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SUMMARY4

5

The Earth’s magnetic field at the core-mantle boundary is the gradient of a harmonic potential6

function if the mantle is electrically insulating, and the horizontal components of the field7

can be derived from its radial component in the mantle. Therefore, these components give no8

further observational information on the core dynamics. However, it can still be envisioned9

that the horizontal components of the induction equation at Earth’s core surface yield further10

knowledge on the fluid motions at the top of the core independently of the observations. Here,11

we show that they provide a linear relationship between the surface velocity and the surface12

shear (strain shear) that depends on the mantle electrical conductivity. This offers a protocol to13

calculate the surface shear that we validate with synthetics obtained from dynamo simulations14

in the limit of a weak mantle conductance. Firstly, using numerical simulations with stress-15

free boundary condition at the core surface, we retrieve the expected relationship between the16

horizontal flow uΣ and the shear, uΣ = r∂ruΣ. Next, we investigate simulations with no-slip17

boundary condition and insulating mantle, and we obtain the same relationship, even though18

the shear is not imposed as a boundary condition. Finally, we calculate the flow shear at the19

top of the core from a magnetic field model based on satellite measurements. The application20

to geophysical data indicates larger values of the surface flow shear than in the synthetic case,21

suggesting a possible role of the mantle electrical conductivity. The surface flow shear, in22
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the simulations, much differs from the radial shear in the flow, deeper in the core, which is23

influenced by the mostly quasi-geostrophic geometry. This implies that we cannot rely on the24

relationship between the flow and the radial shear for quasi-geostrophic motions to exploit the25

horizontal components of the induction equation and gain further information on the flow at26

the Earth’s core surface.27

key words: Core; Magnetic field variations through time; Inverse theory.28

1 INTRODUCTION29

The Earth’s magnetic field has been recorded from low Earth’s orbiting satellites for most of the30

time since 1999 and from ground observatories since the first half of the 19th century. Models31

describing the Earth’s main magnetic field B and its temporal variations can be built at the planet’s32

surface (of radius r = rE). They can be continued to the core-mantle boundary (CMB, r = rC) if33

the mantle is treated as an electrical insulator, since B can be written as the gradient of a harmonic34

function for rC ≤ r ≤ rE . There is a host of analyses, based on the diffusion-free radial induction35

equation, of the large scale part of the core surface flow uΣ from the time changes of the radial36

component Br of B (e.g. Jackson and Bloxham 1991; Eymin and Hulot 2005; Pais and Jault 2008;37

Bärenzung et al. 2018; Gillet et al. 2019). Because B at the CMB is the gradient of a harmonic38

function if the mantle is insulating, the horizontal components BH of B can be derived from its39

radial component Br in the mantle. Therefore, these components do not give further observational40

information on the core dynamics, additionally to the radial field (Jault and Le Mouël 1991). In41

other terms, the radial induction equation suffices to extract all the available information from the42

magnetic field temporal changes at the CMB.43

However, it can still be envisioned that the horizontal components of the induction equation44

yield further knowledge on the flow next to the core surface independently of the observations.45

Actually, additional information on the flow at the top of the core from the tangential components46

of the induction equation is conditional to analyses of the hydromagnetic layer at the CMB. A47

thin diffusive layer can be modelled as a current sheet. Located at the boundary of a perfectly48

conducting fluid, it corresponds to a jump in the tangential components of the magnetic field49
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between the top of the free stream below the diffusive boundary layer and the surface. A series of50

studies have concluded that the tangential field discontinuity is small compared to the field itself.51

First, in a non-rotating and inviscid case, Stewartson (1957) argued that any current sheet in the52

presence of a transverse magnetic field would immediately spawn Alfvén waves that eliminate the53

discontinuity in the tangential magnetic field. Stewartson (1960) found that this conclusion holds54

also for viscous hydromagnetic layers provided that the magnetic Prandtl number Pm = ν/η is55

small enough, Pm ≪ 1 (ν the kinematic viscosity, η the magnetic diffusivity), which is the case56

for liquid metals. Roberts and Scott (1965) reckoned in their analysis of the SV that this result57

applies to the boundary layer at the core surface. Finally, Hide and Stewartson (1972) investigated58

the viscous boundary layer associated with hydromagnetic oscillations of the Earth’s core. They59

accounted for the Coriolis term in the boundary layer equations and found again the discontinuity60

in BH to be negligible.61

The scenario first set out by Stewartson (1957) does not work if the fluid cannot sustain hydro-62

magnetic waves able to disperse the discontinuity in the magnetic field. This happens when flows63

are restricted to a narrow class such as rigid rotations or geostrophic motions. As a first example,64

Loper and Benton (1970) investigated the spin-up of an electrically conducting fluid and found65

that the viscous Ekman-Hartmann layer is embedded in a thicker continuously growing magnetic66

diffusion layer. Similarly, Braginsky (1970) and Roberts and Soward (1972) considered a diffu-67

sive layer encompassing the Ekman layer in their study of torsional Alfvén waves, which consist68

of geostrophic motions. We can wonder whether this approach extends to less constrained flows69

such as Quasi-Geostrophic (QG) motions. Jault and Le Mouël (1991) investigated a magnetic field70

varying with time as exp(−2iπt/τ) in the Earth’s core and the associated diffusive layer. Taking71

τ as 10 years, they concluded that the Lorentz force arising from the electrical currents in the72

diffusive layer is negligible in comparison with the Coriolis force. They found, therefore, that it73

cannot disrupt the diffusive layer in contrast with the scenario set out by Stewartson (1957). From74

this point, studies of core surface flow have been based on the radial component of the induction75

equation only.76

Recent numerical geodynamo simulations, calculated with no-slip boundary conditions, do not77
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clearly show a magnetic diffusion layer encompassing the viscous Ekman layer. Indications of a78

significant contribution of the Lorentz force in the boundary layer attached to the CMB can be79

found in Fig. 18 by Schaeffer et al. (2017) and Fig. 5 by Schwaiger et al. (2019) – see their most80

viscous case. This points to the presence of electrical currents that may cause a discontinuity of81

the magnetic field components tangent to the core surface across the boundary layer. However, this82

effect might be negligible for geophysical realistic viscosities.83

The boundary condition on the magnetic field involved in the propagation in the Earth’s core84

of one-dimensional torsional Alfvén waves uG(s)eϕ (where (s, ϕ, z) are cylindrical coordinates85

and eϕ the unit vector in the ϕ direction) governs their reflection at s = rC . As for generic Alfvén86

waves, there is only one boundary condition involving both the flow and the magnetic field at the87

interface with the solid mantle (Schaeffer and Jault 2016). When the mantle is an insulator (and88

Pm ≪ 1), the appropriate condition at s = rC is Bϕ = 0 (i.e. continuity with the zero zonal toroidal89

field in the mantle). Jackson and Maffei (2020) extended the approach to a two-dimensional model90

and assumed the continuity of the three components of the magnetic field at the CMB to calculate91

the surface terms for the magnetic force in their QG model of core dynamics, where magnetic92

diffusion is neglected. Finally, Gerick et al. (2021) calculated QG hydromagnetic oscillations and93

Luo et al. (2022) more general waves imposing that the magnetic field perturbation matches a94

potential field at the boundary with the insulating mantle.95

If there is no or negligible discontinuity of the tangential field across a diffusive boundary96

layer, the horizontal components of the induction equation give two independent and complemen-97

tary constraints that the flow has to satisfy for the magnetic field at the top of the core to match98

a potential field in the mantle. The two constraints involve the two horizontal components of the99

surface shear r∂uΣ/∂r (Lloyd and Gubbins 1990; Jackson and Bloxham 1991). They can be ex-100

pressed as a relationship between r∂uΣ/∂r and uΣ at the core surface, function of the radial field101

Br. In order to go further, we can examine how the flow and the radial shear are related in Earth-102

like geodynamo simulations. The goal is to develop a protocol to describe as well as possible the103

outer core dynamics from geomagnetic models.104

We derive in §2 the relationship between the surface flow and shear obtained after matching105
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the SV at the core surface with a potential field in the mantle. We show also how this relationship is106

modified in the presence of a thin conducting layer in the mantle that affects the horizontal compo-107

nents of the SV, but not its radial component. Next, we present in §3 the magnetic data (synthetic108

data from dynamo simulations and geomagnetic field models) used for our study. Inversion of the109

surface flow from SV models and of the surface shear from flow models involve prior informa-110

tion provided as covariance matrices for uΣ, r∂uΣ/∂r and the error terms. A description of these111

matrices is given in §4 together with the set-up for solving the inverse problem. Validation from112

synthetic data and models of the surface shear from geomagnetic data are presented in section §5.113

The paper ends with a discussion.114

2 EQUATIONS FOR THE RADIAL SHEAR IN THE FLOW AT THE CORE SURFACE115

2.1 Condition on induction at the core surface116

We first assume the mantle to be electrically insulating. Then, the magnetic field can be written in117

the mantle as118

B = −∇Φ, (1)

with the magnetic potential119

Φ =
∞∑
l=1

l∑
m=−l

Φm
l

(rC
r

)l+1

Y m
l (θ, ϕ), (2)

(r, θ, ϕ) spherical coordinates, and l and m spherical harmonic degree and order. We consider the120

spherical harmonics Y m
l to be fully normalized:121 ∫

Y m
l (Y m′

l′ )† sin θdθdϕ = 4πδl
′

l δ
m′

m . (3)

The condition122

Φ−m
l = (−1)m(Φm

l )
† (4)

ensures that the scalar field Φ is real. In the core, we use the scaloidal/poloidal/toroidal (Helmoltz)123

representation of a vector field (Backus et al. 1996; Ivers and Phillips 2008), which is valid for any124
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vector field125

B = UB(r, θ, ϕ)er +∇1VB(r, θ, ϕ) + er ×∇1WB(r, θ, ϕ),

with UB =
l=∞∑
l=0

l∑
m=−l

Um
B,l(r)Y

m
l (θ, ϕ), VB =

l=∞∑
l=1

l∑
m=−l

V m
B,l(r)Y

m
l (θ, ϕ),

WB =
l=∞∑
l=1

l∑
m=−l

Wm
B,l(r)Y

m
l (θ, ϕ),

(5)

and ∇1V = (r∇− r∂/∂r)V . The condition that B is solenoidal yields126

V m
B,l =

1

r

1

l(l + 1)

∂

∂r
(r2Um

B,l). (6)

At the CMB, B has to match with a potential field of the form (1). The continuity of B at r = rC127

implies the continuity of UB, VB, WB and, as a consequence of (6), the continuity of ∂UB/∂r. The128

toroidal component vanishes:129

Wm
B,l(c) = 0. (7)

At r = rC , we have VB = −ϕ/r and UB = −∂ϕ/∂r. As a result, the poloidal coefficients satisfy130

the relationship (see (6))131

Um
B,l = −(l + 1)V m

B,l = − 1

rl

∂(r2Um
B,l)

∂r
. (8)

The same conditions hold for the secular variation field ∂B/∂t and for the vector field ∇ ×132

(u×B) if the magnetic field satisfies the diffusionless induction equation at r = rC ,133

∂B

∂t
= ∇× (u×B). (9)

We introduce different notations for the velocity u and its surface expression uΣ because ∂ur/∂r ̸=134

0. Consequently, ∂uΣ/∂r ̸= ∂u/∂r although uΣ = u at r = rC .135

We can also use the Helmoltz representation, which does not require the vector field to be136

divergence-less, for v = u×B,137

v = U(r, θ, ϕ)er +∇1V (r, θ, ϕ) + er ×∇1W (r, θ, ϕ). (10)

This can be transformed into

BruΣ = −∇1W + er ×∇1V, (11)
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which is analogous to the equation (20) of Backus (1968). We are interested by ∇× (u×B):138

∇× v = −1

r
L2Wer −

1

r
∇1

(
∂(rW )

∂r

)
− 1

r
er ×∇1

(
U − ∂(rV )

∂r

)
, (12)

where139

L2(Wm
l Y m

l (θ, ϕ)) = l(l + 1)Wm
l Y m

l (θ, ϕ). (13)

Therefore, the radial induction equation becomes140

∀l,m,
∂Um

B,l

∂t
= − l(l + 1)

r
Wm

l . (14)

This equation enables us to estimate the surface velocity uΣ from the radial SV. It corresponds,141

for example, to the expression (21) of Backus (1968).142

In addition, two conditions on the toroidal and poloidal components of the vector field ∇ ×143

(u×B) ensure that ∂B/∂t matches a potential field. These conditions do not directly involve the144

SV observations. The condition on the toroidal part of ∇× (u×B) yields145

U =
∂(rV )

∂r
. (15)

Combining (8) and (12), the condition on the poloidal part is satisfied when146

∀l,m,
∂(rWm

l )

∂r
= −lWm

l . (16)

From (11), we find that the complementary conditions (15) and (16) relate the surface flow and147

its radial derivative. In the following, we proceed by first calculating the surface flow uΣ from the148

radial SV. Second, we rely on the conditions (15) and (16) to estimate r∂uΣ/∂r from our model for149

uΣ. Our approach can be summarized as the sequential solution of the following set of equations150

at r = rC :151

∂Br

∂t
= − 1

rC
∇1 · (uΣBr), (17)

Au(Br)uΣ = Aδ(Br)

(
r
∂uΣ

∂r

)
. (18)

where Au and Aδ are linear operators.152
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2.2 Influence of a conducting layer at the base of the mantle153

Now, we discuss how the conditions (15) and (16) are modified in the presence of a thin conducting154

layer at the bottom of the mantle. We distinguish two electromagnetic diffusion times constructed155

from the electrical conductivity σm of the layer: τG = µσmrCδm and τF = µσmδ
2
m where δm is156

the thickness of the conducting layer and µ the magnetic permeability. The time τF arises in the157

discussion of induction in the mantle from time-varying core fields. Therefore, we note it τF as a158

reference to Faraday’s law of induction. It is also known as the screening time of the mantle. We159

write the second time τG as a reference to galvanic (electrical) contact between the flowing core160

and the conducting layer in the mantle. The boundary conditions on the magnetic field that we161

write below are based indeed on the continuity of the electrical field, assuming galvanic contact162

at the CMB. This mechanism is similar to the galvanic excitation of the conducting upper mantle163

from M2 tidal currents (Schnepf et al. 2015). The time τG can also be described as a magnetic164

friction time (Braginsky 1984). We assume here τF ≪ τSV , where τSV /l is a typical time scale165

of the SV for each spherical harmonic degree l (Lhuillier et al. 2011), while τG, conversely, may166

be of the order of τSV . The assumption τF ≪ τSV enables us to take the radial magnetic field167

as continuous across the layer (Jault 2015): the radial induction equation is unaffected by the168

inclusion of the conducting layer in the model.169

We write in the layer170

B = −∇Φ +Bδ, (19)

where Bδ is a horizontal field parallel to the core-mantle boundary. Under the thin layer approxi-171

mation, the diffusive equation in the conducting layer simplifies as ∂2Bδ/∂r
2 = 0. As a result, Bδ172

is proportional to the distance to the top of the layer (r = rC + δm), where it vanishes. We finally173

obtain174

B = −∇Φ +
rC + δm − r

δm
Bδ |r=rC , (20)

We expand Bδ at the CMB as175

Bδ |r=rC= ∇1Vδ(r, θ, ϕ) + er ×∇1Wδ(r, θ, ϕ). (21)
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Then, we can write the electrical field at the bottom of the mantle as176

E =
j

σm

=
1

µσm

(
−∇1

(
∂Wδ

∂r

)
+ er ×∇1

(
∂Vδ

∂r

))
, (22)

where j is the electrical current density. On the core side of the boundary, we have E = −u×B,177

because we assume the core to be perfectly conducting, and178

∂Wδ

∂r
= −µσmV,

∂Vδ

∂r
= µσmW. (23)

We seek to impose that ∇× (u×B)− ∂Bδ/∂t matches a potential field at r = rC . The condition179

of no induction of toroidal field is transformed into180

1

r

(
∂(rV )

∂r
− U

)
=

∂Wδ

∂t
= −δm

∂

∂t

(
∂Wδ

∂r

)
= δmµσm

∂V

∂t
,

∂(rV )

∂r
− U = τG

∂V

∂t
,

(24)

and the condition on the poloidal field becomes181

∀l,m, −1

r
l(l + 1)Wm

l = (l + 1)

(
1

r

∂(rWm
l )

∂r
+

∂V m
δ,l

∂t

)
(25)

which gives182

∀l,m,
∂(rWm

l )

∂r
= −lWm

l + τG
∂Wm

l

∂t
. (26)

In order to put the equations 24 and 26 in perspective, we can relate them to the study of Scha-183

effer and Jault (2016) who considered torsional Alfvén waves with velocity VA in the cylindrical184

radial direction. These waves consist of rigid rotations uG(s, t) of geostrophic cylinders (where185

s is the distance to the rotation axis). Inserting uG ∝ exp(ik(VAt ± s)) in equations 24 and 26,186

we introduce the dimensionless number Q = τGVA/rC , in front of the term dependent on mantle187

conductivity. Here, VA = |Br|(r = rC)/
√
ρµ is constructed from the radial magnetic field at the188

CMB (ρ the outer core density). Schaeffer and Jault (2016) found that this number governs the189

reflection of torsional waves at s = rC . Assuming Q is O(1) or smaller, mantle conductivity has190

negligible influence on large-scale flows with time scale τ ≫ rC/VA (about 20 years in the Earth’s191

case). The numerical simulations we consider here satisfy this hypothesis (see §3.1).192
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2.3 Expressions in terms of vector spherical harmonics193

We transform the conditions (15) and (16) into relations between the velocity and its radial deriva-194

tive from vector spherical harmonic expansions of u and v = u × B (Phinney and Burridge195

1973; Ivers and Phillips 2008). The same formalism has been used before by Jackson and Blox-196

ham (1991) for the poloidal components of the induction equation and by Greff-Lefftz and Legros197

(1995) in the context of electromagnetic core-mantle coupling. It enables us to replace horizontal198

derivatives by projections. It involves the complex basis defined as199

e± =
1√
2
(∓eθ − ieϕ), e0 = er. (27)

The contravariant components of v in this basis are200

v± = v · e± = v · e†± =
1√
2

(
∓vθ + ivϕ

)
, v0 = vr. (28)

The components v± are expanded in generalized spherical harmonics201

v± =
l=∞∑
l=1

l∑
m=−l

v±,m
l Y ±,m

l , (29)

where202

Y ±,m
l (θ, ϕ) = P̂N,m

l (µ) exp(imϕ) (30)

and P̂N,m
l (µ) are generalized and normalized associate Legendre functions. They are real-valued.203

The generalized surface harmonics obey the same orthogonality relation as the classical ones:204

∀N,

∫∫
Y N,m
l (Y N,m′

l′ )† sin θdθdϕ = 4πδl
′

l δ
m′

m (31)

(see Appendix A).205

The two representations (10) and (28)-(29) of a vector field v are related through206

∀l ≥ 1,−l ≤ m ≤ l, v±,m
l =

√
l(l + 1)√

2
(V m

l ∓ iWm
l ) , v0,ml = Um

l . (32)

We have also207

v±,m
l = (−1)m(v∓,−m

l )†, (33)

and, in particular,208

v+,0
l = (v−,0

l )†. (34)
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Henceforth, we keep the notation v±, v0 for the complex basis components of the vector field209

v = u×B. The components of u are u± and u0. From identity (32), equation (11) yields210

v± = ±iBru
±. (35)

Using (32) again, the radial induction (14) can be written as211

∀l ≥ 1,∀m ∈ [0, l],
∂Um

B,l

∂t
= −i

√
l(l + 1)√
2r

(
v+,m
l − v−,m

l

)
. (36)

This equation is valid for both positive and negative m but we have to write it only for positive212

m as the identity for negative m can be obtained from the complex conjugate of the identity for213

positive m. Combining (35) and (36), we obtain the linear relationship between the flow and SV214

coefficients.215

The condition (15) of no toroidal field induction can be transformed into216

∀l ≥ 1,∀m ∈ [0, l],
√

2l(l + 1)v0,ml =
∂

∂r
r
(
v+,m
l + v−,m

l

)
. (37)

We can detail the above relation from the decomposition217

∂

∂r
(rv)Σ = p+ s+ t, (38)

where the subscript Σ means tangential to the CMB and218

p =
∂ (rur)

∂r
er ×BΣ,

s = δΣ ×Brer, with δΣ = r
∂uΣ

∂r
,

t =

(
uΣ × ∂ (rBr)

∂r
er

)
,

(39)

where δΣ has the dimension of a velocity. Finally, we write the condition of no toroidal field219

induction as220

∀l ≥ 1,∀m ∈ [0, l],
√

2l(l + 1)v0,ml = (p+,m
l + s+,m

l + t+,m
l + p−,m

l + s−,m
l + t−,m

l ). (40)
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This equation is satisfied for negative m if it is satisfied for positive m. Equation (40) for221

(m = 0) involves only real quantities. The third term t can be evaluated in the same way as v222

above (see (35)) except that Br is to be replaced by ∂(rBr)/∂r. The first term can be treated in an223

analogous manner using224

∂(rur)

∂r
=

1

r

∂(r2ur)

∂r
= −∇1 · uΣ (41)

(since ur = 0 at the boundary). Finally, there remains to calculate the quantities s+ and s− for225

the second term s. They can be obtained from the components δ+ and δ− of δΣ,226

δΣ = δ+e+ + δ−e−, (42)

through227

s± = ±iBrδ
±. (43)

The condition of no toroidal field induction gives us a first relationship between the vector spheri-228

cal harmonic expansions of the flow and its radial derivative.229

The condition (16) on the poloidal part of the induction equation gives230

∀ l ≥ 1,∀m ∈ [0, l],
∂

∂r

(
r(v+,m

l − v−,m
l )

)
= −l

(
v+,m
l − v−,m

l

)
. (44)

and then231

∀l ≥ 1,∀m ∈ [0, l], p+,m
l + s+,m

l + t+,m
l − p−,m

l − s−,m
l − t−,m

l = −l
(
v+,m
l − v−,m

l

)
. (45)

These relations hold for negative m if they hold for positive m. For m > 0, s+ and s− can be232

determined independently from the components of v by adding and subtracting equations (40) and233

(45). The m < 0 coefficients of s+ and s− are immediately obtained from the m > 0 coefficients234

of s− and s+ respectively (see (33)). For m = 0, s−,0
l = (s+,0

l )†. As a matter of fact, equation (40)235

gives the real part of s+,0
l while equation (45) gives its imaginary part. The final step consists in236

calculating separately δ+ and δ− from s+ and s− using (43). In summary, the two conditions on237

toroidal and poloidal SV need to be considered together and give a relationship between u and its238

radial derivative.239
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In the presence of a conducting layer at the bottom of the mantle, equation (40) is modified as240 √
2l(l + 1)v0,ml = (p+,m

l + s+,m
l + t+,m

l + p−,m
l + s−,m

l + t−,m
l )− τG

∂

∂t

(
v+,m
l + v−,m

l

)
, (46)

and equation (45) as241

p+,m
l + s+,m

l + t+,m
l − p−,m

l − s−,m
l − t−,m

l = −l
(
v+,m
l − v−,m

l

)
+ τG

∂

∂t

(
v+,m
l − v−,m

l

)
. (47)

3 MAGNETIC FIELD DATA242

3.1 Dynamo simulations243

We use geodynamo simulations, in an electrically conducting and rotating spherical fluid shell,244

to generate synthetic data and validate our methodology for estimating the shear. The simulations245

implement the equations of Boussinesq convection, thermochemical density anomaly transport,246

and magnetic induction in the MHD approximation.247

First, we use the same series of simulations as Aubert and Finlay (2019), all calculated with248

a stress-free boundary condition at the CMB. For these simulations, the core surface flow can249

unambiguously be defined as the flow at r = rC . A distinguished limit (Dormy 2016), also known250

as path theory (Aubert et al. 2017), is employed to bridge the parameter space gap between the251

’Coupled Earth model’ by Aubert et al. (2013) and the conditions of the Earth’s core by relating252

the parameters of the simulation to a single variable ϵ. The four dimensionless numbers of the253

simulations are the flux-based Rayleigh, Ekman, Prandtl, and magnetic Prandtl numbers254

RaF =
gF

4πρΩ3D4
= ϵRaF (CE), E =

ν

ΩD2
= ϵE(CE), P r =

ν

κ
= 1,

Pm =
ν

η
=

√
ϵPm(CE),

(48)

where D = rC − rI , rI , g, Ω, ρ, ν, κ, and η are, respectively, the fluid shell depth, the inner core255

radius, the gravity at radius rC , the rotation rate, the fluid density, viscosity, thermochemical and256

magnetic diffusivities. Here, RaF (CE) = 2.7×10−5, E(CE) = 3×10−5, Pm(CE) = 2.5 are the257

control parameters of the Coupled Earth dynamo model. The scaling factor ϵ ranges from ϵ = 1258

to ϵ = 10−7. The two end-points describe respectively so named 0p dynamo (the Coupled Earth259

model) and 100p dynamo, hopefully, representative of the Earth’s core conditions. Here, synthetic260
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Table 1. Summary of the main characteristics for the dynamo considered to build the prior covariance

matrices. N∗ is the number of snapshots considered for constructing the prior matrices. ∆T ∗ is the time

span covered by the dynamo free run. The Ekman (E), magnetic Prandtl (Pm), magnetic Reynolds (Rm)

numbers and the turn-over (τU ) and Alfvén (τA) timescales are defined in the text.

dynamo ∆T ∗ (yr) N∗ E Pm Rm τU (yr) τA (yr)

Op 67 050 746 3× 10−5 2.5 942 140 100

50p 20 000 1000 10−8 0.045 1082 125 14

data are generated from the 0p and from the 50p simulations for which ϵ = 1 and 3.33 × 10−4
261

(Aubert and Finlay 2019). The synthetic magnetic field models are truncated at degree 13, set262

by the cut-off between the core and crustal contributions in spatial spectra of geomagnetic field263

models (Langel and Estes 1982). We recall in Table 1 the main characteristics of the dynamo264

simulations used to build the prior information when inverting for the flow and/or the shear at the265

top of the core (see §4).266

Because we are interested in the recovery of the core flow and shear from geomagnetic data,267

we scale time from numerical to geophysical units based on the turn-over time, following Lhuillier268

et al. (2011). The magnetic field Gauss coefficients are first scaled so as to fit for harmonic degrees269

2 ≤ l ≤ 13 the numerical spatial spectrum270

SMF (l) = (l + 1)
l∑

m=0

gml
2 + hm

l
2 (49)

averaged over the dynamo time-span, to the spectrum of a geomagnetic field model (the CHAOS-6271

model of Finlay et al. 2016). Then the numerical time is scaled by fitting for l ∈ [2 − 13] the SV272

time scale273

τSV (l) =

√
SMF (l)

SSV (l)
(50)

obtained for the dynamo to 415/l (in years), where a definition similar to (49) is used for the SV274

spatial spectrum SSV (l).275

Following Glatzmaier and Roberts (1996), the model includes a thin electrically conducting276

layer above the CMB to provide magnetic coupling between the core and the mantle. Modification277

of the boundary conditions arising from this conducting layer is taken into account for the toroidal278
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components, but not for the poloidal ones (see Appendix B for the expression of these conditions).279

The layer conductivity σm and thickness δm enter the dimensionless number280

Σ =
σmδm
σcD

, (51)

ratio of the mantle and core conductances, with σc the conductivity of the fluid core. Σ is taken as281

10−4 in the path simulations. We have282

τG =
rC
D

ΣRmτU , (52)

where Rm = UD/η is the magnetic Reynolds number and τU = D/U the turn-over time-scale,283

with U the r.m.s velocity over the fluid core. The path simulations preserve Rm to values about284

1000 and τU to values around 130 yr (see Table 1) so that τG ≈ 20 yr whatever the value of ϵ along285

the path. As a result, considering |Br|(r = rC)/|B|∼ 1/8 for Earth-like geodynamo simulations286

(Aubert et al. 2009, with |B| the r.m.s. magnetic field inside the fluid core) and the values for287

the Alfvén time τA = D
√
ρµ/|B| found for the path simulations (Aubert et al. 2017, with µ the288

magnetic permeability), we can rewrite the dimensionless mantle conductance as Q =
τG
τA

Br

|B|
D

rC
289

– see §2.2 for the definition of Q. We obtain Q ∼ 2 × 10−2 and Q ∼ 10−1 for the 0p and 50p290

simulations respectively. These low values, together with the condition τG ≪ τU , justify treating291

the mantle as insulating when considering decadal flow changes in the path simulations.292

We also use for validating our approach magnetic data extracted from a simulation calculated293

with a no-slip boundary condition at the CMB and an insulating mantle, the S1 numerical dynamo294

of Schaeffer et al. (2017). It has been obtained for E = 10−6, Pr = 1, and Pm = 0.2. The295

magnetic Reynolds number has been estimated as Rm = 546. Similarly to the path dynamos of296

Aubert et al. (2017), the simulation S1 is part of a series, which approximately preserves Rm and297

super criticality Ra/Rac (Rac Rayleigh number for the onset of thermal convection).298

3.2 Geomagnetic field models299

We consider as geomagnetic data the COV-OBS-x2 field model that covers the period 1840-2020300

(Huder et al. 2020). The COV-OBS-x2 model results from a spatio-temporal regression of mag-301

netic records from land surveys, ground-based observatories, and satellite missions. The model302



16 I. Firsov et al.

is expanded up to spherical harmonic degree 14. Its coefficients are provided in time using order303

4 cubic splines with knots every two years. The model is constructed within a stochastic frame-304

work, where a priori temporal correlations are derived from auto-regressive processes of order 2,305

as suggested by the temporal spectrum of observed field series (Gillet et al. 2013). This Bayesian306

approach allows the proposal of a model expectation (the most probable estimate) as well as of a307

posteriori model uncertainties. The former is considered below to build the observation and for-308

ward operators. The latter are used to build the SV data error covariance matrix. Here, we consider309

two snapshots for the years 2000 and 2018. This latter epoch is covered by Swarm data when the310

model reaches its highest accuracy. The comparison with the former epoch allows us to document311

the largest changes observed during the satellite era.312

4 INVERSION METHODOLOGY313

4.1 Solving for the core surface flow314

We store the parameters describing the large-scale core surface flow (u±m
l ) in a vector mu. The315

flow model is expanded up to spherical harmonic degree Lu. We store the parameters describing316

the SV (∂tUB
m
l ) and the main field (UB

m
l ) respectively in vectors y0 and g. These are expanded up317

to spherical harmonic degree 13. We then write the radial induction equation (36) in matrix form318

as319

y0 = A0(g)mu + er0 + eo0= yu
0 + er0 + eo0 , (53)

with yu
0 the SV prediction from the flow model mu. There are potentially two sources of errors as-320

sociated with this equation: eo0 stands for the observation errors on the SV field model coefficients,321

while errors of representativeness stored into er0 cover contributions from unmodelled processes,322

namely subgrid induction and diffusion (e.g., Eymin and Hulot 2005).323

We wish to recover the flow by inverting Eq. (53). We assume that the statistics of the flow324

model and the errors are defined by their mean and cross-covariances. Under this Gaussian as-325

sumption, we face a linear inverse problem, for which we need to define the a priori cross-326

covariance matrix for the flow coefficients, Pu = E
(
mum

T
u

)
. In the following, the flow distri-327
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bution is supposed centered on zero, or E (mu) = 0. This assumption is motivated by our poor328

knowledge of an appropriate background flow model in the geophysical case. We also need cross-329

covariance matrices for the two error terms in (53), namely Ro
0 = E

(
eo0e

o
0
T
)

and Rr
0 = E

(
er0e

r
0
T
)
.330

Both error sources are supposed independent the one from the other, or E
(
er0e

o
0
T
)
= 0. The co-331

variance matrix for the sum of the two errors is then R0 = Rr
0 + Ro

0. We consider unbiased errors,332

so that E (eo0) = E (er0) = 0. Finally, the solution to the linear inverse problem (53) is:333

m̂u =
(
AT
0 R

−1
0 A0 + P−1

u

)−1
AT
0 R

−1
0 y0 . (54)

Following Aubert (2013), we assume that numerical models of the Earth’s dynamo simulate334

the state of the Earth’s core well enough to provide the prior information needed to invert for core335

surface flow and shear. The cross-covariance matrices Rr
0 and Pu are built from N∗ samples of336

the fields y0,g and mu from the dynamo simulations presented in § 3.1. First a crude empirical a337

priori covariance matrix for the flow is estimated from the samples as338

P̃u =
1

N∗ − 1

N∗∑
k=1

mu,kmu,k
T . (55)

However, this estimate is noisy because of the finite number of independent dynamo states. There339

are indications that this introduces spurious covariances (Sanchez et al. 2020; Schwaiger et al.340

2023). In order to reduce their impact, while keeping the significant ones, we apply the ”graphi-341

cal LASSO” method (Friedman et al. 2007; Banerjee et al. 2008) on P̃u and obtain Pu (see Ap-342

pendix C). This method is known to reduce noise in empirical covariance matrix estimates. It also343

makes the covariance matrix less sensitive to the choice of samples. For the prior matrix consid-344

ered here, this method allows conserving the strong cross-correlations between flow coefficients of345

the same order m and nearby degrees l, l + 1, l + 2..., due to the predominance of the geostrophic346

equilibrium in the dynamo simulation. These are common to other Earth-like dynamo simulations347

(e.g. Gillet et al. 2019).348

Next, for each sample k we calculate the errors of representativeness as349

er0,k = y0,k − A0 (gk)mu,k . (56)

The associated covariance matrix Rr
0 is then obtained by applying the graphical LASSO to the350
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empirical estimate351

R̃r
0 =

1

N∗ − 1

N∗∑
k=1

er0,ke
r
0,k

T . (57)

In the case of synthetic dynamo data, we consider no observation errors, so that R0 = Rr
0. In the352

case of geophysical observations, the covariance matrix Ro
0 is considered diagonal, and built from353

the dispersion within the ensemble of SV realizations of the COV-OBS-x2 model (see Section 3.2).354

4.2 Solving for the radial shear in the flow at the top of the core355

We now turn to the inversion of the shear at the top of the core, given an estimate of the surface356

flow. We store parameters describing the large scale component of r∂ruΣ at the core surface (co-357

efficients δ±m
l ) in a vector mδ. We write the two constraints from the horizontal component of the358

induction equation at the core surface (toroidal and poloidal) in matrix form, as359

yt ≡ At(g)mu = Bt(g)mδ + ert , (58)

yp ≡ Ap(g)mu = Bp(g)mδ + erp . (59)

Vectors ert,p stand for the errors of representativeness associated with those two constraints, here360

again, due to subgrid induction and diffusion. The two constraints shall be used simultaneously,361

and are concatenated as362

yh ≡ Ah(g)mu = Bh(g)mδ + erh = yδ
h + erh , (60)

with yδ
h the prediction to yh from the model mδ, AT

h =
[
AT
t AT

p

]
, BT

h =
[
BT
t BT

p

]
, and erh

T =363 [
ert

T erp
T
]
.364

We note Pδ = E
(
mδmδ

T
)

the a priori covariance matrix on δΣ (supposed a priori of zero-365

mean). The cross-covariance matrix for the (supposed unbiased) errors of representativeness in366

Eq. (60) is noted Rr
h = E

(
erhe

r
h
T
)
. Inverting for mδ from ‘observations’ yh comes down to a367

linear inference, whose solution is368

m̂δ =
(
BT
hR

−1
h Bh + P−1

δ

)−1
BT
hR

−1
h yh . (61)

We investigate below the inversion for δΣ assuming that we know the flow, in which case it is fair369

to ignore the propagation into Eq. (60) of the uncertainties on the flow inferred using Eq. (54).370
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It happens in practice that these latter ”observation errors” would be, as for the core flow inverse371

problem, dominated by errors of representativeness.372

As for the flow inversion, we build the prior cross-covariances on mδ from geodynamo sam-373

ples. Dynamo simulations considered here have been computed under the stress-free boundary374

condition375

∂

∂r

(uΣ

r

)
= 0 , (62)

at r = rC , so that376

δΣ = r
∂uΣ

∂r
= uΣ, (63)

or in matrix form mδ = mu. As a consequence, one has Pδ = Pu. From the geodynamo fields377

g,mu and mδ we calculate for all samples the errors of representativeness378

erh,k = Ah (gk)mu,k − Bh (gk)mδ,k . (64)

Their associated covariance matrix Rr
h is then obtained by applying the graphical LASSO to the379

empirical estimate as380

R̃r
h =

1

N∗ − 1

N∗∑
k=1

erh,ke
r
h,k

T . (65)

4.3 Diagnostics381

Below we consider several diagnostics, whether it be in the domain of the observations or of382

the inverted model. We are in particular interested in the spatial spectra for yh, the quantities383

considered as observations when inverting for the shear, which we define as384

Sh(l) = (l + 1)
l∑

m=0

|ytml |2+|ypml |
2 . (66)

Furthermore, to measure how well the results of our inversions match the reference dynamo385

fields (shear or flow), we use a correlation coefficient, defined for two surface vector fields a(θ, ϕ)386

and b(θ, ϕ) as387

c(a,b) =

∫ 2π

0

∫ π

0

a · b sin θdθdϕ

4π|a||b|
, (67)
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where388

|a|=

√
1

4π

∫ 2π

0

∫ π

0

(aθ(θ, ϕ)2 + aϕ(θ, ϕ)2) sin θdθdϕ (68)

is the r.m.s. of the norm of the vector a over the CMB. We also evaluate the misfit between two389

vector fields as390

m(a,b) =
|a− b|√
|a||b|

. (69)

A perfect recovery is characterized by a misfit of 0 and a correlation coefficient of 1.391

Finally, we estimate the factor between the surface flow and the inverted surface shear δΣ as α392

the coefficient that minimizes the functional393

Jδ(α) = |δΣ − αuΣ| . (70)

When considering the shear inverted from the reference dynamo flow (resp. the inverted flow), uΣ394

in (70) is the reference flow (resp. the inverted flow). When considering a set of K independent395

dynamo states, a set of functionals {Jδ(α, k)}k∈[1,K] is obtained from all the considered samples,396

and α is then the coefficient that minimizes J̃δ(α) the median over the samples of the Jδ(α, k).397

Similarly, a scaling factor α between the reference dynamo flow and the inverted flow might be398

calculated from the functional399

Ju(α) = |ûΣ − αuΣ| , (71)

where here ûΣ stands for the inverted flow.400

5 RESULTS401

We first present (§ 5.1) a validation of our methodology using data from stress-free geodynamo402

simulations, for which we expect δΣ = uΣ. We conduct both twin (§ 5.1.1) and sister experiments403

(§ 5.1.2). In the former case, the prior knowledge needed for the inverse problem (model and404

error cross-covariance matrices) and the synthetic observations are built from samples of a single405

simulation (namely 0p). In the latter case, prior matrices are built from 0p dynamo samples, while406

synthetic data are obtained from the more advanced 50p dynamo. We then investigate a more407

realistic case where the surface shear is calculated from a flow estimated from the SV rather408
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than from the surface flow directly obtained from the simulation (§ 5.1.3). Next, we test in §5.2409

our tools with data extracted from a dynamo calculated with the no-slip (instead of stress-free)410

boundary condition at r = rC . We are thus getting closer to the geophysical configuration. Finally,411

we follow the same protocol with real data from the COV-OBS-x2 magnetic model (§ 5.3).412

5.1 Flow shear from synthetic dynamo data: stress-free simulations413

5.1.1 Twin experiments with stress-free synthetic data, knowing the large-scale flow414

We first consider the case of twin experiments based on the 0p simulation. Flow and shear are415

truncated at degree Lu = 18. This is slightly above the resolution limit lately considered for416

inverted core motions, thus mitigating aliasing issues (Gillet et al. 2019). For this first test, we417

assume that the surface flow uΣ is exactly known up to degree Lu, and test our ability to recover418

the radial shear in the flow δΣ, from Eq. (61). This comes down to an ideal set-up, in order to419

verify that we are able to obtain information on δΣ. We refer to this case as T a
u . We estimate δΣ420

for 28 independent snapshots of the 0p simulation and find that it is highly correlated with uΣ.421

We report the distribution of correlations and misfit values by providing the median together with422

the first and last quartile values (see Table 2, case T a
u ). The misfit values are nonetheless quite423

large (with a median of about 1.22) because the inverted δΣ has a much simpler geometry than the424

surface flow. This is well illustrated in Fig. 1, which shows one representative example chosen in425

such a way that the correlation and misfit between uΣ and δΣ are close to their respective median426

values within all the considered snapshots. The two maps show the ϕ components of uΣ and δΣ427

superimposed with their associated streamlines. Although there is not a one-to-one correspondence428

between the estimated shear and the shear prescribed at the core surface by the boundary condition,429

the correlation between the two fields is striking and their amplitude is similar. Writing δΣ = αuΣ,430

we find that the global misfit J(α) is minimized for α = 1.3, close to the expected value of 1.431

We also test to what extent this conclusion depends on the choice of the truncation degree Lh432

of poloidal and toroidal conditions (see eq. 60). We consider two values, Lh = 18 and Lh = 13,433

corresponding to the cases T a
u and T b

u. It turns out that the results of the two inversions are very434

similar, implying that the choice for the truncation level is not critical. For Lh = 13, the global435
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Table 2. Statistics for the surface shear estimation. Correlation c and misfit m between the estimated shear

and the surface flow. Assuming proportionality between the flow and the shear, α indicates the coefficient

that minimizes Jδ(α). Cases labeled ”T ” and ”S” denotes respectively for the twin and sister experiments.

The subscript u points tests based on surface flows directly extracted from the simulations, in which case

the diagnostics c and m are calculated with respect to the dynamo flow. In other cases, they are estimated

from the inverted flow. Cases noted ”S1” and ”G” stand for investigations of synthetic data from the S1

simulation and from geophysical data (for 2018) respectively. ”prior” indicates the dynamo considered for

building the various (prior and error) covariance matrices. ”data” indicates the dynamo used to generate

the synthetic data. ”C” stands for COV-OBS-x2 geomagnetic model. Lh is the truncation degree of yh. For

synthetic experiments we provide values for the 25%, 50%, and 75% percentiles, with the correlation and

misfit values written in that order: 25%:50%:75%.

case prior data Lh c(uΣ, δΣ) m(uΣ, δΣ) α

T a
u 0p 0p 18 0.78 : 0.81 : 0.84 0.97 : 1.22 : 1.39 1.3

T b
u 0p 0p 13 0.77 : 0.81 : 0.83 1.03 : 1.19 : 1.40 1.1

T 0p 0p 18 0.79 : 0.82 : 0.85 0.74 : 0.91 : 1.06 2.3

Su 0p 50p 18 0.64 : 0.76 : 0.81 1.10 : 1.24 : 1.57 0.9

S 0p 50p 18 0.85 : 0.90 : 0.94 1.02 : 1.22 : 1.64 1.8

S1a 0p S1 18 0.71 : 0.77 : 0.82 0.74 : 1.01 : 1.26 0.8

S1b 50p S1 18 0.66 : 0.74 : 0.87 0.82 : 1.11 : 1.32 0.5

G 50p C 18 0.97 3.76 4.3

G∆ 50p C 18 0.80 0.94 0.4

misfit J(α) is minimized when δΣ = 1.1uΣ, again close to the expected relationship δΣ = uΣ.436

The following results are obtained with Lh = 18.437

5.1.2 Sister experiment with stress-free synthetic data, knowing the large-scale flow438

We move further and add a new step in the estimation of δΣ, considering the sister experiment with439

50p as the reference, and 0p for the prior. We refer to this case as Su. Here, we estimate the surface440

shear for 40 independent snapshots. The correlation between estimated shear and surface flow441

remains high (see Table 2). From twin to sister experiments, the median value of the correlation442

has decreased from 0.81 to 0.76 while the misfit has slightly increased from 1.22 to 1.24. The misfit443

is minimized when α = 0.9, which is close to the expected value of 1 as in the twin experiment.444
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Figure 1. Comparison between the surface flow (top) and the inverted shear (bottom), in the case of twin

experiments (case T a
u ), using the 0p dynamo for both the data and the prior covariance matrices. The color

scale gives the amplitude of the ϕ component.

Figure 2 (left) shows the comparison between surface flow and shear for a representative snapshot,445

which has a misfit m and a correlation c about the median value. The sister experiment, using the446

dynamo surface flow, validates the estimation of surface shear.447

5.1.3 Experiments with stress-free synthetic data, and surface flow estimated from SV448

We now infer uΣ for independent snapshots of the magnetic field at the core surface and its SV. We449

build our prior covariance matrices from 0p simulations. The set-up for the flow inversion is very450

comparable to the one recently investigated by Schwaiger et al. (2023) when using dynamo priors.451

The only modification is the introduction of Graphical LASSO to build covariance matrices (see452

Appendix C). We shall consider successively twin (T ) and sister (S ) experiments. In the former453

case, we estimate 28 velocity snapshots from 0p simulation, and in the latter case, we estimate 40454

snapshots from 50p simulation. Table 3 gives the statistics for the flow inversions. We find a high455

correlation between estimated and true surface flows. However, the estimated flow significantly456

underestimates the true flow by a factor of about 2.457
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Figure 2. Comparison between flow (top) and shear (bottom) for sister experiments. The shear is calculated

respectively from the dynamo flow (left, case Su) and the inverted flow (right, case S). The color scale gives

the amplitude of the ϕ component.

Then, we estimate shears from the inverted flows (case T and S, see Table 2). The correlation458

coefficients between inverted surface flow and shear maintain high values (median value 0.82 for459

T and 0.90 for S). Here, the misfits result from the large amplitude of the shear in comparison with460

the flow estimated from the SV. Figure 2 (right) shows maps for the SV inferred flow and the shear461

calculated with this flow for a representative example of the sister experiment S . This illustrates462

that the geometry of the shear and of the flow agrees quite well. However, we find a factor of463

about 2 between the surface shear and the inverted surface flow (namely 2.3 and 1.8 for T and464

S respectively). This disagrees with the expected relationship δΣ = uΣ. We have compared also465

the shears with the flows directly extracted from the dynamo simulations. Then, we approximately466

find δΣ = uΣ (namely 1.1 and 0.9 for T and S respectively). We explain this discrepancy with the467

decisive role of the prior information in our shear estimation.468

The impact of the prior information can be understood from the different spectra related to469

yh, the combined poloidal and toroidal constraints (see Fig. 3 bottom). We compare it with the470

spectra of the inverted flow (Fig. 3 top). In both cases, the power (of y0, the SV, and of yh)471
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Table 3. Statistics for surface flow estimations. Correlation c and misfit m between components of the esti-

mated (ûΣ) and true (uΣ) surface flows. Assuming a linear relationship between the two flows, α indicates

the coefficient that minimizes the functional Ju(α). Cases labeled ”T ” and ”S” stand respectively for the

twin and sister experiments. ”prior” indicates the dynamo considered for building the various (prior and

error) covariance matrices. ”data” indicates the dynamo used to generate the synthetic data. We provide

values for the 25%, 50%, and 75% percentiles, with the correlation and misfit values written in that order:

25%:50%:75%.

case prior data c(ûΣ,uΣ) m(ûΣ,uΣ) α

T 0p 0p 0.79 : 0.82 : 0.85 0.74 : 0.91 : 1.06 0.5

S 0p 50p 0.66 : 0.77 : 0.81 0.8 : 0.89 : 1.29 0.4

increases with the spherical harmonic degree (see the blue lines in the two figures), and the errors472

of representativeness (er0 and erh respectively, see the green dashed lines) explain a major part of473

the signal. However, we are in a much more favorable situation for the flow inversion than for474

the shear inversion. Indeed the terms involving the shear yδ
h (bottom figure) yield only a small475

contribution to yh, whereas the term involving the surface flows yu
0 (top figure) explains a major476

part of the radial SV (see the orange and dashed purple lines). As a result, our prior information on477

δΣ, taken as the same as the prior information on uΣ, plays a major role in our estimation of the478

shear amplitude. The expected amplitude of δΣ thus matches the amplitude of the dynamo surface479

flow while the flow inverted from the radial SV has an amplitude that is only half the amplitude480

of the dynamo flow (in this example). This may explain why the estimation for δΣ is too large481

compared with the inverted surface flow.482

5.2 Flow shear from synthetic dynamo data: a no-slip simulation483

We consider now SV data from the no-slip dynamo S1 by Schaeffer et al. (2017), while we build484

the prior on the flow and the shear from the 0p and the 50p dynamos. Simulation S1 has been485

obtained with a no-slip boundary condition at the top of the core, which does not prescribe a re-486

lationship between the radial shear in the flow and the surface flow in contrast with the stress-free487

boundary condition. The no-slip boundary condition is deemed appropriate to the geophysical488

case. Here, we aim to image the flow below the viscous (Ekman) boundary layer, much thicker489
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Figure 3. log10 of the energy spectra for the radial SV y0 (top, see Eq. 53) and the equation involving the

radial shear in the flow yh (bottom, see Eq. 60), in case S (sister experiment where the large-scale flow is

inferred from radial SV, using 0p data as prior matrices): observation (blue), a priori error (dashed green),

reference field predictions (orange), model predictions (purple), prediction errors (dashed red). See Eq. (53)

and (60) for the definitions of yu
0 and yδ

h.

in the simulation than in the Earth’s core, across which the magnetic field is supposed to be con-490

tinuous. Since this location is not uniquely defined, we cannot define unambiguously the surface491

flow to compare with our flow estimation. Above all else, large variations with radius of δΣ next492

to the core surface preclude any simple definition of the radial shear in the flow in no-slip dy-493

namo simulations. Therefore, we shall only investigate whether the inverted surface flow and the494

inverted surface shear are similar. We estimate here the shear for 30 independent dynamo samples.495

We find again a strong correlation between surface flow and shear. The surface shear is only half496

the estimated flow when using the 50p prior (to be compared with α ≃ 0.8 for the inversion with497

the 0p prior). Figure 4 (right) has been built for a representative example (where the misfit and the498

correlation are similar to their median values). We compare these maps for uΣ and δΣ with maps499
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Figure 4. Comparison of inverted flow and shear from SV data of the S1 no slip dynamo, using 0p (left)

and 50p (right) to build the prior information (cases S1a,b).

obtained for the same snapshot but with prior information given by the 0p dynamo (left). We see500

again that the prior information is much more important for δΣ than for uΣ. Figure 4 shows a nice501

agreement between the two quantities. We build on this result to consider geomagnetic data.502

5.3 Flow shear at the core surface: application to geomagnetic data503

We consider here the main field and SV Gauss coefficients from the COV-OBS-x2 geomagnetic504

field model for the epochs 2000 and 2018 (Huder et al. 2020). We conduct exactly the same505

suite of calculations as for the S1 synthetic data above. We employ again the 50p simulation506

for building the prior information. Using surface flow models obtained by inverting the radial507

induction equation, we solve the inverse problem for δΣ. Figure 5 presents a comparison between508

the maps of δΣ and of uΣ. We recover the expected equatorial symmetry. Overall, the two vector509

fields have similar directions. Both the flow and the shear show a smooth structure, with less510

medium scales than the quantities estimated from S1 synthetic data. They display the features511

present in estimations of core surface flows for the recent epochs and are dominated by westward512

surface flows/shears at low latitudes in a hemisphere centered on the Greenwich meridian. We513

find also emergence of Eastward flow under the Pacific Ocean from 2000 to 2018, as already514

reported by Finlay et al. (2023). There is a high correlation between flow and shear. We estimate515
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Figure 5. Comparison of the flow (top) and shear (bottom) inverted from the COV-OBS-x2 model, using

50p as the prior and a truncation degree Lh = 18, at epoch 2000 (left) and 2018 (right).

δΣ ∼ 4.3uΣ for the year 2018 and 50p prior (δΣ ∼ 4.7uΣ with the 0p prior). Similarly to the516

example illustrating estimations from S1 synthetic data with the same prior (see Fig. 4 right), the517

surface shear only partially reproduces spatial changes in the flow direction at the Equator. As518

shown in Fig. 6, a large correlation is also found between the flow increment ∆uΣ = uΣ(t =519

2018) − uΣ(t = 2000) and the shear increment ∆δΣ = δΣ(t = 2018) − δΣ(t = 2000) – see the520

case G∆ in Table 2. Here, we find ∆δΣ ∼ 0.4∆uΣ when using the 50p prior (and ∆δΣ ∼ 0.6∆uΣ521

using the 0p prior). The relationship between the shear and the flow thus seems to depend on the522

frequency.523

Our analysis of geophysical data is at odds with the tests performed from synthetic data, as the524

surface flow and shear do not have similar amplitudes but rather the shear is much stronger. This525

questions the prior information used to calculate the surface shear. One possible explanation is the526

non-negligible role of mantle electrical conductivity. We need numerical simulations calculated527

with several values of mantle conductance to go further.528

6 DISCUSSION529

All our tests yield a clear correlation between the flow and the radial shear in the flow at the530

core surface. The results for the 0p and 50p path dynamos are consistent with the relationship531
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Figure 6. Flow increment (top) and shear increment (bottom) between epochs 2000 and 2018, as inverted

from the COV-OBS-x2 model, using the 50p prior.

δΣ = uΣ as anticipated for dynamo models with stress-free boundary conditions. Less expectedly,532

this conclusion also holds for tests with synthetic data obtained from the S1 model, calculated with533

no-slip boundary conditions. We find that unfortunately, the value of the ratio between flow and534

shear varies with the dynamo model used to build the necessary prior information. This makes it535

more difficult to reach firm conclusions when applying the method to actual data.536

The surface shear that we infer from geomagnetic data for 2000 and 2018 also appears corre-537

lated with the surface flow. In contrast with synthetic cases, the ratio between instantaneous maps538

of the flow and of the shear is much higher than 1, namely about 4. Correlation between flow539

and shear had been exhibited previously by Lloyd and Gubbins (1990) and Jackson and Bloxham540

(1991) for 1970. These studies differ from ours inasmuch as they treat the horizontal components541

of the SV as data, whereas we derive a condition to be satisfied by the flow and the shear that542

is independent of SV data. Also, Jackson and Bloxham (1991) used the poloidal part of the SV543

data only: this amounts to considering equation (45) but not (40). Jackson and Bloxham (1991)544

and Lloyd and Gubbins (1990) estimated the ratio between flow and shear to be about 2 and 6,545

respectively.546
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Figure 7. Shear in the flow at the Core surface (top left), shear in the flow inverted from the surface flow

(top right), and shear in the flow (bottom left) and flow (bottom right) at about 6 Ekman depths δν (or

r = 0.97rC , with δν = rC
√
E), for one sample of the 0p dynamo.

We find that the radial shear in the flow that we estimate from the induction equation at the547

CMB is unrelated to the shear at depth, for both stress-free (Fig. 7) and no-slip boundary (Fig. 8)548

conditions. The flow calculated at the surface and at depth are very similar in both cases. Here the549

fields are calculated from specific snapshots for which the flow components have been stored at550

all radii. The maps of the radial shear extracted from the geodynamo simulations at depth are the551

strongest in the equatorial region, and overall dominated by the azimuthal component. This intense552

shear arises because the flow, which is nearly QG, has small length scales in the cylindrical radial553

direction next to the equator. Conversely, these equatorial features are absent from the flow maps554

at the surface and at depth as well. This may explain why Amit et al. (2008) found a correlation555

between the flow and the radial shear in the flow at depth in their dynamo simulations (E =556

3− 6× 10−4) only after down-playing the equatorial region.557

Assuming a QG geometry for the flow (see ansatz (12c,d) of Labbé et al. (2015) and (2.1)558

of Bardsley (2018)), we can derive another expression relating the surface flow and its radial559

derivative at the CMB. When we undertook this study, we initially hoped to use this relationship560

together with conditions (15) and (16) to better constrain the surface flow. Unfortunately, we can-561

not combine the horizontal components of the induction equation at the core surface and the QG562
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Figure 8. Surface flow estimated from radial SV (top left), shear in the flow inverted from the surface flow

(top right), and shear in the flow (bottom left) and flow (bottom right) at about 6 Ekman depths (r = 0.99rC),

for one sample of the S1 dynamo.

approximation to better estimate the core surface flow because the QG ansatz and the continuity of563

∂B/∂t are not compatible at the CMB: the radial shear in the flow at the CMB is unrelated to the564

value predicted by the QG ansatz. Similarly, Jackson and Maffei (2020) needed the continuity of565

B at the CMB in a QG framework to calculate the boundary terms for the magnetic force in their566

plesio-geostrophic (PG) model. Our result thus casts doubt on the derivation of the surface terms567

in the PG model.568

The surface shear would be a key ingredient of the dynamical equilibration in the presence569

of a conducting mantle. For Alfvén wave reflection on a conducting wall permeated by a uni-570

form magnetic field, the appropriate boundary condition on the flow transforms from zero shear571

∂u/∂n = 0 (n indicating the direction normal to the boundary) to zero velocity u = 0 as the elec-572

trical conductivity of the wall increases from zero to infinity (see e.g. Schaeffer and Jault 2016).573

For a spherical boundary permeated by a laterally varying magnetic field, the situation is less sim-574

ple but we expect similarly ∂(u/r)/∂r to be weak if the mantle is electrically insulating and to575

become large compared to u/r2 with increasing conductivity of the mantle. The mention of Alfvén576

waves indicates that this description involves a discussion of force balance. As a matter of fact,577

the continuity of the horizontal components of the magnetic field BΣ at the core-mantle interface578



32 I. Firsov et al.

is equivalent to the equality of the Maxwell stress BrBΣ/µ0 on either side of the CMB. Taking579

the radial component as invariant, the continuity of ∂BΣ/∂t thus amounts to the continuity of the580

components of the time derivative of the Maxwell stress parallel to the boundary. When the mantle581

is insulating, integrals of the Maxwell stress on the mantle side vanish, limiting the Maxwell stress582

on the core side. We explain this way our finding of weak shear in the S1 dynamo even though583

it was not prescribed as a boundary condition. Conversely, in the presence of a conducting layer584

at the bottom of the mantle, Maxwell stresses on the mantle side have to be balanced by stresses585

on the core side. From the horizontal induction equation, we see that rapid time changes ∂BΣ/∂t586

arise from large surface shear. If the Earth’s mantle had a strong conductance, an enhanced shear587

(from the term δΣ×Brer) would be required to balance the term τG∂v
±/∂t in equations (46) and588

(47):589

s±,m
l ∼ τG

∂

∂t
v±,m
l , and as a result δ±,m

l ∼ τG
∂

∂t
u±,m
l (72)

(see equations (35) and (43)). In this situation, the surface shear would be well-constrained. On590

time scales for which the mantle is insulating (times large compared to τG) it will be difficult to591

ascertain the value of the shear. Alternatively, on short time scales for which the mantle conductiv-592

ity is significant, we may hope to constrain the value of the shear at the core surface. This scenario593

now needs to be documented with dynamo models incorporating a conducting layer at the bottom594

of the mantle.595

Our estimate of the surface shear, which is larger from geomagnetic data than from synthetic596

data, may be an indication of significant conductance of the lowermost mantle. Therefore, we597

may hope to constrain the mantle conductivity from an investigation of core dynamics. Holme598

et al. (2011) remarked that the observable SV varies on a time scale τSA that is independent of599

the harmonic degree and Christensen et al. (2012) found this statement to apply also to dynamo600

simulations. They argued that τSA, for l ≲ 10, can primarily be interpreted as the time scale of the601

core surface flow changes. This observation has since been confirmed with dynamo simulations602

run at parameters closer to Earth’s conditions (Aubert 2018).603

The significance of the terms involving the mantle conductivity in the poloidal and toroidal604

conditions for the electrical field – see equations (46) and (47) – is thus measured by the ratio605
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τG/τSA. Taking τSA as 10 years, we find τG = τSA for a mantle conductance about 7 × 107 S.606

We may be able to gain insight into a conducting layer adjacent to the core from a detailed anal-607

ysis of the time changes of the surface flow and shear if the mantle conductance is of this order608

or larger. Within the framework we propose, the sensitivity of the core dynamics to the electrical609

conductivity of the lower mantle is enhanced at short periods. Waves recently detected at interan-610

nual periods from satellite data (Gillet et al. 2022) could thus be used as sources to shed light on611

the conductance of the lowermost mantle adjoining the core.612
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APPENDIX A: VECTOR SPHERICAL HARMONICS742

We calculate the contravariant basis of the complex basis (27) as743

e− =
e+ × e0

J
= −e+ = (e−)

†, (A.1)

where J , the Jacobian of the basis (e+, e0, e−), is −i, and similarly744

e+ = −e− = (e+)
†, e0 = e0 = er. (A.2)

Therefore, the basis vectors are orthogonal and of unit norm745

e+ · e†− = 0, e+ · e†+ = 1. (A.3)

The contravariant components of v in this basis are746

v± = v · e± = v · e†± =
1√
2

(
∓vθ + ivϕ

)
, v0 = vr. (A.4)

Using the representation (10) of v to calculate vθ and vϕ, we obtain747

v± =
1√
2

l=∞∑
l=1

l∑
m=−l

(∓V m
l + iWm

l )

(
∂Y m

l

∂θ
∓ i

sin θ

∂Y m
l

∂ϕ

)

=
1√
2

l=∞∑
l=1

l∑
m=−l

(∓V m
l + iWm

l )

(
dPm

l

dθ
± m

sin θ
Pm
l

)
exp(imϕ)

(A.5)
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We have748

d

dθ
P̂m
l ± m

sin θ
P̂m
l = ∓

√
l(l + 1)P̂±,m

l (A.6)

(Phinney and Burridge 1973). Using (A.6), we transform (A.5) into749

v± = ∓
l=∞∑
l=1

l∑
m=−l

√
l(l + 1)√

2
(∓V m

l + iWm
l )Y ±,m

l =
l=∞∑
l=1

l∑
m=−l

v±,m
l Y ±,m

l , (A.7)

with750

∀l ≥ 1,−l ≤ m ≤ l, v±,m
l =

√
l(l + 1)√

2
(V m

l ∓ iWm
l ) . (A.8)

APPENDIX B: BOUNDARY CONDITION ON THE MAGNETIC FIELD751

We write the boundary conditions on the magnetic field at r = c in the presence of an infinitely thin

conducting layer. The radial component is continuous across the layer. We have at the core-mantle

boundary

WB = Wδ, (B.1)

and in the mantle conducting layer

∂WB

∂r
= −WB

δ
. (B.2)

Finally, the continuity of the components of the electrical field parallel to the boundary gives

1

µσmδm
Wδ = −V − 1

µσcc

∂(rWB)

∂r
. (B.3)

Similarly

VB = Vδ −
Φ

c
(B.4)

and752

− Vδ

µσmδm
=

1

µσc

1

r

(
∂

∂r
(rVB)− UB

)
−W (B.5)

−
V m
δ,l

µσmδm
=

1

µσc

1

r

(
∂

∂r
(rV m

B,l)− Um
B,l

)
+

c

l(l + 1)

∂Um
B,l

∂t
(B.6)

If we can neglect the diffusion term on the right-hand side, we obtain

V m
δ,l =

τG
l(l + 1)

∂Um
B,l

∂t
(B.7)
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Then, the boundary condition for the poloidal field becomes

V m
B,l =

1

r

1

l(l + 1)

∂

∂r
(r2Um

B,l) = −
Um
B,l

l + 1
+

τG
l(l + 1)

∂Um
B,l

∂t
. (B.8)

APPENDIX C: COVARIANCE MATRICES WITH GRAPHICAL LASSO753

Empirical covariance matrices for the prior on the flow, the shear, and errors of representative-754

ness have been obtained based on a finite set of samples from geodynamo simulations, using the755

Graphical LASSO (or ‘G-LASSO’, see Banerjee et al. 2008; Friedman et al. 2007) in order to756

reduce spurious cross-covariances. We recall here the main lines of this approach, in the case of757

the fluid flow a priori covariance matrix. From the rough estimate of Eq. (55), we first calculate758

the correlation matrix759

C̃u = D−1/2
u P̃uD

−1/2
u , (C.1)

where Du is the diagonal of the matrix P̃u. Following Istas et al. (2023), we then apply G-LASSO760

on C̃u. This algorithm provides a sparse estimate of the precision matrix Θ (inverse of the correla-761

tion matrix), by searching for762

Θ̂(λ) = argminΘ≥0

(
tr(C̃uΘ)− log det(Θ) + λ

∑
j ̸=k

|Θjk|

)
, (C.2)

where λ is an adjustable parameter. The output cross-covariance matrix is then763

Pu = D1/2
u Θ̂−1D1/2

u . (C.3)

Considering λ = ∞ sets off-diagonal elements of Θ̂ (and then of Pu) to zero, while for λ = 0 the764

method outputs Pu = P̃u (if inversible).765
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Figure A1. Left: correlation matrices for first 195 toroidal coefficients (i.e. up to harmonic degree l = 13)

of the flow obtained for the 0p dynamo: raw matrix C̃u (top), Cu obtained after applying the G-LASSO

with λ = 0.07 (middle), and the difference between the two (bottom). Coefficients are stored as follows:

t0,c1 , t1,c1 , t1,s1 , t0,c2 , t1,c1 , t1,s2 , t2,c2 , t2,s2 , t0,c3 ... Right: same for the correlation matrix associated with R̃r
h for the

errors of representativeness, obtained after applying the G-LASSO with λ = 0.05.
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Table A1. Correlation and misfits for the two horizontal components of the shear estimated from 50p data,

and using the 0p prior, with and without application of G-LASSO to the prior matrices (Lh = 18).

case c(u, δ) m(u, δ)

with G-LASSO 0.64 : 0.76 : 0.81 1.10 : 1.24 : 1.57

without G-LASSO 0.56 : 0.70 : 0.75 1.82 : 2.13 : 2.59

We show in Fig. A1 (left) an example of the application of this algorithm for the matrix Pu. Our766

choice of λ = 0.07 is governed by the wish to keep as much as possible the off-diagonal strong767

correlations between coefficients of same order m but different degrees, while reducing spurious768

off-diagonal elements. This is illustrated by showing the difference between P̃u and Pu. Similarly769

the cross-covariance matrix for the errors of representativeness Rr
h (resp. Rr

0) is obtained from R̃r
h770

(resp. R̃r
0) when inverting for the shear (resp. the flow), as illustrated in Fig. A1 (right).771

We provide in Table A1 the scores for the misfits and correlation coefficients when inverting772

for the shear in the case of twin and sister experiments. Using the G-LASSO significantly improves773

the scores in the latter case, justifying our preference this sparse estimate of the matrices.774


	Introduction
	Equations for the radial shear in the flow at the core surface
	Condition on induction at the core surface
	Influence of a conducting layer at the base of the mantle
	Expressions in terms of vector spherical harmonics

	Magnetic field data
	Dynamo simulations
	Geomagnetic field models

	Inversion methodology
	Solving for the core surface flow
	Solving for the radial shear in the flow at the top of the core
	Diagnostics

	Results
	Flow shear from synthetic dynamo data: stress-free simulations
	Flow shear from synthetic dynamo data: a no-slip simulation
	Flow shear at the core surface: application to geomagnetic data

	Discussion
	Vector spherical harmonics
	Boundary condition on the magnetic field
	Covariance matrices with Graphical LASSO

