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Online robust endomicroscopy video mosaicking using robot prior

B. Rosa1, B. Dahroug2, B. Tamadazte2, K. Rabenorosoa2, P. Rougeot2, N. Andreff2, P. Renaud1

Abstract— This paper discusses the development of a mo-
saicking algorithm for building large and high resolution
confocal images. Due to the nature of optics and vision systems
in general, there is still a dilemma between choosing a wide
field-of-view (FOV) and high-resolution. The most accepted
solution is to opt for a high-resolution optics and expand the
FOV algorithmically thanks to mosaicking approaches. The
study reported in this paper consists of online and real-time
construction of large mosaics using individual confocal images
with a micrometer resolution. These individual images are
provided by a confocal laser endomicroscopy (pCLE) probe
which can grab in vivo real-time images through a minimally
invasive access. The acquisition of the confocal images is
achieved by moving the imaging probe on the studied sample
surface with a constant contact between the probe and the
sample.

The mosaicking algorithm proposed in this paper deals with
the combination of both the robot inputs and the image registra-
tions. The proposed method has demonstrated very promising
performances in terms of accuracy and robustness with regard
to image noise (poor image quality or loss of contact between
the probe and the sample) as well as misregistration issues.
Experiments carried out with a highly accurate robotic system
and a ground truth obtained by conventional optical microscopy
demonstrate the robustness of the proposed approach.

I. INTRODUCTION

Optical biopsy techniques, in opposition to the physical
ones, are increasingly used in clinical investigations, thanks
to the ability to directly visualize microscopic cellular struc-
tures without the need to take a physical tissue sample.
In fact, optical biopsy images can be useful in several
clinical scenarios for: i) reducing sampling errors and costs;
ii) reducing the need for excision, transport, storage and
examination of the sampled tissue, and iii) providing in
situ, in vivo, and real-time feedback during (micro)surgical
procedures. Among the imaging techniques used for optical
biopsy, probe-based confocal laser endomicroscopy (pCLE)
is a very promising modality [1].

A common problem, however, is that the field-of-view
(FOV) of micrometer resolution optical biopsies is too nar-
row for a proper diagnosis. Consequently, several image
mosaicking techniques have been reported in the literature.
The principle is to move the imaging system (or the tissue
sample with respect to the imaging system) to collect high
resolution images, which will be used to compute the mo-
saic [2], [3]. While mosaicking of endomicroscopic images
has been validated in clinical studies [3], [4], the microscale
movements necessary to produce good quality large FOV
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mosaics were a limiting factor. As a result, many studies
proposed robotic assistance. Different combinations of em-
bedded microactuators [5], [6], sensors [7], stabilizers [5],
[8], [9], and control architectures [6], [10] were proposed to
reliably displace the probe with respect to the tissue in order
to produce large FOV mosaics.

Introducing robotic-assisted endomicroscopy has radically
improved the quality of the produced mosaics. However,
many of those studies were performed in ex vivo conditions.
In real surgical settings, various phenomena – such as partial
loss of contact between the probe and the tissue (e.g., due
to non-planar tissue geometry [11] or inaccurate depth con-
trol [8]), debris on the tissue surface, or nonlinearities of the
robotic actuators (local accelerations, mechanical backlash,
hysteresis and/or creep effects) – will create image artifacts.
In some cases, this can result to complete image loss (Fig. 1).

Fig. 1. Sample images acquired by a CellVizio endomicroscopy probe on
a ficus benjamina leaf. Left: good contact conditions. Middle: Bad contact
conditions. Right: motion artifact (circle) induced by local accelerations.
Note how the middle image is dominated by noise, with artifacts from the
fiber bundle showing up (circle).

Those artifacts and image losses are detrimental for the
mosaicking process. A typical mosaicking pipeline includes
image matching and warping, loop closure and bundle ad-
justment, and mosaic construction [12], [13]. This is a well
established process, which can run in real-time in some con-
texts (e.g. panorama reconstruction in modern smartphones).
In the context of endomicroscopic image mosaicking [2],
[3], the typical pipeline is a similar three-stage process
(Fig. 2). First, an online topology inference is constructed
by registering successive frame together and summing those
registrations. In the second pass, loop closure detection and
bundle adjustment are performed. Finally, a third pass may be
performed to account for local tissue deformations. It should
be highlighted that variations in contact conditions and other
physical phenomena can cause large illumination and as-
pect differences between non-sucessive images, which make
common loop closure methods inapplicable. As a result, the
two main clinically-validated methods for endomicroscopic
image mosaicking use the result of the online topology
inference to detect images which are close spatially by not
temporally. Those images are then registered together, and



the result is used as a constraint in the bundle adjustment
step.
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Fig. 2. General structure of the mosaicking algorithm. Top: mosaicking
pipeline from [2], [3] (lighter colored boxes are computed in real-time,
others offline). Bottom: detail of the online topology inference. The parts
added in the proposed algorithm are in red.

In the event that large image losses and artifacts are
present locally, registering consecutive images together gets
very difficult. Usual registration algorithms will likely fail
at those points, causing an accumulation of large errors
in the online topology inference. Since this first topology
inference is used as a first guess in the subsequent steps
of the algorithm, large errors will cause the whole process
to fail. Moreover, in the case of robot-assisted mosaicking,
several studies have shown the importance of using visual
feedback for controlling the robot movement and producing
large FOV mosaics [6], [10]. If the motion estimation is
erroneous, this could cause control issues and instabilities.
Finally, clinical studies have also shown the importance of
the online topology inference for the clinician [4]. In fact,
displaying the online topology inference, even if inaccurate,
on the screen, will help the surgeon assess whether the
final offline-computed mosaic will be correct. For all those
reasons, the online topology inference algorithm needs to be
robust to large artifacts and local image losses.

A. Contributions

This paper proposes an algorithm for robust online topol-
ogy inference in the context of robot-assisted endomicro-
scopic image mosaicking. We propose to use extra informa-
tion coming either from the robot commanded trajectory (or
from position sensors placed on the probe) to robustify the
online estimation. Mahé et. al. [14] developed a topology
inference algorithm using weak shape priors from the robot
trajectories, specifically tailored at spiral ones. More recently,
Vyas and her colleagues [7] proposed tracking the probe
motion using an electromagnetic tracker in order to provide a
first guess to the image matching algorithm. This approach is
however limited by the fact that the tracker might not give an
accurate representation of the probe/tissue displacement (for
instance due to tissue deformations [11]), therefore providing
the image matching algorithm with a incorrect first guess.

In this paper, we propose a novel method for online
topology inference based on a Kalman filter.The combination
of the robot data and the image information in the Kalman
filter scheme allows avoiding the image quality and spurious
matching issues. In order to efficiently fuse the image and
robot information, we also propose a method to estimate
the relative confidence in those two estimates. It is designed

to run online, and to be robust to image contrast loss,
misregistrations, and non-uniform robot motion (e.g., local
accelerations, mechanical backlash, etc.). As displayed in
Fig. 2, the proposed method is an alternative, robust online
topology inference. Subsequent loop closure detection and
bundle adjustment steps could be performed using methods
from [2], [3].

The developed method is detailed in Section II. Section III
presents the used materials and devices to perform the
experimental validation. Finally, Section IV discusses the
validation scenarios as well as the ground truth comparison
of the obtained results.

II. KALMAN FILTERING FOR ONLINE TOPOLOGY
INFERENCE

This section deals with the introduction of the topology
inference filtering method that occurs during the first pass of
the mosaicking process. The proposed method runs online
and in real-time (i.e. greater than the image acquisition rate
of 10-12Hz). With such a framerate, the mosaic image recon-
struction allows giving feedback to the clinician during the
acquisition process, and allows him/her identifying whether
the mosaic will be correctly formed in the subsequent off-
line optimization process [4].

A. Filtering the Topology Inference
Let us consider an image Ii grabbed at time i. The posi-

tion of Ii in the mosaic is noted Xm(i), and its registration
with respect to Ii−1 is noted dXi

i−1. As such, the simple
image-based topology inference (i.e. first pass of the mosaic)
can be expressed as follows

Xm(i) = Xm(i− 1) + dXi
i−1 (1)

=

i∑
k=1

dXk
k−1 (2)

At the same time i, the robot is controlled with a velocity
Vr(i) in order to track accurately a predefined trajectory Γ(i).
Similarly, and by assuming that the robot control frequency
fr = 1/Ts (where Ts is the sampling time) is synchronized
with the image framerate, one can write

Xr(i) =

i∑
k=1

Vr(k)Ts, (3)

It should be underlined that both Xm and Xr are relative
to the first acquired image.

With the aim of filtering out the bad matches, we design a
Kalman filter which will take both Xm and Xr into account
to estimate a filtered position Xf . Following a Bayesian
notation, one can write the belief in a given state as a
Gaussian N (µ, σ2), where µ is the estimated position and
σ2 is the associated variance. At a time instant i, the belief
in the current state can then be written as N (Xf (i), σ2

f ). By
considering the robot control speed as a process model, then
the prior P(i+ 1) can be expressed as follows

P(i+ 1) = N (µP(i), σ2
P(i))

= N
(
Xf (i) + Vr(i+ 1)Ts, σ

2
rob(i)

)
, (4)



where σ2
rob(i) is the variance associated with the robot

prediction.
The likelihood L(i), coming from the image estimate

dXi+1
i , is written as follows

L(i+ 1) = N
(
µL(i), σ2

L(i)
)

= N
(
Xf (i) + dXi+1

i , σ2
img(i)

)
(5)

Similarly to σ2
rob(i), σ2

img(i) is the variance associated
with the image-based estimation. Using those notations, the
filtered state F(i + 1) can be defined as the multiplication
of the two Gaussians

F(i+ 1) = N
(
Xf (i), σ2

est(i)
)

= ||P(i).L(i)|| (6)

The filtered state Xf (i) and the associated variance σ2
est(i)

are then computed using the standard formula for the multi-
plication of two Gaussians:

Xf (i) =
σ2
P(i)µL(i) + σ2

L(i)µP(i)

σ2
P(i) + σ2

L(i)
(7)

σ2
est(i) =

σ2
P(i)σ2

L(i)

σ2
P(i) + σ2

L(i)
(8)

Because endomicroscopic images are confocal, the mosaic
is built in the x − y plane. Therefore, the variables Xm,r,f

and Vr have two components, which means the Gaussians
are theoretically multivariate in the previous equations. We
do not, however, have specific information as to how the x
and y elements of the image or robot speed vary in relation to
one another. As such, we chose to develop two independent
filters for the x and y components of the displacement. Each
of those filters is governed by Eqs. 1–8.

B. Prior and Likelihood Variance

To function properly, a key element of a Kalman filter is to
have a good estimate of the Prior and Likelihood variances
(respectively σ2

rob(i) and σ2
img(i) in our framework). Indeed,

those variances will govern how much information from
the Prior and Likelihood is incorporated into the filtered
output (Eqs 7–8). In our case, neither the robot trajectory
or the image-based estimations are perfect along the whole
scanning path, due to the various phenomena discussed
earlier (tissue deformations, loss of probe/sample contact,
poor image contrast, nonlinearities on the robot motion, etc.).
To take this into account, we propose a method which mod-
ulates the covariances depending on the current confidences
cimg and crob corresponding to the robot and the image
estimations, respectively. This modulation is expressed as
follows

σ2
rob(i) =

σ2
r0(i)

crob(i)
(9)

σ2
img(i) =

σ2
i0(i)

cimg(i)
(10)

with σr0 and σi0 initial values. Because we do not have any
information about how the probe interacts with the tissue,

we choose to rely more on the image data than on the robot
one at the start, thus initializing these parameters as follows
: crob(0) = 10 and cimg(0) = 0. These values will be
updated as the scanning task progresses, as detailed in the
two following subsections.
C. Image Matching Confidence Estimation

As defined above, cimg(i) represents the confidence in a
given image estimation at time i, i.e. the likelihood of the
translation dXi

i−1 to be accurate. Using the output metric of
the registration algorithm (i.e. normalized cross correlation
(NCC) in [3], [4] or the sum of squared differences (SSD)
in [2]) is not necessarily suitable, especially in the case of
low contrast images or presence of image artifacts, which
are generally characterized by a unfavorable signal-to-noise
ratio (see Fig. 1).

Rather, we hypothesize that good image quality matches
are consistent with the direct preceding matches. This as-
sumes that the scanning path followed by the probe with
respect to the tissue is smooth. Obviously, it is entirely pos-
sible, even if the robot input trajectory is smooth, to induce
local accelerations in the image, either due to mechanical
imperfections of the robot, or to stick/slip effects (during
the probe/tissue contacts). However, as shown in [3], such
accelerations induce image deformations due to the physical
image acquisition process, which make the registration unre-
liable or at least inaccurate. Hughes et al. recently proposed
a promising high frame rate endomicroscope which partially
tackles this problem [15]. This prototype is however neither
available to the public, nor marked for clinical uses.

Let us note x and y the two components of the image-
estimated displacement at time i, i.e. dXi

i−1 = (x; y)> . We
define α(i) as the angle of the vector dXi

i−1 and N(i) its
norm :

α(i) = arctan 2
(
y(i), x(i)

)
(11)

N(i) =
(
x(i)2 + y(i)2

) 1
2

(12)

Using this formalism, we estimate the probability of
having a good match at time i by looking at the smoothness
of α and N . Therefore, to estimate this smoothness, we
compare the direction and the norm of the current velocity
vector with low-pass filtered values. This means that, if
hα(i, n) = [α(i−n), ...α(i)] is the history of α (respectively
hN for N ) over the n time-steps directly preceding i, one
can write

cangle(i) = normalize
(
α(i)− f

(
hα(i, n)

))
(13)

cspeed(i) = normalize
(
N(i)− f

(
hN (i, n)

))
(14)

where f(.) is a low-pass filtering operator which will elim-
inate the oscillations.

To do this, we use a median filter (to remove large peaks)
followed by a 3rd order polynomial fitting (to smoothen the
curve). The normalize function is defined as follows

normalize(x) =

(
1− erf

(
k ∗ (x− xr)

))
2

, (15)



where erf is the error function. This function is chosen to
normalize the confidence score between 0 and 1, with k and
xr setting the slope and the 0.5 confidence level, respectively.

One can also estimate the image matching confidence by
looking at the similarity between aligned images. In this case,
the score cmatch is estimated by computing the structural
similarity [16] of the overlapping part of two successive
images Ii and Ii−1, once aligned. As this score is by
definition between 0 and 1, it is not necessary to normalize
the obtained value.

Finally, the image matching confidence is defined as the
geometric mean of cangle, cspeed, and cmatch :

cimg(i) =
(
cangle(i) ∗ cspeed(i) ∗ cmatch(i)

) 1
3

(16)

D. Robot Trajectory Confidence Estimation

Due to probe/tissue interactions, the robot commanded
trajectory is very likely to be different from the probe/tissue
displacements, even with a high-accuracy robot [10]. For this
reason, it is also necessary to infer a confidence score crob
for the robot trajectory. We propose a score based on both
the image and the robot estimations. As a reminder, it has
been stated that at a given time i, the estimated displacement
in the image I is noted dXi

i−1, when the one performed by
the robot trajectory is dXr(i) = Vr(i)Ts. Let us introduce
nI(i) and nr(i) the respective norms of those vectors. Hence,
it is possible to define a speed confidence metric csp as a
score between 0 and 1 reflecting the difference between two
displacements. This score can be obtained by

csp(i) = normalize

(
min

(
nI(i)

nr(i)
,
nr(i)

nI(i)

))
(17)

where csp is the difference between the robot velocity and the
one estimated in the image (please note that csp is different
from cspeed in the sense that the former represents the speed
difference between the robot and image estimates, while
the latter computes a difference between successive image
estimates).

This score will tend to 0 if one displacement is sig-
nificantly smaller than the other one, and to 1 if both
displacements get close from one another. To estimate where
discrepancies between robot and image-estimated speeds
come from, we propose a combined score between cimg and
csp, as follows

crob = csp ∗ cimg − cimg + 1 (18)

The obtained mixed score is built so that the confidence in
the robot trajectory gets to 0 if cimg is high and csp is low.
This means that there is an important difference in speed
between the robot input and the image-based estimation. In
this case, we consider that the image-based estimation is
more reliable. Alternatively, crob tends to 1 when csp tends
to 1, and when cimg tends to 0 (see Fig. 3).

Fig. 3. Evolution of crob as a function of cimg and csp.

III. MATERIALS AND DEVICES

The endomicroscopy mosaicking problem described in
this paper was experimentally validated using using several
evaluation scenarios. The experimental tests were made on
a bench-top robotic setup including of a highly accurate 6
degrees-of-freedom (DOF) parallel structure. Furthermore,
the used endomicroscopy imaging system consists of the
CellVizio laser confocal microscopy from Mauna Kea Tech-
nologies Inc.1 The CellVizio was mounted in an eye-to-
hand configuration which allows visualizing the sample
carried by the robotic platform (Fig. 4). In others words,
the endomicroscopy probe remains fixed when the viewed
sample moves relatively to the probe.

A. Robotic Setup

Fig. 4. Photography of the experimental setup. 1© pCLE imaging system,
2© scanned sample, 3© 6 DOF sample holder platform, 4© positioning

stages, 5© external optical microscope for ground truth validation, 6©, pCLE
holder.

The robotic setup i.e., the sample holder (Fig. 4), consists
of a 3PPSR robot SpaceFAB SF-3000 BS from Micos2. The
latter is characterized with the following features: translation

1www.maunakeatech.com
2www.pimicos.com



ranges (tx, ty, tz)
>
max = (50, 100, 12.7)> [mm] and rotation

ranges (rx, ry, rz)
>
max = (10, 10, 10)> [◦], a linear resolution

of 0.2µm (repeatability of ±0.5µm) and an angular resolu-
tion of 0.0005◦ (repeatability of ±0.0011◦).

Two computers equip the experimental platform: the first
one (a 3.20-GHz i5 core Intel CPU with a MacOS X distribu-
tion) is dedicated to the endomicroscopy images acquisition
when the second one (a 2.33-GHz Xeon Intel CPU with
a Windows distribution) is used for the robot inner control
(inner PID loop, static and differential kinematic models).
The computers communicate asynchronously using a TCP/IP
protocol.

B. Confocal Laser Endomicroscopy

The CellVizio endomicroscopy system is a standalone
imaging system based on a fibered technology capable to
achieve real-time (9 to 12 Hz) and in situ optical biop-
sies via minimally invasive access (Fig. 4). The Cellvizio
incorporates a proximally-scanned fiber bundle to deliver
488 nm wavelength laser light to the sample and acquire
a fluorescence signal in return. In our study, we used Z1800
probe, which incorporates a fiber bundle composed of 30,000
optical fibers, providing a lateral resolution of 3.5 µm with a
FOV of 500 microns, at a framerate of 9-10 images/second.
After exporting the images, the resolution is 512x448 pixels.

C. Robot Trajectory Generation

In order to ensure an accurate achievement of the scanning
path during the mosaicking process, the robot is controlled
using a path following scheme. This means that, in addition
to the inner PID controller which controls each robotic
stage, we implemented a external closed-loop controller. The
developed path following approach has the advantage of
decoupling the velocity profile from time, geometric shape,
size, ... of the scanning curve Γ(i). In other words, the path
following accuracy is expected to be independent from the
velocity amplitude which can be tuned by the operator inde-
pendently. Actually, the controller needs only the cartesian
coordinates (xi, yi) of sampled 2D points (respectively, 3D
points) to perform the path tracking. For more details, please
refer to [17], [18].

The pCLE probe was placed with its imaging plane
parallel to the x − y plane of the robot, and axes were
calibrated by doing a simple straight line scan. After this
calibration, the curves Γ(i) were programmed in the same
x− y plane. In order to simulate varying contact conditions,
which occur in clinical practice, variations in the z axis of
the robot were introduced during the scanning trajectory.
Those take the form of a sinusoidal oscillation of amplitude
150 µm around the nominal contact point between the probe
and the sample. This led to portions of the trajectory where
the probe/tissue contact was almost lost, and other portions
where the contact force was too important. In the first case,
the image contrast is gradually lost, whereas in the second
case, the large contact forces lead to adherence between
the probe and the sample, and stick-slip effects (i.e. a very
still image while the robot keeps moving, and a subsequent

acceleration when the elasticity of the fiber bundle overcomes
the frictional forces).

Finally, one should note that the robotic setup used in
our experiments has excellent accuracy and repeatability.
In minimally invasive settings, however, mechanical per-
formances of scanning devices are typically more modest
due to the lower performance of micro-mechanisms and
noise on sensors. As a result, robotic trajectories followed
with miniature mechanisms are typically noisier [10], [14].
We chose, nevertheless, to have the robot follow a smooth
trajectory Γ(i). Indeed, the inner control loop of the robot
imposes limits on its dynamics, making the simulation of
noise and mechanical vibrations very difficult. To simulate
a difference between the commanded trajectory and the
input given to our algorithm, we add artificial noise to the
trajectory estimate Vr(i). This noisy estimate of the robot
effectively followed trajectory (resp. speed) is noted X̂r(i)
(resp. V̂r(i)) in the following.

D. Implementation

The mosaicking algorithm was developed in python, using
image processing routines from OpenCV and scikit-image.
Normalized cross correlation was used for registering images
and estimate dXi

i−1, finding the maximum of the correlation
between a template at the center of image Ii−1 and image
Ii. After trying several template sizes, a template of 268x307
pixels (i.e. 3/5 of the original image size) was found to give
the best results. In order to avoid side effects, the same
process was repeated in the backward direction (i.e. matching
a template from Ii into image Ii−1), and the average
displacement was taken. This displacement was subsequently
corrected for motion artifacts. Finally, image blending was
performed by placing all pixels from different images in
a common reference frame and taking an average value.
The interested reader can refer to [10] for further details
on motion artifact compensation and image blending.

The implementation was running at a framerate higher

Fig. 5. Result of images registration for ground truth construction. Zoomed
areas represent the endomicroscopic image, together with the corresponding
area in the standard microscopy image.



(a) Test #1 (b) Test #2 (c) Test #3 (d) Test #4 (e) Test #5

Fig. 6. Reconstructed mosaics in the case of a circular trajectory, using the estimated trajectories from the five different test cases.

than the pCLE video rate (12 Hz), therefore allowing the
whole inference and online mosaic reconstruction process
to run in real-time. Code optimization, as well as a C++
implementation, could allow much faster framerates.

IV. EXPERIMENTAL EVALUATION

Different experimental scenarios using the test-bench pre-
sented in Section III were considered in order to judge the
effectiveness of proposed algorithm and methods.

A. Test cases

Two test cases were designed for testing our algorithm. In
the first one, the robot was following a circular trajectory,
while in the second one the reference trajectory was a spiral
(with a straight line at the beginning and at the end). In
both cases, we compared different outputs for the topology
inference:

1) Test #1: using only the image measurements Xm

2) Test #2: using only the perferct robot trajectory Xr

3) Test #3: using the filtered output Xf with Xm and Xr

as inputs.
4) Test #4: using only the noisy robot trajectory X̂r

5) Test #5: using the filtered output Xf with Xm and X̂r

as inputs.
One should appreciate that, even though all test cases are

needed to evaluate the algorithm, Test #5 is the one that
effectively simulates best the realistic conditions. In this case,
the estimate of the robot trajectory is imperfect, and the
contact conditions between the probe and the sample are
varying.

B. Ground Truth and Evaluation Metrics

In order to assess the performance of the proposed algo-
rithm, we built a ground truth scenario. We imaged the tissue
sample (which, since it was taped on a rigid plate, is assumed
to be rigid) using a standard optical microscope. Using a
back-light to illuminate the sample, cell nuclei (which are
typically seen in Cellvizio images) can be observed. We
then used a coarse manual alignment, followed by a refine-
ment using mutual information (the imregister.m function in
MATLAB) in order to build a reference trajectory. Since this
is a tedious process, n randomly selected images Ik, k ∈
[1, n] approximately evenly spaced along the trajectory, were
selected for building this ground truth. n was 13 for the
circular trajectory, and 25 for the spiral (which is longer).

Figure 5 shows the result of the registration for the spiral
trajectory case. In order to estimate to goodness of fit
between an estimated mosaicking trajectory and the reference
optical microscope image, the distance between the postions
of corresponding images in the ground truth and the mosaic
was computed. Classical statistics such as average (mean),
maximum error (max), standard deviation (std), and median
error were then computed and reported in the following.
Statistically significant differences are tested with the non-
parametric Wilcoxon U-test, with a significance level set at
α = 0.05.

Fig. 7. Image-estimated trajectory Xm for the circular robot trajectory.
The colormap corresponds to the values of cimg as they are estimated along
the trajectory.

C. Results for a Circular Trajectory

Figure 6 depicts the reconstructed mosaic images using the
five tests introduced above. The mosaic reconstructed using
the robotic trajectory Xr looks visually accurate (Fig. 6(b)),
which is confirmed by the error metrics on TABLE I. On
such a simple trajectory, adding the information from the
image registrations in order to filter the estimation adds little
value (Fig. 6(c)). However, as soon as noise is added to the
robot estimates, errors increase and the mosaic gets locally
blurred (Fig. 6(d)). Filtering the estimation using the image
information helps restoring a better mosaic shape (Fig. 6(e)),
which is confirmed when looking at quantitative errors w.r.t
the ground truth data (TABLE I). These results are further
confirmed by statistical tests, which show a statistically



(a) Test #1 (b) Test #2 (c) Test #3 (d) Test #4 (e) Test #5

Fig. 8. Reconstructed mosaics in the case of a spiral trajectory, using the different estimated trajectories from the five different test cases (Sec. IV-A)

significant difference between Test #4 and Test #5 (p <
0.01), but not between Test #2 and Test #3 (p = 0.95).

TABLE I
NUMERICAL ERROR VALUES FOR CIRCULAR MOSAIC

RECONSTRUCTION. ALL THE VALUES ARE IN MICROMETERS.

error w.r.t. ground truth mean max std median
Xm (Test #1) 274.3 543.1 190.2 249.2
Xr (Test #2) 116.5 251.6 73.3 108.4
Xf with Xr (Test #3) 142.3 320.8 86.8 108.6
X̂r (Test #4) 489.1 752.8 201.8 551.8
Xf with X̂r (Test #5) 226.8 372.1 86.4 224.0

Figure 7 represents the image-based estimated trajectory
Xm with a colormap showing the estimated matching con-
fidence cimg . One can see that the value of the confidence
is very close to 1 over a large part of the trajectory except
in rare positions which correspond to poor contacts between
the probe and the tissue.

D. Results for a Spiral Trajectory

The same scenario as for the circle test is repeated with
a more complex spiral trajectory. Figure 8 shows some
examples of reconstructed mosaics using the five different
tests mentioned in Sec. IV-A. One can see that the image-
based estimation gets very far from a spiral (Fig. 8(a)). The
trajectory being perfectly executed by the robot, the resulting
mosaic using Xr is, again, close to perfect (Fig. 8(b)). As
a result, filtering in this case adds little value (Fig. 8(c)),
similarly to the circular case. However, as soon as the robot
trajectory gets noisy (Fig. 8(d)) the errors get higher and the
mosaic of worse visual quality. Our proposed fusion algo-
rithm helps restoring a good topology inference (Fig. 8(e)),
while being robust to very large local image losses and
noisy robot trajectory inputs. Those results are confirmed
by the error values reported in TABLE II. Again, statistical
tests further confirm, with a statistically significant difference
between Test #4 and Test #5 (p < 0.001), but not between
Test #2 and Test #3 (p = 0.07).

Fig. 9 represents the x and y components of the es-
timated trajectories X̂r (noisy robot inputs), Xm (image
measurements), Xf (Kalman filtered outputs) and the ground
truth (violet dots). Again, one can notice that inaccurate
image matches at some places in the trajectory create high
accumulated errors in the end, which can also visually be

TABLE II
NUMERICAL ERROR VALUES IN CASE FOR A SPIRAL MOSAIC

RECONSTRUCTION. ALL THE VALUES ARE IN µM.

errors mean max std median
Xm (Test #1) 686.7 800.2 1080.8 375.3
Xr (Test #2) 139.4 220.9 51.3 141.8
Xf with Xr (Test #3) 135.7 263.1 70.7 133.4

X̂r (Test #4) 291.0 517.2 134.9 312.9
Xf with X̂r (Test #5) 100.8 260.8 63.9 105.9

Fig. 9. Comparison of robot inputs, image estimations and filtered outputs
(x and y coordinates as a function of the image number)

seen on Fig. 8(a). Our approach allows filtering out those
bad matches, using the robot inputs. In fact, as one can see
on Fig. 10, the confidence score of the image matches is
generally close to 1, and it’s mostly at places where the
trajectory is visually easily identifiable as wrong (zoomed
areas where the image-estimated trajectory shows erratic
local movements) that the confidence dramatically drops.
This validates our trajectory smoothness assumption.

V. CONCLUSION AND PERSPECTIVES

We proposed a novel online and real-time mosaicking
method which uses both robot inputs and image measure-
ments. While it is not a perfect topology inference, it is
robust to image noise (i.e., artifacts, poor texture, etc.) and
misregistrations. As such, it is useful to keep the structural
coherence of the topology inference in the first pass of



Fig. 10. Image-estimated trajectory Xm for the spiral trajectory case, with
a colormap corresponding to values of cimg .

the mosaicking process, which help subsequent passes to
converge.

The method was experimentally validated under rigorous
ex vivo scenarios using a high-accuracy robot, and using the
established CellVizio confocal laser endomicroscopy system.
Through the experimental results, it has been demonstrated
that the developed method goes beyond current methods,
especially in case of unfavorable conditions of use. Our ap-
proach is accurate and robust, allowing a reliable registration
(i.e., large FOV mosaicking) even under non-smooth sample
scanning process (contact loss between the probe and the
tissue, robot nonlinearities, etc.). The ground truth validation
was evaluated using different metric scores which showed
promising performances in terms of accuracy, rapidity and
robustness.

Future work will consist of validations using ex vivo and
in vivo experimental setups. On deformable tissue samples,
we plan to cope with tissue deformations by implementing
the model from [11] in the process model of the filter. Further
work will also include speeding up the subsequent optimiza-
tion steps of the algorithm in [4] by using the confidence
information. We will also investigate the integration of the
pCLE imaging system in a concentric tube robot for in vivo
tissue characterization.
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