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ABSTRACT
Restricted by model complexity and high number of model runs 
for sampling-based Sensitivity Analysis (SA), qualitative SA 
methods are widely used for parameter study of complex 
engineering models (i.e. numerical model of high calculation cost 
with multiple variables) and quantitative SA of such models has 
always been a challenge. This work explores the approaches for 
SA of complex engineering systems and carries out quantitative 
SA of Vehicle Restraint System (VRS): Influential factors of VRS 
model were identified through screening analysis (qualitative SA 
with 2-level screening method and Morris method); The non-
influential parameters can be fixed and reduction of inputs 
variables makes it possible for quantitative SA of VRS, Variance-
based SA method (SOBOL’ indices) was used to quantify the 
influence of the influential factors, and metamodel technology --- 
Kriging interpolation --- was used to generate surrogate model to 
facilitate the quantitative SA. The factors which contribute most 
for the robustness of VRS were identified and their influences for 
model uncertainties were quantified by combining screening 
analysis and Variance-based SA.   
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1. INTRODUCTION
Sensitivity Analysis (SA) is the study of how the uncertainty in 
the output of a model can be apportioned to different sources of 
uncertainty in the model input [1]. Uncertainty analysis and SA 
are essential parts of analyses for complex systems [2, 3]. SA can 
be useful for a range of purposes, including: robustness testing of 
a model in the presence of uncertainty; increased understanding of 
the relationships between input and output variables; identifying 
model inputs that cause significant uncertainty in the output. 
Model can be simplified through SA by fixing non influential 
parameters and focusing on the parameters whose uncertainties 
have great influence on system performances.  

Vehicle Restraint Systems (VRS) are specially designed to 
restrain an errant vehicle by dissipating or absorbing the impact 
energy and redirecting the vehicles to reduce impact severity. 
Crashing test of VRS is commonly associated to the development 
of new device. But it provides a view of the performance of the 
device of only one set of parameters. One cannot know how 
robust the design is because the repetition of crash test is 
economically infeasible and the system uncertainties (such as 
uncertainty of material mechanical properties, tolerances of 
manufacture) can’t be controlled. Dynamic simulations with FE 
programs such as LS-DYNA [4] allow the evaluation of the 
robustness of a design taking into account all these variations. SA 
of VRS helps to have a deep understanding of model uncertainty 
and identity the factors that should be taken into considerations 
during VRS performance studies and robust optimizations [5].  

Limited by crashing simulation cost and large number of input 
variables, resent robust studies of VRS (such as [6])  have only 
analyzed qualitatively the model performances’ uncertainties and 
it is not possible to analyze directly the quantitative influence of 
each variables. The approaches for SA of complex engineering 
systems were proposed and quantitative SA of a VRS was realized 
with the proposed approaches in this article. 

2. Sensitivity Analysis Approaches study
SA is almost always performed by running the model a number of 
times, i.e. a sampling-based approach [7]. Large number of 
methods existed for SA, and each method run the model using 
specialized Design of Experiments (DOE). 

2.1 Screening Methods  
The central question of screening in the context of modeling and 
computer simulation is: which factors – among the many 
potentially important factors – are really important? And to do this, 
the choice of a well-designed experiment is essential. 

2.1.1 Two-level screening Designs  
Two-level screening, namely two values for each input variables 
are taken during DOE. Though these methods can only be used 
for SA of monotonous models, taking input at two levels greatly 
reduce the samples required. The main effect MEr(Y) of parameter 
Xr on Y is obtained by taking half the difference of average Y 
values for the two values of the parameter. i.e. 
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The most evident way to take samples is: varies each factor 
independently over the two levels, holding all others at the 
specified baseline design. Small number of samples is used, but it 
does not account for interactions among factors and as it takes 
only one sample for each factor at each level, output uncertainties 
are largely influenced by single calculation result. To take into 
consideration of all combinations of all k factors at the 2 levels, 2k 
samples are taken for full factorial design and it can be very 
expensive for models of multiple factors. Fractional Factorial 
Designs (FFD), consisting of a carefully chosen fraction of the 
full factorial design, can greatly decrease the number of samples 
[1, 8]. Although with relatively low accuracy, DOE with 
Orthogonal Arrays (OA) is one of the most efficient sampling 
methods for FFD [9].  

2.1.2 Morris Analysis 
Morris Analysis (MA) [1,8,10] (i.e. Elementary Effect Method), a 
multi-level screening Method, is based on the concept of two 
successive points within a trajectory differ from each other only in 
one dimension, or one parameter coordinate, by a fixed amount of 
Δ. Consider a model with k independent inputs which varies in the 
k-dimensional unit cube across p selected levels. The elementary 
effect of the ith input factor EEi is defined as 
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where Y represents the model under study and k is the number of 
model parameters. One EE is produced per parameter from each 
trajectory. It estimates at different points in the input space the 
main effect of a factor by computing a number (say) r of 
trajectories with k+1 model evaluations for each trajectory, and 
then taking their average. The average for absolute value of EEi of 
the r trajectories µi and its variance σi

2 were calculated with
equations (3)(4). 
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MA can determine which input factors could be considered to 
have effects which were negligible, linear and additive, or 
nonlinear or involved in interactions with other factors. This 
method is ideal when the number of input factors is too large to 
allow the application of computationally expensive quantitative 
analysis. It helps us to identify the few factors that are influential 
and reduction of input variables makes it possible for quantitative 
SA of complex engineering system. 

2.2 Variance-Based Sensitivity Analysis 
Working within a probabilistic framework, Variance-Based 
Sensitivity Analysis (VBSA) decomposes the variance of the 
output of the model or system into fractions which can be 
attributed to inputs or sets of inputs. They measure sensitivity 
across the whole input space can deal with nonlinear responses, 

and measure the effect of interactions in non-additive systems. 
The Fourier Amplitude Sensitivity Test (FAST) [1,8], 
independent of model assumptions, explores the multidimensional 
space  of the input factors by a search curve that scans the entire 
input space. Similar to FAST, The method of Sobol [1,8,11] 
assumes the total variance of the model output to be made up of 
terms of increasing dimensionality and is superior to FAST in that 
the computation of the higher interaction terms is very natural and 
is similar to the computation of main effects. For model of 
independent parameters Y=f(X1, X2,…,Xk), the Sobol’ indices main 
effect Si and total effect STi of Xi on Y are calculated as: 
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VBSA can quantity the influences of inputs uncertainties on 
model performances, but large number of samples is needed and 
the experiment model runs increase exponential with the number 
of input variables. 

2.3 Approach for Sensitivity Analysis of VRS 
The steps for quantitative SA of VRS summarized are as follows: 

1) Two-level screening ---Orthogonal Array (OA)

2) Multi-level screening---Morris Analysis (MA)

3) VBSA---Sobol’ indices

A complex model may have tens or hundreds of input factors, but 
only a few of them are influential. By carefully choosing the 
samples, although with low precision for SA, two-level screening 
methods are of lowest calculation cost for models SA to find 
influential factors. Considering the high simulation cost of VRS 
crashing test, FFD with OA will firstly be used to realize VRS 
crashing test model parameters screening.  

 Limited by calculation precision, OA screening can only 
preliminarily select the influential variables. Non-influential 
variables will then be treated as constant, which can greatly 
facilitate Multi-level screening. MA will then be used to classify 
the influential variables for Multi-level screening. 

The few variables of great influence on model performance will 
be identified after MA. VBSA---Sobol’ Analysis---will then be 
used to quantity the influences of the great influential variables. 
Even for a model of few factors, thousands of model runs might 
be needed for quantitative SA, metamodelling technology can be 
used to generate surrogate models. 

3. VRS Sensitivity Analysis
3.1 VRS Crash Model 
The real installation conditions of VRS and VRS crash situations 
are innumerable and impossible to replicate. European Norm 
EN1317 [12] defined the containment level of VRS and the 
relative standardized test conditions and criteria. A W-Beam steel 
VRS of containment level N2 were tested under TB32 test 
conditions. The tested VRS is composed with the W form beam 
Rail, Spacer, C form support Post and illustrated in Fig.1. Both 
Post-Spacer and Spacer-Rail are connected with one single bolt 
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and two Rails are connected with 8 bolts. A BMW 520i vehicle of 
1431 kg was used in the test. The guided vehicle struck the VRS 
at a controlled, stabilised speed of 113.6kph, at an angle of 20°. 

The FE model is illustrated in Fig.2. By simplifying small 
deformation components and detailed modelling of the parts 
which are exposed to impact loading, the crash test was simulated 
efficiently and accurately [13]. Fig.3 compared the experimental 
test and simulation results at different impact time. 

Figure 1 VRS components connections with bolts 

Figure 2 Simplified FE crashing model of VRS 

Figure 3 Crashing test and simulation at different impact time 

3.2 VRS Parameters & Performance Criteria 
3.2.1 Model input parameters 
Due to material mechanical properties variations and tolerances in 
manufacturing, the uncertainties of the following parameters are 
considered and their probability distribution functions are defined 
in table 1. VRS components Rail, Spacer and Post are fabricated 
with structure steel S235. S235 mechanical properties have been 
analyzed statistically in literature studies [14]. Supposing steel 
tensile strength is proportional with its yield strength, 
uncertainties in steel mechanical properties influence Rail Yield 
strength (RY), Rail young Modulus (RM), Spacer Yield strength 
(SY), Spacer young Modulus (SM), Post Yield strength (PY) and 
Post young Modulus (PM); The designed Rail Thickness (RT), 
Spacer Thickness (ST), Post Thickness (PT) were 3mm, 3mm, 
5mm separately, standard deviations of the thickness parameters 
caused by fabrication tolerances is defined to be 5% of their mean 
values; Fixing to the ground, VRS performances are affected by 
Soil bulk Modulus (SoilM); VRS components are connected by 
bolts and Bolt Pre-load (BP) is defined to load the tighten force. 

3.2.2 Performance Criteria  
Impact severity Criteria [12] – the Theoretical Head Impact 
Velocity (THIV) is used. 

Deformation of VRS [12] – Dynamic deflection (D) is the 
maximum lateral dynamic displacement of the side facing the 
traffic of the restraint system. 

Table 1. VRS crashing model input variables 
Type No. Variables Distribution 

Steel S235 

mechanical 

properties 

1 RY/MPa N(284.5, 21.5) 

2 RM/GPa N(203, 12.6) 

3 SY/MPa N(284.5, 21.5) 

4 SM/GPa N(203, 12.6) 

5 PY/MPa N(284.5, 21.5) 

6 PM/GPa N(203, 12.6) 

Tolerances of 

fabrication 

7 RT/mm N(3, 0.15) 

8 ST/mm N(3, 0.15) 

9 PT/mm N(5, 0.25) 

Soil & 

Bolts pre-load 

10 SoilM/MPa N(400, 100) 

11 BP/mm N(0.15, 0.05) 

3.3 VRS Model Variables Screening 
3.3.1 Two-level screening --- Orthogonal Array   
The uncertainties of the 11 factors were studied by two-level 
screening with OA. The OA and the relative outputs THIV and D 
are listed in table 2. Columns in OA represent the 11 variables 
listed in table 1. Every variable takes two values, 0:µk-σk and 
1:µk+σk  (µk: average value of factor k; σk: standard deviation of 
factor k).  

Table 2. VRS OA sampling and simulation outputs 
No. OA THIV[km/h] D[m] 
1 1 1 1 1 1 1 1 1 1 1 1 22.4481 1.044 
2 1 1 1 1 1 0 0 0 0 0 0 21.2421 1.182 
3 1 1 0 0 0 1 1 1 0 0 0 20.3844 1.221 
4 1 0 1 0 0 1 0 0 1 1 0 21.5142 1.160 
5 1 0 0 1 0 0 1 0 1 0 1 21.4796 1.170 
6 1 0 0 0 1 0 0 1 0 1 1 20.2277 1.159 
7 0 1 1 0 0 0 1 0 0 1 1 21.5688 1.213 
8 0 1 0 1 0 0 0 1 1 1 0 21.5030 1.186 
9 0 1 0 0 1 1 0 0 1 0 1 22.9677 1.150 

10 0 0 1 1 0 1 0 1 0 0 1 21.5258 1.246 
11 0 0 1 0 1 0 1 1 1 0 0 22.1834 1.092 
12 0 0 0 1 1 1 1 0 0 1 0 22.3825 1.167 

A total number of 12 model runs were realized. Half the values in 
each column are 0 and that half are 1. MEr(Y) of each variable on 
the two outputs THIV and D were calculated and their influences 
were ranked from the most influential 1 to the least influential 11 
according to absolute value of MEr(Y)  in table 3. 
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Limited by analysis precision, two-level OA screening can only 
identity qualitatively the influential parameters. The first 4 
influential factors for both THIV and D were selected separately 
and a total number of 6 variables (variables on bold in table 3) out 
of 11 are considered as influential after this analysis. 

Table 3. Main effect for Orthogonal Array screening 
Paras THIV D 

ME[km/h] Rank ME[mm] Rank 
RY -0.4029 1 -9.8 4 
RM 0.1227 8 9.8 4 
SY 0.1281 7 -9.7 6 
SM 0.1446 6 0 11 
PY 0.2896 3 -33.5 1 
PM 0.2315 5 -1.2 10 
RT 0.1222 9 -14.7 3 
ST -0.2402 4 -7.8 8 
PT 0.3971 2 -32.2 2 

SoilM -0.0116 11 -9.7 6 
BP 0.0840 10 -2.2 9 

3.3.2 Multi-level Screening---Morris Analysis 
Cumulative Distribution Function (CDF) value of a factor is 
unitless and can be assumed to be uniformly distributed across the 
internal [0, 1] regardless of the factor distribution, rather than 
concentrated in one part of the internal. In the Morris analysis, 
CDF values of parameters were treated as inputs variables and 4 
levels (1/8, 3/8, 5/8, 7/8) were taken for each variables with Δ=0.5. 
The relative factor values were calculated through the inverse 
transformations. r trajectories with each trajectory corresponds to 
(k+1) model executions basing on once-at-a-time sampling 
strategy were selected and a total number of 42 model runs (r.(k+1) 
model runs with r=6, k=6) were realized. And the analytical 
values were plotted in Fig.4, with the two outputs THIV and D as 
criteria. ME represent the main effect of factors, and large value 
of Inter implies significant interaction effects of a parameter. 
Considering the main effect and interaction effect with both THIV 
and D as criteria, the three variables PT, PY and RT are of 
significant influence on VRS performances (see Fig.4). 

Figure 4 Main Effect (ME) and Interaction Effect (Inter) with 

both THIV and D as criteria 

3.4 VRS Model VBSA---Sobol’ indices 
3 variables out of 11 were identified as of great influences on 
VRS performances after the screening analysis. VBSA---Sobol’ 

indices---was used to quantity the influence of the three variables 
--- PT, PY and RT. 110 model runs were realized with Latin Hyper 
Cube sampling and the metamodel was created with Kriging 
interpolation method [15]. The simulation results were illustrated 
in Fig.5. Sobol’ indices were calculated with the metamodel  and  
plotted in Fig.6. 

Figure 5 Scatterplots of CDF values of inputs RT, PT, PY and 
the outputs THIV, D 

Figure 6 Evolution of the Sobol’ indices against sample data 
size: (a) THIV as criteria and (b) D as criteria (Solid line: total 
effects of PT (STPT), PY(STPY) and RT(STRT); Dotted line: main 

effects of PT(SPT), PY(SPY), RT(SRT)) 
After the quantitative analysis, we can see that among the three 
influential factors, the variance of post thickness (PT) is the most 
influential factor for VRS performances (with SPT=0.6069, 
STPT=0.6311 for THIV and SPT=0.529, STPT=0.5583 for D). 
Uncertainties of post yield strength (PY) also play a role important 
for VRS robustness (with SPY=0.3283, STPY=0.3534 for THIV and 
SPY=0.3762, STPY=0.3903 for D). Relative to the other two factors, 
influences of rail thickness (RT) are negligible (with SRT=0.0648, 
STRT=0.0695 for THIV and SRT=0.0948, STRT=0.0890 for D). For 
all the three variables, their main effects are approximately equal 
to their total effects, which indicate that there are nearly no 
interactions effects. 

4. Conclusions
VRS must past the crashing test before being installed on the 
roadside. While numerical uncertainties exist in VRS model 
parameters and VRS performances can’t be evaluated through a 
single experimental test. A w-beam steel VRS has been tested 
through a single experimental test. In this paper, the influences of 
model inputs’ uncertainties on model robustness were analyzed 
with numerical simulations through sensitivity analysis 
approaches: 
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11 variables were selected initially among which 3 variables PY, 
PT, RT were identified as influential after two-level screening 
with Orthogonal Array design and Morris screening. Metamodel 
technology, Kriging interpolation, was used to generate low 
calculation cost model and sensitivities of the selected 3 variables 
were quantified with VBSA---Sobol’ Analysis. 2 of the 3 
influential variables were classified as of critical influence on 
VRS performances---tolerance of Post Thickness (PT) and 
uncertainties of Post material Yield strength (PY). The most 
efficient way to increase model robustness is to decrease the 
fabrication tolerance of Post Thickness. Another way to increase 
model robustness is to construct the Post with structure steel 
fabricated by the same manufacturer under the same fabrication 
conditions (i.e. decrease Post Yield strength uncertainty). 

Sensitivity Analysis can also provide useful information for 
system structure design. With great influence on model 
performances, the uncertainties of the two variables PT and PY 
are need to be considered in VRS structural design. 
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