews Olivares et al. (2014),
MPC remains the most discussed and the simplest predic-
tive EMS to implement. Among BBO techniques, Raya-
Armenta et al. (2021) concludes that metaheuristics are
very promising to find the EMS efficient solutions. How-
ever, a large part of these studies compare metaheuristics
between them, as well as their underlying improvements,
but do not consider the use of more classical BBO methods
(e.g. Pattern Search) Das et al. (2021). In addition, opti-
mizers may not find the optimum, but a reasonable opti-
mal solution. Then, the stochastic aspect of metaheuristics
leads to different results (even slightly) at each execution
and a larger number of cost function evaluations, thus to
a higher consumption of computational resources.

Morin et al. (2018, 2019) have proposed a binary formula-
tion of the decision tree to get EL and FC Unit Commit-
ment (UC) in an islanded microgrid (Figure 1). The hori-
zon’s best path is determined first by a greedy algorithm,
then by a Branch & Bound (BB). Compared to myopic
control, MPC improves the grid exploitation by increasing
energy storage, decreasing power losses and storage degra-
dation (BT, EL, FC). These benefits mainly come from
the objective function that aggregate such criteria in a
single function. However, evaluated commands are binary
(On/Off), leading to a large part of the possible solutions’
space not being explored, and thus having potential for
improvements. In addition, BB hardly scales on embedded
systems when increasing the number of decisions variables
(related to equipment quantity, time step and horizon) due
to its exponential algorithm complexity.

1.3 Contributions

In this work, we implemented the same microgrid as
in Morin et al. (2019), but investigating an extended
formulation with different solvers. Previous publications
tend to consider separately metaheuristics or deterministic
methods for MPC solving.

This paper focuses on comparing some state of the art
BBOs to control a microgrid using a whole year simulation
based on a real dataset. We selected BBOs from different
categories: stochastic (population-based and single point)
and deterministic. Several criteria are used to compare
their performances and their impact on the microgrid
behavior.

The problem and its black-box formulation are presented
in section 2. The section 3 details the experiments with
a discussion about the results, before the conclusion in
section 4.

2. PROBLEM FORMULATION
2.1 Microgrid description

The microgrid case study is depigtgd in Figure 1. It in-
cludes a PV (solar) generation Ppy (kW), a load con-
sumption P, (kW), a BT (battery) with Pgr (kW) power
in and out for storage, H2 chain with EL (electrolyzer)
power consumption Pgr (kW) to produce H2, HT (hy-
drogen tank) power-to-gas energy storage under pgo (bar)
pressure and FC (Fuel Cell) power generation Prc (kW)
by consuming H2. The power balance in the bus is (1).

. I My
o —_—
l |
" I

Ppcl

48V-DC Bus

Fig. 1. Microgrid schematic Morin et al. (2019)

Ppy + Prc + Ppr — P — Ppr. =0 (1)
The controllable equipments are EL and FC, i.e., repre-
sented by Prc and Pgp variables. The model use inter-
mediary variables, namely the State Of Charge (SOC) of
BT (between 0 and 1) and the pressure (pg2) in HT (bars).
These variables define the state S over the time horizon
and to defines the initial state. Uncertain parameters are

represented by their expected values with ~: 171-;/ and ]/3]\;

_ (80C(t), -+ ,SOC(ty)
o ( PHz(tg),--- 7pH2(tNJ; ) (2)

The energy storage over the horizon (characterized by
S(t): SOC(t), pua(t)) is calculated in a simulation model
(i.e. the black box) by recurrence according to the initial
state and a power balance based on incoming power (Pgr,
P2, (1)), outgoing power (Prc, Pgp(t)) and energy losses
in the microgrid Dahmane et al. (2019).

2.2 Model Predictive Control (MPC)

In this paper, the MPC is implemented as in Figure 2,
expected values W (irradiance, temperature and load)

8625



Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

are forecasted by a Wavelet Neural Network Morin et al.
(2019) in the Predictions block. Then, from the applied

control V' and input W, the Simulation model block com-
putes the state S (stored energies) and power flows of the
microgrid for the whole horizon (V). The Optimizer block
uses the Simulation model to seek an optimal vector V*
that maximizes the cost function evaluation (see Equation
(5)) under constraints (see Equation (4)).

MPC
R
L Simulation L V* . .
Predictions [—"> —&» Optimizer » Real microgrid
model
A
Cost FunctionT

Constraints
S

Fig. 2. Predictive control Camacho and Bordons (2007)

Decision variables for the EL and FC take their values be-
tween 500W and 2500W (equipment On) or 0 (equipment
Off). These constraints force remaining in a zone where the
electricity / H2 conversion coefficient is assumed constant.
The control vector V is defined over the optimization
horizon N, as detailed in Equation (3):

Pgr(ti), -+, Pgr(t
B <Pfégt1§w- Pﬁé%g%) 3)

Two types of constraints are considered to restrict the
admissible commands. The logical ones forbid EL and
FC to be active on the same slot ¢;. Then, the technical
constraints apply minimal and maximal thresholds for
SOC and pp as in Equation (4), from (2) and Fig. 2:

(63)= () < @) et

The objective function is defined as an aggregation of
several criteria, as in Morin et al. (2019, 2018). It can
be formulated as a sum of transition functions C; between
states with coefficient «; for criterion j:

—

3 N
rygg;;ajcjwm,s<ti>,E<W<tz—>>> (5)
Criterion C; relates to power flows while satisfying the
load, avoiding low BT and HT states, and PV energy
not being stored. Co aims at reducing power losses in
converters and storage (BT, H2 chain), thus enhancing the
efficiency of the microgrid. Finally, C3 takes into account
premature aging of equipments.

2.8 Model data

The studied microgrid corresponds to an isolated micro-
grid in Col du Palet (refuge in mountains) with 4.8kW of
peak PV generation, BT of 14.8kWh, 7.5kg of H2 capacity
in HT (30 bars 2.5m?), EL and FC of 2.5kW. From W,
we obtain the delta between generation and consumption,
the power flow in the bus without any control. Figure 3
is an example of three days in October, we observe power

consumption during the night around —0.5kW and PV
generation during the day reaching 4kW with some drops
in production depending on the weather. The simulation
uses a one-year dataset from April 1, 2018 to March 31,
2019, with mean power of 0.32kW, median of —0.39kW |
maximum power of 4.4kW and minimum of —3.5kW.

4t 4

351 b

3t 4

251 b

Bus power flow (kW)
N

-0.5
Oct 05

Oct 06 Oct 07 Oct 08

2018

Fig. 3. Power flow (Ppy — Ppr) in the electrical bus

3. EXPERIMENTS
3.1 Solvers

A few representative Derivative Free Optimization (DFO)
solvers are selected to investigate their global behavior
applied to our context. A Particle Swarm Optimization
(PSO) represent the behavior of population-based algo-
rithms and a Simulated Annealing (SA) the path algo-
rithms for metaheuristics. A Pattern Search (PS) algo-
rithm represents deterministic DFO algorithms. SA and
PS are initialized with a zero vector as a good initial guess
in most cases. These optimizers are taken from the Global
Optimization Toolbox of Matlab (Release 2021b) *. To
generalize the optimization over a whole year, we do not
consider a fine-tuning adapted to a specific horizon, we
use the recommended default settings. As an example,
all optimizers use the same FunctionTolerance parameter
(107%). We compare the results with the original Branch-
and-Bound from Morin et al. (2018). We configure the
simulation to optimize the orders on a sliding horizon of 12
hours with a time step of 0.5 hour (N=24). Experiments
are run on a laptop with i7-11850H on 1 thread and 16
GB of memory.

3.2 Typical command

Figure 4 shows EL (full bar) and FC (dashed bar) com-
mands obtained from the optimal vector for a scenario of
12 hours. The net power P (red line) defines the power
balance between the load and the PV generation. We can
see that the H2 chain is switched off most of the time. The
FC is only active for 2 consecutive slots in the night due
to the SOC lower limit constraint. The battery continues

! https://fr.mathworks.com/help/gads/, consulted on September
2021
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Fig. 4. Example of command optimization

to discharge until 09:00 AM while the PV generation is
not high enough. Then, P,.; is positive and the SOC of
BT increase close to 70% until around 01:00 PM. The EL
is then activated for 1 hour to store the excess energy
in HT, it is activated a second time at 3:30 PM for the
same reason. This figure is a typical example of the control
produced by a continuous solver for the EL and the FC.

3.8 Optimization results

8- o
7L I tﬁy‘jf” \ w,",a\ |/

I Y ’ el
A .y

¢ bj ‘H

/ 1

‘ y
5o
=
&
@ 47
£ / BB
Tl PS

May 2018 Jul 2018 Sep 2018 Nov 2018 Jan2019 Mar 2019

Fig. 5. H2 mass in the tank

Each one year simulation takes more than 24 hours to
compute. From Figure 5, in terms of mass of H2 stored,
none of the BB, PS, PSO stand out. We notice that H2 is
mainly used in January and February, when the generation
is the lowest and the battery is more difficult to recharge.
For the SA, it fails to provide a consistent command to fill
the tank.

In the Table 1, we find the median, mean and minimum
values of stored energy over one year of simulation with
the 4 algorithms. The differences in the median, mean and
minimum of SOC and H2 mass between BB, PS and PSO
are about 1%. SA in its default configuration is not able

Table 1. Energy storage over 1 year

| BB PS PSO  sA
Median SOC (%) | 76.0  77.6 775  64.4
Mean SOC (%) | 74.0 741  73.9  60.4
Min SOC (%) 138 134 124 0
Median H2 (kg) | 7.404 7.430 7.420 0.264
Mean H2 (kg) | 6.838 6.858 6.860 0.720
Min H2 (kg) 0.201 0201 0.201 0.170

to find the most efficient solutions with the diversity of
scenarii in a whole year.

Table 2. EL and FC activation

BB PS PSO SA
EL median (kW) | 2.5 1.875 2.496 1.325
EL mean (kW) | 2.5 1.777 2116 1.397
EL on (h) 405 519 430 2102
EL starts 237 309 289 1457
FC median (kW) | 2.5 0.624 0.858 0.787
FC mean (kW) | 2.5 1.047 1.047 0.898
FC on (h) 58 98 90 494
FC starts 93 111 124 834

The Table 2 shows the power control characteristics of
the H2 chain (EL and FC) as well as the activation time
and the number of starts. The BB switches the EL and
FC the shortest with the fewest start-stop cycles. This is
due to the binary resolution of the problem that results
in consuming/delivering all energy at once, EL and FC
started less often and for a shorter time for the same
amount of energy. The PSO is the second algorithm and
the PS the third to put less strain on the H2 chain.

Table 3. Electrical losses

| BB PS PSO SA
Median (kW) | 0.381 0.362 0.360 1.233
Mean (kW) | 0.407 0.388 0.385  1.220
Sum (kWh) 3569 3406 3374 10693

On Table 3 the electrical losses summed over the year with
the PS and PSO algorithms are very close (around 1%).
The BB does worse with 6% more losses. With SA, the
cumulative losses are the highest of the benchmark, as are
the average and median losses (over 1 kW).

Table 4. Optimizers output cost function eval-

uation
| BB PS PSO SA
Median evaluation -8.01 -5.65 -5.65 -46.6
Mean evaluation -16.2 -8.89 -9.20 -48.5
Worst evaluation -105.2  -90.7 -100.9 -191.7

The Table 4 summarizes the evaluations of the objective
function at the output of the optimizer, when it has
converged. As this is a maximization of the objective
function, the higher the score, the more efficient the
optimization. The PS and PSO are the best, equal from the
median, but in average value the PS does slightly better
(4%). The worst evaluation found by the PS is 10% below
that found by the PSO. According to the median, the BB
finds less efficient solution (41% worse) than PS and PSO.

In the Figure 6, we display the sum of the objective
function values for all best solutions proposed by the
optimizers, but evaluated with the real data and not the
predictions. We do not display SA because the result
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Fig. 6. Cumulative sum of objective function values from
each simulation step

is not relevant. BB, PS and PSO provide very close
results. BB is slightly better because it provides all-or-
nothing commands, and the cost sub-function representing
wear and tear provides a lower value. The PS and PSO
commands can be disadvantaged because they are very
optimized, therefore much more sensitive to deviations
between predictions and realizations.

The Figure 7 summarize the number of evaluations of the
objective function. The lower the number of evaluations
is, the fewer iterations the algorithm needs to converge to
the optimal value. According to the median value, the BB
often converge quickly, due to cases where no decision is
made (H2 chain off). Compared to the BB, the PS and the
PSO need respectively twice and a thousand times more
evaluations to converge. On the other hand, on average,
the PSO has the fewest evaluations, followed by BB and
PS. BB is the best in terms of worst number of evaluations,
followed by PS and PSO (twice).

%108

Cumulative number
w
‘

L — B I I I I

0 -
May 2018 Jul 2018 Sep 2018 Nov 2018 Jan2019 Mar 2019

Fig. 7. Cumulative number of objective function evalua-
tions

3.4 Discussions and improvements

We do not observe any significant difference between the
PS, PSO and BB according to the predictive controls pro-
vided (see Figure 5 and Figure 6). For energy management
in this case study, metaheuristics do not seem to be more
suitable than deterministic methods. In detail, we notice
that the BB is slightly better on wear, the PS on storage
and the PSO on power losses. This can be due to the
ability of the BB to decrease the number of activations
by the binary commitment, the PSO to explore the search
space to minimize losses, and the PS to search around the
initial zero vector of low operating points (local search).
To prioritize the objectives differently, the weighting can
be changed.

About the objective function optimization, the PS is very
slightly the best (see Table 4). Moreover, the PS is by far
the least greedy in terms of calculation (see Figure 7). The
stopping criteria of the metaheuristics could be better set,
but the gap with PS is important and may not be filled
with a slight improvement on this aspect. Furthermore, a
large part of the criteria were common between the PS
and the meta heuristics (default setting of the MATLAB
toolbox). All optimizers returned the same exit flag (1)
on all optimizations, i.e. the objective function cannot be
improved with a tolerance greater than 10~6. Obviously, a
dedicating tuning for each algorithm should provide better
results, as for the SA which fails to find an efficient solution
at several steps of the simulation. This tuning step is a
drawback of most metaheuristics and the tuning may not
fit all the diverse cases encountered in the whole activity
period of a microgrid.

Beyond the optimization capacities and computational
burden of each algorithm, we notice in Figure 6 that a
perfectly optimized control on a predicted horizon may
not be the optimal solution in real life. For instance,
random events can occur, like cloud crossing at 12 a.m. (see
Figure 4). The impact of these random events should be
integrated in the optimization to provide a more relevant
control. Probabilistic models can be used instead of fixed
predicted values as in Knueven et al. (2020). Another
approach is to use robust optimization to get solutions
with guarantees on performances for uncertainty intervals
for these parameters Stein (2012). The main issue is to
be able to keep a light computing burden as such algo-
rithms have to be embedded in the microgrid controller.
Moreover, some modeling parameters like the number of
considered steps in the horizon can be adapted to keep
the computation as light as possible, but it will impact
the ability of the optimizer to anticipate events.

4. CONCLUSION

To control a hydrogen chain (Electrolyser and the Fuel
Cell) of a hybrid storage on an islanded microgrid, one
MPC must provide a command in a reasonable time with
limited computing resources. A Black Box formulation is
used to have a finer simulation rather than White Box.
Then, a comparison of different types of optimizers to solve
the MPC has been performed with Branch & Bound (BB),
Pattern Search (PS), Particle Swarm Optimization (PSO)
and Simulated Annealing (SA).
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The PS can be considered as the best candidate for this
application. In this case study, we do not notice any major
difference on the relevance of the commands between the
different algorithms over a whole year of simulation. But
the metaheuristics perform many more calculations to find
similar results than the deterministic algorithms. We also
notice that a perfectly optimized control on a predicted
horizon is not necessarily relevant when considering the
prediction errors with reality.

Improvements can be done in a better tuning of this algo-
rithm, especially concerning the initialization of the start
vector. Further investigations can be necessary to make
comparisons between such BBO and using a simplified
analytical model. The tradeoff is between computing the
exact solution of a simplified model or finding a good
solution to a real system Conn et al. (2009); Knueven et al.
(2020). This analysis should also focus on the computation
burden and the quality of solutions, with their impact on a
whole year scenario. Finally, a probabilistic formulation of
the model can be considered to take into account more pre-
cisely the stochastic aspect of generation and consumption,
in order to make the control more resilient to unforeseen.
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