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Abstract. The integration of Artificial Intelligence (AI) and Ambient
Intelligence (AmI) has emerged as a promising approach to creating
responsive and contextually aware environments. AmI creates contextually
aware environments by seamlessly integrating intelligent technologies, while AI
develops algorithms for autonomous learning and decision-making. However,
embedding AI within AmI environments faces challenges due to limited
resources and energy constraints. While recent research on embedded AI
has primarily focused on specific tasks of AmI, our goal is to develop a
comprehensive framework encompassing all the necessary components for
practical use cases. Through this endeavor, we aim to explore power-aware
designs and distributed learning as fundamental approaches to address limited
computational resources, energy constraints, and dynamic context variations
challenges.
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1 Introduction

In the past decade, the fields of Artificial Intelligence (AI) and Ambient Intelligence
(AmI) have experienced rapid advancements as two complementary domains. AmI [10]
is a paradigm that enables responsive and contextually aware environments by
seamlessly integrating intelligent technologies into everyday surroundings. It involves
the creation of intuitive systems capable of perceiving, reasoning, and adapting to
human presence, needs, and preferences, thereby enhancing user experiences and
simplifying interactions with the digital world. AmI has found a natural ally in AI,
the domain of computer science concerned with developing intelligent systems capable
of performing tasks that typically require human intelligence. It encompasses the
development of algorithms and models that enable machines to learn, reason, and make
decisions autonomously, mimicking cognitive processes. The intertwining of AI and
AmI has been a natural progression [7], as their combined potential holds the promise
of unlocking new frontiers in intelligent systems.
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How can AmI and AI combination be beneficial? Local data processing and analysis
at the deep edge with AI reduces reliance on continuous connectivity and centralized
infrastructure, enhancing resilience against network disruptions and limiting personal
data exposure. Deploying ML on resource-constrained sensor bring intelligence into
AmI hardware. Even though entirely autonomous systems are still out of reach, working
on infrastructural bricks is essential in developing AmI’s ubiquitous network and can
benefit Wireless Sensors Networks Monitoring (WSN) applications. Installing sensors
within agricultural fields [18] can facilitate optimized irrigation, fertilization, and
pest control. Similarly, in marine ecosystems [35], WSN could help monitor water
quality or detect harmful algal blooms [15]. Critical civilian infrastructure elements
are prone to damage resulting from environmental factors and operational conditions.
The domain of Structural Health Monitoring (SHM) [12] could improve the detection of
anomalies or strains by enabling WSN to locally analyze this data, promptly identifying
potential issues, and triggering timely maintenance or repairs. In pursuing knowledge
and exploring remote and extreme environments like deep space [29], humanity
requires safe camps; hence, these isolated habitats can yield substantial benefits to
AmI to monitor environmental conditions and resource usage and ensure the safety
of explorers.

The integration of AI and AmI presents several challenges. AmI, being inherently
integrated into the environment, necessitates miniaturized hardware, thereby imposing
constraints on computational resources and autonomy because of the reduced possible
size of the battery. Embedded devices, including micro-controller units (MCUs)
and sensors, have limited processing power and memory. In the meantime, AI
algorithms, particularly Machine Learning (ML) ones, tend to be computationally
demanding. Energy consumption is critical for energy-harvesting (EH) and battery-
powered devices. The typical efficiencies of energy harvesting techniques suitable for
AmI devices range from 10−5 to 10−2 W [34], while the power consumption of these
devices during operational tasks necessary for performing computations, is on the order
of 10−1 W. Nevertheless, the nodes can operate despite an unfavorable ratio, as they
spend a significant portion of their lifespan in standby mode. Few studies look at
power consumption, and even fewer take physical measurements, preferring estimates
based on datasheets [31], and the few that do only measure microcontroller [23] power
consumption neglecting the rest of the hardware. ML models, especially Deep Learning
(DL) models, can be large and complex, requiring significant memory and storage
resources severely limited in embedded devices. AmI environments are dynamic and
subject to context variations. Thus, AI models deployed on embedded devices should
be adaptable to such variations and robust enough to handle uncertainties and noisy
sensor data.

To address resource limitations in embedding AI within AmI environments, we
propose combining Federated Learning and Intermittent Learning with TinyML.
Federated Learning enables collaborative model training and resource sharing across
multiple devices. Discontinuously powered devices require Intermittent Learning to
be usable. When integrated with TinyML, these approaches enable lightweight and
efficient deployment of machine learning models on embedded devices, ensuring
privacy and adaptability in AmI settings.
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2 Background and Motivations

2.1 Current implementation of Ambient intelligence

The integration of sensors and AI has transformed computing. Initially, sensors relied
on rule-based frameworks but have now advanced to ML-based approaches. They have
transitioned from plugged-into power sources to mobile with energy harvesting or
charging stations. For instance, researchers develop wearable health monitoring devices
powered through energy harvesting for continuous operation, while autonomous
vacuum cleaners recharge at dedicated stations.

Semantic AI is a branch of AI that focuses on understanding and interpreting the
meaning of data and information. It involves using rules and algorithms to process
and analyze data to make intelligent decisions and take appropriate actions. AmI
implementations traditionally leveraged this AI to emulate contextual intelligence [22].
For instance, intelligent agents equipped with semantic knowledge can autonomously
control home appliances. In healthcare, Semantic AI is being utilized to assist
individuals in their daily activities, such as reminding them to take medication.

ML-based AI [10] has improved the performance and complexity of tasks previously
performed with semantic AI and introduced new possibilities such as language, gesture,
emotion, and human activity recognition. Current models are mostly trained using
supervised or reinforcement techniques. Nevertheless, rule-based systems or supervised
learning lack the necessary robustness to effectively adapt to a continuously evolving
real-world environment that deviates from its initial design and deployment conditions.

2.2 Energy consumption concerns in TinyML

The essence of intelligent sensors lies in their ability to learn, which is now facilitated
by TinyML techniques [11,25]. On-device learning empowers the local processing of
information, primarily focusing on inference tasks, following the refinement of a pre-
trained model [37]. On the other hand, autonomous systems and EH technologies enable
self-powered AmI applications but imply a tight energy budget and have to cope with
inevitable power shortages. The energy storage supporting EH [27] is a challenge in
itself: batteries have higher energy density and provide constant (but relatively high)
voltage, while supercapacitors have low energy density and provide unstable (but
relatively low) voltage. On the other hand, supercapacitors are exposed to significant
depletion, while batteries have only a few charge/discharge cycles. Due to the compact
size of the sensors, the batteries employed must be small, typically ranging from 600
to 700 mAh [4]. Consequently, these batteries can only sustain an always-on device’s
requirements on a daily timescale or monthly, considering periods of sleep.

Previous works have shown that it is possible to use advanced AI solutions despite
the memory constraints of low-end devices [20,25]. Lin et al. [17] has successfully
fine-tuned a human recognition model on an STM32F746, a 32 bits microcontroller
typical of low-end devices using less than 256 KB of RAM and 1 MB of Flash.
Sudharsan et al. [31,32] employed smaller models and trained them from scratch using
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a reformable offline approach [24] on low-end MCUs. However, their approach solely
relied on the datasheet information to estimate the computational requirements for
training and inference processes. Profentzas et al. [23] optimized a pre-trained activity-
recognition neural network on an nRF-52840 SoC featuring: a 32-bit ARM Cortex-
M4 with FPU at 64 MHz, 256 KB of RAM and 1 MB of Flash physically measuring
energy consumption. However, they limited their instrumentation to the MCU and did
not reflect the actual energy-guzzling components consumption of a board such as the
voltage regulator.

3 Concrete Use Cases

When establishing a cloud link for WSN proves to be arduous, cloud processing of ML
models may be impossible. In certain circumstances, monitoring applications assume
criticality while simultaneously encountering challenges in terms of connectivity. The
accessibility of these environments to human presence may present challenges or render
them permanently inaccessible once the devices are activated.

Environmental Monitoring Utilizing ML on sensors within agricultural fields [18]
can facilitate optimized irrigation, fertilization, and pest control. Similarly, in marine
ecosystems [35], ambient intelligence implemented in a WSN would help monitor
water quality, tidal behavior changes, detect harmful algal blooms, and contribute to
conservation efforts. Civil Engineering critical infrastructure elements such as bridges
and dams are prone to potential damage from various environmental factors, operational
conditions, and daily interactions with multiple agents. This is the domain of Structural
Health Monitoring (SHM) [12].

Habitats Optimized for Missions of Exploration In the pursuit of knowledge and
exploration of remote and extreme environments like deep space [29], or ocean depths,
humanity requires safe camp infrastructure to accomplish missions. By deploying
sensor networks, these habitats can be monitored for environmental conditions, resource
usage, and the safety of explorers. Embedded intelligence enables local analysis on
the sensor nodes, facilitating anomaly identification and timely alerts. This proactive
approach ensures the success of exploration missions and the well-being of personnel
in challenging environments.

4 Challenges and Elements of a conceptual framework

In the realm of embedded systems, limited memory and power outages pose
significant challenges. We want to develop a cross-platform framework departing
from a lightweight RTOS addressing presented issues. We want to compare low-
level programming ease, relevant frameworks [21,14], and microcontroller operating
systems [1] to analyze associated overhead. To facilitate comprehensive evaluations,
we propose assessing energy consumption in MCU boards within the context of AmI
by focusing on individual tasks that can be examined independently. We will evaluate
data acquisition and cleaning processes (section 4.1), analyze trade-offs of ML models
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for classification and regression in a power-aware context (section 4.2), and assess
the energy consumption of various communication protocols and distributed learning
(section 4.3).

4.1 Minimizing hardware requirements through Data Reduction

Employing data reduction techniques can decrease the volume of manipulated data
by selectively extracting helpful information from input signals, thereby mitigating
memory constraints. A consequential advantage of data reduction is the reduction in
processing time needed for analysis or computation.

Adaptive Sampling [33,28] entails the dynamic selection of representative data
points from large datasets, which efficiently utilizes computational resources. The
computational burden is significantly reduced by intelligently sampling only the most
informative data instances. Moreover, adaptive sampling reduces the overall time
required for model training and inference, enabling time-sensitive applications to
operate effectively within the limitations of embedded systems.

TimeSeries Segmentation [6,19,13] involves partitioning time-varying data into smaller,
more manageable segments based on characteristic patterns and behaviors. This
technique enables the selective analysis of specific segments rather than processing the
entire time series data. The segmentation or change point detection methods are similar
to feature extraction and would help focus on relevant portions without requiring a
demanding Convolutional Neural Network (CNN).

4.2 Meeting short and long-term time constraints

One significant resulting challenge of EH systems is the occurrence of power shortages
that may hinder continuous operation. By carefully considering power availability and
adapting system behavior accordingly, embedded computing can effectively operate
within energy-limited environments. Limited device accessibility and updates make it
imperative to imbue devices with self-assessment capabilities during the design stage.
This challenge entails enabling devices to evaluate and analyze their understanding
of the environment. By incorporating self-assessment and adaptation mechanisms,
devices can autonomously maintain and update their understanding of the environment,
ensuring effective operation even in dynamic or disrupting circumstances.

Intermittent Learning refers to a learning paradigm that manages irregular or sporadic
availability of training data or computational resources. Lee et al. [16] introduced
Intermittent Learning as a way for EH computing platforms to perform machine
learning tasks effectively and efficiently. Among the frameworks for intermittent
learning that later emerged, [2] developed REHASH, a tool helping design adaptive
IoT workflow heuristics. They evaluated their work by running activity recognition and
greenhouse monitoring applications using an MSP430FR5994 Launchpad.
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Incremental/Continual Learning refers to a machine learning paradigm that focuses on
the ability of a model to learn from new data incrementally over time without requiring
retraining from scratch [30]. Ren et al. [26] have tested their incremental online learning
algorithm TinyOL on an Arduino 33 BLE board in a default detection application
for USB fan vibrations data. Continual learning involves updating and expanding
the model’s knowledge while preserving previously learned information, enabling
adaptation to new tasks or concepts without significant performance degradation. Until
recent advances, retraining a model that has experienced concept drift in its evaluated
data entails transmitting the data through the internet to a server responsible for
generating a new model [24] subsequently redistributed to the hardware executing
inferences.

4.3 Enabling devices collaboration using Federated Learning

Federated Learning (FL) addresses the challenge of distributed data storage
by allowing entities to collaboratively train models without sharing their data.
FL is classified into two categories: Centralized Federated Learning (CFL) and
Decentralized/Distributed/Serverless Federated Learning (DFL) [3,36]. CFL uses a
central server, while DFL enables decentralized aggregation of model parameters. DFL
finds significant utility in overcoming AmI device constraints disconnected from the
internet and centralized servers. In such scenarios, DFL serves as a means to overcome
these individual deficiencies by leveraging the collective power of the network. DFL
allows for collaboratively training models and achieving higher intelligence without
relying on solid individual capabilities. This collective approach could virtually
circumvent computational weaknesses and memory constraints, providing a robust
solution for AmI systems if in-situ and collaborative processing are balanced enough to
justify communication overhead.

Some works have already started addressing the constraints imposed on intelligent
sensors and the distribution of AI calculations in embedded systems. Dai et al. [9],
with DispFL, have proposed to act on communication costs using personalized FL
and decentralized learning. Costa et al. [8] designed a framework to enable the
deployment of decentralized learning in resource-constrained devices. They evaluated
their contribution on a STM32L4R5ZIT6 MCU over some Artificial Neural Network
models.

In the context of AmI, the implementation of FL necessitates addressing the inherent
challenges posed by the fluctuating size of the learning network and the varying
availability of energy resources among participants. Learning occurs exclusively among
active nodes, which may vary across iterations. Hence, adopting specific strategies to
ensure the FL process’s reliability and expeditious convergence is imperative.

5 Conclusion and Future Work

We claim that the challenges linked to incorporating AI into Ambient Intelligence
(AmI) settings can be successfully resolved by integrating Federated Learning,
Intermittent Learning, and TinyML [5]. Combining those approaches and data reduction
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techniques enables collaborative model training and resource sharing across devices
while addressing the sporadic availability of training data and computational power.
Overall, this approach holds great potential to enhance the performance and resilience
of embedded systems in resource-constrained environments, enabling the advancement
of intelligent systems in AmI and unlocking new possibilities. We will evaluate
solutions on a testbed composed of piezoelectric patches on an aluminum plate. TinyML
sensors must collect and analyze data to identify vibration sources and distance and
evaluate default type and severity. We then want to focus on distributed learning
strategies for SHM tasks with separate processing nodes for piezoelectric signals.
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