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Simple and efficient algorithms based on Volterra equations to compute
memory kernels and projected cross-correlation functions from molecular
dynamics

Amaël Obliger1, a)

Institut des Sciences Moléculaires, Univ. of Bordeaux – Bordeaux INP – CNRS, UMR 5255, F-33400 Talence,
France

(Dated: 13 March 2023)

Starting from the orthogonal dynamics of any given set of variables with respect to the projection variable
used to derive the Mori-Zwanzig equation, a set of coupled Volterra equations is obtained that relate the
projected time correlation functions between all the variables of interest. This set of equations can be
solved using standard numerical inversion methods for Volterra equations, leading to a very convenient yet
efficient strategy to obtain any projected time correlation function or contribution to the memory kernel
entering a generalized Langevin equation. Using this strategy, the memory kernel related to the diffusion of
tagged particles in a bulk Lennard-Jones fluid is investigated up to the long-term regime to show that the
repulsive-attractive cross contribution to memory effects represents a small but non-zero contribution to the
self-diffusion coefficient.

I. INTRODUCTION

Because of the large number of degrees of freedom in-
volved in stochastic systems we use coarse-graining pro-
cedures where few observables are selected to describe the
systems’ evolution. The dynamics of such coarse-grained,
or macroscopic, variables is filtered out of the dynamics
of the other “irrelevant” microscopic variables which con-
stitute the environment of the formers. In the Langevin
equation, this is achieved by splitting the coarse-grained
dynamics into two components, a random one summing
up the interactions with the environment, and a dissi-
pative one representing the response of the macroscopic
variables to their environment. The Markovian assump-
tion is made where the dynamics of the microscopic de-
grees of freedom occur on a negligible timescale com-
pared to the characteristic one of the macroscopic dy-
namics. Such an assumption is removed in the Mori-
Zwanzig equation1–3 that becomes important as the sep-
aration of timescales is incomplete. Those memory effects
are quantified by memory kernels or, more generally, by
projected time correlation functions if one is also inter-
ested in decomposing memory kernels or in the coupling
between different macroscopic variables.

Despite the difficulty of such a task, the calculation of
memory kernels from microscopic dynamics can be per-
formed reliably and efficiently by inverting the Volterra
equations obtained from the Generalized Langevin Equa-
tion (GLE)4–14, although more complex methods ex-
ist15–20. The simple yet efficient method based on the
inversion of Volterra equations has, however, only been
applied to the computation of the memory kernel appear-
ing in the GLE. Also, the first numerical method allowing
to decompose the memory kernel, or more generally to
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compute projected correlation functions, has been pro-
posed quite recently by Carof et al.21 and is based on
the reconstruction of the random force, which obeys an
“orthogonal” dynamics. In particular, it permitted the
authors to investigate the diffusive dynamics of a tagged
particle in a bulk Lennard-Jones (LJ) fluid by decom-
posing the memory kernel into contributions pertaining
to the repulsive and attractive parts of the LJ interac-
tions. Similarly, the dynamics of ions confined in a clay
nanopore has been studied by separating the ion-ion, ion-
clay, and ion-water interactions22.

Here, Volterra equations are derived within Mori’s pro-
jection operator formalism from the orthogonal dynamics
of generic variables that form a set of coupled equations
for the projected time correlation functions between the
variables themselves and between the variables and the
specific variable onto which the dynamics is projected.
Then, these Volterra equations can be reliably inverted
using simple numerical integration schemes to provide
any projected time correlation functions or memory ker-
nels. Such a strategy proves to be more convenient and
less computationally intensive than the method based on
the reconstruction of the orthogonal dynamics of the con-
sidered variables as Volterra equations inversion only re-
quires time correlation functions. This is demonstrated
by investigating the diffusive dynamics of a tagged parti-
cle in a LJ fluid following the repulsive-attractive decom-
position of the LJ interactions for the memory kernel
related to the self-diffusion coefficient. The efficiency of
such a strategy made it possible to quantitatively assess
the different long-term contributions for the first time.

In the following, the projection operator formalism is
first recalled, as well as the numerical scheme based on
the inversion of the Volterra equation associated with
the GLE to compute its memory kernel. Then, the set of
coupled Volterra equations needed to generalize the lat-
ter procedure for any projected correlation functions for
the Mori equation is derived from the orthogonal dynam-
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ics, and the numerical method strategy to solve them is
given. A simple derivation of the orthogonal dynamics
of any variable is also provided. Finally, the dynamics of
a bulk LJ fluid is investigated at all times according to
the repulsive-attractive decomposition of the LJ poten-
tial by applying the new strategy to trajectories obtained
by classical Molecular Dynamics (MD) simulations.

II. PROJECTION OPERATOR FORMALISM

A. Mori’s Projection Operator

Within the projection operator formalism, one wants
to describe systems composed of many degrees of free-
dom by focusing on a few relevant, macroscopic or slow
variables. We consider Hamiltonian systems described
through a set q = (qi)i∈[1,nd] of nd classical micro-
scopic degrees of freedom with their respective momenta
p = (pi)i∈[1,nd] that evolve in time as

q̇i(t) =
∂H(Γt)

∂pi
(1)

ṗi(t) = −∂H(Γt)

∂qi
(2)

where H is the Hamiltonian operator acting on a phase
space frame Γt = (qi(t), pi(t))i∈[1,nd] at time t, and the
dot denotes the total time derivative. For any variable
A, its time evolution then obeys

Ȧ(t) = iLA(t) (3)

where iL is the Liouvillian operator defined by its action
on a variable A as iLA(t) = −{H,A(t)} with {·, ·} the
Poisson brackets. The variable A is also an operator that
acts on the phase space frames Γt with the restriction
that this operator does not evolve in time, i.e., it is a
function of the microscopic degrees of freedom that does
not explicitly depend on time. The formal solution of the
previous equation reads

A(t) = eiLt A(0) (4)

where t = 0 has been taken as the initial time.
In Mori’s operator formalism, we choose a macroscopic

variable P to describe the evolution of the system while
integrating out the other microscopic degrees of freedom.
This is formally accomplished by the action of a projec-
tor P that projects any variable X onto the macroscopic
variable P as

PX =
⟨X(0)P(0)⟩
⟨P(0)2⟩

P(0) . (5)

The bracket notation ⟨ · ⟩ corresponds to the ensemble
averaging at equilibrium over Hamiltonian trajectories
following Eqs. 1 and 2. The remaining “irrelevant” de-
grees of freedom are then projected out via the orthogo-
nal operator Q = I−P, where I is the identity operator.

Applying Dyson’s operator identity

eiLt =

∫ t

0

eiL(t−s) PiL eiQLs ds+ eiQLt (6)

to the time derivative Ȧ(t) = iL eiLt A(0) of an ob-
servable A and decomposing the last term as eiQLt =
eiQLt(P +Q) leads to the so-called Mori-Zwanzig equa-
tion

Ȧ(t) = ΩP(t)−
∫ t

0

K(s)P(t− s) ds+R(t) (7)

with the drift term

Ω =
⟨Ȧ(0)P(0)⟩
⟨P(0)2⟩

, (8)

the memory kernel

K(t) =
⟨R(t)Ṗ(0)⟩
⟨P(0)2⟩

, (9)

and the noise

R(t) = eiQLt QȦ(0) . (10)

Such equations can be generalized for a collection of np
relevant variables (Pi)i∈[1,np] transforming Eqs. 7 and 10

into vectors and Eqs. 8 and 9 into matrices2,23.
By definition, the noise R is decorrelated from the rel-

evant variable P at all times (⟨R(t)P(0)⟩ = 0), and its
time correlation with the time derivative of the relevant
variable defines the memory kernel, which encodes the
delayed effects of all the other degrees of freedom orthog-
onal to P on the dynamics of the observable A. Evalu-
ating the drift term (Eq. 8) from the Hamiltonian dy-
namics of the systems is as straightforward as evaluating
the denominator ⟨P(0)2⟩, as opposed to the noise or the
memory kernel.

B. Generalized Langevin Equation

Taking the relevant observable P as the velocity v of a
tagged particle and A as its momentum mv with m the
particle mass, one gets the usual generalized Langevin
equation

mv̇(t) = −
∫ t

0

k(s)v(t− s) ds+ η(t) (11)

with η(t) = eiQLt f(0), f(t) the total force acting on the
particle, and the friction kernel

k(t) =
⟨η(t)η(0)⟩
kBT

, (12)

by noting that the force f is orthogonal to the relevant
variable v (Pf = 0), and that ⟨v(0)2⟩ = kBT/m at ther-
mal equilibrium. By choosing to consider the dynamics of
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a variable A proportional to the relevant variable, lead-
ing to PA = A, the memory kernel becomes the time
auto-correlation of the noise. In the Markovian approxi-
mation, the timescale of the dynamics of the velocity is
well separated from the ones of the microscopic degrees
of freedom, and the memory kernel can simply be consid-
ered as a Dirac pulse, bringing us back to the Langevin
equation mv̇(t) = −γv(t) + η(t).
One efficient and simple way to numerically estimate

the memory kernel (Eq. 12) from the dynamics of the
system is to take the ensemble average of Eq. 11 after
multiplying it by v(0), which leads to a Volterra equation
of the first kind

m⟨v̇(t)v(0)⟩ = −
∫ t

0

k(s)⟨v(t− s)v(0)⟩ds (13)

after noting that ⟨η(t)v(0)⟩= 0 due to the orthogonal dy-
namics of the noise. As noted in8, numerically inverting
this equation is not stable. Instead, its time derivative

−m⟨v̇(t)v̇(0)⟩ = −kBT
m

k(t)−
∫ t

0

k(s)⟨v̇(t− s)v(0)⟩ds ,

(14)

a Volterra equation of the second kind, should be con-
sidered. Rewriting this expression as function of the
total force f(t) = mv̇(t) and introducing the notation
CXY (t) = ⟨X(t)Y (0)⟩ gives

Cff (t) = kBTk(t) +

∫ t

0

k(s)Cfv(t− s) ds . (15)

This equation can be discretized in time using the trape-
zoidal rule for the integral as

Cff
i = kBTki +

i∑
j=0

ψjkjC
fv
i−jδt , (16)

where δt is the time resolution, ψj = 1 − 0.5δ0j , and all
the time-dependent functions g have been discretized as
gi = g(iδt) with i ∈ [0, nt− 1], nt being the total number

of time-frames along the trajectory. Because Cfv
0 = 0, a

very simple iterative scheme can thus be obtained as

ki =
Cff

i − δt
∑i−1

j=0 ψjkjC
fv
i−j

kBT
. (17)

This algorithm only requires the averaged time auto-
correlation function of the force and the averaged force-
velocity time correlation function. Such correlation func-
tions can be very efficiently computed with an O(nt lnnt)
complexity by using the Wiener-Khintchine theorem24,25.
Despite being efficient and simple to implement, this ap-
proach based on the discretization of a Volterra equation
of the second kind has been restricted19,21 to the evalu-
ation of the memory kernel where the observable under
consideration A is proportional to the relevant variable
P , i.e., when the memory kernel is determined by the
noise auto-correlation function. We will see later that
this restriction can be removed.

C. Orthogonal Time Correlation Functions

Returning to the memory kernel (Eq. 9) of the Mori
equation, we note that it implies in the general case to
evaluate the time cross-correlation function of Ṗ and the
orthogonal dynamics of Ȧ. Expanding Eq. 9 with the
definition of the noise (Eq. 10), the memory kernel reads

K(t) =
⟨Ṗ(0) eiQLt QȦ(0)⟩

⟨P(0)2⟩
. (18)

Since the noise does not follow a Hamiltonian dynamics
but an orthogonal one, it cannot be directly extracted
from the system dynamics, nor can it be propagated in
time by the numerical integrators used in MD calcula-
tions. To circumvent this problem, Carof et al.21 derived
two algorithms that reconstruct the noise or the orthog-
onal dynamics of any observable, say M, and thus allow
one to compute its time correlation with any other ob-
servable, say N, as

C̄MN(t) = ⟨N(0) eiQLt M(0)⟩ . (19)

Noting from26 that the adjoint of eiQLt is e−iLQt for the
ensemble average ⟨·⟩ understood as a scalar product in
the operator space, we also have

C̄MN(t) = ⟨M(0) e−iLQt N(0)⟩ . (20)

From the two previous expressions, two observables
naturally appear, M+(t) = eiQLt M(0) and N−(t) =
e−iLQt N(0), following a forward (+) or a backward (−)
orthogonal dynamics given by

Ṁ+(t) = iLM+(t)− PiLM+(t) , (21)

Ṅ−(t) = −iLN−(t) + iLPN−(t) , (22)

respectively. Both orthogonal dynamics differ from the
Hamiltonian one (Ȧ(t) = iLA(t)). Such projected corre-
lation functions can be either expressed as

C̄MN(t) = CM+N(t) = ⟨M+(t)N(0)⟩ , (23)

or as

C̄MN(t) = CN−M(t) = ⟨N−(t)M(0)⟩ . (24)

Note that, in general, the time correlation function
C̄MN(t) is not stationary in time, even though the mi-
croscopic dynamics is time reversible. However, for the
generalized Langevin equation, the memory kernel is sta-
tionary, as demonstrated in21. Indeed, stationarity is
recovered when both observables M and N are orthogo-
nal to the relevant variable P, i.e., when M = QM and
N = QN. Upon inspection of the orthogonal dynam-
ics of both variables M+ and N−, Carof et al.21 shown
that the time derivative of auxiliary observables, defined
as M̂+(t) = e−iLt M+(t) and N̂−(t) = eiLt N−(t), can
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be simply expressed using a time-dependent operator
Pt = eiLt P e−iLt as

˙̂
M+(t) = −P−tiLM̂+(t) , (25)

˙̂
N−(t) = iLPtN̂

−(t) . (26)

Following some algebraic calculations detailed in21, such
expressions can be formally integrated to give the central
relations

M+(t) = M(t) +

∫ t

0

⟨M+(s)Ṗ(0)⟩
⟨P(0)2⟩

P(t− s) ds , (27)

N−(t) = N(−t) +
∫ t

0

⟨N−(s)P(0)⟩
⟨P(0)2⟩

Ṗ(s− t) ds . (28)

Note the main difference between both expressions, the
integral term for the backward dynamics involves a cor-
relation function between the orthogonal dynamics of the
observable and the relevant variable, not its time deriva-
tive as for the forward dynamics (and the Volterra equa-
tion derived from the GLE Eq. 13).

Also, alternatively to the derivation of the Forward
Orthogonal Dynamics (FOD) just recalled, one can di-
rectly apply the Dyson operator identity (Eq. 6) to the
variable M, showing that the dynamics of the orthog-
onal time quantity M+ (Eq. 27) directly follows from
Duhamel’s principle27. Interestingly, the same observa-
tion can be made for the backward orthogonal dynamics
N−(t) = e−iLQt N(0) for which the order of iL and Q is
reversed compared to Dyson’s identity. Inverting those
operators in the Dyson identity leads to

eiLt =

∫ t

0

eiL(t−s) iLP eiLQs ds+ eiLQt , (29)

which, upon the changes of variables t→ −t and s→ −s,
gives the operator identity

e−iLt = −
∫ t

0

e−iL(t−s) iLP e−iLQs ds+ e−iLQt (30)

that can be applied to the observable N to retrieve Eq. 28
in a direct manner.

Before discretizing Eqs. 27 and 28, one important point
should be raised. Contrary to the Hamiltonian dynamics,
the orthogonal dynamics is not stationary in time. This
is best clarified by temporarily stating the time point
from which the orthogonal dynamics is propagated, con-
sidering an initial time t0, the orthogonal dynamics of
M after a duration ∆t is denoted by M+(∆t)[Γt0 ] and is
not equal to M+(t0 + ∆t)[Γ0] the orthogonal dynamics
propagated from t = 0 to t0 + ∆t. It is otherwise the
case for the Hamiltonian dynamics, i.e., M(∆t)[Γt0 ] =
M(t0+∆t)[Γ0]. For instance, the previous expression for
the FOD (Eq. 27) can be expressed as

M+(t)[Γ0] = M(t)[Γ0] +

∫ t

0

CM+Ṗ(s)

⟨P(0)2⟩
P(t− s)[Γ0] ds ,

(31)

which, after some manipulations21, leads to

M+(t+ δt)[Γ0] = M+(t)[Γδt] +∫ δt

0

CM+Ṗ(t+ s)

⟨P(0)2⟩
P(−s)[Γδt] ds . (32)

This expression can then be discretized without ambigu-
ity by employing the rectangle rule, leading to an algo-
rithm with first order w.r.t the timestep δt as

M+
i+1[l] = M+

i [l + 1] + βiPl+1δt , (33)

where the index l runs between 0 and nt− i−1, and with

βi =

∑nt−i−1
m=0 ṖmM+

i [m]∑nt−i−1
m=0 P2

m

, (34)

where the specific notation in square brackets has been
dropped for stationary quantities only. At each iteration
i, the projected time correlation function Eq. 19 can be
computed as

CM+N
i =

1

nt − i

nt−i−1∑
m=0

NmM+
i [m] , (35)

which corresponds to a running average over all the pos-
sible trajectory segments of time iδt for which the orthog-
onal dynamics has been reconstructed. This first-order
algorithm, initially derived by Carof et al.21, was later
improved by Lesnicki et al.28 using the trapezoidal rule
to reach second-order accuracy in δt, leading to a numer-
ically more stable algorithm at little extra computational
cost. In the following, unless explicitly stated, only the
second-order algorithm of the FOD is concerned when
referring to the reconstruction algorithm.
For a bulk LJ fluid, the initial algorithms were notably

the first to allow, (i) the study of the noise distribution –
showing that it is non-Gaussian, as for the force distribu-
tion, and that the distribution of the difference between
noise and force is Gaussian –, and (ii) the decomposi-
tion of the memory kernel – showing that the repulsive
part of the LJ potential dominates the friction coefficient
γ =

∫∞
0
k(s)ds.

In practice, the reconstruction of the orthogonal dy-
namics is performed for each available trajectory (par-
ticle) of the system dynamics, and the correlation func-
tions are averaged over those trajectories. Finally, the
complexity of such algorithms goes as O(ntnc) with nc
corresponding to the maximum duration ncδt over which
the correlation function is investigated. This maximum
time is, of course, determined by the physics of the sys-
tem at hand and should be large enough to encompass
the complete relaxation of the memory effects. Also, it is
to be noted that, since the strategy of such reconstruction
algorithms is to propagate the orthogonal dynamics, the
time resolution needed is the same as that used in MD
to generate the Hamiltonian dynamics.
So far, we have two numerical strategies to investi-

gate memory effects: one based on the solution of the
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Volterra equation of the second kind (Eq. 15), and one
based on the reconstruction of the orthogonal dynamics
(Eq. 32). The former allows to efficiently compute the
memory kernel by leveraging the Wiener-Khintchine the-
orem to compute first the TCFs needed with O(nt lnnt)
complexity and then to invert the Volterra equation that
needs to be done only once for all the individual trajec-
tories over which the TCFs have been averaged, but not
allowing to compute orthogonal cross-correlations, which
is required to decompose the memory kernel over multiple
contributions. Reconstructing the orthogonal dynamics
allows such calculations, but at the price of propagating
the orthogonal dynamics (O(ntnc)) for each trajectory
available before averaging. Moreover, when solving the
Volterra equation, the time resolution can be lower than
the one used to generate the MD trajectories, but needs
to be large enough to allow for an accurate integration
of the memory kernel if one wants the friction coefficient.
We will see later that the resolution needed depends on
the dynamics of the memory effects themselves. We now
turn to the reconciliation between the two approaches to
get the best of both worlds.

D. Volterra Equations for Projected Cross-Correlation
Functions

Here and in what follows, the Volterra equation refers
exclusively to the second kind. A couple of observations
are in order before going further. The usual derivation
of the Volterra equation (15) consists of multiplying the
GLE by the velocity, then taking the time derivative of
the ensemble average. It implies that decomposing the
memory kernel over different contributions would be pos-
sible only by decomposing the velocity in the same way,
which is not possible. Alternatively to this derivation
of the Volterra equation and more straightforwardly, one
can simply multiply the GLE by the force f(0) instead of
the velocity, and take the ensemble average. This will be
generalized in order to obtain a suitable set of Volterra
equations, allowing us to reliably evaluate the projected
correlation functions. Let us consider a set of no observ-
ables (Bα)α∈[1,no] for which one wants to compute their
projected correlation functions

CB+
αB+

β (t) = ⟨B+
α (t)B

+
β (0)⟩ ∀α, β ∈ [1, no] . (36)

Using Eq. 27 for Bα and taking its average after multi-
plying by B+

β (0) = Bβ(0), one arrives at

⟨B+
α (t)B

+
β (0)⟩ = ⟨Bα(t)Bβ(0)⟩ +∫ t

0

⟨B+
α (s)Ṗ(0)⟩
⟨P(0)2⟩

⟨P(t− s)Bβ(0)⟩ds , (37)

which is a Volterra equation of the second kind but in-
volving the yet unknown projected correlation function

CB+
α Ṗ(t) in the integral, as opposed to the time correla-

tion functions CBαBβ (t) and CPBβ (t), which can be ob-
tained efficiently from MD trajectories. Now, the same

step is repeated but with Ṗ(0) to get a Volterra equation

for the required CB+
α Ṗ(t) as

⟨B+
α (t)Ṗ(0)⟩ = ⟨Bα(t)Ṗ(0)⟩ +∫ t

0

⟨B+
α (s)Ṗ(0)⟩
⟨P(0)2⟩

⟨P(t− s)Ṗ(0)⟩ds . (38)

Again, CBαṖ(t) and CPṖ(t) can be evaluated from MD
trajectories, but this Volterra equation can be numeri-
cally inverted as

C
B+

α Ṗ
i = CBαṖ

i + δt

i−1∑
j=0

ψjC
B+

α Ṗ
j CPṖ

i−j/C
PP
0 , (39)

since CPṖ
0 = 0, following the same procedure as for

Eq. 15. Then, Eq. 37 can be numerically integrated as

C
B+

αB+
β

i = C
BαBβ

i + δt
i∑

j=0

ψjC
B+

α Ṗ
j C

PBβ

i−j /C
PP
0 , (40)

with C
B+

αB+
β

0 = C
BαBβ

0 . Eventually, higher-order integra-
tion methods than the trapezoidal rule could achieve bet-
ter numerical stability when needed29. Note that, even

for the projected auto-correlation function CB+
αB+

α (t), the

projected cross-correlation function CB+
α Ṗ(t) is needed.

Additionally, for numerical reasons or if one are only
interested in the integral of the projected correlation

functions, say ΓB+
αB+

β (t) =
∫ t

0
CB+

αB+
β (t′)dt′, the set of

Volterra equations (Eqs. 37 and 38) can be integrated

in time, using that
∫ t

0
dt′

∫ t′

0
ds =

∫ t

0
ds

∫ t

s
dt′ after the

change of variable t− s→ s, to obtain

ΓB+
αB+

β (t) = ΓBαBβ (t) +∫ t

0

ΓB+
α Ṗ(s)

⟨P(0)2⟩
⟨P(t− s)Bβ(0)⟩ds (41)

and

ΓB+
α Ṗ(t) = ΓBαṖ(t) +∫ t

0

ΓB+
α Ṗ(s)

⟨P(0)2⟩
⟨P(t− s)Ṗ(0)⟩ds (42)

where the two changes of variable t′−s→ t′ and t−s→ s
have been made. Those two sets of Volterra equations
retain the exact same structure as Eqs. 37 and 38 and
can thus be numerically evaluated with the same algo-
rithm (Eqs. 39 and 40) but with different initial condi-

tions given by ΓB+
α Ṗ(0) = ΓB+

αB+
β (0) = 0. Eventually, the

projected correlation functions can then be obtained by
numerical differentiation. The corresponding algorithms
derived from the backward orthogonal dynamics given
by Eq. 28 are provided in appendix A for completeness.
The Volterra Eqs. 37 and 38 with the inversion algorithm
Eqs. 39 and 40 are the main results of this paper.
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III. MOLECULAR DYNAMICS CALCULATIONS OF A
BULK LENNARD-JONES FLUID

A. Model

In order to test the numerical strategy just introduced,
we investigate the self-diffusion of a bulk LJ fluid by look-
ing into the contributions of the repulsive and attractive
parts of the particles’ interactions to the memory kernel.
The LJ interaction potential U is written as a function
of the inter-particle distance r as

U(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
, (43)

with ϵ the depth of the potential well located at a distance
rmin = 21/6σ that separates the interaction potential into
a purely repulsive part, for r ≤ rmin, and an attractive
one, for r ≥ rmin. Then, the total force f felt by a
particle can be written as f = fr + fa, leading to the
same decomposition for the noise, η(t) = eiQLt f(0) =
ηr(t)+ηa(t). The memory kernel (Eq. 12) can be further
decomposed as

k(t) = kr-r(t) + ka-a(t) + 2kr-a(t) , (44)

where the components of the memory kernel are defined
as kx-y(t) = ⟨ ηx(t)ηy(0)⟩ /(kBT ) and are numerically
evaluated from Eqs. 39 and 40 by identifying the set
of observables (Bα)α∈[1,no] = (fr, fa). Recalling that

P = v and thus Ṗ = f/m, the intermediate functions

CB+
α Ṗ(t) = Cηxf (t)/m required to evaluate the memory

kernels’ components correspond to the cross-correlations
between the components of the noise and the total force,
yielding another decomposition of the memory kernel as
k(t) = kr-t(t) + ka-t(t), with kx-t(t) = Cηxf (t)/(kBT )
and where we have used that η(0) = f(0). Then,
with the notations of this section and by recalling that
⟨v(0)2⟩ = kBT/m, Eq. 37 reads

kBTkx-y(t) = Cfxfy(t) +

∫ t

0

kx-t(s)C
vfy(t− s) ds . (45)

Besides, the friction coefficient γ, related to the self-
diffusion coefficient D through the Einstein relation D =
kBT/γ, which corresponds to the time integral of the
memory kernel can also be decomposed the same way,
introducing the friction components γx-y =

∫∞
0
kx-y(t)dt

for which we consider the time evolution of the running
integrals

γx-y(t) =

∫ t

0

kx-y(s)ds (46)

in what follows. Additionally, we distinguish the con-
tributions of the sole memory effects on the memory
kernel and the friction coefficients, denoted by the su-
perscript m, which are defined by kmx-y(t) = kx-y(t) −

Cfxfy(t)/(kBT ) and γmx-y =
∫∞
0
kmx-y(t) dt, respectively,

with

kmx-y(t) =

∫ t

0

kx-t(s)
Cvfy(t− s)

kBT
ds (47)

from Eq. 45. Since the integral of the total force auto-
correlation function quickly goes to zero, only the mem-
ory effects’ contributions remain in the total friction co-
efficient, resulting in the long-time limit to γ = γmr-r +
γma-a + 2γmr-a

B. Numerical Details

A system of 1000 LJ particles of mass m interacting
within a cutoff distance of 6σ at a density of 0.5σ−3

has been first equilibrated in a cubic periodic box during
231 τ , where τ =

√
ϵ

mσ2 , using MD in the canonical en-

semble and with a timestep ∆t = 4.6 10−4 τ to reach an
equilibrium temperature of 1.5 ϵ/kB . The Nosé-Hoover
thermostat has been used with a time constant of 0.92 τ .
Then, 90 independent production runs of 231 τ in the mi-
crocanonical ensemble have been generated using differ-
ent seeds to randomly initialize the velocities according
to the Maxwell-Boltzmann distribution. The LAMMPS
code30 has been used to perform all the MD calculations.
If not explicitly mentioned, all results have been averaged
over the whole set of trajectories (90) by processing their
total length (231 τ) at every timestep (δt = ∆t). The
error bars correspond to the 95 % confidence interval.

C. Numerical Results

To begin with, the running integrals of the projected
correlation functions are reported in Fig. 1 for a single
trajectory of 10 τ sampled every two timesteps (δt =
2∆t), showing that we obtain very similar results to those
of Carof et al.21 for the same statistics. As they first no-
ticed, the main contribution is the purely repulsive one.
Additionally, the main algorithm derived here is tested in
Fig. 2 against the second-order accurate reconstruction
algorithm, implemented following28, for the running inte-
grals of each component of the friction coefficient. We see
from the purely attractive contribution and cross contri-
bution that both algorithms give identical result. How-
ever, for the purely repulsive contribution, for which the
memory effects contribute the most, the reconstruction
algorithm results start to deviate from a plateau before
2 τ . Fig. 3 confirms that the results obtained through
inversion of the Volterra equations converge toward the
right value for the total friction coefficient as evaluated
via the Green-Kubo relation D =

∫∞
0

⟨v(t)v(0)⟩ dt. We
also see that the integral of the force auto-correlation
function rapidly converges to zero, canceling its long-
term contribution to the friction coefficient and leaving
simply γ = γm.
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FIG. 1. Running time integrals of the projected correlation
functions kBTγx-y(t) according to the repulsive-attractive
decomposition of the potential (solid curves). The corre-
sponding running integrals of the force correlation functions∫ t

0
Cfxfy(s)ds are also shown (dashed lines). These results

have been obtained for a single trajectory of 10τ with a time
resolution of 2∆t for comparison with21.
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FIG. 2. Contributions to the friction coefficient (Eq. 46) ac-
cording to the repulsive-attractive decomposition (Eq. 44) of
the potential computed from the inversion of the Volterra
equations (solid lines) and with the second-order FOD recon-
struction method28(green dotted lines). These results have
been averaged over 30 independent trajectories of 231τ with
a time resolution of ∆t.

The running integrals of the friction coefficient γ(t) =
γr-t(t) + γa-t(t) corresponding to the intermediate pro-
jected correlation functions are also presented in Fig. 4
along with their force correlation counterparts, showing
again that the repulsive interactions’ contribution domi-
nates friction in this case.
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FIG. 3. Total friction coefficient obtained by integrating the
total kernel Eq. 44 (blue), the velocity auto-correlation func-

tion as kBT/
∫ t

0
Cvv(s)⟩ ds from Einstein and Green-Kubo

relations (black), and the force auto-correlation function as∫ t

0
Cff (s)⟩ds/(kBT ) (orange). The latter way amounts to ig-

noring the memory effects. These results have been averaged
over 30 independent trajectories of 231τ with a time resolu-
tion of ∆t.
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FIG. 4. Contributions to the friction coefficient (Eq. 46) cor-
responding to the partial decomposition k(t) = kr-t(t)+ka-t(t)
related to the intermediate projected correlation functions
needed to perform the attractive-repulsive decomposition.

Thanks to the efficiency of the Volterra-based algo-
rithms, the long-time decay of the memory kernel con-
tributions can be investigated with a reasonable compu-
tational effort. The absolute values of the normalized
memory kernels’ components are shown in Figs. 5 and 6,
where one notices that all the contributions display sig-
nificant backscattering past a short time of around 0.1 τ
except for the purely attractive kernel (blue line in Fig. 6)
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FIG. 5. Absolute values of the normalized memory kernels
involving the repulsive part of the force (including the in-
termediate one kr-t) following the repulsive-attractive decom-
position of the force as functions of the time in logarithmic
scales. The error bars indicated by the colored and translu-
cent areas stand for the 95% confidence intervals.

that briefly plateaus before decaying to zero similarly to
the other kernels. As the repulsive interactions dominate,
this behavior is hidden in the attractive intermediate
memory kernel ka-t(t) (violet line in Fig. 6). Interestingly,
all the memory kernel contributions ultimately decay to
zero in the long-time limit following the same scaling as
t−3/2, which corresponds to the long-time decay of the
total memory kernel as first noted by28 at the molecular
scale in agreement with hydrodynamics for macroscopic
colloids’ diffusion31. This hydrodynamic scaling also ap-
plies to all the contributions of the memory kernel down
to the molecular scale. In other words, no contribution
decays faster than the total memory kernel, and none
of these contributions is individually responsible for this
scaling.

Coming back to the friction coefficient components
(Fig. 7), we see that their long-time contributions, as
calculated by the inversion of the Volterra equations
introduced here, remain stable in the long-time limit.
This is especially important in the case of the repulsive-
attractive cross-correlation contribution 2γr-a, which in
fact clearly differs from its counterpart obtained from the
corresponding force cross-correlations. This difference,
which corresponds to the contribution of the memory ef-
fects 2γmr-a, despite being small, remains strictly nega-
tive, as evidenced by Fig. 8, as opposed to the purely at-
tractive part, where memory effects barely arise at short
times. These memory effects could not be detected by
Carof et al.21 as their results were relatively noisy. In
addition, their study is limited to a maximum time of
2τ , which prevents observing the crossover and plateau
behaviors of the attractive-repulsive memory effects that
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FIG. 6. Absolute values of the normalized memory kernels
involving the attractive part of the force (including the inter-
mediate one ka-t) following the repulsive-attractive decompo-
sition of the force.
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FIG. 7. Running time integrals of the projected correlation
functions (γx-y(t)) according to the repulsive-attractive de-
composition of the potential (solid curves) as functions of the
time in logarithmic scale. The corresponding running inte-
grals of the force correlation functions

∫ t

0
Cfxfy(s)ds/(kBT )

are also shown (dashed lines).

are best illustrated in Fig. 8.
Computing such quantities from MD trajectories is

clearly intensive, both in terms of memory and calcu-
lation. Since the method introduced here relies only
on the inversion of Volterra equations, which can be ef-
ficiently done from correlation functions, reducing the
amount of data to be saved during the MD calculations
would prove to be convenient. This point is especially
daunting when using the reconstruction algorithms be-
cause the same time resolution used to calculate the tra-
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x-y(t) =
∫ t

0
km
x-y(s)ds of the mem-

ory effects’ contributions to the components of the friction
coefficient involving the attractive part of the potential.
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FIG. 9. Same as Fig. 8 but for various time resolutions and
with separate windows for the two components.

jectories is needed (δt = ∆t). We repeated the evalua-
tion of the memory contributions related to the repulsive
interactions by using lower time resolutions when pro-
cessing the trajectories (Fig. 9). We see that the time
resolution can be reasonably decreased to one tenth of
the MD time resolution (δt = 10∆t) in order to evaluate
the most sensitive plateau values of the different contri-
butions. Going further could prevent one from even ob-
serving the plateaus, especially in the case of the purely
repulsive contribution, which dominates friction. This is
associated with the non-monotonous behavior of the anti-
correlations arising before the ultimate long-term decay
(Fig. 5).

All the results obtained here by solving the Volterra
equations (Eqs. 37 and 38) have been identically repro-

duced by the inversion of the Volterra equations for the
running integrals (Eqs. 41 and 42). On the contrary,
the corresponding Volterra equations for the backward
orthogonal dynamics derived in the appendix led to un-
stable algorithms while introducing no benefit compared
to the ones of the FOD.

IV. CONCLUSIONS AND PERSPECTIVES

By deriving sets of Volterra equations of the second
kind from the orthogonal dynamics for a collection of
observables, one can reemploy the simple numerical in-
version schemes of Volterra equations to obtain sta-
ble and efficient algorithms to compute projected cross-
correlations. This strategy is numerically advantageous
because the inputs required are the already averaged time
correlation functions between the observables and the rel-
evant variable and its time derivative, which can all be
efficiently estimated via the Wiener-Khintchine theorem
(or cross-correlation theorem).

Then, application to the decomposition of the memory
kernel related to the diffusion of tagged particles in a bulk
LJ fluid allowed investigation of the long-term behavior of
the diffusive dynamics to show that the memory effects of
the cross-correlations between the repulsive and attrac-
tive interactions between LJ particles give a small but
persistent contribution to the total friction coefficient.
Interestingly, it has been shown that the decay of each
memory kernel contribution follows the algebraic decay
predicted by hydrodynamics for the diffusion of macro-
scopic colloids. We saw that decreasing the time resolu-
tion of the trajectory post-processing can be effectively
done without significant impact on the accuracy, but care
must be taken when dealing with cross-correlations that
exhibit complex behavior, especially if one is interested
in their time integrals.

Beyond being useful in practice to further simplify the
study of more complex dynamics than bulk LJ fluids,
such as confined fluid molecules, the strategy presented
here could be reused for non-linear32–34 or non-stationary
GLEs35–38.
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Appendix A: Volterra Equations for the Backward
Orthogonal Dynamics

Using Eq. 28 for Bα and taking its average after mul-
tiplying by B−

β (0) = Bβ(0) one arrives to

⟨B−
α (t)B

−
β (0)⟩ = ⟨Bα(−t)Bβ(0)⟩ +∫ t

0

⟨B−
α (s)P(0)⟩
⟨P(0)2⟩

⟨Ṗ(s− t)Bβ(0)⟩ds (A1)

which are also Volterra equations of the second kind. The
same step is repeated with P(0) to get Volterra equations

for CB−
αP(t) as

⟨B−
α (t)P(0)⟩ = ⟨Bα(−t)P(0)⟩ +∫ t

0

⟨B−
α (s)P(0)⟩
⟨P(0)2⟩

⟨Ṗ(s− t)P(0)⟩ds . (A2)

The correlation functions appearing in the two previous
equations are stationary because Bα and Ṗ are Hamilto-
nian dynamical quantities, then we have CBαBβ (−t) =
CBβBα(t) as well as CBαP(−t) = CPBα(t). These
Volterra equations can be numerically solved as

C
B−

αP
i = CPBα

i + δt

i−1∑
j=0

ψjC
B−

α Ṗ
j CPṖ

j−i/C
PP
0 , (A3)

since CPṖ
0 = 0, following the same procedure as for

Eq. 15. Then, Eq. A1 can be numerically integrated as

C
B−

αB−
β

i = C
BβBα

i + δt

i∑
j=0

ψjC
B−

α Ṗ
j C

ṖBβ

j−i /C
PP
0 (A4)

with the trapezoidal rule and the initial step C
B−

αB−
β

0 =

C
BβBα

0 .
Then, following the same steps to go from Eqs. 37 and

38 to Eqs. 41 and 42 lead to the integral form of the two
previous Volterra equations as

ΓB−
αB−

β (t) = ΓBαBβ (t) +∫ t

0

ΓB−
αP(s)

⟨P(0)2⟩
⟨Ṗ(s− t)Bβ(0)⟩ds (A5)

and

ΓB−
αP(t) = ΓBαP(−t) +∫ t

0

ΓB−
αP(s)

⟨P(0)2⟩
⟨Ṗ(s− t)P(0)⟩ds (A6)

which again keep the same structure as Eqs. A1 and
A2 allowing us to solve them with the same algo-
rithm (Eqs. A3 and A4) with different initial conditions

ΓB−
αP(0) = ΓB−

αB−
β (t) = 0.
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