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Abstract
We characterise the classes of tournaments with tractable first-order model checking. For every
hereditary class of tournaments T , first-order model checking either is fixed parameter tractable, or
is AW[∗]-hard. This dichotomy coincides with the fact that T has either bounded or unbounded
twin-width, and that the growth of T is either at most exponential or at least factorial. From the
model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded
twin-width. Twin-width is also characterised by three infinite families of obstructions: T has bounded
twin-width if and only if it excludes at least one tournament from each family. This generalises
results of Bonnet et al. on ordered graphs.

The key for these results is a polynomial time algorithm which takes as input a tournament T

and computes a linear order < on V (T ) such that the twin-width of the birelation (T, <) is at most
some function of the twin-width of T . Since approximating twin-width can be done in FPT time for
an ordered structure (T, <), this provides a FPT approximation of twin-width for tournaments.
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1 Introduction

Tournaments can represent the outcome of a ranking of candidates, which need not be a
total order. E.g., in the Condorcet voting paradox, three referees whose preference lists
are (A, B, C), (B, C, A), and (C, A, B), lead to a cycle A← B ← C ← A in the preference
relation. Classical algorithmic problems arise from trying to choose a subset of winners: the
Dominating Set (DS) problem asks for a subset D which is preferred to any other candidate,
i.e. for any y ̸∈ D, there is some x ∈ D which is preferred to y; and the Feedback Vertex
Set (FVS) problem asks to build a preference order by ignoring a subset of candidates.

These problems can be parameterized by the size k of the desired solution. A problem is
fixed parameter tractable (FPT) if it admits an algorithm running in time O(f(k) · nc), for
some function f and constant c. It is known that FVS is FPT for tournaments [18], whereas
DS is unlikely to be FPT. However general tournaments may not be representative of usual
instances: for example, majority voting tournaments with a fixed number r of referees form a
very restricted class. A cornerstone paper by Alon et al. [2], based on Vapnik-Chervonenkis
dimension, shows that k-DS is trivially FPT on r-majority tournaments, because the size of
a minimum dominating set is bounded by f(r). This exemplifies how difficult problems can
become easy on restricted classes, here bounded VC-dimension.
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53:2 First Order Logic and Twin-Width in Tournaments

To put these questions in a much broader perspective, remark that the previous problems
can be expressed in first-order logic (FO). A k-DS is described by the formula

∃x1, x2, . . . , xk.∀y. (y = x1) ∨ (y → x1) ∨ · · · ∨ (y = xk) ∨ (y → xk).

That k-FVS is also expressible in first-order logic is only true in tournaments, and not in
general graphs. It is based on the simple remark that a tournament is acyclic if and only if it
is transitive, i.e. it has no directed 3-cycle, which is easily expressed in FO. Thus k-DS and
k-FVS are instances of the FO Model Checking (or FOMC) problem: given as input a
tournament T and a first-order formula ϕ, does T satisfies ϕ? FO model checking is difficult
on the class of all graphs [12], and using back-and-forth FO encodings, one can show that it
is just as hard on tournaments. We investigate which subclasses of tournaments admit an
FPT algorithm for FO model checking.

1.1 Main results
We prove a dichotomy: in any class T of tournaments (closed under subtournaments),
FOMC is either FPT or AW[∗]-complete. The key of this dichotomy is twin-width (tww), a
complexity parameter introduced by Bonnet et al. [7]: FOMC in T is FPT if T has bounded
twin-width, and AW[∗]-complete otherwise. This dichotomy coincides with a model theoretic
characterisation: the class T has bounded twin-width if and only if it is NIP, meaning that
arbitrary graphs cannot be described from tournaments in T through a fixed FO formula.
This equivalence of twin-width and NIP, called delineation, was conjectured for tournaments
in [4]. The equivalence between NIP and FPT FO model checking also confirms the nowhere
FO dense conjecture of Gajarský et al. [15] for tournaments.

Furthermore, the dichotomy for FO model checking coincides with a gap in the growth
function of the class T , i.e. the number of tournaments of T on n vertices up to isomorphism.
If T has bounded twin-width, then its growth is at most 2O(n), whereas it is at least
(⌊n/2⌋ − 1)! when twin-width is unbounded. This exponential/factorial gap generalises
the Marcus-Tardos theorem on permutations avoiding a fixed pattern [19]. It may also be
compared to results of Boudabbous and Pouzet [9] which show that hereditary classes of
tournaments have growth either at most polynomial or at least exponential.

▶ Theorem 1.1. Let T be a hereditary class of tournaments. Under the assumption FPT ̸=
AW[∗], the following are equivalent:
1. T has bounded twin-width,
2. FO model checking in T is FPT,
3. FO model checking in T is not AW[∗]-complete,
4. T does not FO interpret the class of all graphs,
5. T is monadically NIP, i.e. does not FO transduce all graphs,
6. the growth of T is at most cn for some constant c,
7. the growth of T is less than (

⌊
n
2

⌋
− 1)!.

These equivalences are completed by three minimal classes of obstructions, characterising
twin-width by excluded substructures. These obstructions encode arbitrary permutations.

▶ Theorem 1.2. There are three hereditary classes F=,F⩽,F⩾ such that a hereditary class T
of tournaments has unbounded twin-width if and only if one of F=,F⩽,F⩾ is a subclass of T .

Finally, we show that there is a fixed parameter tractable algorithm which approximates
twin-width of tournaments up to some function.
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▶ Theorem 1.3. There is a function f : N→ N and an FPT algorithm, which given as input
a tournament T , produces either a witness tww(T ) ⩽ f(k), or a witness that tww(T ) ⩾ k.

These results can be generalised to oriented graphs with bounded independence number,
and to relational structures consisting of a tournament augmented by arbitrary binary
relations, see the full version of this paper.

1.2 Overview of the proof
A fundamental idea regarding twin-width is that upper bounds on twin-width can be witnessed
by orders on vertices which exclude grid-like structures in the adjacency matrix. This appears
in the founding works of Guillemot and Marx [17] and Bonnet et al. [7], and the relation
between twin-width and orders has been deeply explored in [6]. However it is difficult to
witness lower bounds on twin-width with this approach: one needs to somehow prove that all
orders contain grids. To this purpose, we want to construct in any tournament T an order <

which, if T has small twin-width, is a witness of this fact, i.e. tww(T, <) ⩽ f(tww(T )).
A tentative approach to obtain such an order is to describe it in FO logic. Indeed, FO

transductions preserve twin-width up to some function [7, Theorem 39]. Thus, if Φ is a
transduction which on any tournament T gives some order <, then tww(T, <) ⩽ f(tww(T ))
as desired. With a few additional requirements, such as < being efficiently computable, it
would be straightforward to obtain our results from the case of ordered graphs [6]. However
this approach is impossible: to transduce a total order on the iterated lexicographic product
of the 3-cycle with itself, one needs a first-order formula with size increasing in the number
of iterations [3]. Remark that this counter-example has twin-width 1.

Instead, our approach is the following: we design a candidate total order < on T ,
computable in polynomial time. If the bi-relation (T, <) has small twin-width, we are done.
On the other hand, if (T, <) has large twin-width, then its adjacency matrix w.r.t. < must
contain a large high-rank grid by [6]. We then extract a subtournament T ′ ⊂ T which still
has a substantial (but logarithmically smaller) high-rank grid, and in which < is roughly
described by a FO transduction. This is enough to witness that T has large twin-width. Using
Ramsey arguments, we extract from T ′ an obstruction F=, F⩽, or F⩾. The construction of
the order is remarkably simple: we consider a binary search tree (BST), i.e. a tree in which
the left, resp. right, branch of a node x consists only of in-, resp. out-neighbours of x. The
order < is the left-to-right order on nodes of the tree. To summarize, the crucial property is

▶ Lemma 1.4. There is a function f such that for any tournament T and BST order <

on T , tww(T, <) ⩽ f(tww(T )).

Lemma 1.4 implies Theorem 1.3: to approximate the twin-width of T , it suffices to compute
any BST order, which takes polynomial time, and then apply the approximation algorithm
for ordered structures [6, Theorem 2], which is FPT. This last algorithm produces either a
contraction sequence (which is valid for (T, <) and a fortiori for T ), or a witness that (T, <)
has large twin-width, which in turn implies that T has large twin-width by Lemma 1.4.

Our main technical result is about extracting the obstructions F=,F⩽,F⩾.

▶ Theorem 1.5. Let T be a hereditary class of tournaments with the property that there
are tournaments T ∈ T and BST orders < such that tww(T, <) is arbitrarily large. Then T
contains one of the classes F=,F⩽,F⩾ as a subclass.

Finally, the classes F=,F⩽,F⩾ are complex in all the senses considered by Theorem 1.1.

ESA 2023
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▶ Theorem 1.6. For each R ∈ {=,⩽,⩾}, the class FR

1. has unbounded twin-width;
2. contains at least (

⌊
n
2

⌋
− 1)! tournaments on n vertices counted up to isomorphism;

3. contains at least (
⌊

n
2

⌋
−1)! ·n! tournaments on vertex set {1, . . . , n} counted up to equality;

4. efficiently interprets the class of all graphs;
5. and has AW[∗]-hard FO model checking problem.

Theorems 1.5 and 1.6 together imply Theorem 1.2. They also imply Lemma 1.4 when
applied to the class of tournaments with twin-width at most k: this class cannot contain
any of F=,F⩽,F⩾, hence its tournaments must still have bounded twin-width when paired
with BST orders. Finally, Theorems 1.2 and 1.6 directly imply that if T is a hereditary class
with unbounded twin-width, then T satisfies none of the conditions of Theorem 1.1. The
remaining implications of Theorem 1.1 – that is, when T has bounded twin-width, all other
conditions hold – follow from known results on twin-width. By [7, Theorem 1], FO model
checking has an FPT algorithm when a witness of bounded twin-width is given. Combined
with Theorem 1.3, this gives an FPT algorithm for classes of tournaments with bounded twin-
width. By [7, Theorem 39], a class of structures with bounded twin-width cannot transduce
all graphs. Finally, by [8, Corollary 7.3], a class of structures with bounded twin-width
contains at most cn structures on n vertices up to isomorphism, for some constant c.

1.3 Context and related parameters

It is interesting to compare twin-width to other classical complexity measures for tournaments.
Bounded twin-width implies bounded VC-dimension, since classes with unbounded VC-
dimension contain all possible bipartite subgraphs, which is against single-exponential growth.
Cutwidth was introduced by Chudnovsky, Fradkin and Seymour [11] to study tournament
immersions. Bounded cutwidth is certified by a vertex ordering which can be shown to
exclude grids, hence it is also a witness of bounded twin-width. Another parameter, closely
related to subdivisions in tournaments, is pathwidth, studied by Fradkin and Seymour [14].
Bounded pathwidth of tournaments implies bounded cliquewidth, which in turn also implies
bounded twin-width, see [7]. Thus, we have the following chain of inclusions (if a parameter
is bounded, all the ones listed after are also bounded): cutwidth, pathwidth, cliquewidth,
twin-width, and VC-dimension. For more on the subject, see Fomin and Pilipczuk [13, 21].

Regarding the binary search tree method for ordering tournaments, it corresponds to
the KwikSort algorithm of Ailon, Charikar and Newman for approximating the minimum
feedback arc set [1]. A difference is that their result requires the BST to be randomly chosen,
whereas arbitrary BST provide approximations of twin-width.

1.4 Organisation of the paper

Section 2 summarises our definitions and notations. In section 3 the classes F=,F⩽,F⩾

of obstructions to twin-width are defined, and we prove Theorem 1.6. Section 4 defines
binary search trees, the associated orders, and some related notions. We then prove a crucial
lemma which, from a partition into intervals of a BST order, extracts some FO definable
substructure. Section 5 proves Lemma 1.4 using the former lemma, combined with results
of [6]. See the extended version of this paper [16] for the full proof of Theorem 1.5, which
builds on that of Lemma 1.4.
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2 Preliminaries

This section summarizes the notions and notations used in this work. For n ∈ N, we denote
by [n] the interval of integers {1, . . . , n}.

2.1 Tournaments, relational structures
A tournament T consists of a set of vertices V (T ), and for each u ̸= v ∈ V (T ), an arc
oriented either u → v or v → u (but not both). If x ∈ V (T ), then N+(x) = {y | x→ y}
and N−(x) = {y | y → x} are the in- and out-neighbourhood respectively. A tournament is
transitive if it contains no directed cycle, in which case it defines a total order on its vertices.
We call chain a subset X ⊂ V (D) which induces a transitive tournament.

Relational structures generalise graphs and tournaments. A relational signature is a
finite set Σ of relation symbols R, each with an arity r ∈ N. A Σ-structure consists of a
domain A (vertices), and for each symbol R ∈ Σ of arity r, an interpretation RS ⊆ Ar

(hyperedges). E.g., tournaments and graphs are structures over a signature with a single
binary relation. We restrict ourselves to binary structures, i.e. where all relation symbols
have arity 2. An ordered structure S is a structure over a relation Σ with a special symbol <,
whose interpretation <S is a total order on the domain of S.

If S is a structure with domain A and B ⊆ A, the substructure S[B] induced by B

has domain B, and interprets each relation R as the restriction of RS to B. All classes of
structures considered here are hereditary, i.e. closed under induced substructures.

2.2 Matrices
A matrix is a map M : R× C → Γ, where R, C are the ordered sets of rows and columns of
the matrix, and Γ and its alphabet (usually, Γ = {0, 1}). A submatrix of M is the restriction
of M to some subsets of rows and columns. A division D of M consist of partitions R, C of
the rows and columns respectively into intervals. It is a k-division if the partitions have k

parts each. A cell of the division is the submatrix induced by X × Y for some X ∈ R, Y ∈ C.
A k-grid in a 0,1-matrix is a division in which every cell contains a “1”.

For a tournament T and a total order < on V (T ), the adjacency matrix A(T,<) has V (T )
ordered by < as rows and columns, and contains a “1” at position (u, v) if and only if u→ v.
This generalises to binary structures over any signature Σ, with {0, 1}Σ as alphabet.

2.3 Orders, Quasi-orders
A quasi-order ⪯ is a reflexive and transitive binary relation. The associated equivalence
relation is x ∼ y iff x ⪯ y ∧ y ⪯ x. The strict component of the quasi-order is x ≺ y iff
x ⪯ y and y ̸⪯ x. The quasi-order is total if for all x, y, either x ⪯ y or y ⪯ x. An interval
of a quasi-order ⪯ is a set of the form {z | x ⪯ z ⪯ y} for some x, y, called endpoints. An
interval is a union of equivalence classes of ∼. Two subsets X, Y are overlapping if there
exist x1, x2 ∈ X and y1, y2 ∈ Y such that x1 ⪯ y1 and x2 ⪰ y2. Equivalently, X, Y are
non-overlapping iff there are disjoint intervals IX ,IY such that X ⊆ IX and Y ⊆ IY .

2.4 Permutations
We denote by Sn the group of permutations on n elements. The permutation matrix Mσ

has a “1” at position (i, j) if and only if j = σ(i). A permutation τ is a pattern of σ if Mτ is
a submatrix of Mσ. We say that σ contains a k-grid if Mσ contains a k-grid. When this is
the case, any permutation in Sk is a pattern of σ. For example, the permutation σ on k2

elements defined by σ(ki + j + 1) = kj + i + 1 for any 0 ⩽ i, j < k contains a k-grid.

ESA 2023
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A permutation can be represented as a bi-order, i.e. the superposition of two total orders.
Precisely, for σ ∈ Sn, the structure Oσ has domain [n], and has for relations the natural
order <, and the permuted order <σ defined as i <σ j if and only if σ(i) < σ(j). Any bi-order
is isomorphic to some Oσ. Remark that τ is a pattern of σ if and only if Oτ is isomorphic to
an induced substructure of Oσ. We write OS for the class of all finite bi-orders.

2.5 Twin-width
Twin-width, denoted e.g. tww(G), is a complexity parameter defined on graphs, and more
generally on binary structures. We refer the reader to [7] for the definition, based on
contraction sequences – it will not be used in this work. Instead, we rely on the following
characterisation by grid-like structures in adjacency matrices. Recall that a division of a
matrix is a partition of rows and columns into intervals. We say that a matrix is k-diverse if
it contains at least k different rows and k different columns – which is equivalent to having
rank at least k′ up to single-exponential bounds. Then, a rank-k division is a k-division in
which every cell is k-diverse. Bonnet et al. proved

▶ Theorem 2.1 ([6, Theorem 2]). There are functions f, g such that for any graph (or binary
structure) G and any order < on V (G),

if tww(G, <) ⩾ f(k) then the matrix A(G,<) has a rank-k division, and
if the matrix A(G,<) has a rank-g(k) division, then tww(G, <) ⩾ k.

Furthermore there is an FPT algorithm which given G, <, and k, finds either a rank-k
division in A(G,<) or a contraction sequence of width f(k) for (G, <).

2.6 First-order logic
Recall from the introduction that we are interesting in FO Model Checking: given as
input a structure S and a first-order formula ϕ, test if S |= ϕ. We consider the complexity of
this problem parametrized by the size |ϕ|. In general, this problem is AW[∗]-complete.

▶ Theorem 2.2 ([12]). FO Model Checking is AW[∗]-complete on the class of all graphs.

On the other hand, FO model checking is FPT for classes of structures with bounded
twin-width, as long as a witness of twin-width is given.

▶ Theorem 2.3 ([7, Theorem 1]). Given a binary structure S on n vertices, a contraction
sequence of width k for S, and a FO formula ϕ, one can test if S |= ϕ in time f(k, ϕ) · n.

Interpretations are transformations of structures described using logical formulæ. For
two relational signatures Σ, ∆, a FO interpretation Φ from Σ to ∆ consists of, for each
relation R ∈ ∆ of arity r, a FO formula ϕR(x1, . . . , xr) over the language Σ, and one last
formula ϕdom(x) again over Σ. If S is a Σ-structure, the result Φ(S) is obtained by

choosing the same domain as S,
interpreting R ∈ ∆ as {(v1, . . . , vr) | S |= ϕR(v1, . . . , vr)}, the tuples satisfying ϕR,
and finally taking the substructure induced by {v | S |= ϕdom(v)}.

For instance, the square of a graph G has the same vertices as G, with an edge xy iff the
distance of x and y in G is at most 2. This is a FO interpretation with edges defined by

ϕ(x, y) = E(x, y) ∨ (∃z. E(x, z) ∧ E(z, y))

where E(x, x) denotes adjacency. The domain formula just “true” since we do not wish to
delete vertices in this case. FO interpretations are closed under composition.
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Transductions generalise interpretation with a non-deterministic coloring step. Let Σ+

be the signature obtained by adding r new unary relations C1, . . . , Cr to Σ. If S is a
Σ-structure, we denote by S+ the set of Σ+-structures obtained from S by choosing an
arbitrary interpretation of each Ci as a subset of V (S). Now a FO transduction Φ : Σ→ ∆ is
described by the choice of Σ+ augmenting Σ with unary relations, and a FO interpretation ΦI

from Σ+ from ∆. The result of Φ is the set of ∆-structures Φ(S) = {ΦI(T ) | T ∈ S+}. That
is, the interpretation of the unary relations C1, . . . , Cr on S are chosen non-deterministically,
and then ΦI is applied.1 Like interpretations, transductions can be composed.

Given classes C,D of structures, we say that C interprets (resp. transduces) D if there is
a FO interpretation (resp. transduction) Φ such that Φ(C) ⊇ D. We furthermore say that C
efficiently interprets D if there is also an algorithm which given as input D ∈ D, finds in
polynomial time some C ∈ C such that Φ(C) = D. It is straightforward to show that this
additional condition gives an FPT reduction for model checking.

▶ Lemma 2.4. If C efficiently interprets D, then there is an FPT reduction from FO Model
Checking on D to FO Model Checking on C.

Recall that OS denotes the class of bi-orders, which are encodings of permutations. The
following is a folklore result, see e.g. [6, Lemma 10] for a very similar claim.

▶ Lemma 2.5. The class OS of bi-orders efficiently interprets the class of all graphs.

Thus, using Lemma 2.4 and Theorem 2.2, FO Model Checking on OS is AW[∗]-complete.
FO transductions also preserve twin-width, up to some function.

▶ Theorem 2.6 ([7, Theorem 39]). If S is a class of binary structures with bounded twin-width
and Φ is a FO transduction defined on S, then Φ(S) also has bounded twin-width.

A class of structures S is said to be monadically NIP if S does not transduce the class of
all graphs. Theorem 2.6 implies that classes with bounded twin-width are monadically NIP.
The weaker notion of (non-monadically) NIP also exists, however Braunfeld and Laskowski
recently proved that NIP and monadically NIP are equivalent for hereditary classes [10].

2.7 Enumeration
A class S of graphs (or binary relational structures) is small if there exists c such that S
contains at most cn · n! structures on the vertex set [n]. For instance, the class of trees is
small, and more generally proper minor closed classes of graphs are small as shown by Norine
et al. [20]. This was further generalised to classes of bounded twin-width by Bonnet et al.

▶ Theorem 2.7 ([5, Theorem 2.4]). Classes of structures with bounded twin-width are small.

3 Forbidden classes of tournaments

This section defines the three minimal classes F=, F⩽, and F⩾ of obstructions to twin-width
in tournaments. Each of them corresponds to some encoding of the class of all permutations.
For R ∈ {=,⩽,⩾} and any permutation σ, we will define a tournament FR(σ). The class FR

is the hereditary closure of all FR(σ).

1 Additional operations such as duplication of vertices are often allowed in transductions, but these will
not be needed in this work.

ESA 2023
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x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F=(σ)

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F⩽(σ)

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F⩾(σ)

Figure 1 The three classes of obstructions to twin-width in tournaments. For readability, edges
oriented from some xi to some yj have been omitted. Each class consists of some encoding of the
class of all permutations, represented here with the permutation σ = 31452.

Let R ∈ {=,⩽,⩾}, and let σ ∈ Sn be a permutation on n elements. The tourna-
ment FR(σ) consists of 2n vertices, called x1, . . . , xn, y1, . . . , yn. Let X = {x1, . . . , xn} and
Y = {x1, . . . , yn}. Each of X, Y is a chain under the natural order, i.e. there is an edge
from xi to xj , resp. from yi to yj , if and only if i < j. The edges between X and Y encode σ

in a way specified by the relation R: there is an edge oriented from yj to xi if and only if
i R σ−1(j). See Figure 1 for an example.

Thus in F=(σ) the edges oriented from Y to X form a matching which encodes σ.
In F⩽(σ) and F⩾(σ), these edges form a half-graph which orders X and Y by inclusion of
neighbourhoods, so that the order on X is the natural one, and the order on Y encodes σ.
Precisely, in F⩾(σ), for any i, j ∈ [n], we have(

N−(xi) ∩ Y
)
⊆

(
N−(xj) ∩ Y

)
⇐⇒ i ⩽ j (1)

and
(
N−(yi) ∩X

)
⊆

(
N−(yj) ∩X

)
⇐⇒ σ−1(i) ⩽ σ−1(j), (2)

while in F⩽(σ), the direction of inclusions is reversed.

▶ Lemma 3.1. For each R ∈ {=,⩽,⩾}, the class FR efficiently interprets the class OS of
bi-orders. Precisely, there is an interpretation ΦR, and for any permutation σ ∈ Sn, n ⩾ 2,
there is a σ′ ∈ Sn+1 computable in polynomial time such that Oσ = ΦR(FR(σ′)).

Proof. We will first show that FR(σ) transduces Oσ, and then how to remove the coloring
step of the transduction by slightly extending σ.

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be as in the definition of FR(σ). The
transduction uses coloring to guess the set X. It then defines two total orders on Y , which
together describe σ. The first ordering is given by the direction of edges inside Y . The
second depends on R:

If R is =, edges oriented from Y to X are a perfect matching. The direction of edges
in X, interpreted through this matching, defines the second order on Y .
If R is ⩾ or ⩽, the second order is inclusion, respectively inverse inclusion, of in-
neighbourhoods intersected with X, see (2).

With the knowledge of which subset is X, each of these orders is clearly definable with a
first-order formula. Finally, the transduction deletes vertices of X, leaving only Y and the
two orders which encode σ.
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Let us now show how to deterministically define the partition X, Y , at the cost of
extending σ with one fixed value. Here, we assume n ⩾ 2.

If R is =, define σ′ ∈ Sn+1 by σ′(n + 1) = n + 1 and σ′(i) = σ(i) for any i ⩽ n. Then,
in F=(σ′), the unique vertex with out-degree 1 is yn+1. Its out-neighbour is xn+1, which
verifies X = N−(xn+1) ∪ {xn+1} \ {yn+1}.
If R is ⩽, define σ′(1) = n + 1 and σ′(i + 1) = σ(i). Then yn+1 is the unique vertex with
out-degree 1, and its out-neighbour is x1, which satisfies X = N+(x1) ∪ {x1}.
If R is ⩾, we once again define σ′(1) = n+1 and σ′(i+1) = σ(i). Then x1 has in-degree 1,
and its in-neighbour is yn+1. The only other vertex which may have in-degree 1 is y1,
and this happens if and only if σ′(2) = 1. When this is the case, the direction of the
edge x1 → y1 still allows to distinguish x1 in FO logic. Then, having defined x1, we
obtain yn+1 as its in-neighbour, which satisfies X = N+(yn+1).

In all three cases, FR(σ′) contains two extra vertices compared to FR(σ). These extra
vertices can be uniquely identified in first-order logic, and can then be used to define X.
Combined with the previous transduction, this gives an interpretation of Oσ in FR(σ′). ◀

We can now prove that the classes FR are complex.

▶ Theorem 1.6. For each R ∈ {=,⩽,⩾}, the class FR

1. has unbounded twin-width;
2. contains at least (

⌊
n
2

⌋
− 1)! tournaments on n vertices counted up to isomorphism;

3. contains at least (
⌊

n
2

⌋
−1)! ·n! tournaments on vertex set {1, . . . , n} counted up to equality;

4. efficiently interprets the class of all graphs;
5. and has AW[∗]-hard FO model checking problem.

Proof. Item 4 is straightforward by Lemmas 2.5 and 3.1, since efficient interpretations can
be composed. By Lemma 2.4 and Theorem 2.2, this in turn implies Item 5. Item 3 implies
Item 2 by a simple counting argument: in an isomorphism class, there are at most n! choices
of labelling of vertices with {1, . . . , n} (less if there are automorphisms). Furthermore, each
of Items 3 and 4 implies Item 1, by Theorem 2.7 and Theorem 2.6 respectively. Thus it only
remains to prove Item 3.

By Lemma 3.1, for any permutation σ ∈ Sn there is some FR(σ′) on 2n + 2 vertices such
that ΦR(FR(σ′)) = σ, where ΦR is a fixed interpretation. Since interpretations preserve
isomorphism, it follows that there are at least n! non-isomorphic tournaments on 2n+2 vertices
in FR. Furthermore, the arguments of Lemma 3.1, it is easy to show that these FR(σ′) have
no non-trivial automorphism. Thus, there are exactly (2n + 2)! distinct labellings of FR(σ′)
with {1, . . . , 2n+2}. In total, this gives (2n+2)! ·n! distinct graphs on vertices {1, . . . , 2n+2}
in FR, proving Item 3. ◀

Thus the classes F=,F⩽,F⩾ are obstructions to fixed parameter tractability of FO model
checking and twin-width. The rest of the paper shows that they are the only obstructions.
One may also verify that all three are minimal, i.e. none of them is contained in another.

4 Binary search tree orders

This section presents the good order for twin-width in tournaments. It is based on binary
search trees (BST), which we define in a tournament T as a rooted ordered binary tree S

(meaning that each node has a left and right child, either of which may be missing), whose
nodes are the vertices of T , and such that for any x ∈ S

the left child of x (if any) and its descendants are in N−
T (x), and

the right child of x (if any) and its descendants are in N+
T (x), see Figure 2.
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Figure 2 A binary search tree in a tournament. The direction of omitted edges is not constrained.

c1

B1

c2

B2

c3

B3

c4

B4 A4

Figure 3 Example of construction of the quasi-order ⪯+
C . The quasi-order is from left to right,

and the triangles are equivalence classes. The direction of omitted edges (from Bi to Bj ∪ {cj}
for i < j) is not constrained. For ⪯−

C , the direction of all edges would be reversed.

The order associated to S, denoted <S , is the left-to-right order, i.e. the one which places
a node x after its left child and its descendants, but before its right child and its descendants.
Such an order is called a BST order.

Remark that because T is only a tournament and not an order as in a standard BST,
there is no restriction on the direction of edges between the left and right subtrees of x. On
the other hand, if x is an ancestor of y, then there is an edge oriented from x to y if and
only if x <S y. Thus we have
▶ Remark 4.1. In a tournament T , any branch B of a BST S forms a chain which coincides
with <S . That is, for x, y ∈ B, the edge in T is oriented from x to y if and only if x <S y.

We will now define chain quasi-orders, which are FO definable quasi-orders with which
we will approximate BST orders. Let C be a chain in T . Its chain quasi-order ⪯+

C is defined
as follows. Enumerate the vertices of C as c1, . . . , ck so that edges are oriented from ci to cj

when i < j. Define Ai =
⋂

j⩽i N+(cj), and Bi = Ai−1 ∩N−(ci). Then each of B1, . . . , Bk

and Ak is an equivalence class of ⪯+
C , and the classes are ordered as

B1 ≺+
C c1 ≺+

C B2 ≺+
C c2 ≺+

C . . . Bk ≺+
C ck ≺+

C Ak,

see Figure 3. This can be seen as the left-to-right order of a partial BST consisting only
of a single branch c1, . . . , ck, with c1 as root and ck as leaf. It is also a coarsening of the
lexicographic order: the latter would refine the order inside each class Bi using ci+1, . . . , ck.

The dual quasi-order ⪯−
C is defined in the same way, but reversing the direction of all edges.

Thus, we now enumerate C so that edges are from ci to cj when i > j, while Ai =
⋂

j⩽i N−(ci)
and Bi = Ai−1 ∩N+(ci). The rest of the definition is the same.

▶ Lemma 4.2. There is a first-order transduction Φ which non-deterministically computes any
chain quasi-order. That is, for any tournament T and chain quasi-order ⪯o

C , (T,⪯o
C) ∈ Φ(T ).

Proof. The transduction first guesses C and o, and obtains the order within C from the
edges of T . It is then simple to express the definition of ⪯o

C in first-order logic. ◀

We now prove our main technical lemma on BSTs, which shows that BST orders can to
some extent be approximated by chain quasi-orders.
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▶ Lemma 4.3. Let T be a tournament and S be a BST with order <S. There is a func-
tion f(k) = 2O(k) independent of T and S such that for any family P of at least f(k) disjoint
intervals of <S, there is a chain C in T , an orientation o ∈ {+,−} and a subfamily P ′ ⊂ P
such that |P ′| ⩾ k and such that the intervals of P ′ are non-overlapping for ⪯o

C .
Furthermore, C, o, and P ′ can be computed in linear time.

Proof. Let T be a tournament, S a BST of T and <S the corresponding order. Let P be a
family of at least f(k) disjoint intervals of <S , where f(k) = 2O(k) will be determined later.

We choose a branch B = b0, . . . , bp of S by the following process. First b0 is the root of S.
For each (yet to be determined) bi, let Si be the subtree of S rooted in bi, and define the
weight wi to be the number of classes of P intersected by Si. Then bi+1 is chosen to be the
child of bi which maximizes wi+1. This choice ensures that

2wi+1 + 1 ⩾ wi. (3)

For each i < p, let di be the child of bi other than bi+1 (sometimes di does not exist),
and let Di be the subtree of S rooted at di (Di is empty if di does not exist). Furthermore,
let L, R be the sets of vertices which are before, resp. after the leaf bp in the order <S . For
any 0 ⩽ i ⩽ j ⩽ p, let

Li,j
def=

⋃
i⩽ℓ<j
bℓ∈L

{bℓ} ∪Dℓ, and Ri,j
def=

⋃
i⩽ℓ<j
bℓ∈R

{bℓ} ∪Dℓ.

Roughly speaking, Li,j , resp. Ri,j consists of subtrees branching out of B on the left, resp.
right, between bi and bj .

▷ Claim 4.4. For any i, j, the subtree Si is partitioned into Li,j <S Sj <S Ri,j .

Proof. Clearly Li,j , Sj , Ri,j partition Si. Furthermore, if ℓ < j and bℓ ∈ L, then bℓ <S Sj ,
and in turn Dℓ <S bℓ. This proves Li,j <S Sj , and symmetrically Sj <S Ri,j . ◁

▷ Claim 4.5. For 0 ⩽ i < j ⩽ p, if wi ⩾ wj + 3, then there is a part P ∈ P such that
P ⊂ Li,j or P ⊂ Ri,j .

Proof. At least three parts of P intersect Si but not Sj . Since these three parts and Si are
all intervals of <S , one of these parts, say P , is contained in Si. Thus P is a subset of Si

but does not intersect Sj , which by Claim 4.4 implies P ⊂ Li,j or P ⊂ Ri,j . ◁

Construct a sequence i0 < · · · < i2k of indices in {0, . . . , p} inductively by taking i0 = 0,
and choosing iℓ+1 minimal such that wiℓ+1 ⩽ wiℓ

− 3. Using (3) and the minimality of iℓ+1,
we obtain for all ℓ that 2wiℓ+1 + 1 ⩾ wiℓ+1−1 > wil

− 3, hence

2wiℓ+1 + 3 ⩾ wil
. (4)

We can now define f by f(0) = 1 and f(k + 1) = 4f(k) + 9. By assumption, w0 = |P| ⩾ f(k),
and it follows from (4) that the construction of iℓ can be carried out up to i2k.

Define L′
ℓ = Liℓ−1,iℓ

, and similarly R′
ℓ = Riℓ−1,iℓ

, see Figure 4. By Claim 4.5, for any
ℓ ∈ [2k], either L′

ℓ or R′
ℓ contains a part of P. Thus, either there are at least k distinct L′

ℓ

containing a part of P , or there are at least k distinct R′
ℓ containing a part of P . Assume the

former case without loss of generality. We will now forget the vertices which are not in L.
Define C = L ∩ B. By Remark 4.1, this is a chain, whose order coincides with <S .

Furthermore, at any node x of C, the branch B does descend on the right side, since x <S bp.
Thus, the order in C also coincides with the ancestor-descendent order of S. (Remark here
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b0

b1

b2

b3

b4

b5

b6

b7

D0D1D3D6D5D4D2

bi0

bi1

bi2

bi3

R′
1R′

2L′
3L′

2

P
P ′

Figure 4 Sketch of the proof of Lemma 4.3. In the upper half, the BST T with the extracted
branch B; circled in red, the extracted subsequence biℓ ; in green arrows, the chain C = B ∩ L =
{b2, b4, b5, b6}. Below the tree, from top to bottom: the partition in L′

ℓ and R′
ℓ; the initial family

(here partition) P, with the parts contained in some L′
ℓ or R′

ℓ highlighted; the final family P ′,
obtained by selecting a part of P inside each possible L′

ℓ.

that if we were in R instead of L, the order of C would be the inverse of the ancestor-
descendant order.) Now, if C is enumerated as c0 <S · · · <S ct, and Ci is the subtree
branching out on the left of ci, defined similarly to Di, then the chain quasi-order ⪯+

C

restricted to L is exactly

C0 ≺+
C c0 ≺+

C C1 ≺+
C c1 ≺+

C . . . ≺+
C ct

where each subtree Ci is an equivalence class. (In R, we would instead use ⪯−
C .) From this

description, we obtain that any Li,j is an interval of ⪯+
C restricted to L.

For each L′
ℓ, select a part of P included in L′

ℓ if any, and define P ′ as the collection
of selected parts. Thus P ′ ⊂ P, and we know from the choice of the family {L′

ℓ}ℓ∈[2k]
that |P ′| ⩾ k. Furthermore, if X ̸= Y are parts of P ′, there are s ̸= t such that X ⊆ L′

s

and Y ⊆ L′
t. Since each L′

ℓ is an interval of (L,⪯+
C), this implies that X and Y are

non-overlapping for ⪯+
C . Thus P ′ satisfies all desired properties.

Finally, given the BST S and the family P, it is routine to compute the weights wi of
all nodes in S by a bottom-up procedure; this only requires to compute the left-most and
right-most parts of P intersecting each subtree. From this, one can in linear time choose the
branch B, the indices iℓ, the better side L or R, and finally compute C and P ′. ◀

5 BST orders witness twin-width

In this section, we prove Lemma 1.4, i.e. that BST orders are good for twin-width. The proof
heavily uses model-theoretic results from [6]. Due to space constraints, the combinatorial
proof of the stronger result Theorem 1.5 is omitted, see the extended version of this paper [16].

If T is a class of tournaments, we denote by T BST the class of ordered tournaments (T, <S)
where T ∈ T and <S is the order of some BST S on T . With this notation, Lemma 1.4 can
be restated as



C. Geniet and S. Thomassé 53:13

▶ Lemma 5.1. If T is a hereditary class of tournaments with bounded twin-width, then T BST

also has bounded twin-width.

Proof. Fix T a class of tournaments with twin-width at most t, and assume by contra-
diction that T BST has unbounded twin-width. Then by Theorem 2.1, for any k there is
some (T, <S) ∈ T BST whose adjacency matrix contains a rank-k division. That is, there are
partitions A1, . . . , Ak and B1, . . . , Bk of V (T ) into intervals of <S such that the adjacency
matrix of any Ai versus Bj is k-diverse.

If k is chosen to be k = f(ℓ) where f is the function of Lemma 4.3, then we obtain two
chain quasi-orders ⪯A,⪯B in T , and subfamilies Ai1 , . . . , Aiℓ

and Bj1 , . . . , Bjℓ
which are

non-overlapping for ⪯A and ⪯B respectively. We can in fact assume that Ai1 , . . . , Aiℓ
are

disjoint intervals of ⪯A, by replacing them by their closure

Āit

def= {x | ∃y, z ∈ Ait
, y ⪯A x ⪯A z}

Let T + be the structure T augmented by the quasi-orders ⪯A and ⪯B. In T +, each
interval Āit

can be described by its two endpoints. Using the terminology of [6, section 9],
this means that Āi1 , . . . , Āiℓ

is a definable disjoint family. Naturally, the same holds for
B̄j1 , . . . , B̄jℓ

. Finally, Ai versus Bj being k-diverse is a very special case of the model-theoretic
notion of A having k distinct ∆-types over B, when ∆ consists only of the formula “being
adjacent”.

Let T + denote the class of tournaments in T augmented by any two chain quasi-orders.
We have just proved that for arbitrary large k, ℓ, there are structures T + ∈ T + containing
two families of ℓ disjoint subsets

(
Āit

)
t∈[ℓ] and

(
B̄jt

)
t∈[ℓ] definable by a fixed formula, and

such that each Āit has k distinct ∆-types over each B̄jt . That is, the class T + is unrestrained
in the sense of [6, Definition 50]. By [6, Theorem 54], it follows that T + is not monadically
NIP, hence has unbounded twin-width. But it follows from Lemma 4.2 that T + is obtained
from T by a first-order transduction, contradicting that T has bounded twin-width. ◀
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