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Radial shear in the flow at the Earth's core surface

The Earth's magnetic field at the core-mantle boundary is the gradient of a harmonic potential function if the mantle is electrically insulating, and the horizontal components of the field can be derived from its radial component in the mantle. Therefore, these components give no further observational information on the core dynamics. However, it can still be envisioned that the horizontal components of the induction equation at Earth's core surface yield further knowledge on the fluid motions at the top of the core independently of the observations. Here, we show that they provide a linear relationship between the surface velocity and the surface shear (strain shear) that depends on the mantle electrical conductivity. This offers a protocol to calculate the surface shear that we validate with synthetics obtained from dynamo simulations in the limit of a weak mantle conductance. Firstly, using numerical simulations with stressfree boundary condition at the core surface, we retrieve the expected relationship between the horizontal flow u Σ and the shear, u Σ = r∂ r u Σ . Next, we investigate simulations with no-slip boundary condition and insulating mantle, and we obtain the same relationship, even though the shear is not imposed as a boundary condition. Finally, we calculate the flow shear at the top of the core from a magnetic field model based on satellite measurements. The application to geophysical data indicates larger values of the surface flow shear than in the synthetic case, suggesting a possible role of the mantle electrical conductivity. The surface flow shear, in

the simulations, much differs from the radial shear in the flow, deeper in the core, which is influenced by the mostly quasi-geostrophic geometry. This implies that we cannot rely on the relationship between the flow and the radial shear for quasi-geostrophic motions to exploit the horizontal components of the induction equation and gain further information on the flow at the Earth's core surface. key words: Core; Magnetic field variations through time; Inverse theory.

INTRODUCTION

The Earth's magnetic field has been recorded from low Earth's orbiting satellites for most of the time since 1999 and from ground observatories since the first half of the 19th century. Models describing the Earth's main magnetic field B and its temporal variations can be built at the planet's surface (of radius r = r E ). They can be continued to the core-mantle boundary (CMB, r = r C ) if the mantle is treated as an electrical insulator, since B can be written as the gradient of a harmonic function for r C ≤ r ≤ r E . There is a host of analyses, based on the diffusion-free radial induction equation, of the large scale part of the core surface flow u Σ from the time changes of the radial component B r of B (e.g. [START_REF] Jackson | Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field[END_REF][START_REF] Eymin | On core surface flows inferred from satellite magnetic data[END_REF][START_REF] Pais | Quasi-geostrophic flows responsible for the secular variation of the Earth's magnetic field[END_REF][START_REF] Bärenzung | Modeling and predicting the short-term evolution of the geomagnetic field[END_REF][START_REF] Gillet | A reduced stochastic model of core surface dynamics based on geodynamo simulations[END_REF]. Because B at the CMB is the gradient of a harmonic function if the mantle is insulating, the horizontal components B H of B can be derived from its radial component B r in the mantle. Therefore, these components do not give further observational information on the core dynamics, additionally to the radial field [START_REF] Jault | Physical properties at the top of the core and core surface motions[END_REF]. In other terms, the radial induction equation suffices to extract all the available information from the magnetic field temporal changes at the CMB. However, it can still be envisioned that the horizontal components of the induction equation yield further knowledge on the flow next to the core surface independently of the observations. Actually, additional information on the flow at the top of the core from the tangential components of the induction equation is conditional to analyses of the hydromagnetic layer at the CMB. A thin diffusive layer can be modelled as a current sheet. Located at the boundary of a perfectly conducting fluid, it corresponds to a jump in the tangential components of the magnetic field Radial shear in the flow at the Earth's core surface 3 between the top of the free stream below the diffusive boundary layer and the surface. A series of studies have concluded that the tangential field discontinuity is small compared to the field itself.

First, in a non-rotating and inviscid case, [START_REF] Stewartson | The dispersion of a current on the surface of a highly conducting fluid[END_REF] argued that any current sheet in the presence of a transverse magnetic field would immediately spawn Alfvén waves that eliminate the discontinuity in the tangential magnetic field. [START_REF] Stewartson | On the motion of a non-conducting body through a perfectly conducting fluid[END_REF] found that this conclusion holds also for viscous hydromagnetic layers provided that the magnetic Prandtl number P m = ν/η is small enough, P m ≪ 1 (ν the kinematic viscosity, η the magnetic diffusivity), which is the case for liquid metals. [START_REF] Roberts | On analysis of the secular variation 1. a hydrodynamic constraint: Theory[END_REF] reckoned in their analysis of the SV that this result applies to the boundary layer at the core surface. Finally, [START_REF] Hide | Hydromagnetic oscillations of the Earth's core[END_REF] investigated the viscous boundary layer associated with hydromagnetic oscillations of the Earth's core. They accounted for the Coriolis term in the boundary layer equations and found again the discontinuity in B H to be negligible.

The scenario first set out by [START_REF] Stewartson | The dispersion of a current on the surface of a highly conducting fluid[END_REF] does not work if the fluid cannot sustain hydromagnetic waves able to disperse the discontinuity in the magnetic field. This happens when flows are restricted to a narrow class such as rigid rotations or geostrophic motions. As a first example, [START_REF] Loper | On the spin-up of an electrically conducting fluid Part 2. Hydromagnetic spin-up between infinite flat insulating plates[END_REF] investigated the spin-up of an electrically conducting fluid and found that the viscous Ekman-Hartmann layer is embedded in a thicker continuously growing magnetic diffusion layer. Similarly, [START_REF] Braginsky | Torsional magnetohydrodynamic vibrations in the Earth's core and variations in day length[END_REF] and [START_REF] Roberts | Magnetohydrodynamics of the Earth's core[END_REF] considered a diffusive layer encompassing the Ekman layer in their study of torsional Alfvén waves, which consist of geostrophic motions. We can wonder whether this approach extends to less constrained flows such as Quasi-Geostrophic (QG) motions. [START_REF] Jault | Physical properties at the top of the core and core surface motions[END_REF] investigated a magnetic field varying with time as exp(-2iπt/τ ) in the Earth's core and the associated diffusive layer. Taking τ as 10 years, they concluded that the Lorentz force arising from the electrical currents in the diffusive layer is negligible in comparison with the Coriolis force. They found, therefore, that it cannot disrupt the diffusive layer in contrast with the scenario set out by [START_REF] Stewartson | The dispersion of a current on the surface of a highly conducting fluid[END_REF]. From this point, studies of core surface flow have been based on the radial component of the induction equation only.

Recent numerical geodynamo simulations, calculated with no-slip boundary conditions, do not clearly show a magnetic diffusion layer encompassing the viscous Ekman layer. Indications of a significant contribution of the Lorentz force in the boundary layer attached to the CMB can be found in Fig. 18 by [START_REF] Schaeffer | Turbulent geodynamo simulations: a leap towards Earth's core[END_REF] and Fig. 5 by [START_REF] Schwaiger | Force balance in numerical geodynamo simulations: a systematic study[END_REF] -see their most viscous case. This points to the presence of electrical currents that may cause a discontinuity of the magnetic field components tangent to the core surface across the boundary layer. However, this effect might be negligible for geophysical realistic viscosities.

The boundary condition on the magnetic field involved in the propagation in the Earth's core of one-dimensional torsional Alfvén waves u G (s)e ϕ (where (s, ϕ, z) are cylindrical coordinates and e ϕ the unit vector in the ϕ direction) governs their reflection at s = r C . As for generic Alfvén waves, there is only one boundary condition involving both the flow and the magnetic field at the interface with the solid mantle [START_REF] Schaeffer | Electrical conductivity of the lowermost mantle explains absorption of core torsional waves at the equator[END_REF]. When the mantle is an insulator (and P m ≪ 1), the appropriate condition at s = r C is B ϕ = 0 (i.e. continuity with the zero zonal toroidal field in the mantle). [START_REF] Jackson | Plesio-geostrophy for Earth's core: I. Basic equations, inertial modes and induction[END_REF] extended the approach to a two-dimensional model and assumed the continuity of the three components of the magnetic field at the CMB to calculate the surface terms for the magnetic force in their QG model of core dynamics, where magnetic diffusion is neglected. Finally, [START_REF] Gerick | Fast Quasi-Geostrophic Magneto-Coriolis Modes in the Earth's Core[END_REF] calculated QG hydromagnetic oscillations and [START_REF] Luo | Waves in the Earth's core. II. Magneto-Coriolis modes[END_REF] more general waves imposing that the magnetic field perturbation matches a potential field at the boundary with the insulating mantle.

If there is no or negligible discontinuity of the tangential field across a diffusive boundary layer, the horizontal components of the induction equation give two independent and complementary constraints that the flow has to satisfy for the magnetic field at the top of the core to match a potential field in the mantle. The two constraints involve the two horizontal components of the surface shear r∂u Σ /∂r [START_REF] Lloyd | Toroidal fluid motion at the top of the Earth's core[END_REF][START_REF] Jackson | Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field[END_REF]. They can be expressed as a relationship between r∂u Σ /∂r and u Σ at the core surface, function of the radial field B r . In order to go further, we can examine how the flow and the radial shear are related in Earthlike geodynamo simulations. The goal is to develop a protocol to describe as well as possible the outer core dynamics from geomagnetic models.

We derive in §2 the relationship between the surface flow and shear obtained after matching Radial shear in the flow at the Earth's core surface 5 the SV at the core surface with a potential field in the mantle. We show also how this relationship is modified in the presence of a thin conducting layer in the mantle that affects the horizontal components of the SV, but not its radial component. Next, we present in §3 the magnetic data (synthetic data from dynamo simulations and geomagnetic field models) used for our study. Inversion of the surface flow from SV models and of the surface shear from flow models involve prior information provided as covariance matrices for u Σ , r∂u Σ /∂r and the error terms. A description of these matrices is given in §4 together with the set-up for solving the inverse problem. Validation from synthetic data and models of the surface shear from geomagnetic data are presented in section §5.

The paper ends with a discussion.

EQUATIONS FOR THE RADIAL SHEAR IN THE FLOW AT THE CORE SURFACE

Condition on induction at the core surface

We first assume the mantle to be electrically insulating. Then, the magnetic field can be written in the mantle as

B = -∇Φ, (1) 
with the magnetic potential

Φ = ∞ l=1 l m=-l Φ m l r C r l+1 Y m l (θ, ϕ), (2) 
(r, θ, ϕ) spherical coordinates, and l and m spherical harmonic degree and order. We consider the spherical harmonics Y m l to be fully normalized:

Y m l (Y m ′ l ′ ) † sin θdθdϕ = 4πδ l ′ l δ m ′ m . (3) 
The condition

Φ -m l = (-1) m (Φ m l ) † (4)
ensures that the scalar field Φ is real. In the core, we use the scaloidal/poloidal/toroidal (Helmoltz) representation of a vector field [START_REF] Backus | Foundations of geomagnetism[END_REF][START_REF] Ivers | Scalar and vector spherical harmonic spectral equations of rotating magnetohydrodynamics[END_REF], which is valid for any vector field

B = U B (r, θ, ϕ)e r + ∇ 1 V B (r, θ, ϕ) + e r × ∇ 1 W B (r, θ, ϕ), with U B = l=∞ l=0 l m=-l U m B,l (r)Y m l (θ, ϕ), V B = l=∞ l=1 l m=-l V m B,l (r)Y m l (θ, ϕ), W B = l=∞ l=1 l m=-l W m B,l (r)Y m l (θ, ϕ), (5) 
and

∇ 1 V = (r∇ -r∂/∂r)V . The condition that B is solenoidal yields V m B,l = 1 r 1 l(l + 1) ∂ ∂r (r 2 U m B,l ). ( 6 
)
At the CMB, B has to match with a potential field of the form (1). The continuity of B at r = r C implies the continuity of U B , V B , W B and, as a consequence of ( 6), the continuity of ∂U B /∂r.

The toroidal component vanishes:

W m B,l (c) = 0. (7) 
At r = r C , we have V B = -ϕ/r and U B = -∂ϕ/∂r. As a result, the poloidal coefficients satisfy the relationship (see ( 6))

U m B,l = -(l + 1)V m B,l = - 1 rl ∂(r 2 U m B,l ) ∂r .
(8)

The same conditions hold for the secular variation field ∂B/∂t and for the vector field ∇ × (u × B) if the magnetic field satisfies the diffusionless induction equation at r = r C ,

∂B ∂t = ∇ × (u × B). (9) 
We introduce different notations for the velocity u and its surface expression u Σ because ∂u r /∂r ̸ = 0. Consequently, ∂u Σ /∂r ̸ = ∂u/∂r although u Σ = u at r = r C .

We can also use the Helmoltz representation, which does not require the vector field to be divergence-less, for

v = u × B, v = U (r, θ, ϕ)e r + ∇ 1 V (r, θ, ϕ) + e r × ∇ 1 W (r, θ, ϕ). ( 10 
)
This can be transformed into

B r u Σ = -∇ 1 W + e r × ∇ 1 V, (11) 
Radial shear in the flow at the Earth's core surface 7 which is analogous to the equation (20) of [START_REF] Backus | Kinematics of geomagnetic secular variation in a perfectly conducting core[END_REF]. We are interested by ∇ × (u × B):

∇ × v = - 1 r L 2 W e r - 1 r ∇ 1 ∂(rW ) ∂r - 1 r e r × ∇ 1 U - ∂(rV ) ∂r , (12) 
where

L 2 (W m l Y m l (θ, ϕ)) = l(l + 1)W m l Y m l (θ, ϕ). (13) 
Therefore, the radial induction equation becomes

∀l, m, ∂U m B,l ∂t = - l(l + 1) r W m l . ( 14 
)
This equation enables us to estimate the surface velocity u Σ from the radial SV. It corresponds, for example, to the expression (21) of [START_REF] Backus | Kinematics of geomagnetic secular variation in a perfectly conducting core[END_REF].

In addition, two conditions on the toroidal and poloidal components of the vector field ∇ × (u × B) ensure that ∂B/∂t matches a potential field. These conditions do not directly involve the SV observations. The condition on the toroidal part of ∇ × (u × B) yields

U = ∂(rV ) ∂r . (15) 
Combining ( 8) and ( 12), the condition on the poloidal part is satisfied when

∀l, m, ∂(rW m l ) ∂r = -lW m l . (16) 
From (11), we find that the complementary conditions (15) and ( 16) relate the surface flow and its radial derivative. In the following, we proceed by first calculating the surface flow u Σ from the radial SV. Second, we rely on the conditions ( 15) and ( 16) to estimate r∂u Σ /∂r from our model for u Σ . Our approach can be summarized as the sequential solution of the following set of equations at r = r C :

∂B r ∂t = - 1 r C ∇ 1 • (u Σ B r ), (17) 
A u (B r )u Σ = A δ (B r ) r ∂u Σ ∂r . ( 18 
)
where A u and A δ are linear operators.

2.2 Influence of a conducting layer at the base of the mantle Now, we discuss how the conditions (15) and ( 16) are modified in the presence of a thin conducting layer at the bottom of the mantle. We distinguish two electromagnetic diffusion times constructed from the electrical conductivity σ m of the layer: τ G = µσ m r C δ m and τ F = µσ m δ 2 m where δ m is the thickness of the conducting layer and µ the magnetic permeability. The time τ F arises in the discussion of induction in the mantle from time-varying core fields. Therefore, we note it τ F as a reference to Faraday's law of induction. It is also known as the screening time of the mantle. We write the second time τ G as a reference to galvanic (electrical) contact between the flowing core and the conducting layer in the mantle. The boundary conditions on the magnetic field that we write below are based indeed on the continuity of the electrical field, assuming galvanic contact at the CMB. This mechanism is similar to the galvanic excitation of the conducting upper mantle from M2 tidal currents (Schnepf et al. 2015). The time τ G can also be described as a magnetic friction time [START_REF] Braginsky | Short-period geomagnetic secular variation[END_REF]. We assume here τ F ≪ τ SV , where τ SV /l is a typical time scale of the SV for each spherical harmonic degree l (Lhuillier et al. 2011), while τ G , conversely, may be of the order of τ SV . The assumption τ F ≪ τ SV enables us to take the radial magnetic field as continuous across the layer [START_REF] Jault | Illuminating the electrical conductivity of the lowermost mantlle from below[END_REF]: the radial induction equation is unaffected by the inclusion of the conducting layer in the model.

We write in the layer

B = -∇Φ + B δ , (19) 
where B δ is a horizontal field parallel to the core-mantle boundary. Under the thin layer approximation, the diffusive equation in the conducting layer simplifies as ∂ 2 B δ /∂r 2 = 0. As a result, B δ is proportional to the distance to the top of the layer (r = r C + δ m ), where it vanishes. We finally obtain

B = -∇Φ + r C + δ m -r δ m B δ | r=r C , (20) 
We expand B δ at the CMB as

B δ | r=r C = ∇ 1 V δ (r, θ, ϕ) + e r × ∇ 1 W δ (r, θ, ϕ). ( 21 
)
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Then, we can write the electrical field at the bottom of the mantle as

E = j σ m = 1 µσ m -∇ 1 ∂W δ ∂r + e r × ∇ 1 ∂V δ ∂r , ( 22 
)
where j is the electrical current density. On the core side of the boundary, we have E = -u × B, because we assume the core to be perfectly conducting, and

∂W δ ∂r = -µσ m V, ∂V δ ∂r = µσ m W. ( 23 
)
We seek to impose that ∇ × (u × B) -∂B δ /∂t matches a potential field at r = r C . The condition of no induction of toroidal field is transformed into

1 r ∂(rV ) ∂r -U = ∂W δ ∂t = -δ m ∂ ∂t ∂W δ ∂r = δ m µσ m ∂V ∂t , ∂(rV ) ∂r -U = τ G ∂V ∂t , (24) 
and the condition on the poloidal field becomes

∀l, m, - 1 r l(l + 1)W m l = (l + 1) 1 r ∂(rW m l ) ∂r + ∂V m δ,l ∂t (25) which gives ∀l, m, ∂(rW m l ) ∂r = -lW m l + τ G ∂W m l ∂t . (26) 
In order to put the equations 24 and 26 in perspective, we can relate them to the study of Schaeffer and Jault (2016) who considered torsional Alfvén waves with velocity V A in the cylindrical radial direction. These waves consist of rigid rotations u G (s, t) of geostrophic cylinders (where s is the distance to the rotation axis). Inserting u G ∝ exp(ik(V A t ± s)) in equations 24 and 26, we introduce the dimensionless number Q = τ G V A /r C , in front of the term dependent on mantle conductivity. Here,

V A = |B r |(r = r C )/
√ ρµ is constructed from the radial magnetic field at the CMB (ρ the outer core density). [START_REF] Schaeffer | Electrical conductivity of the lowermost mantle explains absorption of core torsional waves at the equator[END_REF] found that this number governs the reflection of torsional waves at s = r C . Assuming Q is O(1) or smaller, mantle conductivity has negligible influence on large-scale flows with time scale τ ≫ r C /V A (about 20 years in the Earth's case). The numerical simulations we consider here satisfy this hypothesis (see §3.1).

I. Firsov et al.

Expressions in terms of vector spherical harmonics

We transform the conditions ( 15) and ( 16) into relations between the velocity and its radial derivative from vector spherical harmonic expansions of u and v = u × B [START_REF] Phinney | Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics[END_REF][START_REF] Ivers | Scalar and vector spherical harmonic spectral equations of rotating magnetohydrodynamics[END_REF]. The same formalism has been used before by [START_REF] Jackson | Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field[END_REF] for the poloidal components of the induction equation and by [START_REF] Greff-Lefftz | Core-mantle coupling and polar motion[END_REF] in the context of electromagnetic core-mantle coupling. It enables us to replace horizontal derivatives by projections. It involves the complex basis defined as

e ± = 1 √ 2 (∓e θ -ie ϕ ), e 0 = e r . ( 27 
)
The contravariant components of v in this basis are

v ± = v • e ± = v • e † ± = 1 √ 2 ∓v θ + iv ϕ , v 0 = v r . (28) 
The components v ± are expanded in generalized spherical harmonics

v ± = l=∞ l=1 l m=-l v ±,m l Y ±,m l , (29) 
where

Y ±,m l (θ, ϕ) = P N,m l (µ) exp(imϕ) (30) 
and P N,m l (µ) are generalized and normalized associate Legendre functions. They are real-valued.

The generalized surface harmonics obey the same orthogonality relation as the classical ones:

∀N, Y N,m l (Y N,m ′ l ′ ) † sin θdθdϕ = 4πδ l ′ l δ m ′ m (31) (see Appendix A).
The two representations ( 10) and ( 28)-( 29) of a vector field v are related through

∀l ≥ 1, -l ≤ m ≤ l, v ±,m l = l(l + 1) √ 2 (V m l ∓ iW m l ) , v 0,m l = U m l . (32) 
We have also

v ±,m l = (-1) m (v ∓,-m l ) † , (33) 
and, in particular,

v +,0 l = (v -,0 l ) † . ( 34 
)
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Henceforth, we keep the notation v ± , v 0 for the complex basis components of the vector field

v = u × B.
The components of u are u ± and u 0 . From identity (32), equation ( 11) yields

v ± = ±iB r u ± . (35) 
Using (32) again, the radial induction ( 14) can be written as

∀l ≥ 1, ∀m ∈ [0, l], ∂U m B,l ∂t = -i l(l + 1) √ 2r v +,m l -v -,m l . ( 36 
)
This equation is valid for both positive and negative m but we have to write it only for positive m as the identity for negative m can be obtained from the complex conjugate of the identity for positive m. Combining ( 35) and ( 36), we obtain the linear relationship between the flow and SV coefficients.

The condition (15) of no toroidal field induction can be transformed into

∀l ≥ 1, ∀m ∈ [0, l], 2l(l + 1)v 0,m l = ∂ ∂r r v +,m l + v -,m l . ( 37 
)
We can detail the above relation from the decomposition

∂ ∂r (rv) Σ = p + s + t, (38) 
where the subscript Σ means tangential to the CMB and

p = ∂ (ru r ) ∂r e r × B Σ , s = δ Σ × B r e r , with δ Σ = r ∂u Σ ∂r , t = u Σ × ∂ (rB r ) ∂r e r , (39) 
where δ Σ has the dimension of a velocity. Finally, we write the condition of no toroidal field induction as

∀l ≥ 1, ∀m ∈ [0, l], 2l(l + 1)v 0,m l = (p +,m l + s +,m l + t +,m l + p -,m l + s -,m l + t -,m l ). ( 40 
)
This equation is satisfied for negative m if it is satisfied for positive m. Equation ( 40) for (m = 0) involves only real quantities. The third term t can be evaluated in the same way as v above (see ( 35)) except that B r is to be replaced by ∂(rB r )/∂r.

The first term can be treated in an analogous manner using

∂(ru r ) ∂r = 1 r ∂(r 2 u r ) ∂r = -∇ 1 • u Σ (41) 
(since u r = 0 at the boundary). Finally, there remains to calculate the quantities s + and s -for the second term s. They can be obtained from the components δ + and δ -of δ Σ ,

δ Σ = δ + e + + δ -e -, (42) 
through

s ± = ±iB r δ ± . (43) 
The condition of no toroidal field induction gives us a first relationship between the vector spherical harmonic expansions of the flow and its radial derivative.

The condition (16) on the poloidal part of the induction equation gives

∀ l ≥ 1, ∀m ∈ [0, l], ∂ ∂r r(v +,m l -v -,m l ) = -l v +,m l -v -,m l . ( 44 
)
and then

∀l ≥ 1, ∀m ∈ [0, l], p +,m l + s +,m l + t +,m l -p -,m l -s -,m l -t -,m l = -l v +,m l -v -,m l . (45) 
These relations hold for negative m if they hold for positive m. For m > 0, s + and s -can be determined independently from the components of v by adding and subtracting equations ( 40) and ( 45). The m < 0 coefficients of s + and s -are immediately obtained from the m > 0 coefficients of s -and s + respectively (see ( 33)). For m = 0, s -,0 l = (s +,0 l ) † . As a matter of fact, equation ( 40)

gives the real part of s +,0 l while equation (45) gives its imaginary part. The final step consists in calculating separately δ + and δ -from s + and s -using (43). In summary, the two conditions on toroidal and poloidal SV need to be considered together and give a relationship between u and its radial derivative.
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In the presence of a conducting layer at the bottom of the mantle, equation ( 40) is modified as

2l(l + 1)v 0,m l = (p +,m l + s +,m l + t +,m l + p -,m l + s -,m l + t -,m l ) -τ G ∂ ∂t v +,m l + v -,m l , (46) 
and equation ( 45) as

p +,m l + s +,m l + t +,m l -p -,m l -s -,m l -t -,m l = -l v +,m l -v -,m l + τ G ∂ ∂t v +,m l -v -,m l . ( 47 
)
3 MAGNETIC FIELD DATA

Dynamo simulations

We use geodynamo simulations, in an electrically conducting and rotating spherical fluid shell, to generate synthetic data and validate our methodology for estimating the shear. The simulations implement the equations of Boussinesq convection, thermochemical density anomaly transport, and magnetic induction in the MHD approximation.

First, we use the same series of simulations as Aubert and Finlay ( 2019), all calculated with a stress-free boundary condition at the CMB. For these simulations, the core surface flow can unambiguously be defined as the flow at r = r C . A distinguished limit [START_REF] Dormy | Strong-field spherical dynamos[END_REF], also known as path theory [START_REF] Aubert | Spherical convective dynamos in the rapidly rotating asymptotic regime[END_REF], is employed to bridge the parameter space gap between the 'Coupled Earth model' by [START_REF] Aubert | Bottom-up control of geomagnetic secular variation by the Earth's inner core[END_REF] and the conditions of the Earth's core by relating the parameters of the simulation to a single variable ϵ. The four dimensionless numbers of the simulations are the flux-based Rayleigh, Ekman, Prandtl, and magnetic Prandtl numbers

Ra F = gF 4πρΩ 3 D 4 = ϵRa F (CE), E = ν ΩD 2 = ϵE(CE), P r = ν κ = 1, P m = ν η = √ ϵP m (CE), (48) 
where D = r C -r I , r I , g, Ω, ρ, ν, κ, and η are, respectively, the fluid shell depth, the inner core radius, the gravity at radius r C , the rotation rate, the fluid density, viscosity, thermochemical and magnetic diffusivities. Here, Ra F (CE) = 2.7 × 10 -5 , E(CE) = 3 × 10 -5 , P m (CE) = 2.5 are the control parameters of the Coupled Earth dynamo model. The scaling factor ϵ ranges from ϵ = 1 to ϵ = 10 -7 . The two end-points describe respectively so named 0p dynamo (the Coupled Earth model) and 100p dynamo, hopefully, representative of the Earth's core conditions. Here, synthetic data are generated from the 0p and from the 50p simulations for which ϵ = 1 and 3.33 × 10 -4

(Aubert and Finlay 2019). The synthetic magnetic field models are truncated at degree 13, set by the cut-off between the core and crustal contributions in spatial spectra of geomagnetic field models [START_REF] Langel | A geomagnetic field spectrum[END_REF]. We recall in Table 1 the main characteristics of the dynamo simulations used to build the prior information when inverting for the flow and/or the shear at the top of the core (see §4).

Because we are interested in the recovery of the core flow and shear from geomagnetic data, we scale time from numerical to geophysical units based on the turn-over time, following Lhuillier et al. (2011). The magnetic field Gauss coefficients are first scaled so as to fit for harmonic degrees 2 ≤ l ≤ 13 the numerical spatial spectrum

S M F (l) = (l + 1) l m=0 g m l 2 + h m l 2 (49) 
averaged over the dynamo time-span, to the spectrum of a geomagnetic field model (the CHAOS-6 model of [START_REF] Finlay | Recent geomagnetic secular variation from swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model[END_REF]. Then the numerical time is scaled by fitting for l ∈ [2 -13] the SV time scale

τ SV (l) = S M F (l) S SV (l) (50) 
obtained for the dynamo to 415/l (in years), where a definition similar to (49) is used for the SV spatial spectrum S SV (l).

Following [START_REF] Glatzmaier | An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection[END_REF], the model includes a thin electrically conducting layer above the CMB to provide magnetic coupling between the core and the mantle. Modification of the boundary conditions arising from this conducting layer is taken into account for the toroidal Radial shear in the flow at the Earth's core surface 15 components, but not for the poloidal ones (see Appendix B for the expression of these conditions).

The layer conductivity σ m and thickness δ m enter the dimensionless number

Σ = σ m δ m σ c D , (51) 
ratio of the mantle and core conductances, with σ c the conductivity of the fluid core. Σ is taken as 10 -4 in the path simulations. We have

τ G = r C D ΣR m τ U , (52) 
where We also use for validating our approach magnetic data extracted from a simulation calculated with a no-slip boundary condition at the CMB and an insulating mantle, the S1 numerical dynamo of [START_REF] Schaeffer | Turbulent geodynamo simulations: a leap towards Earth's core[END_REF]. It has been obtained for E = 10 -6 , P r = 1, and P m = 0.2. The magnetic Reynolds number has been estimated as R m = 546. Similarly to the path dynamos of [START_REF] Aubert | Spherical convective dynamos in the rapidly rotating asymptotic regime[END_REF], the simulation S1 is part of a series, which approximately preserves R m and super criticality Ra/Ra c (Ra c Rayleigh number for the onset of thermal convection).

R m = U D/η

Geomagnetic field models

We consider as geomagnetic data the COV-OBS-x2 field model that covers the period 1840-2020 [START_REF] Huder | COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[END_REF]. The COV-OBS-x2 model results from a spatio-temporal regression of magnetic records from land surveys, ground-based observatories, and satellite missions. The model
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is expanded up to spherical harmonic degree 14. Its coefficients are provided in time using order 4 cubic splines with knots every two years. The model is constructed within a stochastic framework, where a priori temporal correlations are derived from auto-regressive processes of order 2, as suggested by the temporal spectrum of observed field series [START_REF] Gillet | Stochastic modeling of the Earth's magnetic field: Inversion for covariances over the observatory era[END_REF]. This Bayesian ) respectively in vectors y 0 and g. These are expanded up to spherical harmonic degree 13. We then write the radial induction equation (36) in matrix form as

y 0 = A 0 (g)m u + e r 0 + e o 0 = y u 0 + e r 0 + e o 0 , (53) 
with y u 0 the SV prediction from the flow model m u . There are potentially two sources of errors associated with this equation: e o 0 stands for the observation errors on the SV field model coefficients, while errors of representativeness stored into e r 0 cover contributions from unmodelled processes, namely subgrid induction and diffusion (e.g., [START_REF] Eymin | On core surface flows inferred from satellite magnetic data[END_REF].

We wish to recover the flow by inverting Eq. ( 53). We assume that the statistics of the flow model and the errors are defined by their mean and cross-covariances. Under this Gaussian assumption, we face a linear inverse problem, for which we need to define the a priori crosscovariance matrix for the flow coefficients, P u = E m u m T u . In the following, the flow distri-Radial shear in the flow at the Earth's core surface 17 bution is supposed centered on zero, or E (m u ) = 0. This assumption is motivated by our poor knowledge of an appropriate background flow model in the geophysical case. We also need crosscovariance matrices for the two error terms in ( 53 

= R r 0 + R o 0 .
We consider unbiased errors, so that E (e o 0 ) = E (e r 0 ) = 0. Finally, the solution to the linear inverse problem ( 53) is:

mu = A T 0 R -1 0 A 0 + P -1 u -1 A T 0 R -1 0 y 0 . ( 54 
)
Following Aubert (2013), we assume that numerical models of the Earth's dynamo simulate the state of the Earth's core well enough to provide the prior information needed to invert for core surface flow and shear. The cross-covariance matrices R r 0 and P u are built from N * samples of the fields y 0 , g and m u from the dynamo simulations presented in § 3.1. First a crude empirical a priori covariance matrix for the flow is estimated from the samples as

Pu = 1 N * -1 N * k=1 m u,k m u,k T . (55) 
However, this estimate is noisy because of the finite number of independent dynamo states. There are indications that this introduces spurious covariances [START_REF] Sanchez | Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations[END_REF][START_REF] Schwaiger | Local estimation of quasi-geostrophic flows in Earth's core[END_REF]. In order to reduce their impact, while keeping the significant ones, we apply the "graphical LASSO" method [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF][START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF] on Pu and obtain P u (see Appendix C). This method is known to reduce noise in empirical covariance matrix estimates. It also makes the covariance matrix less sensitive to the choice of samples. For the prior matrix considered here, this method allows conserving the strong cross-correlations between flow coefficients of the same order m and nearby degrees l, l + 1, l + 2..., due to the predominance of the geostrophic equilibrium in the dynamo simulation. These are common to other Earth-like dynamo simulations (e.g. [START_REF] Gillet | A reduced stochastic model of core surface dynamics based on geodynamo simulations[END_REF].

Next, for each sample k we calculate the errors of representativeness as

e r 0,k = y 0,k -A 0 (g k ) m u,k . (56) 
The associated covariance matrix R r 0 is then obtained by applying the graphical LASSO to the empirical estimate

Rr 0 = 1 N * -1 N * k=1 e r 0,k e r 0,k T . (57) 
In the case of synthetic dynamo data, we consider no observation errors, so that R 0 = R r 0 . In the case of geophysical observations, the covariance matrix R o 0 is considered diagonal, and built from the dispersion within the ensemble of SV realizations of the COV-OBS-x2 model (see Section 3.2).

Solving for the radial shear in the flow at the top of the core

We now turn to the inversion of the shear at the top of the core, given an estimate of the surface flow. We store parameters describing the large scale component of r∂ r u Σ at the core surface (coefficients δ ± m l ) in a vector m δ . We write the two constraints from the horizontal component of the induction equation at the core surface (toroidal and poloidal) in matrix form, as

y t ≡ A t (g)m u = B t (g)m δ + e r t , (58) 
y p ≡ A p (g)m u = B p (g)m δ + e r p . (59) 
Vectors e r t,p stand for the errors of representativeness associated with those two constraints, here again, due to subgrid induction and diffusion. The two constraints shall be used simultaneously, and are concatenated as

y h ≡ A h (g)m u = B h (g)m δ + e r h = y δ h + e r h , (60) 
with y δ h the prediction to y h from the model m δ , We note P δ = E m δ m δ T the a priori covariance matrix on δ Σ (supposed a priori of zeromean). The cross-covariance matrix for the (supposed unbiased) errors of representativeness in Eq. ( 60) is noted R r h = E e r h e r h T . Inverting for m δ from 'observations' y h comes down to a linear inference, whose solution is

A T h = A T t A T p , B T h = B T t B T p ,
mδ = B T h R -1 h B h + P -1 δ -1 B T h R -1 h y h . (61) 
We investigate below the inversion for δ Σ assuming that we know the flow, in which case it is fair to ignore the propagation into Eq. ( 60) of the uncertainties on the flow inferred using Eq. ( 54).
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It happens in practice that these latter "observation errors" would be, as for the core flow inverse problem, dominated by errors of representativeness.

As for the flow inversion, we build the prior cross-covariances on m δ from geodynamo samples. Dynamo simulations considered here have been computed under the stress-free boundary condition ∂ ∂r

u Σ r = 0 , (62) 
at r = r C , so that

δ Σ = r ∂u Σ ∂r = u Σ , (63) 
or in matrix form m δ = m u . As a consequence, one has P δ = P u . From the geodynamo fields g, m u and m δ we calculate for all samples the errors of representativeness

e r h,k = A h (g k ) m u,k -B h (g k ) m δ,k . (64) 
Their associated covariance matrix R r h is then obtained by applying the graphical LASSO to the empirical estimate as

Rr h = 1 N * -1 N * k=1 e r h,k e r h,k T . ( 65 
)

Diagnostics

Below we consider several diagnostics, whether it be in the domain of the observations or of the inverted model. We are in particular interested in the spatial spectra for y h , the quantities considered as observations when inverting for the shear, which we define as

S h (l) = (l + 1) l m=0 |y t m l | 2 +|y p m l | 2 . ( 66 
)
Furthermore, to measure how well the results of our inversions match the reference dynamo fields (shear or flow), we use a correlation coefficient, defined for two surface vector fields a(θ, ϕ)

and b(θ, ϕ) as c(a, b) = 2π 0 π 0 a • b sin θdθdϕ 4π|a||b| , (67) 
where

|a|= 1 4π 2π 0 π 0 (a θ (θ, ϕ) 2 + a ϕ (θ, ϕ) 2 ) sin θdθdϕ (68)
is the r.m.s. of the norm of the vector a over the CMB. We also evaluate the misfit between two vector fields as

m(a, b) = |a -b| |a||b| . ( 69 
)
A perfect recovery is characterized by a misfit of 0 and a correlation coefficient of 1.

Finally, we estimate the factor between the surface flow and the inverted surface shear δ Σ as α the coefficient that minimizes the functional

J δ (α) = |δ Σ -αu Σ | . ( 70 
)
When considering the shear inverted from the reference dynamo flow (resp. the inverted flow), u Σ in ( 70) is the reference flow (resp. the inverted flow). When considering a set of K independent dynamo states, a set of functionals {J δ (α, k)} k∈[1,K] is obtained from all the considered samples, and α is then the coefficient that minimizes Jδ (α) the median over the samples of the J δ (α, k).

Similarly, a scaling factor α between the reference dynamo flow and the inverted flow might be calculated from the functional

J u (α) = |û Σ -αu Σ | , (71) 
where here ûΣ stands for the inverted flow.

RESULTS

We first present ( § 5.1) a validation of our methodology using data from stress-free geodynamo simulations, for which we expect δ Σ = u Σ . We conduct both twin ( § 5.1.1) and sister experiments ( § 5.1.2). In the former case, the prior knowledge needed for the inverse problem (model and error cross-covariance matrices) and the synthetic observations are built from samples of a single simulation (namely 0p). In the latter case, prior matrices are built from 0p dynamo samples, while synthetic data are obtained from the more advanced 50p dynamo. We then investigate a more realistic case where the surface shear is calculated from a flow estimated from the SV rather Table 2. Statistics for the surface shear estimation. Correlation c and misfit m between the estimated shear and the surface flow. Assuming proportionality between the flow and the shear, α indicates the coefficient that minimizes J δ (α). Cases labeled "T " and "S" denotes respectively for the twin and sister experiments.

The subscript u points tests based on surface flows directly extracted from the simulations, in which case the diagnostics c and m are calculated with respect to the dynamo flow. In other cases, they are estimated from the inverted flow. Cases noted "S1" and "G" stand for investigations of synthetic data from the S1 simulation and from geophysical data (for 2018) respectively. "prior" indicates the dynamo considered for building the various (prior and error) covariance matrices. "data" indicates the dynamo used to generate the synthetic data. "C" stands for COV-OBS-x2 geomagnetic model. L h is the truncation degree of y h . For synthetic experiments we provide values for the 25%, 50%, and 75% percentiles, with the correlation and misfit values written in that order: 25%:50%:75%. misfit J(α) is minimized when δ Σ = 1.1u Σ , again close to the expected relationship δ Σ = u Σ .

case prior data L h c(u Σ , δ Σ ) m(u Σ , δ Σ ) α T a u 0p 0p 18 
The following results are obtained with L h = 18.

Sister experiment with stress-free synthetic data, knowing the large-scale flow

We move further and add a new step in the estimation of δ Σ , considering the sister experiment with 50p as the reference, and 0p for the prior. We refer to this case as S u . Here, we estimate the surface shear for 40 independent snapshots. The correlation between estimated shear and surface flow remains high (see Table 2). From twin to sister experiments, the median value of the correlation has decreased from 0.81 to 0.76 while the misfit has slightly increased from 1.22 to 1.24. The misfit is minimized when α = 0.9, which is close to the expected value of 1 as in the twin experiment.
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Experiments with stress-free synthetic data, and surface flow estimated from SV

We now infer u Σ for independent snapshots of the magnetic field at the core surface and its SV. We build our prior covariance matrices from 0p simulations. The set-up for the flow inversion is very comparable to the one recently investigated by [START_REF] Schwaiger | Local estimation of quasi-geostrophic flows in Earth's core[END_REF] when using dynamo priors.

The only modification is the introduction of Graphical LASSO to build covariance matrices (see Appendix C). We shall consider successively twin (T ) and sister (S ) experiments. In the former case, we estimate 28 velocity snapshots from 0p simulation, and in the latter case, we estimate 40 snapshots from 50p simulation. Table 3 gives the statistics for the flow inversions. We find a high correlation between estimated and true surface flows. However, the estimated flow significantly underestimates the true flow by a factor of about 2. Then, we estimate shears from the inverted flows (case T and S, see Table 2). The correlation coefficients between inverted surface flow and shear maintain high values (median value 0.82 for T and 0.90 for S). Here, the misfits result from the large amplitude of the shear in comparison with the flow estimated from the SV. Figure 2 (right) shows maps for the SV inferred flow and the shear calculated with this flow for a representative example of the sister experiment S . This illustrates that the geometry of the shear and of the flow agrees quite well. However, we find a factor of about 2 between the surface shear and the inverted surface flow (namely 2.3 and 1.8 for T and S respectively). This disagrees with the expected relationship δ Σ = u Σ . We have compared also the shears with the flows directly extracted from the dynamo simulations. Then, we approximately find δ Σ = u Σ (namely 1.1 and 0.9 for T and S respectively). We explain this discrepancy with the decisive role of the prior information in our shear estimation.

The impact of the prior information can be understood from the different spectra related to y h , the combined poloidal and toroidal constraints (see Fig. 3 bottom). We compare it with the spectra of the inverted flow (Fig. 3 top). In both cases, the power (of y 0 , the SV, and of y h ) Radial shear in the flow at the Earth's core surface 25 Table 3. Statistics for surface flow estimations. Correlation c and misfit m between components of the estimated (û Σ ) and true (u Σ ) surface flows. Assuming a linear relationship between the two flows, α indicates the coefficient that minimizes the functional J u (α). Cases labeled "T " and "S" stand respectively for the twin and sister experiments. "prior" indicates the dynamo considered for building the various (prior and error) covariance matrices. "data" indicates the dynamo used to generate the synthetic data. We provide values for the 25%, 50%, and 75% percentiles, with the correlation and misfit values written in that order: 25%:50%:75%. inferred from radial SV, using 0p data as prior matrices): observation (blue), a priori error (dashed green), reference field predictions (orange), model predictions (purple), prediction errors (dashed red). See Eq. ( 53) and ( 60) for the definitions of y u 0 and y δ h .

case prior data c(û Σ , u Σ ) m(û Σ , u Σ ) α T 0p 0p 
in the simulation than in the Earth's core, across which the magnetic field is supposed to be continuous. Since this location is not uniquely defined, we cannot define unambiguously the surface flow to compare with our flow estimation. Above all else, large variations with radius of δ Σ next to the core surface preclude any simple definition of the radial shear in the flow in no-slip dynamo simulations. Therefore, we shall only investigate whether the inverted surface flow and the inverted surface shear are similar. We estimate here the shear for 30 independent dynamo samples.

We find again a strong correlation between surface flow and shear. The surface shear is only half the estimated flow when using the 50p prior (to be compared with α ≃ 0.8 for the inversion with the 0p prior). Figure 4 (right) has been built for a representative example (where the misfit and the correlation are similar to their median values). We compare these maps for u Σ and δ Σ with maps Radial shear in the flow at the Earth's core surface 27 obtained for the same snapshot but with prior information given by the 0p dynamo (left). We see again that the prior information is much more important for δ Σ than for u Σ . Figure 4 shows a nice agreement between the two quantities. We build on this result to consider geomagnetic data.

Flow shear at the core surface: application to geomagnetic data

We consider here the main field and SV Gauss coefficients from the COV-OBS-x2 geomagnetic field model for the epochs 2000 and 2018 [START_REF] Huder | COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[END_REF]. We conduct exactly the same suite of calculations as for the S1 synthetic data above. We employ again the 50p simulation for building the prior information. Using surface flow models obtained by inverting the radial induction equation, we solve the inverse problem for δ Σ . Figure 5 presents a comparison between the maps of δ Σ and of u Σ . We recover the expected equatorial symmetry. Overall, the two vector fields have similar directions. Both the flow and the shear show a smooth structure, with less medium scales than the quantities estimated from S1 synthetic data. They display the features present in estimations of core surface flows for the recent epochs and are dominated by westward surface flows/shears at low latitudes in a hemisphere centered on the Greenwich meridian. We find also emergence of Eastward flow under the Pacific Ocean from 2000 to 2018, as already reported by [START_REF] Finlay | Gyres, jets and waves in Earth's core[END_REF]. There is a high correlation between flow and shear. We estimate 2. Here, we find ∆δ Σ ∼ 0.4∆u Σ when using the 50p prior (and ∆δ Σ ∼ 0.6∆u Σ using the 0p prior). The relationship between the shear and the flow thus seems to depend on the frequency.

Our analysis of geophysical data is at odds with the tests performed from synthetic data, as the surface flow and shear do not have similar amplitudes but rather the shear is much stronger. This questions the prior information used to calculate the surface shear. One possible explanation is the non-negligible role of mantle electrical conductivity. We need numerical simulations calculated with several values of mantle conductance to go further.

DISCUSSION

All our tests yield a clear correlation between the flow and the radial shear in the flow at the core surface. The results for the 0p and 50p path dynamos are consistent with the relationship δ Σ = u Σ as anticipated for dynamo models with stress-free boundary conditions. Less expectedly, this conclusion also holds for tests with synthetic data obtained from the S1 model, calculated with no-slip boundary conditions. We find that unfortunately, the value of the ratio between flow and shear varies with the dynamo model used to build the necessary prior information. This makes it more difficult to reach firm conclusions when applying the method to actual data.

The surface shear that we infer from geomagnetic data for 2000 and 2018 also appears correlated with the surface flow. In contrast with synthetic cases, the ratio between instantaneous maps of the flow and of the shear is much higher than 1, namely about 4. Correlation between flow and shear had been exhibited previously by [START_REF] Lloyd | Toroidal fluid motion at the top of the Earth's core[END_REF] and [START_REF] Jackson | Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field[END_REF] for 1970. These studies differ from ours inasmuch as they treat the horizontal components of the SV as data, whereas we derive a condition to be satisfied by the flow and the shear that is independent of SV data. Also, [START_REF] Jackson | Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field[END_REF] used the poloidal part of the SV data only: this amounts to considering equation (45) but not (40). [START_REF] Jackson | Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field[END_REF] and [START_REF] Lloyd | Toroidal fluid motion at the top of the Earth's core[END_REF] estimated the ratio between flow and shear to be about 2 and 6, respectively. We find that the radial shear in the flow that we estimate from the induction equation at the CMB is unrelated to the shear at depth, for both stress-free (Fig. 7) and no-slip boundary (Fig. 8) conditions. The flow calculated at the surface and at depth are very similar in both cases. Here the fields are calculated from specific snapshots for which the flow components have been stored at all radii. The maps of the radial shear extracted from the geodynamo simulations at depth are the strongest in the equatorial region, and overall dominated by the azimuthal component. This intense shear arises because the flow, which is nearly QG, has small length scales in the cylindrical radial direction next to the equator. Conversely, these equatorial features are absent from the flow maps at the surface and at depth as well. This may explain why [START_REF] Amit | A simple model for mantle-driven flow at the top of Earth's core[END_REF] found a correlation between the flow and the radial shear in the flow at depth in their dynamo simulations (E = 3 -6 × 10 -4 ) only after down-playing the equatorial region.

Assuming a QG geometry for the flow (see ansatz (12c,d) of [START_REF] Labbé | On magnetostrophic inertia-less waves in quasi-geostrophic models of planetary cores[END_REF] and (2.1) of Bardsley ( 2018)), we can derive another expression relating the surface flow and its radial derivative at the CMB. When we undertook this study, we initially hoped to use this relationship together with conditions ( 15) and ( 16) to better constrain the surface flow. Unfortunately, we can- For a spherical boundary permeated by a laterally varying magnetic field, the situation is less simple but we expect similarly ∂(u/r)/∂r to be weak if the mantle is electrically insulating and to become large compared to u/r 2 with increasing conductivity of the mantle. The mention of Alfvén waves indicates that this description involves a discussion of force balance. As a matter of fact, the continuity of the horizontal components of the magnetic field B Σ at the core-mantle interface 

(see equations ( 35) and ( 43)). In this situation, the surface shear would be well-constrained. On time scales for which the mantle is insulating (times large compared to τ G ) it will be difficult to ascertain the value of the shear. Alternatively, on short time scales for which the mantle conductivity is significant, we may hope to constrain the value of the shear at the core surface. This scenario now needs to be documented with dynamo models incorporating a conducting layer at the bottom of the mantle.

Our estimate of the surface shear, which is larger from geomagnetic data than from synthetic data, may be an indication of significant conductance of the lowermost mantle. Therefore, we may hope to constrain the mantle conductivity from an investigation of core dynamics. [START_REF] Holme | Mapping geomagnetic secular variation at the core-mantle boundary[END_REF] remarked that the observable SV varies on a time scale τ SA that is independent of the harmonic degree and [START_REF] Christensen | Timescales of geomagnetic secular acceleration in satellite field models and geodynamo models[END_REF] found this statement to apply also to dynamo simulations. They argued that τ SA , for l ≲ 10, can primarily be interpreted as the time scale of the core surface flow changes. This observation has since been confirmed with dynamo simulations run at parameters closer to Earth's conditions [START_REF] Aubert | Geomagnetic acceleration and rapid hydromagnetic wave dynamics in advanced numerical simulations of the geodynamo[END_REF].

The significance of the terms involving the mantle conductivity in the poloidal and toroidal conditions for the electrical field -see equations ( 46) and ( 47) -is thus measured by the ratio Radial shear in the flow at the Earth's core surface 33 τ G /τ SA . Taking τ SA as 10 years, we find τ G = τ SA for a mantle conductance about 7 × 10 7 S.

We may be able to gain insight into a conducting layer adjacent to the core from a detailed analysis of the time changes of the surface flow and shear if the mantle conductance is of this order or larger. Within the framework we propose, the sensitivity of the core dynamics to the electrical conductivity of the lower mantle is enhanced at short periods. Waves recently detected at interannual periods from satellite data [START_REF] Gillet | A dynamical prospective on interannual geomagnetic field changes[END_REF]) could thus be used as sources to shed light on the conductance of the lowermost mantle adjoining the core.

  is the magnetic Reynolds number and τ U = D/U the turn-over time-scale, with U the r.m.s velocity over the fluid core. The path simulations preserve R m to values about 1000 and τ U to values around 130 yr (see Table 1) so that τ G ≈ 20 yr whatever the value of ϵ along the path. As a result, considering |B r |(r = r C )/|B|∼ 1/8 for Earth-like geodynamo simulations (Aubert et al. 2009, with |B| the r.m.s. magnetic field inside the fluid core) and the values for the Alfvén time τ A = D √ ρµ/|B| found for the path simulations (Aubert et al. 2017, with µ the magnetic permeability), we can rewrite the dimensionless mantle conductance as Q = τ G .2 for the definition of Q. We obtain Q ∼ 2 × 10 -2 and Q ∼ 10 -1 for the 0p and 50p simulations respectively. These low values, together with the condition τ G ≪ τ U , justify treating the mantle as insulating when considering decadal flow changes in the path simulations.

  approach allows the proposal of a model expectation (the most probable estimate) as well as of a posteriori model uncertainties. The former is considered below to build the observation and forward operators. The latter are used to build the SV data error covariance matrix. Here, we consider two snapshots for the years 2000 and 2018. This latter epoch is covered by Swarm data when the model reaches its highest accuracy. The comparison with the former epoch allows us to document the largest changes observed during the satellite era. 4 INVERSION METHODOLOGY 4.1 Solving for the core surface flow We store the parameters describing the large-scale core surface flow (u ± m l ) in a vector m u . The flow model is expanded up to spherical harmonic degree L u . We store the parameters describing the SV (∂ t U B m l ) and the main field (U B m l
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 00 are supposed independent the one from the other, or E e r 0 The covariance matrix for the sum of the two errors is then R 0

Figure 1 .

 1 Figure 1. Comparison between the surface flow (top) and the inverted shear (bottom), in the case of twin experiments (case T a u ), using the 0p dynamo for both the data and the prior covariance matrices. The color scale gives the amplitude of the ϕ component.

Figure 2 (

 2 Figure 2 (left) shows the comparison between surface flow and shear for a representative snapshot, which has a misfit m and a correlation c about the median value. The sister experiment, using the dynamo surface flow, validates the estimation of surface shear.

Figure 2 .

 2 Figure 2. Comparison between flow (top) and shear (bottom) for sister experiments. The shear is calculated respectively from the dynamo flow (left, case S u ) and the inverted flow (right, case S). The color scale gives the amplitude of the ϕ component.

Figure 3 .

 3 Figure 3. log 10 of the energy spectra for the radial SV y 0 (top, see Eq. 53) and the equation involving the radial shear in the flow y h (bottom, see Eq. 60), in case S (sister experiment where the large-scale flow is

Figure 4 .

 4 Figure 4. Comparison of inverted flow and shear from SV data of the S1 no slip dynamo, using 0p (left) and 50p (right) to build the prior information (cases S1 a,b ).

Figure 5 .

 5 Figure 5. Comparison of the flow (top) and shear (bottom) inverted from the COV-OBS-x2 model, using 50p as the prior and a truncation degree L h = 18, at epoch 2000 (left) and 2018 (right).

δ

  Σ ∼ 4.3 u Σ for the year 2018 and 50p prior (δ Σ ∼ 4.7 u Σ with the 0p prior). Similarly to the example illustrating estimations from S1 synthetic data with the same prior (see Fig. 4 right), the surface shear only partially reproduces spatial changes in the flow direction at the Equator. As shown in Fig. 6, a large correlation is also found between the flow increment ∆u Σ = u Σ (t = 2018) -u Σ (t = 2000) and the shear increment ∆δ Σ = δ Σ (t = 2018) -δ Σ (t = 2000) -see the case G ∆ in Table

Figure 6 .

 6 Figure 6. Flow increment (top) and shear increment (bottom) between epochs 2000 and 2018, as inverted from the COV-OBS-x2 model, using the 50p prior.

Figure 7 .

 7 Figure 7. Shear in the flow at the Core surface (top left), shear in the flow inverted from the surface flow (top right), and shear in the flow (bottom left) and flow (bottom right) at about 6 Ekman depths δ ν (or r = 0.97r C , with δ ν = r C √ E), for one sample of the 0p dynamo.

Figure 8 .

 8 Figure 8. Surface flow estimated from radial SV (top left), shear in the flow inverted from the surface flow (top right), and shear in the flow (bottom left) and flow (bottom right) at about 6 Ekman depths (r = 0.99r C ), for one sample of the S1 dynamo.

I.

  Firsov et al. is equivalent to the equality of the Maxwell stress B r B Σ /µ 0 on either side of the CMB. Taking the radial component as invariant, the continuity of ∂B Σ /∂t thus amounts to the continuity of the components of the time derivative of the Maxwell stress parallel to the boundary. When the mantle is insulating, integrals of the Maxwell stress on the mantle side vanish, limiting the Maxwell stress on the core side. We explain this way our finding of weak shear in the S1 dynamo even though it was not prescribed as a boundary condition. Conversely, in the presence of a conducting layer at the bottom of the mantle, Maxwell stresses on the mantle side have to be balanced by stresses on the core side. From the horizontal induction equation, we see that rapid time changes ∂B Σ /∂t arise from large surface shear. If the Earth's mantle had a strong conductance, an enhanced shear (from the term δ Σ × B r e r ) would be required to balance the term τ G ∂v ± /∂t in equations (46

Table 1 .

 1 Summary of the main characteristics for the dynamo considered to build the prior covariance matrices. N * is the number of snapshots considered for constructing the prior matrices. ∆T * is the time span covered by the dynamo free run. The Ekman (E), magnetic Prandtl (P m ), magnetic Reynolds (R m ) numbers and the turn-over (τ U ) and Alfvén (τ A ) timescales are defined in the text.

	dynamo ∆T * (yr) N *	E	P m	R m τ U (yr) τ A (yr)
	Op	67 050	746 3 × 10 -5	2.5	942	140	100
	50p	20 000	1000	10 -8	0.045 1082	125	14
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DATA AVAILABILITY

The core surface data of the analysed dynamo simulations are accessible at https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/pygeodyn data

than from the surface flow directly obtained from the simulation ( § 5.1.3). Next, we test in §5.2 our tools with data extracted from a dynamo calculated with the no-slip (instead of stress-free) boundary condition at r = r C . We are thus getting closer to the geophysical configuration. Finally, we follow the same protocol with real data from the COV-OBS-x2 magnetic model ( § 5.3).

5.1 Flow shear from synthetic dynamo data: stress-free simulations 5.1.1 Twin experiments with stress-free synthetic data, knowing the large-scale flow

We first consider the case of twin experiments based on the 0p simulation. Flow and shear are truncated at degree L u = 18. This is slightly above the resolution limit lately considered for inverted core motions, thus mitigating aliasing issues [START_REF] Gillet | A reduced stochastic model of core surface dynamics based on geodynamo simulations[END_REF]. For this first test, we assume that the surface flow u Σ is exactly known up to degree L u , and test our ability to recover the radial shear in the flow δ Σ , from Eq. ( 61). This comes down to an ideal set-up, in order to verify that we are able to obtain information on δ Σ . We refer to this case as T a u . We estimate δ Σ for 28 independent snapshots of the 0p simulation and find that it is highly correlated with u Σ .

We report the distribution of correlations and misfit values by providing the median together with the first and last quartile values (see Table 2, case T a u ). The misfit values are nonetheless quite large (with a median of about 1.22) because the inverted δ Σ has a much simpler geometry than the surface flow. This is well illustrated in Fig. 1, which shows one representative example chosen in such a way that the correlation and misfit between u Σ and δ Σ are close to their respective median values within all the considered snapshots. The two maps show the ϕ components of u Σ and δ Σ superimposed with their associated streamlines. Although there is not a one-to-one correspondence between the estimated shear and the shear prescribed at the core surface by the boundary condition, the correlation between the two fields is striking and their amplitude is similar. Writing δ Σ = αu Σ , we find that the global misfit J(α) is minimized for α = 1.3, close to the expected value of 1.

We also test to what extent this conclusion depends on the choice of the truncation degree L h of poloidal and toroidal conditions (see eq. 60). We consider two values, L h = 18 and L h = 13, corresponding to the cases T a u and T b u . It turns out that the results of the two inversions are very similar, implying that the choice for the truncation level is not critical. For L h = 13, the global
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The Therefore, the basis vectors are orthogonal and of unit norm

The contravariant components of v in this basis are

Using the representation (10) of v to calculate v θ and v ϕ , we obtain

We have [START_REF] Phinney | Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics[END_REF]. Using (A.6), we transform (A.5) into

APPENDIX B: BOUNDARY CONDITION ON THE MAGNETIC FIELD

We write the boundary conditions on the magnetic field at r = c in the presence of an infinitely thin conducting layer. The radial component is continuous across the layer. We have at the core-mantle boundary

and in the mantle conducting layer

Finally, the continuity of the components of the electrical field parallel to the boundary gives

If we can neglect the diffusion term on the right-hand side, we obtain
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Then, the boundary condition for the poloidal field becomes

APPENDIX C: COVARIANCE MATRICES WITH GRAPHICAL LASSO

Empirical covariance matrices for the prior on the flow, the shear, and errors of representativeness have been obtained based on a finite set of samples from geodynamo simulations, using the Graphical LASSO (or 'G-LASSO', see [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF][START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF]) in order to reduce spurious cross-covariances. We recall here the main lines of this approach, in the case of the fluid flow a priori covariance matrix. From the rough estimate of Eq. ( 55), we first calculate the correlation matrix

where D u is the diagonal of the matrix Pu . Following [START_REF] Istas | Transient core surface dynamics from ground and satellite geomagnetic data[END_REF], we then apply G-LASSO on Cu . This algorithm provides a sparse estimate of the precision matrix Θ (inverse of the correlation matrix), by searching for

where λ is an adjustable parameter. The output cross-covariance matrix is then

Considering λ = ∞ sets off-diagonal elements of Θ (and then of P u ) to zero, while for λ = 0 the method outputs P u = Pu (if inversible). 

, t 1,s 1 , t 0,c 2 , t 1,c 1 , t 1,s 2 , t 2,c 2 , t 2,s 2 , t 0,c 3 ... Right: same for the correlation matrix associated with Rr h for the errors of representativeness, obtained after applying the G-LASSO with λ = 0.05.

Radial shear in the flow at the Earth's core surface 41 Table A1. Correlation and misfits for the two horizontal components of the shear estimated from 50p data, and using the 0p prior, with and without application of G-LASSO to the prior matrices (L h = 18). We provide in Table A1 the scores for the misfits and correlation coefficients when inverting for the shear in the case of twin and sister experiments. Using the G-LASSO significantly improves the scores in the latter case, justifying our preference this sparse estimate of the matrices.