Confined electrolytes show bulk dynamics modulated by hydrodynamic couplings with the walls
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We use numerical simulations at the mesoscopic scale, namely Multi-Particle Collision Dynamics (MPCD), to investigate the properties of electrolyte solutions in a charged slit pore. The solution is described within the primitive model of electrolytes, where ions are charged hard spheres embedded in a dielectric medium. Hydrodynamic couplings between ions and with the charged walls are precisely accounted for by the MPCD algorithm. We show that the dynamic properties of ions in this situation strongly differ from the behavior at infinite dilution (ideal case), contrarily to what is usually assumed in the usual Poisson-Nernst-Planck description of this kind of systems. As a consequence of confinement, the diffusion coefficients of ions unexpectedly increase with the average ionic density in the systems. This is due to a decrease of the proportion of ions that are slowed down by the wall. Moreover, non-equilibrium simulations are used to estimate the electrical conductivity of these confined electrolytes. We show that the simulation results can be accounted for quantitatively by combining bulk descriptions of the electrical conductivity of electrolytes with a simple description of the hydrodynamics of ions in a slit pore.

I. INTRODUCTION

Many aspects of colloidal science and electrokinetic phenomena rely on an effective description of the interface between an electrolyte solution and a charged interface (in most cases a solid surface) [START_REF] Lyklema | Fundamentals of Interfaces and Colloid Science[END_REF]. In order to model the system and relate models to experimental data, effective quantities are defined, such as the zeta potential or the effective charge of the surface. These quantities are routinely used to understand the stability of suspensions, or the values of the transport velocities in charged confined media, such as the electroosmotic flow [START_REF] Delgado | Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report)[END_REF][START_REF] Delgado | Measurement and interpretation of electrokinetic phenomena[END_REF][START_REF] Pagonabarraga | Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions[END_REF][START_REF] Rotenberg | Electrokinetics: insights from simulation on the microscopic scale[END_REF]. The underlying theories are based on a number of approximations. In particular, the system is assumed to be separated into different layers. In the layers close to the solid surfaces, the variation of the mobility of ion and solvent molecules are not taken into account : either the species mobility is assumed to be that of the bulk species, or to be zero (immobile particles condensed at the interface). The behavior of solvent and ions close to the charged interface is nevertheless much more complex, and although strong interactions can maintain long life proximity of solvent molecules and ions at the solid surface, Molecular Dynamics (MD) simulations reveal that mobile solvent particles may be found close to the surface [START_REF] Siboulet | Scrutinizing electro-osmosis and surface conductivity with molecular dynamics[END_REF], although their mobility is slower than that in bulk. Moreover, MD estimations of ionic mobility, and thus of the surface conductivity, have revealed that a significant part of ions, even close to highly charged surfaces, have a mobility that is of the same order of magnitude of that of bulk electrolytes. On the contrary, a fraction of ions, although they are at the same distance from the solid wall, are adsorbed at specific sites and have a very low * Electronic address: vincent.dahirel@sorbonne-universite.fr mobility [START_REF] Siboulet | Scrutinizing electro-osmosis and surface conductivity with molecular dynamics[END_REF]. This makes the interpretation of dynamical measurements with an effective model rather confusing. Such confusion may explain some discrepancies between the structural and dynamical estimations of effective parameters [START_REF] Lucas | Influence of the volume fraction on the electrokinetic properties of maghemite nanoparticles in suspension[END_REF].

Numerical simulations of electrolytes in confined media have made considerable progress. They offer good opportunities to revisit classical theories [START_REF] Dufrêche | Analytical theories of transport in concentrated electrolyte solutions from the MSA[END_REF][START_REF] Qiao | Scaling of electrokinetic transport in nanometer channels[END_REF][START_REF] Lorenz | Molecular dynamics of ionic transport and electrokinetic effects in realistic silica channels[END_REF][START_REF] Bourg | Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaClCaCl2) solutions[END_REF][START_REF] Bhadauria | Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction[END_REF][START_REF] Bhadauria | A multiscale transport model for non-classical nanochannel electroosmosis[END_REF][START_REF] Hartkamp | Measuring surface charge: Why experimental characterization and molecular modeling should be coupled[END_REF][START_REF] Chen | Molecular dynamics study of the electric double layer and nonlinear spectroscopy at the amorphous silicawater interface[END_REF][START_REF] Biriukov | Zeta potential determination from molecular simulations[END_REF][START_REF] Döpke | The importance of specifically adsorbed ions for electrokinetic phenomena: Bridging the gap between experiments and MD simulations[END_REF][START_REF] Döpke | Surface protolysis and its kinetics impact the electrical double layer[END_REF]. Although explicit molecular modeling contains all the ingredients to quantify the behavior of molecules around charged interfaces, resorting to mesoscale simulations has some advantages. Such methods deal with models of the electrolyte in which part of the molecular degrees of freedom are not explicitely described. It is particularly relevant for estimating long time contributions to the transport properties, in particular for transport coefficients that are not only related to the force distribution within the fluid (such as electroosmosis), but also to the individual dynamics of the confined species (such as surface conductivity). Obviously, mesoscopic modeling falls short of explaining molecular effects, such as specific ion effects, except if these models are derived from a careful coarse-graining procedure using data from atomistic simulations. Nevertheless, it is of great importance to be able to derive ionic transport coefficients under confinement with implicit solvent models of confined electrolytes, before one can hope to understand the molecular origin of specific effects. This implicit solvent reference of electrolyte models is far from established for confined ionic species, in contrast with the vast litterature for bulk electrolytes [START_REF] Dufrêche | Analytical theories of transport in concentrated electrolyte solutions from the MSA[END_REF][START_REF] Onsager | Irreversible processes in electrolytes. diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes[END_REF][START_REF] Onsager | Theories and problem of liquid diffusion[END_REF][START_REF] Fuoss | Conductance of unassociated electrolytes[END_REF][START_REF] Bernard | Conductance in electrolyte solutions using the mean spherical approximation[END_REF][START_REF] Bernard | Selfdiffusion in electrolyte solutions using the mean spherical approximation[END_REF][START_REF] Yamaguchi | A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions[END_REF][START_REF] Yamaguchi | A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. ii. effect of hydrodynamic interaction[END_REF].

As far as electrical conductivity of electrolytes at interfaces is concerned, there remains a gap between surface conductivity treatments, inspired by the Bikermann treatment [START_REF] Delgado | Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report)[END_REF], and bulk electrolyte transport theories, based on improvements of the Fuoss-Onsager approach [START_REF] Onsager | Theories and problem of liquid diffusion[END_REF][START_REF] Fuoss | Conductance of unassociated electrolytes[END_REF]. In the former treatments, direct hydrodynamic couplings between ions, as well as electrostatic relaxation forces, are neglected. The classical Bikerman treatment [START_REF] Delgado | Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report)[END_REF] accounts for the distribution of ions (obtained through a mean-field treatment) to evaluate the motion of charges due to migration, and the contribution due to the electroosmotic mass flow of the solvent. All these terms consider ions as ideal Brownian particles, whose diffusion coefficient is that of the infinitely diluted solute, D • . This limitation is shared with many electrokinetic approaches, such as the central Poisson-Nernst-Planck theory, where the flux of ionic species also generally depends on D • . Nevertheless, the conductivity of bulk electrolytes strongly deviates from the ideal conductivity. In the low concentrations regime, the corrections of conductivity from the ideal behavior scale as the square root of concentration. This has been first derived from a theoretical point of view by Debye, Fuoss, Onsager and Falkenhagen [START_REF] Onsager | Irreversible processes in electrolytes. diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes[END_REF][START_REF] Onsager | Theories and problem of liquid diffusion[END_REF][START_REF] Fuoss | Conductance of unassociated electrolytes[END_REF]. In a recent work, we used mesoscopic simulations to prove the relevance of modern versions of Fuoss-Onsager treatments [START_REF] Dufrêche | Analytical theories of transport in concentrated electrolyte solutions from the MSA[END_REF][START_REF] Bernard | Selfdiffusion in electrolyte solutions using the mean spherical approximation[END_REF][START_REF] Pusset | Nonideal effects in electroacoustics of solutions of charged particles: combined experimental and theoretical analysis from simple electrolytes to small nanoparticles[END_REF][START_REF] Gourdin-Bertin | Onsager's reciprocal relations in electrolyte solutions. ii. effect of ionic interactions on electroacoustics[END_REF] for 1-1 bulk electrolytes (NaCl, KBr, KCl) up to 2 moles per liter [START_REF] Dahirel | Can we describe charged nanoparticles with electrolyte theories? insight from mesoscopic simulation techniques[END_REF]. These descriptions of electrolytes rely on the primitive model of electrolytes, that assumes that the solvent is a continuous medium characterized by its dielectric constant and its viscocity, whereas ions are charged spheres. Also, two main contributions are assumed to influence the dynamics of ions: electrostatic interactions (usually referred to as electrostatic relaxation forces) and hydrodynamic couplings.

In the present paper, we propose to quantify the effect of confinement of electrolytes on the electrical conductivity, through the use of an efficient mesoscale simulation method, namely Multi-Particle Collision Dynamics (MPCD) [START_REF] Malevanets | Solute molecular dynamics in a mesoscale solvent[END_REF][START_REF] Gompper | Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids[END_REF]. MPCD allows one to reproduce hydrodynamic interactions in systems in which thermal fluctuations play a role. In our group, we have worked on the adaptation of MPCD to electrolyte solutions [START_REF] Dahirel | Can we describe charged nanoparticles with electrolyte theories? insight from mesoscopic simulation techniques[END_REF][START_REF] Batôt | Dynamics of solutes with hydrodynamic interactions: Comparison between Brownian dynamics and stochastic rotation dynamics simulations[END_REF][START_REF] Dahirel | Comparison of different coupling schemes between counterions and charged nanoparticles in multiparticle collision dynamics[END_REF][START_REF] Dahirel | Hydrodynamic interactions between solutes in multiparticle collision dynamics[END_REF]. Another mesoscale method suited to the simulation of the dynamics of solutions of charged species is Brownian Dynamics with hydrodynamic interactions (BD) [START_REF] Ermak | Brownian dynamics with hydrodynamic interactions[END_REF][START_REF] Jardat | Transport coefficients of electrolyte solutions from smart brownian dynamics simulation[END_REF][START_REF] Dahirel | New coarse-graining procedure for the dynamics of charged spherical nanoparticles in solution[END_REF]. BD has some limitations that are overcome by MPCD. MPCD is moreover also well suited to the simulation of confined electrolytes. It has the same qualities as BD:

(1) MPCD yields the exact structure of the electrolyte, as would do a Monte Carlo simulation of the primitive model, (2) MPCD includes both hydrodynamic interactions and relaxation forces consistently (it does not include both forces as independent contributions, as it is done in the theory). Also, MPCD does not decompose hydrodynamic interactions in pairwise additive terms as it is done in Brownian Dynamics, but the MPCD algorithm conserves momentum while creating fluctuations, and it is thus equivalent to a Navier-Stokes solver with thermal noise. This makes MPCD valid at high volume fractions and suited to the computation of transport coefficients of confined electrolytes [START_REF] Gompper | Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids[END_REF][START_REF] Padding | Hydrodynamic interactions and brownian forces in colloidal suspension: Coarse-graining over time and length scales[END_REF].

In what follows, we compute the properties of electrolyte solutions in a charged slit pore by MPCD sim-ulations. The surface charge of the solid walls are of the order of the values observed in minerals like clays or mica. The concentration of the electrolyte solution varies, in order to describe the case without added salt as well as a regime with high electrostatic screening (high ionic strength). The size of the slit pore is equal to 4.5 nm. At this intermediate scale, the model shall accurately describe both bulk-like electrolytes in the middle of the pore, and surface electrolytes that are influenced by the confining walls. Section II details the model and the simulation method. Then in Sec. III, we show the results obtained for the diffusion coefficients of ions from equilibrium simulations. Diffusion coefficients present an unusual behavior as a function of the ionic strength: They increase with ionic concentration. This is due to a strong discrepancy between the dynamics of ions close to the walls and in the middle of the pore, modulated by screening effects. In Sec. IV, we investigate the dynamics of ions in the presence of an electric field from nonequilibrium simulations. We induce an electroosmotic flow, and we compute the velocities of ions in the reference frame of the solvent. The velocities of ions are found to strongly differ from their values at infinite dilution, i.e non-ideal effects are strong. We propose at the end of this section a simple methodology to account quantitatively for the ionic velocity profiles, combining a bulk description of the electrical conductivity of electrolytes with a simple description of the hydrodynamics of ions in a slit pore.

II. MESOSCOPIC SIMULATION OF A CONFINED ELECTROLYTE SOLUTION A. MPCD algorithm

In the MPCD method, the fluid is represented by pointlike particles whose positions and velocities evolve in two steps [START_REF] Gompper | Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids[END_REF][START_REF] Padding | Hydrodynamic interactions and brownian forces in colloidal suspension: Coarse-graining over time and length scales[END_REF] that control the transport of their momentum. In the streaming step, positions and velocities are propagated by integrating Newton's equations of motion. Then, the collision step enables local momentum exchanges between the fluid particles. In this step, the simulation box is partitioned into cubic cells, called collision cells. The average number of fluid particles in a cell is denoted by the parameter γ. A randomly oriented axis is defined for each cell, and the velocities of fluid particles relative to the velocity of the center of mass of the cell are rotated by an angle α around this axis. A random shift of the collision grid is performed at each collision step to ensure galilean invariance [START_REF] Ihle | Stochastic rotation dynamics. i. Formalism, Galilean invariance, and Green-Kubo relations[END_REF]. Analytical formulas for the viscosity and transport coefficients of the MPCD fluid have been derived [START_REF] Gompper | Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids[END_REF][START_REF] Padding | Hydrodynamic interactions and brownian forces in colloidal suspension: Coarse-graining over time and length scales[END_REF]. It is convenient to use the fluid particle mass m f as the mass unit, the size of the collision cells a 0 as the length unit, and k B T as the energy unit with T the temperature and k B Boltzmann constant. The time unit is then

t 0 = a 0 m f k B T . (1) 
The collision time step δt c controls the mean free path of fluid particles. This fluid can be coupled to solute particles in various ways. In this study, we use a methodology where the solutes are coupled to solvent in the collision step (see details in several reviews [START_REF] Gompper | Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids[END_REF][START_REF] Ripoll | Dynamic regimes of fluids simulated by multiparticle-collision dynamics[END_REF]). In this scheme, solute particles are treated like fluid particles, with a larger mass. In addition to that, solutes interact with each other through a force field. In the collision step, the velocities of all solvent and solute particles in each collision cell are thus updated. In the streaming step, the positions and velocities of solute particles are propagated with the velocity Verlet algorithm often used in standard Molecular Dynamics (MD) simulations [START_REF] Frenkel | Understanding Molecular Dynamics[END_REF], with a time step denoted by δt MD in what follows, whereas fluid particles have a ballistic motion.

Here, solute particles are ionic species, described by a soft version of the primitive model, i. e., ions are modelled by charged spheres of same radius, in a dielectric continuum, interacting through a Coulombic and a short-range repulsive Weeks-Chandler-Andersen (WCA) interaction potential. Both ions have here a structural diameter σ WCA = 0.225 nm. The intensity of the WCA repulsion is controlled by the parameter ε WCA that is here chosen equal to k B T . We showed in a recent article [START_REF] Dahirel | Hydrodynamic interactions between solutes in multiparticle collision dynamics[END_REF], that in these conditions, the hydrodynamic radius a hyd of solutes is almost constant at the scale of the MPCD collision cell size a 0 , and is nearly equal to 0.3a 0 . In the case where the hydrodynamic radius of solute in the real system is known, this constraint imposes the size of the MPCD cell in physical units. For a structural diameter of ions controlled by the parameter σ WCA of the WCA interaction potential, we have shown in our previous study [START_REF] Dahirel | Hydrodynamic interactions between solutes in multiparticle collision dynamics[END_REF] that the best set of parameters corresponds to σ WCA = 1.5a 0 . We thus take here a 0 = 0.150 nm. The characteristic length scale of electrostatic interactions between ions is governed by the Bjerrum length l B e 2 /(4πk B T ε 0 ε r ) with ε 0 the dielectric constant of vacuum and ε r that of the solvent. We take here l B = 0.71 nm= 4.73a 0 , that corresponds to water at room temperature. The long-range of electrostatic interactions is computed thanks to an Ewald summation adapted to a slab geometry [START_REF] Frenkel | Understanding Molecular Dynamics[END_REF].

The parameters related to the solvent are chosen to reproduce hydrodynamic interactions typical of a liquid, i.e., a fluid with a high Schmidt number. As shown by Ripoll et al. [START_REF] Ripoll | Dynamic regimes of fluids simulated by multiparticle-collision dynamics[END_REF], simulating a liquid-like fluid while minimizing the computational cost leads to the following set of parameters for MPCD: {α = 130 • , γ = 5a -3 0 , δt c = 0.1t 0 }. For this choice of parameters, the kinematic viscosity of the fluid is ν = 0.81a 2 0 t -1 0 , so that the dynamic viscosity η is equal to 4.05m f a -1 0 t -1 0 . Also, we take here a mass M = 10m f for the solutes, which is twice the average mass of solvent fluid particles within a collision cell.

For more discussions on the influence of this parameter, read Ripoll et al. [START_REF] Ripoll | Dynamic regimes of fluids simulated by multiparticle-collision dynamics[END_REF]. In order to avoid divergence of the energy of the simulation box, the MD step δt MD is in some cases smaller than the streaming time step δt c . Here, δt MD is empirically chosen based on the stability of energy, from 0.1δt c to δt c depending on the system.

In what follows, the system is confined between walls, and we apply a no-slip boundary conditions between the fluid and the walls using a bounce-back boundary condition with a virtual particle condition. The same bounceback conditions is used for ions, but it is applied at a finite distance from the wall (at σ WCA /2 to account for the ionic size) [START_REF] Padding | Stick boundary conditions and rotational velocity autocorrelation functions for colloidal particles in a coarsegrained representation of the solvent[END_REF][START_REF] Whitmer | Fluid-solid boundary conditions for multiparticle collision dynamics[END_REF].

B. Model of confined electrolyte

We simulate here models of electrolyte solutions, which are confined between two parallel infinite walls. The parameters of this model are the surface charge density of the walls (σ wall ), the concentration of added salt (C add ), and the distance between the walls L z . We use periodic boundary conditions along the x and y-axis to obtain infinite walls. The surface charge of the walls varies from σ wall = -0.5 to -2.0e nm -2 . The added salt concentration varies from 0 (no added salt) to C add = 2.0 mol L -1 , which corresponds to highly concentrated electrolytes, with three intermediate values.

As depicted in Fig. 1, the distance between the two walls is given by L z = L hyd , whereas L el denotes the space where the ion center can move. The walls bear point-like charges, each of charge -e, located inside the walls, at a depth equal to a 0 . The sites are randomly placed, with the only constraint being that the charges cannot get closer than half the average distance (|σ wall |/e) -1/2 . We focus here on the case L z = 4.5 nm, for which there is a well defined region of the pore where the electrolyte properties are close to that of bulk electrolytes. We have L x = L y = 3.6 nm. For each specific case, bulk simulations (without walls) were carried out as a reference. Note that in minerals like montmorillonite or micas, that are well described at the microscopic scale by charged layers separated by an aqueous electrolyte solution, the surface charge has this typical order of magnitude (-2e nm -2 in mica). Also, in hydrated clays, the distance between hydrated clay surfaces are typically of the same order of magnitude as in our simulated systems. Data reported in this paper are computed as the average over 20 independent trajectories of 10 6 steps, either at equilibrium or under an electric field. The diffusion coefficients are obtained as the slope of the mean squared displacements of ions, averaged over of all possible time windows smaller than a tenth of the trajectory. 

C. Electroosmotic flow

Both equilibrium and non-equilibrium systems are simulated. In the last case, the fluid flows between the two parallel hard walls, with no slip boundary conditions. The fluid is transported in the x direction. The overall geometry is sketched in Fig. 1.

In the following, we define as electroosmotic flow (EO flow) a transport flow that is generated by an external electric field applied in a channel with an electrostatic double layer. In order to generate an EO flow, an electrostatic force in the x direction is applied to all charged particles of the system. In the EO flow, the momentum creation due to the electrostatic force is locally transmitted to the fluid particles surrounding the charged solutes. Here, we apply in the MPCD simulations an external electric field E in the x-direction parallel to the walls. The electric force only affects the motion of mobile charged species, i.e. ions here. We take eE/m f = 0.02a 0 t -2 0 , ensuring that the Reynolds number is low.

III. PROPERTIES OF THE ELECTROLYTE SOLUTION AT EQUILIBRIUM

The ionic density profiles in the direction perpendicular to the surface were extracted from the simulated trajectories. They are displayed in Fig. 2 for a system where the surface charge is equal to -1.0e nm -2 , for several values of the added salt concentration. These concentration profiles can be divided into two regions: (i) In the regions close to the walls, the counter-ion concentration is much higher than co-ion concentration. This region will later be referred to as the surface layer. (ii) In the middle of the pore, the concentration of both ions is approximately equal. This region will later be referred to as the bulk layer. For the sake of comparison, we keep the same distance criterion to define the layers when the FIG. 2: Concentration of counterions and coions in the direction perpendicular to the charged walls, as a function of the distance to one of the wall. The distance between walls is equal to 4.5 nm here, and the surface charge is -1.0e nm -2 . The dashed lines separate the space between walls into layers, and allow us to define surface layers, where the ionic concentration varies a lot, and a central bulk layer, where the ionic concentration is almost constant.

added concentration or the surface charge vary. For all systems, we fix the boundary between both layers at a distance of 0.70 nm from the walls (dashed line in Fig. 2).

The diffusion coefficients of ions in the directions x and y parallel to the walls are computed for all the systems. The results for the counterions are presented in Fig. 3, as a function of the ionic strength I = 1 2 i z 2 i C i , i referring to the type of ion, with a charge z i e and a concentration C i . We give in Fig. 3 the values of D/D • where D • is the diffusion coefficient at infinite dilution of a solute particle in MPCD within the collisional coupling scheme, for the parameters used here: D • = 0.04175a 2 0 t -1 0 . The values of the same quantity but computed in a bulk solution are also displayed in this figure. As we are interested in the relative variations of D, we do not account here for the small correction to the values of D linked to finite size of the simulation box [START_REF] Simonnin | Diffusion under confinement: Hydrodynamic finite-size effects in simulation[END_REF]. As expected, in bulk electrolytes, the diffusion coefficient decreases as the ionic strength increases because of the interactions between ions. For the smallest surface charge of the wall, -0.5e nm -2 , the diffusion coefficient does almost not depend on the ionic strength, but it is strongly lower than the bulk value. Interestingly, as the charge of the walls increases, the dependence of the diffusion coefficient on the ionic strength is reversed: It increases as a function of the ionic strength.

In order to better understand the origin of this unexpected dependence, we analyze the dynamical properties of ions as a function of their location within the pore. More precisely, as stated in the previous section, we define two regions in the systems: (1) A bulk layer, where the concentrations of the counterions and coions are relatively close to each other, and (2) two surface layers, where the concentration of counterions is significantly higher than that of co-ions, due to the presence of the walls. To compute the diffusion coefficient in a given layer of fluid parallel to the walls, we divided the meansquared displacements of ions -in the direction parallel to the wall-by the survival probability of ions in this layer [START_REF] Liu | On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water[END_REF]. The survival probability decays exponentially, thus allowing to estimate the characteristic residence time of ions in a given layer. The ratio of the total ionic concentration in bulk versus surface layers is plotted in Fig. 4. We see that the change in surface charge and concentration allows the exploration of regimes where ions are mostly concentrated close to the surface to regimes where their ionic density is almost homogeneous. The effect of both parameters is rather straightforward: As the surface charge increases, ions get more concentrated close to the surface. As the added salt concentration increases, electrostatic screening becomes more important and ions tend to populate equally surface and bulk layers. The diffusion coefficients computed in surface and bulk layers are reported in Fig. 5. The residence time of ions are about 500 t 0 in the layers close to the walls, and about 1000 t 0 in the bulk layer. We extract the value of the diffusion coefficient from the mean squared displacements at a characteristic time where the survival probability is still high. As it can be seen in Fig. 5, for all the systems with added salt, we measure a diffusion coefficient in the bulk layer close to 0.90D • , where D • is the diffusion coefficient at infinite dilution of the corresponding ion in bulk. This value is close to the bulk diffusion coefficient of electrolytes at similar ionic strengths (in the range I = 1-2.5 mol L -1 ). More precisely, it is slightly lower, as the values in bulk are close to 0.91D • for bulk ions in a MPCD solvent [START_REF] Dahirel | Can we describe charged nanoparticles with electrolyte theories? insight from mesoscopic simulation techniques[END_REF]. For ions in the surface layers, the diffusion coefficients remain in a narrow range, between 0.58 and 0.68D • for all the surface charges and ionic concentrations. They are slightly decreased by an increase of the surface charge of the walls, but almost unaffected by the added salt concentration. As expected, the diffusion coefficients are significantly lower in these layers close to the walls than in the middle of the pore. It may be due to hydrodynamic interactions with the walls. The higher ionic density close to the walls is an alternative explanation, but it is less likely to be a key factor as our systems lie in a regime where the ionic density weakly affects diffusion coefficients.

Based on these results, we hypothesize that the increase of the average diffusion coefficient as a function of the added salt concentration in the case of highly charged surfaces can be explained by the decrease of the proportion of ions in the surface layers. In order to test this hypothesis, we evaluate an average diffusion coefficient D av from the values obtained in the different layers, D L bulk in the middle of the pore and D L surf in the surface layers, weighted by the population of ions in the layers:

D av = η L bulk D L bulk + (1 -η L bulk )D L surf ( 2 
)
where η L bulk = N L bulk /(N L bulk + N L surf ), with N L bulk (resp. N L surf ) the average number of ions present in the bulk layer (resp. surface layer). We report in Table I the obtained results, D being the diffusion coefficient computed from the mean-squared displacements in the whole simulation box. As it can be seen from these values, the simple computation using Eq. 2 allows us to account for the main qualitative behavior of diffusion coefficients :

The average diffusion coefficient is an increasing function of the added salt concentration. The weighted average diffusion coefficient D av underestimates in every case the one computed directly from the numerical simulations, simply called D. This is expected because of the long time diffusive behavior of ions that may be the result of multiple ion exchanges between the surface and the bulk layers. This effect is not taken into account by the simple average we propose here.

IV. TRANSPORT OF IONIC SPECIES UNDER AN ELECTRIC FIELD

We investigate now the dynamics of ions in the presence of an electric field. We display in Fig. 6 the velocity profile of the solvent at stationary state in the direction parallel to the walls, for different surface charges and different added salt concentrations. The simulation procedure allows us to describe the electroosmotic flow of the solvent. As expected, the maximum velocity of the solvent increases when the surface charge of the wall increases, since the inhomogeneity of the charge density in the direction perpendicular to the surfaces increases.

To study the influence of hydrodynamics, electrostatics and excluded volume effects on the dynamics of ions inside the pore in the presence of an electric field, we compute the velocity of ions as a function of the distance to the wall in the reference frame of the solvent (i.e., V ion -V solvent where V is the x component of the velocity vector). In what follows, the results are divided by the value of a characteristic velocity V • , defined by V • = ±eED • /k B T , that corresponds to the average velocity in the x-direction that would have a positive (resp. negative) monovalent ion at infinite dilution under the applied electric field E. We show some of the obtained results in Fig. 7. As the amount of coions in the vicinity of charged walls is low, their velocity profiles in the surface layer are affected by a high level of statistical noise. We show the coion velocities only in the bulk region of the pore, at the right hand side of Fig. 7. At the lefthand side of Fig. 7, we show the results obtained for counterions, from the region close to the wall to the bulk region. First, it is striking to see that non-ideal effects FIG. 7: Velocities of ions in the reference frame of the solvent in the direction parallel to the walls, as a function of the distance to the walls, divided by the ideal value V • = ±eED • /kBT . On the left, results obtained for counterions in the vicinity of the wall, till the bulk layer (previously we located the surface layer at a distance shorter than 7 nm from the wall). On the right, results obtained for coions in the bulk layer. The values displayed correspond the two different surface charges and two different added salt concentrations.

are strong: (V ion -V solvent )/V • is much smaller than 1 in all cases. We recall that in the standard Poisson-Nernst-Planck description, V ion /V • = 1. Secondly, the influence of the added salt concentration and of the surface charge seems small. By changing these parameters, the velocities remain close to V ion /V • = 0.7 in the middle of the pore. However, we see a systematic effect of the added salt concentration: The ionic velocities decrease as the concentration of added salt increases. This is expected since a higher concentration leads to a restriction of the available space, and thus a reduction of the velocity. Finally, it can be noted that the velocity profiles of ions of opposite charges coincide perfectly in the middle of the pore (see the values at z = 1.25 nm, for a distance between walls L z = 4.5 nm), indicating again that ions behave as in a bulk solution in this region.

In what follows we propose a simple way to predict the velocity profiles of ions and thus the electrical conductivity, in the reference frame of the solvent. Indeed, the velocity profile of ions is first affected by the hydrodynamic contribution due to the presence of the walls, second by the hydrodynamic coupling between ions, and third by the electrostatic and excluded volume effects between ions (non-ideal effects). To account for the hydrodynamic contribution due to the walls, we use the approximate analytical result obtained by Saugey et al. [START_REF] Saugey | Diffusion in pores and its dependence on boundary conditions[END_REF]. This equation gives the velocity V hydro (z) of a sphere of radius a in a slit pore with no slip boundary conditions, under the influence on an external force, in the limit a << L z : FIG. 8: Velocities of ions in the reference frame of the solvent in the direction parallel to the walls, as a function of the distance to the walls, divided by the ideal value V • = ±eED • /kBT . On the left, results obtained for counterions in the vicinity of the wall, on the right, results obtained for coions in the bulk layer. The values displayed correspond the two different surface charges and two different added salt concentrations. We also provide the velocity V hydro computed from Eq. 3, as well as the same quantity times D bulk /D • (orange dashed line) or times V bulk /V • (violet and green dashed lines).

V hydro (z)

V • = 1 1 -9 16 a z+2a + 1 1 -9 16 a (Lz-z)+2a -1 -1
(3) where L z is the distance between the two walls and here z denotes the distance to one of the walls. The velocity V hydro (z) is normalized by the velocity V • of the sphere subjected to the same external force, but in an infinite bulk fluid. We can use this expression to compute the velocity of ions in the direction parallel to the wall. As a result, we see that the prediction of the hydrodynamic calculations (see the dashed black line in Fig. 8) does not agree with simulations.

In addition to the influence of walls, transport coefficients are strongly influenced by hydrodynamic and electrostatic interactions between ions. These interactions are already present in bulk systems, although they may be indirectly influenced by the presence of walls. The influence of these interactions in bulk can be quantified through the computation of the electric conductivity, that is directly related to the ionic velocity under the influence of an electric field. We formulate the following hypothesis for the computation of the ionic velocity: We assume that the hydrodynamic interaction with the wall is only a correction to the bulk dynamics of the ionic species. This amounts to considering a bulk velocity V bulk instead of an ideal velocity V • in the expression of the ion velocity given by Eq. 3. This value of V bulk can be obtained as σ bulk /σ • =V bulk /V • , where σ bulk is the bulk electrical conductivity, and σ • is the ideal conductivity at the same ion concentration. We have thus

(V ion -V solvent )(z, C add ) = σ bulk (C add ) σ • V hydro (z) (4)
We take the values of σ bulk that we obtained previously for the same bulk electrolyte solution by similar MPCD simulations [START_REF] Dahirel | Can we describe charged nanoparticles with electrolyte theories? insight from mesoscopic simulation techniques[END_REF]. We also use our computed values of the bulk diffusion coefficient D bulk at the corresponding concentration to write an alternative expression for the velocity profile of ions :

(V ion -V solvent )(z, C add ) = D bulk (C add ) D • V hydro (z) (5)
The comparison between the simple analytical prediction of Eq. 4 and the simulated results are shown in Fig. 8. We see that the value of the plateau is very well reproduced by the analytical expression. In contrast, when using Eq. 5, the predicted plateau is much higher than the simulation results. Indeed, interactions between ions, and among them, hydrodynamic interactions, are known to affect the electrical conductivity much more than the diffusion coefficient.

The range of hydrodynamic interactions with the wall is well captured by the hydrodynamic model of Saugey et al. [START_REF] Saugey | Diffusion in pores and its dependence on boundary conditions[END_REF]. Nevertheless, this simple model cannot account for the size of ions, and, therefore, it should not be valid for distances lower than the hydrodynamic radius. There is thus a small discrepancy in the velocities close to the wall, which was expected. It is also possible that the difference in the ionic interactions between our system and the bulk is too strong in this region of high ionic density to allow for our approximation. Despite this limitation, we don't think a more refined model would be necessary. Indeed, at this scale, mesoscopic hydrodynamics cannot describe very well the exact shape of the velocity profile of a real system, which may be influenced by molecular effects. Nonetheless, to derive values of the ionic conductivity in a porous material, it seems that, in the range of parameters that we have explored, the knowledge of the bulk electrical conductivity leads to a fair estimation of the velocity profile of the ions as far as the mesoscopic modeling is correct. From this velocity profile, one may deduce the value of the electrical conductivity of the electrolyte confined in the pore, σ pore , through the following integration :

σ pore E e = Lz 0 (C + (z)V + (z) -C -(z)V -(z)) dz (6) 
with C + (z) (resp. C -(z)) the molar concentration of positive (resp. negative) ions, and V + (z) the x-component of the velocity vector of positive (resp. negative) ions as a function of the distance z to one wall. More precisely, the ionic velocity can be deduced from

V + (z) = σ bulk (C add ) σ • V hydro (z) + V EO (7) 
with V EO the electroosmotic velocity of the solvent, that can be obtained from an analytical theory.

V. CONCLUSION

Predicting the ionic dynamics under confinement is a complex task. Mesoscopic simulations offer a precious way to disentangle the different non-ideal effects at play. Our study explores the non-ideal effects present in the primitive model of electrolytes, accounting for the charge and size of ions. One should be aware of what mesoscopic simulations, such as MPCD, show, and what they miss, in comparison with various aspects that all-atom MD can provide. MPCD is equivalent to a Navier-Stokes solver with thermal fluctuations, so the MPCD solvent is tuned to reproduce a specific hydrodynamic and thermal regime. The effects related to the discrete molecular nature of the solvent are only taken into account through the effective interactions between ions and with the walls. In particular, it is extremely difficult to include the effect of the interface granularity in mesoscopic models. Nevertheless, the great advantage is to help establish theories for electrolyte conductance in porous media at the same level as the widely used bulk approaches, by quantifying the limitations of hydrodynamic theories. In our model, confinement is taken into account through the following aspects, which create deviations from the bulk behavior:

• a straight-forward reduction of the available volume,

• a change in the calculation of electrostatic interactions, with a 2D implementation of the treatment of long range part of these interactions,

• hydrodynamic boundary conditions at the wall, which indirectly affect all hydrodynamic interactions between ions.

Apart from these effects, we use models of electrolytes which are similar to bulk ones (in size for instance). We do not consider for instance that the effective charge of electrolytes may depend on confinement, or that ion pairs are affected by the presence of interfaces.

A large body of literature on the transport of bulk electrolytes described by the primitive model exists [8, 22-25, 27, 28, 31, 46-48]. Such transport theories have been validated by comparison with various simulation data. In a previous article, we have shown that analytical theories of ionic transport can lead to predictions of bulk electrical conductivity in very good agreement with values computed by MPCD simulations, for simple 1-1 electrolytes up to several moles per liter [START_REF] Dahirel | Can we describe charged nanoparticles with electrolyte theories? insight from mesoscopic simulation techniques[END_REF]. The present article offers new perspectives in the use of such theories. Our results suggest that the non-ideal ionic velocities in a charged slit pore under an electroosmotic flow may be recovered by the superposition of two independent effects: (1) the electrostatic and hydrodynamic corrections computed for bulk electrolytes, that only depend on the ionic concentration, and (2) the hydrodynamic influence of the walls, that only depends on the geometry of the pore. Such decomposition had neither been proposed, nor quantified by previous studies. Conversely, an even simpler way of accounting for confinement is often used to interpret measurements of diffusion coefficients: one may average the diffusion coefficient of species that are adsorbed at the interface with that of free species. We have shown here that such simple decomposition seem to work qualitatively well in our mesoscopic simulations.

In addition to these main results, we also found an interesting dependence of the ionic diffusion coefficient with ionic strength. In contrast with bulk solutions, we find that the ions surprisingly diffuse faster as the ionic strength increases. This is due to a decrease of the relative density of ions close to the wall, whose velocity is strongly affected by the hydrodynamic coupling with the surface.

The resort to mesoscopic simulations is very complementary to the all-atom descriptions of molecular dynamics simulations. Ion velocity profiles can also be computed from all-atom approaches [START_REF] Siboulet | Scrutinizing electro-osmosis and surface conductivity with molecular dynamics[END_REF][START_REF] Döpke | The importance of specifically adsorbed ions for electrokinetic phenomena: Bridging the gap between experiments and MD simulations[END_REF], but their level of precision may not be high enough to compare quantitatively with analytical theories. Conversely, these MD simulations show how specific ion-surface interactions affect the ion density profile, and affect the electrokinetic flow. Indeed, the solvent flow is much easier to compute with low uncertainty by MD, thanks to the molecular description of solvent molecules and to the large number of molecules. Despite the improvement of the capabilities of MD simulations in terms of achievable system size and time scale, multiscale studies including both mesoscopic and all-atom simulations are still the most relevant way to understand all properties related to the solvent and ion transport in a confined medium.
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 1 FIG.1: Geometry of the simulated systems. As an illustration, an electroosmotic flow is represented, pertaining to the case with added salt.
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 3 FIG.3: Diffusion coefficient of counterions in the direction parallel to the wall as a function of the ionic strength for several surface charges of the walls. The diffusion coefficients of ions in bulk solutions are also displayed for comparison.
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 4 FIG.4: Ratio of the total ionic concentration in surface layers and in the central bulk layer as a function of the added salt concentration for several surface charges of the walls.
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 5 FIG.5: Diffusion coefficient of counterions in the direction parallel to the wall as a function of the concentration of added salt in the pore. The diffusion coefficient was calculated in the surface layers and in the central bulk layer.
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 6 FIG.6: Velocity of the solvent V solvent in the direction parallel to the walls, as a function of the distance to the walls, in the presence of an external electric field. The value of V solvent is here divided by a factor eE/(4πlBη). For each value of the surface charge of the walls, the concentration of the added salt takes four different values: (0, 0.5, 1.0, 2.0) mol L -1 .
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