
HAL Id: hal-04249392
https://hal.science/hal-04249392

Submitted on 19 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of Training Examples for Tabular Natural
Language Inference

Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, Paolo Papotti

To cite this version:
Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, Paolo Papotti. Generation of Training Ex-
amples for Tabular Natural Language Inference. Proceedings of the ACM on Management of Data,
inPress, 1 (4), �10.1145/3626730�. �hal-04249392�

https://hal.science/hal-04249392
https://hal.archives-ouvertes.fr

243

Generation of Training Examples for Tabular Natural
Language Inference

JEAN-FLAVIEN BUSSOTTI, EURECOM, France
ENZO VELTRI, University of Basilicata, Italy
DONATELLO SANTORO, University of Basilicata, Italy
PAOLO PAPOTTI, EURECOM, France

Tabular data is becoming increasingly important in Natural Language Processing (NLP) tasks, such as Tabular
Natural Language Inference (TNLI). Given a table and a hypothesis expressed in NL text, the goal is to assess
if the former structured data supports or refutes the latter. In this work, we focus on the role played by the
annotated data in training the inference model. We introduce a system, Tenet, for the automatic augmentation
and generation of training examples for TNLI. Given the tables, existing approaches are either based on
human annotators, and thus expensive, or on methods that produce simple examples that lack data variety
and complex reasoning. Instead, our approach is built around the intuition that SQL queries are the right tool
to achieve variety in the generated examples, both in terms of data variety and reasoning complexity. The first
is achieved by evidence-queries that identify cell values over tables according to different data patterns. Once
the data for the example is identified, semantic-queries describe the different ways such data can be identified
with standard SQL clauses. These rich descriptions are then verbalized as text to create the annotated examples
for the TNLI task. The same approach is also extended to create counterfactual examples, i.e., examples where
the hypothesis is false, with a method based on injecting errors in the original (clean) table. For all steps, we
introduce generic generation algorithms that take as input only the tables. For our experimental study, we
use three datasets from the TNLI literature and two crafted by us on more complex tables. Tenet generates
human-like examples, which lead to the effective training of several inference models with results comparable
to those obtained by training the same models with manually-written examples.

CCS Concepts: • Computing methodologies→ Natural language generation; Artificial intelligence;
Machine learning; • Information systems→ Data mining.

Additional Key Words and Phrases: Tabular Natural Language Inference (TNLI); Natural Language Processing
(NLP) for Databases; Text Generation; Query Generation; Data Augmentation; SQL-Based NL Generation

ACM Reference Format:
Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti. 2023. Generation of Training Examples
for Tabular Natural Language Inference. Proc. ACM Manag. Data 1, 4 (SIGMOD), Article 243 (December 2023),
27 pages. https://doi.org/10.1145/3626730

1 INTRODUCTION
In Natural Language Processing (NLP), a large class on natural language inference (NLI) problems
aims at classifying a given hypothesis, such as a textual statement, as true/false/unknown given some
evidence. While this is a well-studied problem for the setting with text as evidence [42], recently it

Authors’ addresses: Jean-Flavien Bussotti, jflavien.bussotti@gmail.com, EURECOM, Biot, France; Enzo Veltri, enzo.veltri@
unibas.it, University of Basilicata, Potenza, Italy; Donatello Santoro, donatello.santoro@unibas.it, University of Basilicata,
Potenza, Italy; Paolo Papotti, paolo.papotti@eurecom.fr, EURECOM, Biot, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/12-ART243 $15.00
https://doi.org/10.1145/3626730

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

HTTPS://ORCID.ORG/0009-0009-8869-6025
HTTPS://ORCID.ORG/0000-0001-9947-8909
HTTPS://ORCID.ORG/0000-0002-5651-8584
HTTPS://ORCID.ORG/0000-0003-0651-4128
https://doi.org/10.1145/3626730
https://orcid.org/0009-0009-8869-6025
https://orcid.org/0000-0001-9947-8909
https://orcid.org/0000-0002-5651-8584
https://orcid.org/0000-0003-0651-4128
https://doi.org/10.1145/3626730

243:2 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

TENET
Name Party Spouse

 t1 Barack Dem Michelle
 t2 Donald Rep Melania

 t3 Nancy Dem Paul
Training data

TNLI
application

Test data

Claim c: “Donald is married
to Michelle”
Label l: Refutes
Evidence cells E:
 t2.Name: “Donald”
 t2.Spouse: “Melania”

Claim c: “Barack and Nancy
are in the same party”
Label l: Supports
Evidence cells E:
 t1.Name: “Barack”
 t3.Name: “Nancy”
 t1.Party: “Dem”,
 t3.Party: “Dem”

Fig. 1. Given any table, Tenet generates new training examples for a target TNLI application. The first
example has a hypothesis that is refuted according to the data evidence.

has emerged a new class of applications that focus on inference with structured data as evidence,
i.e., tabular natural language inference (TNLI). Example applications are table understanding [19, 20]
and computational fact checking, where systems label text claims according to input structured
data [22, 35, 58]1.
The best solutions for TNLI are supervised. Manually defined datasets for TNLI have been

proposed, such as Feverous [2], TabFact [11], and Infotabs [19]. However, these datasets have three
main issues. (i) They cover only some generic topics with tables fromWikipedia. For example, if there
is a need for fact-checking claims for emerging domains such as Covid-19, a new annotated corpus
must be crafted by manually writing examples using the tabular reports published by governments.
(ii) They are not comparable in scale and variety to those available for textual NLI [42]. In terms of
reasoning requirements, about 80% of the examples in Totto [40] have sentences describing the
data with text that does not contain mathematical expressions, such as max, min, and count, or
comparison across values. (iii) They contain bias and errors that may lead to incorrect learning in
the target models [18].
The problem of the lack of labeled examples has been treated in the literature for NLI, but it

has not been tackled yet for TNLI. If some examples are given in a warm start setting, existing
NLI augmentation methods can be used in the TNLI setting: the text part of the example can be
rewritten with augmentation w.r.t. the (fixed) data [6]. While these methods increase the number
of examples, they do not generate a new corpus that raises the variety and complexity of the
examples w.r.t. the structured data, ultimately with a minor impact on the accuracy of the TNLI
tasks. Moreover, in a cold start setting, where training data is unavailable, there is no proposal yet
on creating annotated examples for TNLI starting only from the tables.

In this work, we argue that user-provided tables can be exploited to generate ad-hoc training data
for the application at hand. Our system, Tenet2 (TExtual traiNing Examples from daTa) generates
large annotated corpora of training examples that are complex and rich in terms of data patterns,
linguistic diversity, and reasoning complexity. Figure 1 shows an overview of our proposed method.
The system generates training data for the target TNLI application, given only a table as input.
Once generated, the examples are used to train the inference model validated on test data.
Tenet is built around three modules that cover the three main elements of a complete and

annotated TNLI example.
Data Evidence. A key intuition in our approach is that tabular data already contains rich infor-
mation for new examples. Content changes across datasets, and every relation has its own active
1E.g., https://coronacheck.eurecom.fr
2Code and datasets available at https://github.com/dbunibas/tenet

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

https://coronacheck.eurecom.fr
https://github.com/dbunibas/tenet

Generation of Training Examples for Tabular Natural Language Inference 243:3

domain. Moreover, data relationships across entities and their properties are arranged differently
across datasets. To identify data evidence to create a variety of examples, we propose alternative
approaches to select sets of cells from the given table, including a query generation algorithm for
the semi-supervised case. A query returns a set of evidence, such as Donald and Michelle in the
first example in Figure 1, each partially describing an example.
Textual Hypothesis. Once the data is identified, we obtain the textual statement (or hypothesis)
for the annotated example. Given a set of cells, we generate queries that identify such data evidence
over the input table. Every query characterizes the data with different conditions (e.g., selections
with constants) or constructs (e.g., aggregate). From the query and the evidence, we create a text
with a prompting method that exploits the human-like generation abilities of large pre-trained
language models (PLMs), such as GPT-3 [49]. Our prompting leads to a variety of factual hypotheses,
such as Barack and Nancy are in the same party in the second example in Figure 1, while maximizing
the coverage of the provided evidence and minimizing hallucination.
Inference Label. Finally, we need the corresponding label for every example. While Supports
examples are obtained naturally, as the hypothesis reflects the evidence from the table, for Refutes
examples we introduce generic methods built around the idea of injecting errors in the data evidence.
Once the data is modified, the process for text generation is applied to the “dirty” data to obtain
hypotheses that are refuted w.r.t. the original “clean” data.

Our contributions may be summarized in the following points:
• We introduce an end-to-end system that generates TNLI example from tabular data (Section 2).
The system is generic, as it does not make assumptions w.r.t. the content of the input tables.
The architecture supports both unsupervised generations (cold start) when only tables are
provided, and semi-supervised (warm start), where some manually written examples are
available. While the former is more general, the latter generates high-quality examples even
in settings where the number of tables available for training is limited.

• We introduce algorithms for the generation of the three main components of an annotated
example: data evidence (Section 3), textual hypothesis (Section 4), and Refutes counter-
examples (Section 5). In every component, we enforce variety in terms of data patterns and
reasoning challenges.

• We show results for five TNLI test datasets, comparing the results obtained by training with
manually written examples vs those obtained with training data generated by Tenet (Sec-
tion 6). Training examples generated with Tenet lead to reasoning models that outperform
the accuracy of the same models trained with data from human annotators in a variety of
settings. We also show that Tenet’s examples can be used in test data for the validation of
reasoning models.

We then conclude the paper with a discussion of related work (Section 7) and open research
directions (Section 8).

2 OVERVIEW OF THE SOLUTION
Problem Formulation. Let 𝑟 be a tuple in the instance 𝐼 for a relational schema 𝑅 and 𝐴𝑖 an
attribute in 𝑅. We refer with cell value to the value of tuple 𝑟 in attribute 𝐴𝑖 and with table to the
instance 𝐼 for simplicity3. A textual hypothesis is a sentence in natural language.
A Tabular Natural Language Inference (TNLI) application takes as input a pair (table 𝑐; textual

hypothesis ℎ) and outputs if ℎ is supported or refuted by 𝑐 . Data evidence is a non-empty subset

3Some TNLI corpora contain both relational and entity tables, i.e., relational tables transposed with a single row. Tenet
supports both, but we focus the presentation on relational ones for clarity.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:4 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

Data
Evidence

Generation
Training
data D

TNLI
application A

PLM M

 Hypothesis
Text

Generation

Error
Injection

TENET

Existing examples TTables C

queries
Q evidence e

q

e’e

Fig. 2. Tenet overview. Existing examples are optional. Any text-to-text pre-trained language model (PLM)
can be used, e.g., ChatGPT. Any target TNLI application can be supported, e.g., tabular fact-checking.

of cell values from 𝑐 that varies from a small fraction in some settings [2] to the entire relation
in others [11]4. Solutions for the TNLI task rely on supervised models trained with annotated
examples - our goal is to reduce the effort in creating such training data.

We consider solving the example generation problem for a TNLI application𝐴 where we are given
the label space 𝐿 for 𝐴, a corpus of tables 𝐶 , and (optionally) a set of training examples 𝑇 for 𝐴.
Every example is composed by a quadruple (ℎ, 𝑙, 𝑒, 𝑐) with textual hypothesis ℎ, label 𝑙 ∈ 𝐿, set of
data evidence cells 𝑒 contained in one relational table 𝑐 in the corpus 𝐶 . We assume access to a
text-to-text pre-trained language model (PLM)𝑀 . We do not assume access to the TNLI application
𝐴 at hand. In this work, we focus on 𝐿 with Supports and Refutes labels only, as those are the most
popular in TNLI corpora, e.g., 97% of the examples [2].
In the warm start version of the problem, training examples for 𝐴 are available and used by

Tenet. In the cold start version of the problem, we drop the assumption on the availability of the
examples 𝑇 . In this case, we aim at creating new training examples 𝐷 for 𝐴 just by using the tables
in 𝐶 .
Process and Challenges. Tenet is designed around three main steps, as depicted in Figure 2.

Given a relation table 𝑐 ∈ 𝐶 , it first gathers the evidence (set of cells) 𝑒 to produce a Supports
example. Second, to enable the generation of a Refutes example, it injects errors in table 𝑐 to create
its noisy version and derive data evidence 𝑒′. Third, a textual claim (hypothesis) ℎ is generated
for every data evidence 𝑒 . The quadruple (data evidence 𝑒 , textual claim ℎ, label Supports/Refutes,
table 𝑐) is a complete example for training data 𝐷 for the target TNLI application 𝐴. However, the
three steps come with their own challenges.

Table 1. People table. Cells in bold form data evidence 𝑒1.

Name Age City Team

𝑡1 Mike 47 SF DBMS
𝑡2 Anne 22 NY AI
𝑡3 John 19 NY DBMS
𝑡4 Paul 18 NY UOL

Data Evidence. Training examples 𝐷 must capture the variety of relationships in a table, such
as those relating cell values in the same tuple or attribute. A hypothesis is defined over a group
of cell values, such as the data evidence 𝑒1 highlighted in bold in Table 1 for tuples 𝑡1 and 𝑡2, i.e.,
names of two people with different age values. Hypothesis “Mike is older than Anne” captures the
relationship across these four cell values. Data evidence with two cell values, e.g., Name for tuple
𝑡1 and Age from tuple 𝑡2 can lead to a hypothesis, e.g., “There is a person called Mike and a person
4Our proposal is independent of the size of the data evidence and its retrieval.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:5

22 years old”, but such sentence does not capture relationships across tuples nor attributes. In
general, for effective training, the data evidence covered by the examples should cover the variety
of patterns that can be identified in a relation.

One approach for the data evidence generation is to pick different sets of cell values at random.
While this simple approach is effective and enables an unsupervised solution, there are meaningful
patterns, such as 𝑒1, that may be covered rarely by accident. One approach to improve this task
and obtain meaningful patterns with fewer generated examples is to infer data patterns from
human-provided examples 𝑇 , when those are available. For example, in 𝑇 , we identify a query 𝑞
that returns the cell values in its data evidence as one result row. We then execute such a query over
the relation. The query leads to more sets of cells (one per result row) that enable the generation of
examples following the same data pattern, for example involving 𝑡3 and 𝑡4.
Hypothesis. Given a table 𝑐 and an evidence set 𝑒 ∈ 𝑐 , the latter can be described with a textual

sentence. However, the way a set of cells is converted to a sentence has a huge impact on the
variety and the reasoning complexity of the training data. Indeed, given a set of cells from a table,
many alternatives exist for describing it in natural language. Consider again data evidence 𝑒1 in
the example. The values in bold can be correctly described with “Mike is older than Anne." or
“There are two persons with age higher than 19.". The more alternative sentences for a given data
evidence are created, the better the training set for the target model. Unfortunately, most efforts for
automatic data-to-text are focused on surface, or look-up, sentences [40], such as “Mike is 47 years
old and Anne 22.". While these kinds of sentences are fundamental, we aim to maximize the variety
in the training data. For this goal, we generate various queries that return evidence 𝑒 given 𝑐 . Such
queries represent different ways of semantically describing the data. We then propose prompting
methods for PLMs to generate alternative sentences to describe the evidence set according to the
semantics of the queries.

Label. By construction, the generated data evidence is coherent with the semantics expressed in
the input table. An evidence set leads to an example with a Supports label w.r.t. the data in the table.
However, applications also need examples with a Refutes label, i.e., textual claims not supported by
the input table. We tackle this problem with an error injection approach, perturbing the input table
to break the original relationships across cell values. This new version of the table is then used
to identify again an evidence set 𝑒′, which leads to a textual hypothesis that does not reflect the
semantics of the original (clean) table.

3 DATA EVIDENCE GENERATION
We distinguish cold start, where training data for the target application are not available, and warm
start, where examples exist.

Cold start. Given a table 𝑐 from the corpus𝐶 , a method to gather evidence is to randomly select
subset of cell values from 𝑐 . In a simple setting, the number of cells for each data evidence 𝑒𝑖 can be
picked from a uniform distribution between 1 and𝑚, where𝑚 in TNLI datasets is usually 10 or less.
This method can be extended by profiling any available training corpus for TNLI and obtaining a
distribution of the evidence size, or this can be provided by the user. For Table 1, a possible data
evidence is the set of cells “Mike”, “19’, “DMBS”. Intuitively, with a large number of samples, the
random selection eventually models all possible patterns in the tables.

Warm start. If there exist examples𝑇 for the application𝐴, we can replace the random selection
with a method designed for using 𝑇 . The intuition is that every example in 𝑇 has a data evidence
𝑒𝑖 that represents a human-defined pattern over the data. We assume that humans express more
meaningful patterns than those that we can guess at random. Therefore, being able to capture these
patterns enables us to quickly create diverse sets of data evidence.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:6 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

To identify a pattern, we resort to the task of query synthesis from the cell values in the data
evidence. Given an existing example from 𝐷 , we refer to it as the seed 𝑠 . An example comes with its
label 𝑙𝑠 , the evidence set 𝑒𝑠 , a textual hypothesis ℎ𝑠 , and the table used to verify it 𝑐𝑠 . Given the set
of cell values 𝑒𝑠 and table 𝑐𝑠 as input, we want to identify the query 𝑞 that outputs such 𝑒𝑠 among
its results. Executing such query over the original table 𝑐𝑠 , we obtain more data evidence 𝑒1, . . . , 𝑒𝑛
that follow the original data pattern in 𝑒𝑠 .

Consider again the example in Table 1 with cell values in bold in the first two rows (𝑡1 and 𝑡2) as
seed data evidence 𝑒𝑠 . Given such input, we want an algorithm producing a query that returns all
pairs of distinct names with their different ages, such as
q: SELECT c1.Name, c2.Name as Name2, c1.Age, c2.Age as Age2

FROM people c1, people c2
WHERE c1.Age > c2.Age AND c1.Name <> c2.Name

Table 2. Evidence cell values sets identified by querying 𝑐𝑠 with 𝑞 derived from 𝑒𝑠 .

tid Name Name2 Age Age2

𝑒1 Mike Anne 47 22
𝑒2 Mike John 47 19
𝑒3 Mike Paul 47 18
𝑒4 Anne John 22 19
...

Query 𝑞 executed on the seed table 𝑐𝑠 returns the relation in Table 2. Each row in the query
result is a set of cells for data evidence with the same pattern modeled by the original evidence 𝑒𝑠
in the seed. Notice how 𝑒𝑠 is also among the results (𝑒1). Every row in the result of the query can
be used to create a new Supports example.
From Examples to Queries. For a given seed example, the textual hypothesis ℎ𝑠 is available.

As there are several approaches to infer SQL queries from text (i.e., text to SQL problem, or semantic
parsing), it seems natural to apply one of those to obtain the query above. However, in our approach
we derive the query from the data evidence because text-to-SQL methods are not applicable to our
setting. There are three reasons to explain this failure.

First, in a text-to-SQL task, the input is a NL question and the goal is to obtain the corresponding
query. However, our hypotheses are factual expressions. This breaks the assumption in such
methods, which are trained on questions such as “What is the region for Kabul?” or ”What are
the cities in Germany with more than 10000 residents?". Also, when compared to examples in
text-to-SQL corpora, TNLI examples have longer sentences (average of 25 vs 12 words) and contain a
larger number of entities (average of 10.5 vs 4.3 nouns). We tested a system [52] over our hypothesis
and, in a manual evaluation of its output for 40 hypotheses, it was able to return partially correct
SQL queries only in 20% of the cases.
Second, the table structure in semantic parsing datasets is relational only, while TNLI corpora

include entity tables, which have attribute labels in the first attribute and are popular on the Web.
Third, even if existing systems could express a query to identify the data evidence 𝑒𝑠 precisely,

that would not be useful for our setting. For the goal of generating more examples, we need a
query that returns the original data evidence 𝑒𝑠 as one of its row results, as in Table 2 (tuple 𝑒1),
together with more cell sets (tuple 𝑒2, 𝑒3, . . .). The other rows are crucial in our setting as they
have the information to produce new examples that follow the same data pattern from the seed.
More precisely, given a seed example involving data evidence 𝑒𝑠 and table 𝑐𝑠 , we are interested in
obtaining an evidence query (or e-query) 𝑞𝑒 that returns the cell values in 𝑒𝑠 in one row of its results
when executed over 𝑐𝑠 . This problem is clearly different from general semantic parsing.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:7

e1,Name

e2,Name

e1,Age

e2,Age

<>

<>

<>

>

e1,Name

e3,Name

e1,City

e3,City

<>

<>

<>
=

e3,Name e3,City<>
=

<>

<>

=

<>

<>
<>

<>
Data evidence es

Data evidence es’

Fig. 3. Evidence graphs derived from two seed examples.

While we cannot build on existing solutions, we have the ability to access the data evidence 𝑒𝑠
in the seed example, which has precise information about the output of the query. We discuss next
how to exploit such seed data evidence to obtain the evidence query.
E-Query Generation. At the core of our solution, we rely on an evidence graph to represent

relationships among cells in data evidence 𝑒𝑠 . Each node corresponds to a cell from 𝑒𝑠 and has a
label with a pair of values: its attribute label and row id. The pair acts as an identifier for the cell
and allows the reconstruction of row and attribute relationships. A (directed) edge across two nodes
represents the relationship between their values, e.g., equality, difference, greater than/less than.
An example graph derived from data evidence 𝑒𝑠 with tuples (Mike, 47), (Anne, 22) is reported on
the left-hand side of Figure 3, while the right-hand side reports a graph for data evidence 𝑒′𝑠 with
tuples (Anne, NY), (John, NY), (Paul, NY).
Once the evidence graph is derived, we construct the query from it by associating every tuple

id across the nodes in the graph to a tuple variable in the query, e.g., 𝑒𝑠 leads to two variables in
the query, while 𝑒′𝑠 to three. These variables are used in the FROM clause, e.g., for 𝑒𝑠 we get FROM
people c1, people c2.We then create the SELECT clause going over the union of the nodes and
reporting each node with its variable and attribute, e.g., for 𝑒𝑠 we get SELECT c1.Name, c1.Age,
. . .. Finally, we add the conditions by navigating the edges according to their direction (equality,
greater than, lower than) and corresponding variable and add those to the WHERE clause, e.g., for
𝑒𝑠 we get c1.Age > c2.Age AND c1.Name <> c2.Name AND c1.Name <> c2.Age AND

The procedure for query generation is detailed in Algorithm 1. Consider the graph derived from
data evidence example 𝑒𝑠 in Figure 3. This graph 𝑔, together with the table 𝑐𝑠 , is our input for
generating the e-query 𝑞. We initialize the three clauses 𝑞𝑠 , 𝑞𝑓 , 𝑞𝑤 of the query with keywords
‘SELECT’, ‘FROM’ and ‘WHERE’, respectively (lines 1-3 in the algorithm). We start the graph
traversal from a node 𝑛 (line 5), for example, the node with label 𝑒1.Name. We collect the tuple
idx for the node (1 in the example, line 6), the attribute name (‘Name’, line 7) and the relation
alias in the query (c1, line 8). The alias for node 𝑒1.Name is not in 𝑞𝑓 , so we add it (lines 9-10). We
also add the selection condition ‘c1.Name,’ - pending commas are removed at the end (line 17).
We now process outgoing edges for the node, that become conditions in the Where clause (line
12). If an edge has not been visited, we add the corresponding condition to the Where clause (line
16). For example, for the edge going from Node 𝑒1.Name to Node 𝑒2.Name, we add “c1.Name <>
c2.Name AND” - pending AND are removed at the end (line 17). The resulting query is obtained by
concatenating the three clauses and returning it (lines 17-18). Once a query is derived, its execution
on 𝑐 gives a result table like the one in Table 2.

4 HYPOTHESIS GENERATION
One problem in example generation is converting to NL text the data evidence from a table. This
generation process is known as the data-to-text problem: given the data evidence, i.e. a set of cells,

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:8 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

Algorithm 1: Generate Query
Input: table 𝑐𝑠 , evidence graph 𝑔
Output: query 𝑞

1 𝑞𝑠=“SELECT"
2 𝑞𝑓 =“FROM"
3 𝑞𝑤=“WHERE"
4 visited=[] //Set of visited edges for graph traversal
5 foreach node 𝑛 ∈ 𝑔 do
6 tupleIdx = n.getTupleId //Return the tuple idx for the node
7 attName = n.getName //Get the attribute name for the node
8 alias = ‘c’ + tupleIdx //Get the relation alias for the node
9 if alias ∉ 𝑞𝑓 then
10 𝑞𝑓 += 𝑐𝑠 + ‘ AS ’ + alias +‘,’ //new relation in From
11 𝑞𝑠+= alias + ‘.’ + attName + ‘AS’ + attName + tupleIdx + ‘,’ //new attribute in Select
12 foreach edge 𝑒 : (𝑛,𝑑) do
13 if 𝑒 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
14 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 += 𝑒 //add edge to visited
15 condition = e.getCondition //Get the condition (<, >, =, or <>) for the two nodes
16 𝑞𝑤 += alias + ‘.’ + attName + condition + ‘c’ + d.getTupleID + ‘.’ + d.getName + ‘ AND ’ //new

condition in Where

17 𝑞 = 𝑞𝑠 + 𝑞𝑓 + 𝑞𝑤 //union of clauses and removal of pending ‘,/AND’
18 return 𝑞 //return query

the goal is to create a sentence for the given cell values faithfully. Existing solutions handle this
problem with the creation of surface sentences, e.g., for evidence (Mike, 47), (Anne, 22) they describe
the cells with a sentence like “Mike has 47 years and Anne 22.”.
However, TNLI corpora contain sentences that go beyond surface sentences. Our goal is to

generate a variety of hypotheses from the data evidence in the way they are described. For the
evidence example above, our goal is to generate also sentences such as “Mike is older than Anne."
or “Mike is the oldest person, followed by Anne.”. These more challenging hypotheses can still be
verified with the same evidence, but require more reasoning and are therefore valuable as training
examples for the TNLI models.

To tackle this problem, we resort again to the expressive power of SQL. We split the generation
process into two steps: 𝑖) we compute all the queries over the table such that every query gives
as a result the data evidence, and 𝑖𝑖) for every query, we use a PLM 𝑀 to generate the desired
hypothesis. We discuss these two steps next.

4.1 SemanticQueries for Text Variety
Our intuition is that data evidence can be described by the several SQL queries that identify it in
the table. These queries are alternative ways to describe the data. By computing the queries, we
immediately obtain a semantic characterization that can be used to generate hypotheses beyond
surface sentences. Given a table 𝑐 and data evidence 𝑒 , a semantic query (or s-query) over 𝑐 returns
exactly 𝑒 before the execution of the aggregate functions. Notice that in this case, we are not after
multiple results, as in the e-query that identifies several examples at the extensional level (over the
tuples). The goal is to query diversity for the same set of cells; we want variety at the intensional
level (over the data description).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:9

Analyzing the examples in popular TNLI corpora [2, 11, 19], we identify two main types of
queries.

Table 3. Data evidence 𝑒2 (in bold) and 𝑒3 (underlined).

Name Age City Team Salary

𝑡1 Mike 47 SF DBMS 50k
𝑡2 Anne 22 NY AI 50k
𝑡3 John 19 NY DBMS 35k
𝑡4 Paul 18 NY UOL 55k

Local s-query. This type of query leads to hypotheses related only to the values in the evidence.
We name them local, as they do not involve information outside the cells in the data evidence.
Consider evidence 𝑒1 in Table 1; possible queries for it are:

• Surface (or Lookup) s-query: a query that selects cells only with constant selections; SELECT
c1.Name, c2.Name, c1.Age, c2.Age FROM People c1, People c2 WHERE c1.Name =
‘Mike’ AND c2.Name = ‘Anne’ AND c1.Age = 47 AND c2.Age = 22

• Comparison s-query: a query that compares two or more rows by at least one attribute;
SELECT c1.Name, c2.Name, c1.Age, c2.Age FROM People c1, People c2 WHERE
c1.Name = ‘Mike’ AND c2.Name = ‘Anne’ AND c1.Age > c2.Age

Global s-query. This type of query generates hypotheses related to information in the entire
table. Here, SQL constructs involve constants and attributes outside the data evidence. If we also
consider the table then more queries can be defined:

• Filter s-query: it selects the cells in the evidence according to conditions. For example, given
𝑒1 and Table 1, an s-query that identifies people with Age greater than 19; SELECT c1.Name,
c1.Age, FROM People c1 WHERE c1.Age > 19.

• Aggregate s-query: it selects the cells used in an aggregate operation. If the column is
numerical, the aggregate function can be sum, avg, count, max, or min. If the column is
categorical, then only count is used. Evidence 𝑒1 cannot be identified with an aggregate
s-query. However, if the evidence is the entire Age column, as for 𝑒2 in Table 3, an aggregate
s-query identifies such values, as we test the exact containment of the cell values involved in
the query before the aggregate function. E.g., an aggregate query that returns the highest
age in the group is: SELECT MAX(Age) FROM People

• FilterAggregate s-query: it selects the result of an aggregate over a group identified by a
selection. Evidence 𝑒3 in Table 3 contains cells (22, NY, 50k), (19, NY, 35k), (18, NY, 55k) and
can be identified by a FilterAggregate s-query stating that there are three people from NY
with an average age of 19.7 years and the minimum salary is 35k: SELECT COUNT(City),
AVG(Age), MIN(Salary) FROM People WHERE City=’NY’

Generating s-queries. Given as input the evidence 𝑒 and the table 𝑐 , we want to infer every
query 𝑞𝑖 such that 𝑞𝑖 (𝑐) = 𝑒 before execution of the aggregates.

Unfortunately, the problem of synthesizing even simple queries from a subset of cells has been
shown to be not tractable [44, 56]. Our case is even more challenging as we are interested in queries
with aggregates and filters. To keep the query generation lightweight, our trade-off is to consider
only the subset of 5 possible s-query types presented above, effectively biasing the query generation
presented in Algorithm 2.
We first initialize data structures (lines 1-12). sQueries contains the s-queries for the given

evidence 𝑒 and table 𝑐 . For each attribute in 𝑒 , we keep track of the rows in the evidence (eAttrsTids),
the cell values of the evidence (eAttrsVals), the rows of the data not in the evidence (oAttrsTids), and

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:10 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

Algorithm 2: Generate S-Query
Input: set of evidence cells 𝑒 (i.e., a set of 𝑡𝑖𝑑 .𝑎𝑡𝑡𝑟), table 𝑐
Output: sQueries

1 sQueries = [] //Output
2 eAttrs = {} //Set of attributes used in 𝑒

3 eTids = {} //Set of tids used in 𝑒

4 eAttrsTids = {} //Dictionary<attr,tids>: ∀ attr.→ set of tids ∈ 𝑒

5 eAttrsVals = {} //Dictionary<attr,values>: ∀ attr.→ set of values ∈ 𝑒

6 oAttrsTids = {} //Dictionary<attr,tids>: ∀ attr. → set of tids ∉ 𝑒

7 oAttrsVals = {} //Dictionary<attr,values>: ∀ attr.→ set of values ∉ 𝑒

8 foreach cell v ∈ d do
9 eAttrs += v.attr; eTids += v.tid; eAttrsTids[v.Attr] += v.tid

10 eAttrsVals[v.Attr] += getCellValue(c, v)

11 foreach cell v ∈ (data \ 𝑒) do
12 oAttrsTids[v.Attr] += v.tid; oAttrsVals[v.Attr] += getCellValue(c, v)

13 n = len(eAttrs) //Number of different attributes in 𝑒

14 sQueries += new Surface(project: cells in 𝑒)
15 if NOT (sameTIDs(eAttrs, eAttrsTids) ∧ len(eAttrsTids[eAttrs[0]]) > 1) then
16 //If for some attribute there are different seleted tuple ids, only a surface query is allowed
17 return sQueries
18 foreach 𝑎𝑡𝑡𝑟 ∈ 𝑒𝐴𝑡𝑡𝑟𝑠𝑉𝑎𝑙𝑠 do
19 comps = findAllowedOperators(𝑎𝑡𝑡𝑟 , 𝑒𝐴𝑡𝑡𝑟𝑠𝑉𝑎𝑙𝑢𝑒𝑠)
20 foreach 𝑐𝑜𝑚𝑝 ∈ 𝑐𝑜𝑚𝑝𝑠 do
21 sQueries += new Comparison(project: cells in 𝑒 , condition: tid in eTids AND

generateBooleanComparisons(𝑐𝑜𝑚𝑝 , 𝑎𝑡𝑡𝑟 , 𝑒)
22 if eAttrsVals[attr] ∩ oAttrsVals[attr] = ∅ then
23 sQueries += new Filter(project: eAttrs, condition: attr in eAttrsVals[attr])
24 sQueries += combineAggregateOperators(aggregate: eAttrs, condition: attr ∈ eAttrsVals[attr])
25 if isNumerical(attr) ∧ min(eAttrsVals[attr]) > max(oAttrsVals[attr]) then
26 sQueries += new Filter(project: eAttrs, condition: attr > max(oAttrsVals[attr]))
27 sQueries += combineAggregateOperators(aggregate: eAttrs, condition: attr > max(oAttrsVals[attr])
28 if isNumerical(attr) ∧ max(eAttrsVals[attr]) < min(oAttrsVals[attr]) then
29 sQueries += new Filter(project: eAttrs, condition: attr < min(oAttrsVals[attr]))
30 sQueries += combineAggregateOperators(aggregate: eAttrs, condition: attr < min(oAttrsVals[attr])

31 if len(oAttrsTids[0]) == 0 ∧ len(oAttrsTids[i]) == 0 ∧ len(oAttrsTids[n]) == 0 then
32 sQueries += combineAggregateOperators(aggregate: eAttrs)
33 return sQueries

the cell values in the data not in the evidence (oAttrsVals). Considering evidence 𝑒3 and table 𝑐 in
Figure 3, eAttrsTids[Age] contains 𝑡2, 𝑡3 and 𝑡4, while oAttrsTids[Age] has the only row not included
in 𝑒3 for attribute 𝐴𝑔𝑒 , namely 𝑡1. Similarly, eAttrsValues[Age] contains the three selected values for
age, 22, 19 and 19, while oAttrsValues[Age] has 47.
The data structures are used to check what s-queries can be generated for the input at hand.

Surface s-queries can always be generated (line 14), corresponding to returns exactly the cells
in the evidence. These queries are flexible and allow us to handle any kind of evidence, while
other s-queries require more structured evidence. In particular, to generate comparison, filter, and
aggregate queries, all the rows in the evidence should have the exact same attributes selected. In

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:11

Algorithm 3: combineAggregateOperators
Input: attributes 𝑎𝑡𝑡𝑟𝑠 , possible empty 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, evidence 𝑒
Output: sQueries 𝑠𝑄𝑢𝑒𝑟𝑖𝑒𝑠

1 sQueries = []; aggrAttrs = {}
2 foreach 𝑎𝑡𝑡𝑟 ∈ 𝑎𝑡𝑡𝑟𝑠 do
3 aggrAttrs[attr] = findAllowedAggr(𝑎𝑡𝑡𝑟 , 𝑒)

4 foreach permutation 𝑝 in permutations(aggrAttrs) do
5 // 𝑝 contains a list of aggr functions on different attributes attrs
6 sQueries += new Aggregate(aggregate:𝑝 , condition: 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

7 return sQueries

the case when only one row is selected, or some rows have different attributes, the algorithm will
stop and only the surface s-query is returned (lines 15-17). To give an example, using evidence with
(Mike, 47), (Paul, NY), (DBMS, 35k), the algorithm will generate only the surface s-query.

If the check at line 15 is passed (i.e. we did not interrupt the procedure), we can produce different
s-queries. For each attribute in the evidence 𝑒 , we first check if the attribute enables a comparison
among its values in 𝑒 with the auxiliary function findAllowedOperators (line 19). If some comparison
operators are discovered (like <, >, =) then for each comparison (comp), we add a new comparison
s-query to sQueries (line 21). Since in an SQL query in the WHERE clause we can only define
pairwise comparisons, we use the utility function generateBooleanComparisons to generate all such
pairwise comparisons depending on the number of rows in 𝑒 for the given attribute 𝑎𝑡𝑡𝑟 . This
allows us to generate a WHERE clause that involves 𝑡1.Attr comp 𝑡2.Attr . . .𝑡𝑛−1.Attr comp 𝑡𝑛 .Attr.
The next s-queries require a filter over one attribute. Such a query can be generated whether a

group of values is selected together for an attribute. More formally, we check if, for an attribute
𝑎𝑡𝑡𝑟 , none of the values selected in 𝑒 are present in 𝑑 \𝑒 (lines 22-23). In our example 𝑒3, for attribute
𝐶𝑖𝑡𝑦, the evidence contains the value 𝑁𝑌 , and it can be considered as a filter since all rows with the
𝑁𝑌 value for 𝐶𝑖𝑡𝑦 are selected. The corresponding WHERE clause is 𝐶𝑖𝑡𝑦 = “NY ”. Another filter is
for a numerical attribute can be triggered when values in the evidence are below/above a constant,
e.g., attribute 𝐴𝑔𝑒 in 𝑒3, containing all people younger than 47. This check (lines 25 and 28) verifies
that all the values in the evidence are greater (lower) than the values for the attribute outside the
evidence (𝑑 \ 𝑒).

In addition, once a Filter s-query is generated, we check if an aggregate operation can be used to
combine them in a FilterAggregate query (lines 24, 27, 30). An additional function, combineAggre-
gateOperators performs this check.

Notice that combineAggregateOperators generates all the permutations for the allowed aggregate
operations on given attributes and generates a set of s-queries (Algorithm 3). In particular, for
each attribute 𝑎𝑡𝑡𝑟 , we first compute the allowed aggregate operations (line 3). Given an attribute,
findAllowedAggr returns count() for categorical attributes and count(), avg() for numerical at-
tributes; if 𝑒 also contains the min/max value in 𝑑 then it also returns the min()/max() function.
We then generate all the permutations of the attributes and the aggregate operation for each
attribute. For example, evidence 𝑒3 in Table 3 admits a count(), avg(), and min() for the Age and
Salary attributes, while allowing only count() for City. Thus possible permutations generated
include [count(Age), count(City), count(Salary)], [avg(Age), count(City), count(Salary)], [min(Age),
count(City), avg(Salary)].

Finally, in lines 31-32 of Algorithm 2, we check if an entire column is selected, and for them, we
generate multiple Aggregate s-queries with the same approach described above.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:12 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

We are not claiming that the list of s-query types above is exhaustive and covers all the possible
queries that identify the evidence. For example, we are not covering the “Order by” s-query, e.g., the
one for 𝑒1 that identifies the top 2 people with the highest Age: SELECT Name, Age FROM People
c1 ORDER BY Age DESC LIMIT 2, leading to the sentence “Mike and Anne are the two oldest
persons.", or “Group by” s-query, where one might want to compare aggregate values between
two groups to generate a sentence like “People in DBMS team have an average salary higher than
people from AI team.". However, our study of the TNLI corpora shows that the five types above
cover most of the hypotheses used in practice. In Section 6.3, we show how additional s-queries
have a small positive impact on the accuracy of the target TNLI application.

Table 4. S-Queries generated by Tenet.

Name Example

Surface SELECT a1.Name, a2.Name, a1.Age, a2.Age
FROM People a1, People a2
WHERE a1.tid = 𝑡1 AND a2.tid = 𝑡2

Comparison SELECT a1.Name, a2.Name, a1.Age, a2.Age
(<, >, =) FROM People a1, People a2

WHERE a1.tid = 𝑡1 AND a2.tid = 𝑡2
AND a1.Age > a2.Age

Filter SELECT Name, City FROM People
WHERE City in “NY”

FilterAggregate SELECT max(Age) FROM People
WHERE City in “NY”

Aggregate SELECT count(Name), avg(Age) FROM People

Table 4 reports the different types of s-queries that might be discovered from Algorithm 2,
together with some examples.

4.2 Text Generation
Once we know the possible s-queries for each evidence, we generate textual sentences that form
the hypothesis for the TNLI example.

We exploit the text generation capabilities of pre-trained large language models (PLMs), such as
those in the GPT family [8]. A PLM is trained over huge amounts of textual data, which gives it
proficiency in writing, and on source code, which gives it the ability to be instructed with functions.

Table 5. Functions used by Tenet in ChatGPT prompts.

S-Query Function Example

Surface read(attrList)[*] Anne is 22 years old
and Paul is 18.

Comparison compare(op, attr) Anne is older than Paul.

Filter filter(cond, attr) Anne, John and Paul
are from NY.

FilterAggregate filter(cond, attr); The oldest person
compute(func, attr)=val from NY is 22 years old.

Aggregate compute(func, attr)=val Mike is the oldest person.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:13

For each s-query, we define a task that describes the text generation function that we want to
use. Such generation functions are defined by us with the prompts for the PLM. The text generation
functions mapped to the relative s-queries are reported in Table 5 with examples of the text they
generate. The op parameter is related to operators =, < and > for numerical attributes, while = is
only for categorical attributes. The cond parameter is the condition used in the WHERE clause. The
func parameter refers to an aggregation function among count, avg, sum, min, or max. For example,
given the Filter s-query SELECT Name, City FROM People WHERE City in (“NY”), we derive
the operation filter(in (“NY”), City).
To avoid hallucination of the model in calculating aggregate functions, for compute functions

we calculate the value 𝑣𝑎𝑙 from the evidence and feed it to the PLM; this enables us to avoid such
computation with the PLM, as it brittle to this task. For example, given the evidence 𝑒3 in Table 3, we
explicitly calculate the average for the attribute Age, and use the calculated value in the operation
compute(avg,Age)=19.66. This helps the PLM to express a sentence like “The average age is 19.66”.
In general, our approach based on evidence and s-queries returns a factual hypothesis, while a
baseline solution based only on prompts for the PLM creates examples with hallucinations that
ultimately lead to worse performance in the target TNLI task. We report on this comparison in
Section 6.3.

Table: Cars
Model | Year
—————————
500 v3 | 2012
Clio v6 | 2018
—————————

Function:
compare(>,Year)

Example:
“The 500 v3 is an older model than the Clio
v6”

Table: Table Name
Attr1 | Attr2 | ... | Attr𝑛
—————————
v11 | v

1
2 | ... | v

1
𝑛

...
v𝑚1 | v𝑚2 | ... | v𝑚𝑛
—————————
Function: (Desired verbalization expressed
by function f)
Example:
(it returns a textual sentence using v11 ... v

𝑚
𝑛

according to f)

Fig. 4. One of the 16 examples for in-context learning (left) and generic serialization of the evidence in the
prompt at test time (right).

Since in most cases PLM cannot be fine-tuned, as they are offered with APIs, we opt to use them
with a prompt with some examples (few shots, or in-context learning in NLP terminology) [12].
The prompt consists of two parts.

The first part is fixed and contains 16 examples of how to verbalize the data evidence with an
operation. For every example, it reports the table name and the text linearization of the schema [4].
Then, each row of the evidence is linearized in the same way. If some attribute lacks a value in the
evidence, we add “null” as the cell value. Finally, we define the expected textual hypothesis. For
example, a comparison operation is reported in the left hand side of Figure 4 for a data evidence
with two tuples and two attributes.

The second part reports unseen data evidence and an operation to steer the model to generate
the desired text. The right-hand side of Figure 4 shows the input before instantiating it with the
table and operation at hand.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:14 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

5 REFUTES EXAMPLES GENERATION
The methods above produce Supports examples, i.e., the label states that the data evidence entails
the textual hypothesis. This is true by construction, as the hypotheses are derived directly from the
evidence. However, TNLI applications have also Refutes examples, where the evidence contradicts
the hypothesis. Our approach to the generation of Refutes examples relies on our method for
generating the Supports ones. We generate a Refutes example for every Supports one. Given some
evidence 𝑒 from the original input table 𝑐 , we inject noise in a copy 𝑐′, so that we derive a new
evidence 𝑒′. A hypothesis ℎ′ is then derived from 𝑒′. Hypothesis ℎ′ is a Supports sentence for 𝑐′,
with evidence 𝑒′, but it is also a Refutes sentence w.r.t. the original (clean) table 𝑐 and evidence 𝑒 .
The new example is the tuple with the label Refutes, 𝑐 , ℎ′ and evidence 𝑒 .

Table 6. A modified version of the “People” table with shuffling of the original “Age” values and one injected
tuple.

Name Age City Team

𝑡 ′1 Mike 18 NY DBMS
𝑡 ′2 Anne 19 NY AI
𝑡 ′3 John 22 SF DBMS
𝑡 ′4 Paul 47 NY UOL
𝑡 ′5 Mary 17 NY SYS

Consider again Table 1, denoted as 𝑐 and the evidence 𝑒=(Mike, 47), (Anne, 22). First, we create
a copy 𝑐′ of the table and manipulate it to inject noise. We shuffle in 𝑐′ the values for 50% of the
attributes (we discuss in Section 6.3 how we set this threshold) involved in 𝑒 . The resulting table
is reported in tuples 𝑡 ′1 - 𝑡

′
4 in Table 6, only Age has been shuffled. This step breaks the original

relationships across cell values at the tuple level. We then either introduce a new tuple in 𝑐′, such
as 𝑡 ′5, or remove from 𝑐′ one tuple at random. This step changes the cardinality of the tuples, which
is key for s-queries involving aggregates, and introduces out-of-domain values. The generation of
the new values depends on the type. For categorical attributes, we use a PLM, which generates
“Mary”, “NY” and “SYS” for tuple 𝑡 ′5. For numerical attributes, we generate lower/higher values than
the min/max value for every active domain - these new values break the original min/max/avg
property for the updated attribute, e.g., the new min value “17” in 𝑡 ′5. Finally, we remove from 𝑐′

any row that appears in 𝑐 .
Given the new “noisy” table 𝑐′, we directly apply the generation of Supports claims from Section 4.

We use evidence 𝑒 to generate an e-query 𝑞 over 𝑐 , then we use 𝑞 to obtain the new evidence 𝑒′.
Finally, we generate ℎ′ from 𝑒′ and 𝑐′. Hypothesis ℎ′ is supported by evidence 𝑒′ (table 𝑐′), but it is
refuted by original evidence 𝑒 (table 𝑐). For example, a claim may state “Mike is younger than Anne”,
which is refuted as hypothesis w.r.t. the data in Table 1. As another example, consider the evidence
𝑒2 for the FilterAggregate s-query (Table 3), which takes all Age values. In this case, there is no
shuffling, but the new evidence 𝑒′2 includes 17. Therefore a Refutes claims for operation Max cannot
be generated, as (47) is a valid evidence in 𝑒2, but a hypothesis involving Min can be generated, as
(17) is not in 𝑒2.

6 EXPERIMENTS
We organize our evaluation around four main questions. First, does Tenet automatically generate
training data of quality comparable to those manually created by human annotators? Second, what
is the impact of the information stored in the PLMs at the core of most inference models for TNLI?

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:15

Third, what is the impact of the models and parameters used in Tenet? Fourth, what are the costs
of Tenet, in terms of execution time and budget for external APIs?
Before getting into the discussion of the results, we present datasets, models, and metrics used

in the evaluation.

Table 7. Statistics for the datasets. All datasets except OutOfDomain and Swapped have train and test splits.

Source # of Avg hyp. Avg # of
examples length row/atts

Tr
ai
n Feverous Wiki 10k 122.0 10/3

TabFact Wiki 92k 73.0 14.5/6
Infotabs Wiki 16.5k 55.5 14.5/2

Te
st

Feverous Wiki 1k 123.2 10/3
TabFact Wiki 25k 70.8 14.5/6
Infotabs Wiki 7k 57.1 15.5/2

OutOfDomain UCI 0.15k 45.0 16/8
Swapped ¬(Wiki) 1k 105.0 10/4

Train Datasets. We use three datasets from the TNLI literature: Feverous [2], TabFact [11], and
Infotabs [19]. Each dataset comes with one subset (split) of examples for training and one for
test. Every annotated example consists of a table, a textual hypothesis, data evidence (a subset of
the table), and a Supports/Refutes label. All examples are manually written by humans. We report
dataset statistics in Table 7; “Avg # of row/attributes” is per table.

As a baseline, we extend the original training datasets with an augmentation for text [15]. Given
an example, we produce seven new versions of it by changing the textual hypothesis using back
translation, wordnet, word2vec, synonyms, random word swap, random word deletion, random
word insertion (Aug).

We also produce training datasets for our techniques. Given a corpus of tables, we always
generate the Tenet Cold (TenetC) dataset (Section 3). If examples have annotation for data evidence,
we can also generate the dataset for Tenet Warm (TenetW). Hypotheses are created with s-queries
(Section 4) and negative examples are generated according to Section 5. For each given table, we
produce three Supports and three Refutes hypotheses, therefore all Tenet datasets are balanced in
terms of labels.
For every table, Tenet creates one example with a surface query (cause those are the most

popular kind in the corpora and can always be generated) and two for the two rarest s-queries
among the other four types (Comparison, Filter, Aggregate, FilterAggregate). Table 4 reports s-
queries from the more commonly observed in the corpora to the rarer. If the complex s-queries
cannot be generated, the remaining examples are obtained with surface queries.
Test Datasets. The datasets from previous papers (Feverous, TabFact, and Infotabs) have their
own testing datasets with annotated examples manually written by humans (statistics in Table 7).
However, as all these models use tables from Wikipedia, we also create a test dataset with eight
out-of-Wikipedia (OutOfDomain) tables selected from different sources. Finally, Tenet can go
beyond its role in the training step and be used to generate test datasets, which is useful for the
evaluation of existing methods. In this spirit, we also generate a test dataset, Swapped, as described
in Section 6.2.
Inference Models for TNLI. In this work, our goal is to show the quality of automatically
generated training data. We therefore do not propose new TNLI models and adopt the ones in the
original papers. In Feverous, the inference predictor is a RoBERTa (large) encoder fine-tuned for

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:16 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

0 200 400 600 800
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85

Number of Feverous Training Tables

In
fe
re
nc
e
A
cc
ur
ac
y

TenetW TenetC
Human Human+Aug

Fig. 5. Inference accuracy for different training datasets over the Feverous test data. The x axis is the number
of tables in training set. Human is Feverous original training data.

classification on multiple NLI datasets [31]. In TabFact, the inference predictor is built as a program
synthesis problem, modeled as a latent program search followed by a discriminator ranking [29].
In Infotabs, the inference predictor is also a RoBERTa (large) encoder fine-tuned for classification.
Pre-trained Language Models. For the hypothesis generation (Section 4) and the error injection
(Section 5), we assume that a pre-trained language model (PLM) is available. We tested several PLMs
and use ChatGPT as default. We report a comparison of T5, fine-tuned on ToTTo, and ChatGPT in
Section 6.3.
Metrics.We report accuracy for the TNLI task: how many Supports/Refutes classification decisions
are correct over the total number of tests. We also report execution times and cost (for external
APIs) in running the models (Section 6.4).

6.1 Quality of Training Examples
We start by comparing results with training data with examples generated from the same sets of
tables. The tables are taken from Feverous, TabFact, and Infotabs datasets. As state of the art
solutions, we directly use the manually written examples (Human), eventually augmenting them
(Human+Aug). For Tenet methods, we take the corresponding tables of the original training data
and generate examples with TenetC and TenetW. For every experiment, we increase the number of
input tables, collect or generate the examples, and run the inference model to compute the accuracy
on the test data. For example, given a subset of the original examples in Feverous training corpus,
TenetC generates evidence and hypothesis using only the table in every example, while we use
the original example for Human. We finally assess the quality of the examples, both original and
generated, on the same test splits.

The TNLI accuracy results in Figure 5 for the Feverous test data show the impact of examples,
which is a proxy for their quality. Up to 700 input tables, both Tenet-generated datasets outperform
the examples written by humans, with more than 20 absolute points in cases with less than 150
tables. Even with only 200 tables available for the training step, both Tenet example generation
methods achieve an accuracy over 0.8 on the (manually crafted) original test data. If we augment
the Human examples with those generated by TenetW, we observe accuracy at 0.8 even with only
150 tables in the training corpus.

Tenet benefits by the fact that for every input table, it extracts one data evidence and generates
three Supports and three Refutes examples, while the humans wrote one example per table. To

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:17

0 1,000 2,000 3,000 4,000 5,000
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

Number of Feverous Training Examples

In
fe
re
nc
e
A
cc
ur
ac
y

TenetW TenetC
Human Human+Aug

Fig. 6. Inference accuracy for different training datasets over the Feverous test data. The x axis is the number
of examples in training set. Human is the Feverous training data.

100 200 300 400
0.6

0.7

0.8

0.
65
5

0.
74
9 0.

81
1

0.
82
5

0.
74
8 0.
79
8

0.
82
2

0.
81
5

0.
79
3

0.
80
9

0.
84
0

0.
83
6

0.
77
6 0.
82
7

0.
83
6

0.
84
3

Number of human examples

A
cc
ur
ac
y

0 100 500 1000

Fig. 7. Inference accuracy on Feverous when training with the union of human examples (100 to 400)
and Tenet generated examples (0 to 1000). The first bar is for Human examples only, other bars are for
Human+Tenet examples.

make a comparison over the same number of examples, we report the same experiment, but with
results plotted according to the total number of examples, regardless of the number of tables.

Figure 6 compares the results obtained with sets of examples of the same size, but from different
methods, on the Feverous test data. Tenet’s examples (both TenetW and TenetC) always lead to
higher accuracy than the original examples with traditional augmentation (Human+Aug). Moreover,
Tenet’s examples lead to comparable accuracy w.r.t. the human-written corpus up to around 1.5k
examples. After this value, the results are quite stable for our generated datasets, while they slowly
increase for those written by humans. This is consistent with Figure 5, as Human outperforms
Tenet when using at least 800 tables. Our explanation is that there is a long tail of reasoning cases
that are not covered by the five s-queries that we have designed, e.g., Feverous test data has a
small fraction of hypothesis involving arithmetic operations. While new s-queries can be added,
the plot shows that with only five types we can already obtain automatically very good training
datasets.

Figure 7 reports the results for the training donewith a combination ofHuman and Tenet examples
for Feverous. We report the impact of different numbers of generated examples. Increasing the
size of the generated training data increases the accuracy on the test set. The benefit of Tenet
examples is higher with smaller numbers of human training examples.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:18 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

Table 8. Accuracy on Feverous test set augmenting the original train set with Tenet and text augmentation
examples. Tenet-X stands for examples generated from X tables.

Train set Augmented Augmented Size Accuracy

Feverous - - 0.909
Feverous Tenet-50 153 0.910
Feverous Tenet-100 321 0.916
Feverous Tenet-200 683 0.911
Feverous Tenet-300 1018 0.917
Feverous Tenet-400 1357 0.910

TenetC Human TenetW

0 500 1,000
0.5

0.6

0.7

0.8

of Infotabs Tables

In
fe
re
nc
e
A
cc
ur
ac
y

500 1,000
0.62

0.64

0.66

0.68

0.7

of TabFact Tables

Fig. 8. Inference accuracy for different training datasets over Infotabs (left) and TabFact (right) test data.
The x axis is the number of tables in training datasets.

Table 8 reports results for a combination of Human and Tenet train examples on Feverous. We
augment the entire original training set with Tenet’s examples using an increasing number of
seed tables. The best accuracy is obtained with 300 tables (1018 training examples) and an accuracy
of 0.917. A larger number of generated examples has a smaller impact. We observe a similar pattern
with the baseline text augmentation [15]: adding all augmented examples to the original human
examples leads to a lower accuracy (0.908).
Figure 8 reports the results for the accuracy of the inference model for Infotabs and TabFact

test datasets. For both datasets, the examples generated by human annotators do better than Tenet
examples. One difference from Feverous is that these datasets have up to eight examples per
table, therefore the accuracy grows faster with more tables compared to Figure 5. For TabFact, the
difference is a few points, while for Infotabs is more significant. This is because the latter contains
only entity tables derived from Wikipedia info-boxes. Those are equivalent to tables with a single
row and many attributes, thus not suitable for s-query generation and our algorithm defaults to
surface hypothesis for these cases. Finally, Infotabs examples use the whole table as data evidence,
which explains why we cannot derive e-queries for TenetW for it. However, we remark that our
examples are generated without involving humans, therefore with a cost that is a fraction of the
one to obtain the original training datasets.

6.2 Impact of Information from Pre-training
In this experiment we measure the impact of the knowledge stored in PLMs. Are the inference
models really using the input evidence and tables? Or do they rely on the information in the PLMs?

Indeed, PLMs have been trained with large amounts of information, including dumps of the Web
and Wikipedia. With existing datasets derived from Wikipedia, it is not obvious how much of the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:19

inference decision comes from the information gathered in the weights of the large language model
and how much comes from the evidence and table passed as input for the TNLI task.

To enable such analysis, we use two test datasets: OutOfDomain and SwappedFever. We design
OutOfDomain with five tables from the UCI repository [14] (Abalone, Adults, Iris, and Mushroom)
and three sports tables used in NLP text generation challenges [57]. Hypothesis and labels are
manually crafted by the authors with the generation process outlined in the Feverous paper [2].
For Swapped, the goal is to create a hypothesis that contradicts the information in Wikipedia.

For this task, we create hypotheses that are supported by the tables given as input, but are in
contradiction with the original Wikipedia tables, which are likely present as learned information
in the PLMs. To create this dataset, we take tables 𝑂 from the Feverous corpus and create Supports
hypothesis 𝐴 with our methods. We then inject errors in the tables, obtain tables 𝑂 ′, and create
Refutes hypothesis 𝐵. We then swap the labels in the examples. We change the labels of the original
Supports hypothesis 𝐴, as they are now Refutes for tables 𝑂 ′, and do the same for 𝐵. The (now)
Supports hypotheses in examples 𝐵 are supported by the provided tables, but are in contradiction
with the original Wikipedia tables used in the pre-training of the PLMs.

For this experiment, we train the Feverous inference predictor on Tenet training data and on
the original Feverous datasets as in the previous section.

Table 9. Accuracy results for test datasets OutOfDomain, derived from non-Wikipedia tables, and Swapped,
with examples contradicting information in Wikipedia tables. Training examples (5k) derived from Feverous
tables.

Generated Train Set Feverous Train Set
Test set TenetW TenetC Human Human+Aug

OutOfDomain 0.84 0.80 0.77 0.76
Swapped 0.65 0.65 0.64 0.61

The results in Table 9 show two important insights. First, accuracy results are lower compared
to the original datasets from the literature. This is because those inference tasks are defined over
concepts and entities that are already “known” to the PLMs used in the inference. This is evident
with the Swapped dataset that contradicts the original knowledge in the Wikipedia tables used in
the pre-training of the PLM. Models that rely on the provided data evidence, rather than PLMs’
knowledge, are more robust when executed on new domains.

Second, the model trained on Tenet data outperforms the models trained with humans’ examples.
Our examples better steer the inference model into learning to use the data evidence, rather than
the internal information in the PLM. This is especially important for domain-specific tables that
cover entities not on the Web, with an improvement of 7 absolute points with TenetW ’s model over
the humans’ model.

6.3 Ablation Study
In this section, we first measure the impact of the PLM on the quality of the generated examples.
We then study the impact of parameters used across the data evidence and hypothesis generation.
Role of PLM. As a baseline for the first experiment, we report the training data produced directly
by a pre-trained language model for this task (PLM). We use ChatGPT to automatically generate
hypotheses from tables given only a prompt with the instructions and examples. For each table of a
given dataset, ChatGPT generates (i) three Supports and three Refuses hypotheses using data in
the table, and (ii) the set of cells used to produce each sentence (evidence). Tables are presented
using the same linearization of Figure 4.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:20 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

Table 10. Accuracy results with different PLMs for example generation. Same inference model trained on
examples from 300 tables from Feverous train corpus.

TenetW Train TenetC Train PLM Train
Test set T5 ChatGPT T5 ChatGPT ChatGPT

Feverous 0.79 0.80 0.81 0.82 0.70
TabFact 0.60 0.65 0.56 0.62 0.65
Infotabs n.a. n.a. 0.57 0.51 0.63

OutOfDomain 0.81 0.84 0.80 0.80 0.69
Swapped 0.67 0.65 0.63 0.65 0.58

0 100 200 300 400
0.65

0.7

0.75

0.8

0.85

Number of Tables

In
fe
re
nc
e
A
cc
ur
ac
y TenetW 1 TenetW 2

TenetW 5 TenetC 1
TenetC 2 TenetC 5

Fig. 9. Impact of 1, 2, 5 data evidence per table in example generation. Feverous test data, 3 s-queries per
evidence.

Table 10 shows that Tenet generates valid examples independently from the PLM used in the
hypothesis generation. This applies with T5, fine tuned on ToTTo [40], and with ChatGPT, with
in-context learning. PLM creates useful examples, but without the guide of the data evidence and
the s-queries, it is prone to hallucinations that degrade the quality of the training data. In other
words, generating examples out of the PLM is doable but Tenet methods get higher quality. On
average, Tenet with ChatGPT has slightly better results because of its superior ability in text
generation. However, using OpenAI API comes with its own issues, in terms of data privacy, usage
cost, and execution time (Section 6.4).
Impact of Parameters. Figure 9 shows the inference accuracy when varying the number of results
from the evidence query for every table. The experiment is run over the Feverous test data, with
tables in its training data, and with Tenet models that use three s-query for every data evidence.
Results show that a larger number of data evidence per table leads to better results with very few
tables, but has marginal gain with an increasing number of tables in the training. We explain this
behavior with the fact that using examples from more tables is more beneficial than using multiple
examples from the same table. For a trade-off for quality and cost of example generation, we set
one data evidence as default.

Figure 10 shows accuracy results when varying the number of s-queries executed for every data
evidence. The experiment is over the Feverous test data, with tables in its training data, and with
Tenet models using one result from the e-query. Results show that more hypotheses lead to better
results on average, especially with small numbers of tables. As a trade-off between cost and quality,
we set three s-queries as default.
Impact of different thresholds in refute example generation. To identify the right percentage
of attributes to shuffle, we test different threshold 𝜏 values (Section 5). We use 200 Feverous tables
and generate positive and negative examples with Tenet. We then train the model and measure
the inference accuracy. Results in Table 11 show that 50% leads to the best quality.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:21

0 100 200 300 400
0.55
0.6
0.65
0.7
0.75
0.8
0.85

Number of Tables

In
fe
re
nc
e
A
cc
ur
ac
y TenetW 1 TenetW 3

TenetW 5 TenetC 1
TenetC 3 TenetC 5

Fig. 10. Impact of 1, 3, 5 s-queries per table in example generation. Feverous test data, 1 data evidence per
table.

Table 11. Accuracy results with different thresholds for the # of shuffled attributes in Refutes example
generation.

Test set Type Quality Quality Quality
with 𝜏 = 0.25 with 𝜏 = 0.5 with 𝜏 = 0.75

Feverous Cold 0.74 0.77 0.69
Feverous Warm 0.74 0.77 0.74
Infotabs Cold 0.54 0.57 0.54
TabFact Cold 0.50 0.62 0.54
TabFact Warm 0.52 0.65 0.57

Table 12. Accuracy results with two additional s-queries.

Test set Type Standard New Improvement
S-Queries S-Queries

Feverous Cold 0.77 0.78 +0.01
Feverous Warm 0.81 0.83 +0.02
Infotabs Cold 0.59 0.59 0
TabFact Cold 0.65 0.63 -0.02
TabFact Warm 0.65 0.66 +0.01

Impact of new s-queries. To define the impact of adding new s-queries, we extend the set in Table 4
with two new s-queries: ranked, which uses the RANK() function in Postgres to craft examples such
as “John is the second youngest person”, and percentage, which calculates the difference in % for
pairwise numerical values to generate examples such as “Bob earns a salary that is 50% higher than
John’s”. These kinds of examples are present in a small percentage in TNLI corpora. We use such
new s-queries over 200 Tables and extend the original Tenet training data with the corresponding
training examples. Accuracy results in Table 12 show that adding examples from the two new
s-queries brings a small gain in quality.

6.4 Execution Time and Cost
We measure Tenet execution time to generate training data. We create five samples of 200 tables
from Feverous and execute the full pipeline with Cold andWarm approaches.We report in Figure 11
the average time in generating a single training example. We partition the overall time across the
generation of the new evidence (blue, bottom), the hypothesis generation (orange, middle), and the
text generation with ChatGPT (green, top). The average time does not change significantly between
cold and warm approaches. In the warm approach, more time is spent on evidence generation.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:22 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

0.002 0.181

0.08 0.077
1.937 1.954

2.019 2.212

0.001

0.01

0.1

1

10
COLD WARM

AV
G

. T
IM

E
 (s

)

Evid. Gen (s) Hyp. Gen (s) Text Gen (s)

Fig. 11. Average time for generating one example with Cold and Warm approaches. For each scenario is
reported the time taken by each generation step, with the total time on the top of each bar. Time in seconds
and reported in log scale.

Indeed, generating and executing the e-queries takes more time than random selection. On the
other hand, using a seed evidence in the warm approach leads in most cases to more compact
evidence, involving a smaller number of attributes compared to random. The cold setting, due to its
random nature, involves several attributes, and thus generates more s-queries to check. The most
expensive step in our approach (97% of the execution time) is due to text generation. This heavily
depends on the ChatGPT availability and it takes on average from 1.5 to 2.2 seconds per request.

Table 13. Costs of generating hypothesis with ChatGPT.

Tables # Positives # Negatives Total # Price ($)

Warm 200 1670 1536 3206 11.6

Cold 200 1655 1580 3245 11.7

Table 13 reports the costs of generating hypotheses with the OpenAI API and ChatGPT for 200
tables. The cost linearly depends on the number of generated examples, as ChatGPT calculates
the costs based on the size of the input prompt together with the size of the generated output. On
average the generation of one example costs 0.0037$. The total cost of all the experiments reported
in this paper is about $130 for 36K generated examples. Using a smaller PLM, such as T5, on a local
machine (Apple M1 Max laptop) does not have any API cost and takes on average 1 sec for the
text generation step of one training example. However, the quality of the generated text is slightly
lower than that of ChatGPT.

In conclusion, Tenet generates a training example with a lower time and cost w.r.t. those required
by human annotators.

7 RELATEDWORK
Tenet is a system spanning different problems. We start discussing augmentation and generation
of text examples. We then focus on extracting SQL statements from NL text and from query results.
Next, we cover text generation from tabular data. Finally, we discuss applications in Tabular Natural
Language Inference (TNLI).
Augmentation of Textual Examples. In augmentation, the goal is to provide additional annotated
data by modifying existing examples. In one baseline, we use a method that augments examples to
create more hypotheses for the same tabular data evidence.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:23

Augmentation can be performed on the data or on the feature space [6]. In the data space, several
works operate at the character level [7, 16] by swapping, removing, adding letters; injecting common
spelling mistakes; or replacing words with abbreviations, e.g., “I’m”. Approaches that operate at the
word level, use word swap/deletion [3, 5, 21, 25, 41] or replacement with synonyms, hypernyms,
and antonyms [16]. At the document level, a popular method is round trip translation [1, 59]. New
textual samples are also created with generative methods [41] and pre-trained language models
(PLMs) [8, 13]. For example, by using GPT-2, as a generator, and reinforcement learning to guide it
towards specific class labels in the decoding stage [30]. We also use PLMs (ChatGPT and T5) for
text generation, but our generation is driven by the relational data.

Other works focus on transforming the feature space rather than the raw data. Noise addition is
used to create new examples by modifying the vectors with the injection of zeros [45] or updating
them with random multiplications [26]. An alternative to noise is interpolation, such as combining
similar vectors from examples with the same label [9, 53]. This line of work is not applicable in our
case where the evidence table data is explicit in the example.
Generation of Textual Examples. For example generation in the unsupervised setting (no exam-
ples available), several works focus on exploiting PLMs to obtain textual claims. In SuperGen [32], an
original text 𝑡 is combined with a template prompt to obtain a positive, neutral or negative sentence
from the PLM, e.g., given sentence 𝑡 , the prompt for a new negative sentence is “𝑡 . However the
truth is...”. In the supervised setting, humans are asked for hints on the output, e.g., by annotating
a taxonomy with related words to train a LSTM model that generates sentences [34]. In another
direction, the classifier is trained with examples from a fine-tuned text generator [33] or with
examples extracted from Wikipedia paragraphs with Bart models [27] that obtain pairs of (claims,
label) [38]. While these works share some ideas with our approach, they cannot consume tables as
input. One work focuses on the generation of ambiguous examples by profiling input relations for
a new kind of metadata and in terms of example variety they only focus on look-up claims [50, 51].
Semantic Parsing. In the supervised setting, we generate data evidence for new samples from a
given example. As we want full control on the data (to distinguish Supports and Refutes), we derive
an SQL query for every data evidence. Text-to-SQL (semantic parsing) methods that infer the query
from the given hypothesis [17, 23, 39, 55] perform poorly when executed on factual claims. For
instance, RAT-SQL [52] derives a query from a textual NL question and table pair. While it handles
datasets with multiple tables and foreign keys [61], it assumes relational tables only, works on
questions (not factual claims) as input, and mostly returns incorrect queries in our setting.
Query Reverse Engineering. In this problem, the goal is to identify the query that generates
a given output. Deriving surface-queries, that overfit on the input, is always possible, while for
more general queries the complexity is exponential [56]. However, some methods focus on getting
one query for the given example [48, 56], in this case the complexity is in P-time under some
assumptions. This is not suitable for us, as we want to find a variety of s-queries to reflect the
different kinds of reasoning needed in the inference. Moreover, some of these methods require both
positive and negative output examples [56], while we have only (positive) data evidence. Related
approaches for query-by-example also propose heuristics for the discovery of sets of possible
queries, but the solution is for interactive use [28], while in our case we aim at full control over the
variety of s-queries. Finally, given the nature of the corpora in NLTI problem, we do not focus on
the inference of joins [62].
Text Generation from Tables. There are works on verbalizing tables to produce sentences that de-
scribe them. Data-to-text generation has been traditionally tackled by leveraging domain knowledge
and complex grammar rules [24, 43]. Recent breakthroughs in NLP, remove cumbersome sentence
and content planning [40]. R2D2 [36] combines a generator with a faithfulness discriminator for

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

243:24 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

the produced text 𝑡 to reduce “hallucinations” such as entities appearing in 𝑡 that are not in the data.
DocuT5 [47] tackles the lack of context in describing data by manually adding table information and
foreign keys. In our setting, we use table names, captions, and any document structural information
as context. These works lead to fluent sentences, but only in the form of description of the tuples. In
analogy to queries, they describe the output of look-up operations. We extend these approaches by
generating textual claims that describe data retrieved with SQL operations beyond simple look-up,
such as aggregates. LogicNLG [10] also discusses the requirement of logical operations in the
generated text to go beyond the surface realization of a set of cell values. They create a dataset with
more complex examples, such as math operations and comparisons, and test sentence generation
with several methods. Our work introduces prompts based on few-shots for generative models,
such as GPT-3, which perform better than the previous methods.
Tabular NLI. TNLI determines if a textual hypothesis is supported or refuted based on a given
premise in tabular format. Applications include computational fact-checking [22, 35], table un-
derstanding [19, 20] and assistance in data-centric fields such as finance and healthcare [37]. As
an example of existing datasets, Feverous is a collection of labeled textual claims generated by a
crowd starting from Wikipedia pages [2]. The pipeline for fact-checking is composed of a cell
retriever (given the claim and the tables) and a veracity predictor (given the claim and data evidence).
Similarly to Feverous, the SemEval-2021 Task 9 [54] has 2k tables on which claims are built for fact
verification and cell evidence selection. From the tables, claims for the training set are generated
using IBM Watson Discovery and test claims are written by annotators. The claim generation is
based on templates and is poor in terms of variety. In TabFact [11], the examples rephrase table
data with operations on cells, such as count and max, to obtain the claim. One checking method
uses a linearized table with a BERT model, while a second method uses Latent Program Analysis.
In InfoTabs [19], annotators build a dataset with 3 sentences for each table. They test various
pre-trained NLI systems on their dataset and conclude that they do not perform well.

8 CONCLUSIONS
We proposed a generic solution that automatically constructs high-quality annotated datasets for
TNLI. Experiments show that given only a table as input, Tenet creates examples that lead to high
accuracy when used as training data in the target tasks. Even in settings with a small number of
tables for the training of the system, Tenet produces examples with variety both in the pattern of
the data and in the reasoning used to verify or refute the hypothesis.

While Tenet is an important first step, there are several research directions still open. First, there
are classes of examples in the long tail that are not represented in our generation process. Examples
include mathematical operations, such as the hypothesis “Mike is 27 years older than Anne”. As
the number of possible s-queries is large, we envision a solution where s-queries are inferred from
hypothesis in annotated corpora, similarly to what we do for e-queries, with a new learning task
that extends existing work on semantic parsing [23, 39]. Second, existing corpora contain also
examples that span multiple tables or even tables and text, but our e-query generation algorithm
must be extended for such settings. In a similar direction, new algorithms for e- and s-queries are
needed to generate examples that require joint reasoning over text and tabular data [60]. Third,
once models have been bootstrapped with Tenet, we could design active learning algorithms to
solicit human-written examples that effectively improve performance on the test set [46].

Acknowledgment. This work has been supported in part by the ANR project ATTENTION (ANR-21-
CE23-0037).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

Generation of Training Examples for Tabular Natural Language Inference 243:25

REFERENCES
[1] Milam Aiken and Mina Park. 2010. The efficacy of round-trip translation for MT evaluation. Translation Journal 14, 1

(2010), 1–10.
[2] Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull, James Thorne, Andreas Vlachos, Christos Christodoulopoulos, Oana

Cocarascu, and Arpit Mittal. 2021. FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured
information. In NeurIPS (Datasets and Benchmarks).

[3] Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour, Segev Shlomov, Naama Tepper, and
Naama Zwerdling. 2020. Do not have enough data? Deep learning to the rescue!. In AAAI, Vol. 34. 7383–7390.

[4] Gilbert Badaro, Mohammed Saeed, and Papotti Paolo. 2023. Transformers for Tabular Data Representation: A
Survey of Models and Applications. Transactions of the Association for Computational Linguistics 11 (2023), 227–249.
https://doi.org/doi.org/10.1162/tacl_a_00544

[5] Markus Bayer, Marc-André Kaufhold, Björn Buchhold, Marcel Keller, Jörg Dallmeyer, and Christian Reuter. 2022. Data
augmentation in natural language processing: a novel text generation approach for long and short text classifiers.
International Journal of Machine Learning and Cybernetics (2022), 1–16.

[6] Markus Bayer, Marc-André Kaufhold, and Christian Reuter. 2022. A Survey on Data Augmentation for Text Classifica-
tion. Comput. Surveys (jun 2022).

[7] Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic and natural noise both break neural machine translation. arXiv
preprint arXiv:1711.02173 (2017).

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[9] Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mixtext: Linguistically-informed interpolation of hidden space for
semi-supervised text classification. arXiv preprint arXiv:2004.12239 (2020).

[10] Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and William Yang Wang. 2020. Logical Natural Language Generation
from Open-Domain Tables. In ACL. 7929–7942.

[11] Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and William Yang
Wang. 2020. TabFact: A Large-scale Dataset for Table-based Fact Verification. In ICLR.

[12] Hyunsoo Cho, Hyuhng Joon Kim, Junyeob Kim, Sang-Woo Lee, Sang goo Lee, Kang Min Yoo, and Taeuk Kim. 2022.
Prompt-Augmented Linear Probing: Scaling Beyond The Limit of Few-shot In-Context Learners. In AAAI.

[13] Vincent Claveau, Antoine Chaffin, and Ewa Kijak. 2021. Generating artificial texts as substitution or complement of
training data. arXiv preprint arXiv:2110.13016 (2021).

[14] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
[15] Julian Eisenschlos, Syrine Krichene, and Thomas Müller. 2020. Understanding tables with intermediate pre-training. In

EMNLP. 281–296.
[16] Steven Y Feng, Varun Gangal, Dongyeop Kang, Teruko Mitamura, and Eduard Hovy. 2020. Genaug: Data augmentation

for finetuning text generators. arXiv preprint arXiv:2010.01794 (2020).
[17] Orest Gkini, Theofilos Belmpas, Georgia Koutrika, and Yannis E. Ioannidis. 2021. An In-Depth Benchmarking of

Text-to-SQL Systems. In SIGMOD. ACM, 632–644.
[18] Vivek Gupta, Riyaz A. Bhat, Atreya Ghosal, Manish Shrivastava, Maneesh Kumar Singh, and Vivek Srikumar. 2022. Is

My Model Using The Right Evidence? Systematic Probes for Examining Evidence-Based Tabular Reasoning. Trans.
Assoc. Comput. Linguistics 10 (2022), 659–679.

[19] Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek Srikumar. 2020. INFOTABS: Inference on Tables as Semi-
structured Data. In ACL. ACL, Online, 2309–2324.

[20] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian Eisenschlos. 2020. TaPas:
Weakly Supervised Table Parsing via Pre-training. In ACL. Association for Computational Linguistics, 4320–4333.
https://doi.org/10.18653/v1/2020.acl-main.398

[21] Thien Ho Huong and Vinh Truong Hoang. 2020. A data augmentation technique based on text for Vietnamese
sentiment analysis. In International Conference on Advances in Information Technology. 1–5.

[22] Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer. 2020. Scrutinizer: A Mixed-Initiative
Approach to Large-Scale, Data-Driven Claim Verification. Proc. VLDB Endow. 13, 11 (2020), 2508–2521.

[23] George Katsogiannis-Meimarakis and Georgia Koutrika. 2021. A Deep Dive into Deep Learning Approaches for
Text-to-SQL Systems. In SIGMOD. ACM, 2846–2851.

[24] Karen Kukich. 1983. Design of a Knowledge-Based Report Generator. In 21st Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Cambridge, Massachusetts, USA, 145–150.
https://doi.org/10.3115/981311.981340

[25] Varun Kumar, Ashutosh Choudhary, and Eunah Cho. 2020. Data augmentation using pre-trained transformer models.
arXiv preprint arXiv:2003.02245 (2020).

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

https://doi.org/doi.org/10.1162/tacl_a_00544
http://archive.ics.uci.edu/ml
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.3115/981311.981340

243:26 Jean-Flavien Bussotti, Enzo Veltri, Donatello Santoro, and Paolo Papotti

[26] Varun Kumar, Hadrien Glaude, Cyprien de Lichy, and William Campbell. 2019. A closer look at feature space data
augmentation for few-shot intent classification. arXiv preprint arXiv:1910.04176 (2019).

[27] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov,
and Luke Zettlemoyer. 2019. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. https://doi.org/10.48550/ARXIV.1910.13461

[28] Hao Li, Chee-Yong Chan, and David Maier. 2015. Query from Examples: An Iterative, Data-Driven Approach to Query
Construction. Proc. VLDB Endow. 8, 13 (sep 2015), 2158–2169. https://doi.org/10.14778/2831360.2831369

[29] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. 2017. Neural Symbolic Machines: Learning
Semantic Parsers on Freebase with Weak Supervision. In ACL. 23–33.

[30] Ruibo Liu, Guangxuan Xu, Chenyan Jia, Weicheng Ma, Lili Wang, and Soroush Vosoughi. 2020. Data boost: Text data
augmentation through reinforcement learning guided conditional generation. arXiv preprint arXiv:2012.02952 (2020).

[31] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[32] Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. 2022. Generating Training Data with Language Models: Towards
Zero-Shot Language Understanding. CoRR abs/2202.04538 (2022). arXiv:2202.04538 https://arxiv.org/abs/2202.04538

[33] Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek F. Abdelzaher, and Jiawei Han. 2022. Tuning Language
Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning. CoRR abs/2211.03044 (2022).
https://doi.org/10.48550/arXiv.2211.03044 arXiv:2211.03044

[34] Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. 2018. Weakly-Supervised Hierarchical Text Classification.
https://doi.org/10.48550/ARXIV.1812.11270

[35] Preslav Nakov, David P. A. Corney, Maram Hasanain, Firoj Alam, Tamer Elsayed, Alberto Barrón-Cedeño, Paolo Papotti,
Shaden Shaar, and Giovanni Da San Martino. 2021. Automated Fact-Checking for Assisting Human Fact-Checkers. In
IJCAI. ijcai.org, 4551–4558. https://doi.org/10.24963/ijcai.2021/619

[36] Linyong Nan, Lorenzo Jaime Yu Flores, Yilun Zhao, Yixin Liu, Luke Benson, Weijin Zou, and Dragomir Radev. 2022.
R2D2: Robust Data-to-Text with Replacement Detection. arXiv preprint arXiv:2205.12467 (2022).

[37] A. Neveol, Dalianis, and S. Velupillai. 2018. Clinical Natural Language Processing in languages other than English:
opportunities and challenges. Journal Biomed Semantic 9, 12 (2018).

[38] Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan, and William Yang Wang. 2021. Zero-shot Fact Verification
by Claim Generation. In ACL. Association for Computational Linguistics, 476–483.

[39] Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2023. QATCH: Benchmarking Table Representation Learning
Models on Your Data. In NeurIPS (Datasets and Benchmarks).

[40] Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipanjan Das.
2020. ToTTo: A Controlled Table-To-Text Generation Dataset. In EMNLP. ACL, 1173–1186.

[41] Siyuan Qiu, Binxia Xu, Jie Zhang, Yafang Wang, Xiaoyu Shen, Gerard De Melo, Chong Long, and Xiaolong Li. 2020.
Easyaug: An automatic textual data augmentation platform for classification tasks. In Companion Proceedings of the
Web Conference 2020. 249–252.

[42] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. KnowWhat You Don’t Know: Unanswerable Questions for SQuAD.
In ACL. Association for Computational Linguistics, Melbourne, Australia, 784–789. https://doi.org/10.18653/v1/P18-
2124

[43] Ehud Reiter and Robert Dale. 2002. Building Applied Natural Language Generation Systems. Natural Language
Engineering 3 (03 2002).

[44] Anish Das Sarma, Aditya G. Parameswaran, Hector Garcia-Molina, and Jennifer Widom. 2010. Synthesizing view
definitions from data. In ICDT. ACM, 89–103.

[45] Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. 2020. A simple but tough-to-beat data
augmentation approach for natural language understanding and generation. arXiv preprint arXiv:2009.13818 (2020).

[46] Rajesh Shrestha, Omeed Habibelahian, Arash Termehchy, and Paolo Papotti. 2023. Exploratory Training: When
Annonators Learn About Data. Proc. ACM Manag. Data 1, 2 (2023), 135:1–135:25. https://doi.org/10.1145/3589280

[47] Elena Soare, Iain Mackie, and Jeffrey Dalton. 2022. DocuT5: Seq2seq SQL Generation with Table Documentation. CoRR
abs/2211.06193 (2022). https://doi.org/10.48550/arXiv.2211.06193 arXiv:2211.06193

[48] Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. 2017. Reverse Engineering Aggregation
Queries. Proc. VLDB Endow. 10, 11 (2017), 1394–1405. https://doi.org/10.14778/3137628.3137648

[49] Immanuel Trummer. 2022. From BERT to GPT-3 Codex: Harnessing the Potential of Very Large Language Models for
Data Management. Proc. VLDB Endow. 15, 12 (2022), 3770–3773.

[50] Enzo Veltri, Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2023. Data Ambiguity Profiling for the Generation
of Training Examples. In 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April
3-7, 2023. IEEE, 450–463. https://doi.org/10.1109/ICDE55515.2023.00041

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

https://doi.org/10.48550/ARXIV.1910.13461
https://doi.org/10.14778/2831360.2831369
https://arxiv.org/abs/2202.04538
https://arxiv.org/abs/2202.04538
https://doi.org/10.48550/arXiv.2211.03044
https://arxiv.org/abs/2211.03044
https://doi.org/10.48550/ARXIV.1812.11270
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.1145/3589280
https://doi.org/10.48550/arXiv.2211.06193
https://arxiv.org/abs/2211.06193
https://doi.org/10.14778/3137628.3137648
https://doi.org/10.1109/ICDE55515.2023.00041

Generation of Training Examples for Tabular Natural Language Inference 243:27

[51] Enzo Veltri, Donatello Santoro, Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2022. Pythia: Unsupervised
Generation of Ambiguous Textual Claims from Relational Data. Proceedings of the ACM SIGMOD International
Conference on Management of Data (2022), 2409 – 2412. https://doi.org/10.1145/3514221.3520164

[52] BailinWang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, andMatthew Richardson. 2020. RAT-SQL: Relation-Aware
Schema Encoding and Linking for Text-to-SQL Parsers. In ACL. 7567–7578.

[53] Congcong Wang and David Lillis. 2019. Classification for Crisis-Related Tweets Leveraging Word Embeddings and
Data Augmentation.. In TREC.

[54] Nancy XRWang, DiwakarMahajan, Marina Danilevsky, and Sara Rosenthal. 2021. SemEval-2021 task 9: Fact verification
and evidence finding for tabular data in scientific documents (SEM-TAB-FACTS). arXiv preprint arXiv:2105.13995
(2021).

[55] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi, Shekar Ramaswamy, Rohin Bhushan,
Nadja Geisler, Benjamin Hättasch, Steffen Eger, Ugur Çetintemel, and Carsten Binnig. 2020. DBPal: A Fully Pluggable
NL2SQL Training Pipeline. In SIGMOD. ACM, 2347–2361.

[56] Yaacov Y. Weiss and Sara Cohen. 2017. Reverse Engineering SPJ-Queries from Examples. In PODS. ACM, 151–166.
[57] Sam Wiseman, Stuart Shieber, and Alexander Rush. 2017. Challenges in Data-to-Document Generation. In EMNLP.

ACL, 2253–2263.
[58] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2017. Computational Fact Checking through Query

Perturbations. ACM Trans. Database Syst. 42, 1 (2017), 4:1–4:41.
[59] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. 2020. Unsupervised data augmentation for consistency

training. Advances in Neural Information Processing Systems 33 (2020), 6256–6268.
[60] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020. TaBERT: Pretraining for Joint Understanding

of Textual and Tabular Data. In ACL. 8413–8426.
[61] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle

Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In EMNLP. 3911–3921.

[62] Meihui Zhang, Hazem Elmeleegy, Cecilia M. Procopiuc, and Divesh Srivastava. 2013. Reverse Engineering Complex
Join Queries. In SIGMOD. ACM, 809–820.

Received April 2023; revised July 2023; accepted August 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 243. Publication date: December 2023.

https://doi.org/10.1145/3514221.3520164

	Abstract
	1 Introduction
	2 Overview of the Solution
	3 Data Evidence Generation
	4 Hypothesis Generation
	4.1 Semantic Queries for Text Variety
	4.2 Text Generation

	5 Refutes Examples Generation
	6 Experiments
	6.1 Quality of Training Examples
	6.2 Impact of Information from Pre-training
	6.3 Ablation Study
	6.4 Execution Time and Cost

	7 Related Work
	8 Conclusions
	References

