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Though the influence of surfactant type on foam rheological properties is well established exper-
imentally, the underlying physical mechanisms are far from understood. Here, using fully resolved
numerical simulation of an elementary T1 event taking into account both flow and surfactant dynam-
ics, we unveil the origin of surfactant-induced dissipation in sheared foams. To model the diffusive
and exchange contributions, we revisit the classical Lucassen model by switching from a mechanical
to a thermodynamic perspective and find that in spite of its extreme simplicity, it captures well some
behaviors of our numerical foam. Our approach should be useful in class of surfactant-controlled
systems, from soap films and emulsions to coating films and spreading droplets.

Introduction Foams are soft granular materials made
of bubbles in a soapy solution. They are ubiquitous in
everyday-life and nature, from shampoos to sea foams
and frog nests [1, 2]. Properties such as large specific
area, low-cost and low-weight have also made them in-
strumental in a variety of applications such as cosmetics,
fire extinguishers, templates for insulating building mate-
rials, or food texture modifiers among others [3]. Under-
standing the rheology of this class of materials is a long-
standing quest [4, 5]. Just as for gels and suspensions, the
origin of complex behavior lies in their microstructure.
Yet, foams are unique in two aspects. First, the bubbles
are soft highly deformable objects, a key property for
their organization [6]. Second, these out-of-equilibrium
materials involve surface-active species which adsorb at
interfaces and induce repulsion forces that stabilize liquid
films [7]. These surfactant molecules act as a third com-
ponent that is essential to the properties of those biphasic
systems.

It is now well-established that surfactants play a key
role in the rheology of foams [8, 9]. A first line of evidence
lies in interfacial rheology, where dedicated models and
techniques such as the oscillating bubble method [10, 11]
could relate the surfactant mobility in the liquid to
the interfacial complex modulus [12, 13], as first pro-
posed by Lucassen [14]. More complex situations include
slightly deformed two-bubble assembly or foam [15, 16],
or other small deformation modes with viscous dissipa-
tion [17, 18]. The effect of the surfactant nature is also
apparent in the case of large deformation, such as bub-
ble neighbor switching as evidenced at the bubble scale
[19–21] and in 3D foams [22]. The recurring observation
is that the type of surfactant, though a component of
molecular size, can deeply impact the flow behavior at
a much larger scale. Yet, the underlying mechanisms
have remained somewhat elusive because experiments
typically probe only a global observable such as the loss
modulus, and not the ”hidden variables” [23] of complex
surfactant dynamics.

In this work, we resolve the origin of surfactant-
induced dissipation in a flowing foam and its dependency
on surfactant properties. Using level-set simulations to
probe quantities usually inaccessible in experiments, we
present a complete view for the processes at work in the
elementary event of a sheared liquid foam. Adopting
a thermodynamic point of view, we extended the Lu-
cassen model [14] to propose a tractable prediction for
the surfactant-induced dissipation. Though it is a crude
representation of a flowing foam, the model is able to ra-
tionalize several trends revealed by the simulations. Our
approach is applicable to other surfactant-rich systems,
from thin films to droplets or bubbly flows.

Dissipation in a numerical sheared foam. The ele-
mentary event in a flowing foam is a so-called T1 event,
wherein a bubble switches neighbors (Fig. 1a). We con-
sider a minimal two-dimensional system of a few bub-
bles within a cell of height H (Fig. 1b). Shear is im-
posed through pinned contact lines by walls moving at
a velocity U . The liquid and gas flows are governed by
the Navier-Stokes equation for incompressible fluids. The
stress-jump boundary condition at the interface involves
a Marangoni stress which depends on the surfactant na-
ture and concentration there. The concentrations of sur-
factants in the liquid and at the interface, F and f resp.,
evolve through flow advection and through diffusion in
the bulk and at the interface with respective coefficient D
and Df . Finally, the exchange of surfactants between the
liquid and the interface is described by a Langmuir equa-
tion [23], with a flux J = raFs(f∞−f)−rdf where ra and
rd denote the adsorption and desorption rate coefficients,
f∞ is the interfacial concentration at saturation and Fs

the subsurface one. All governing equations, definitions
of dimensionless quantities and default parameters are
detailed in the Supplementary Material (SM [24]).

The surfactant properties are described by three di-
mensionless numbers: the bulk Péclet number Pe ≡
UH/D, the Biot number Bi ≡ rdH/U and the normal-
ized adsorption length h ≡ fe/FeH, with Fe and fe the
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FIG. 1. Levels of description for dissipation in foams. (a) A T1 event: upon shearing, bubble 1 and 4 become neighbors.
(b) Numerical model of a sheared foam: the 4-bubble assembly sheared by plate motion is solved by the level-set method. The
dashed-line rectangle shows the minimal system of interest. (c) Extended Lucassen model: a soap film of thickness 2W has its
area A subject to sinusoidal relative variations ϵ = δA/A = ϵ0 exp(iωt). The model is treated analytically.

values at equilibrium. These parameters may be thought
of as characterizing respectively the surfactant diffusion,
its sorption dynamics and the relative amount of surfac-
tant lying at the interface with respect to the bulk.

The coupling between liquid flow, surfactant transport,
interface boundary condition and the large interface de-
formation makes for an intricate problem that can only
be solved numerically. We use a level-set method [25, 26]
extended to account for the surfactant dynamics [27],
which allows access to the fluid flow field and local surfac-
tant distribution. Fig. 2 shows a typical view of the var-
ious stages of the T1 rearrangement. When the bubble
assembly is sheared, the interface may be locally com-
pressed or dilated, inducing enrichment or depletion in
surfactants. This induces exchanges with the adjacent
liquid resulting in concentration heterogeneities in the
bulk, which are counteracted by the smoothing effect of
diffusion and possibly by flow advection.

To identify dissipation sources during the T1 process,
we use an energy balance. The time-averaged injected
power Pinj may be evaluated from forces applied on the
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FIG. 2. Locally resolved T1 event. Time increases from
left to right. Top: surfactant concentration in the liquid and
at interface (F and f resp.). Bottom: local rate of dissipation
due to surfactant diffusion (Dloc

dif ) and to exchange processes
(Dloc

ex ). The simulation parameters are Pe = 1, Bi = 10 and
h = 1.

wall [27]. The average power dissipated by viscosity is
Dv ≡ ⟨Dloc

v ⟩, where Dloc
v ≡ µ∇u :

(
∇u+∇uT

)
is the

local dissipation due to the gradient of the velocity u,
and ⟨·⟩ involves both a spatial integration over the whole
system and a time average. We observe that ⟨Dv⟩ is
systematically smaller than Pinj, with deviations of up to
30%. The difference ⟨Ds⟩ ≡ Pinj−⟨Dv⟩ is the surfactant-
induced dissipation [27], and is the focus of this work.
To understand its microscopic origins, we switch from

the classical mechanical approach to a thermodynamic
framework. According to non-equilibrium thermody-
namics [28], the dissipation rate is proportional to the
rate of entropy production, where each source contributes
through the product of a thermodynamic force and an as-
sociated flux. In a sheared foam, the viscous dissipation
in the flow is supplemented by two contributions coming
from the surfactants. The first is the diffusion contribu-
tion, present whenever there are gradients in surfactant
concentration [29]; the second is the exchange contribu-
tion deriving from adsorption/desorption processes at the
interface. Their local dissipation rates, per unit volume
and unit interfacial area respectively, are (SM [24]):

Dloc
dif = ∇µF (D∇F ) = DRT (∇F )2/F, (1a)

Dloc
ex = J(µFs

− µf ) ≃ RTJ2/(rdfe), (1b)

with R the ideal gaz constant and T the temperature.
In Eq. (1a), the last equality assumes that the chemical
potential of the surfactants in the liquid is µF = µ0 +
RT lnF/Fe. In Eq. (1b), the thermodynamic force is
the difference of chemical potentials between the surface
(µf = µ0 + RT ln [f/(f∞ − f)]) and the adjacent liquid
(µFs = µF (F = Fs)). The last equality is valid close to
equilibrium.
We first check the consistency of our description. Be-

sides its definition as ⟨Ds⟩ ≡ Pinj−⟨Dv⟩, ⟨Ds⟩ can also be
expressed thermodynamically as ⟨Dloc

dif ⟩+ ⟨Dloc
ex ⟩. A third

alternative formulation from purely mechanical consider-
ations [27] is ⟨

∫
Γ
γ∇s ·u dΓ⟩, with Γ the interface contour,

γ the surface tension and ∇s the surface divergence. We
find (SM [24]) that the three numerical estimates for ⟨Ds⟩
match each other, typically within 10% due to discretiz-
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FIG. 3. Dependence of surfactant dissipation on sur-
factant properties (a) Simulation: surfactant dissipation
⟨Ds⟩ as a function of h for various Pe and Bi. (b) Rescaled

surfactant dissipation ⟨D̃s⟩ in the Lucassen model (thick lines)
and in simulations (points).

ing errors reflected in the errorbars of Fig. 3a. This ap-
proximate agreement confirms that no important source
of surfactant dissipation has been left out.

As expected, the surfactant properties do significantly
influence the dissipation. The total surfactant dissipa-
tion is shown in Fig. 3 for various combinations of Pe,
Bi and h, which characterize the surfactant nature. We
observe a highly non-trivial behaviour, with a maximum
dissipation that appears at intermediate values of h. The
rationale for this behavior is difficult to pinpoint at this
stage.

Whether surfactant dissipation is dominated by dif-
fusion or exchange processes depends on the surfactant
properties. The ratio ⟨Ddif⟩/⟨Dex⟩ obtained numerically
for a variety of Pe, Bi and h values varies by several or-
ders of magnitude (Fig. 4a). Is the difference reflected
in the maps of surfactant distribution and dissipation?
Consider first the exchange dominated regime, as in case
1 of Fig. 4. Here, the surfactant distribution is very ho-
mogeneous both in the bulk and at the interface. Con-
sequently, dissipation due to diffusion across the liquid
bulk is weak compared to dissipation generated by sur-
factant exchanges with the interface. The situation is
reversed upon increasing Péclet to Pe = 100, i.e. tak-
ing a surfactant with much lower diffusivity (case 2 of
Fig. 4). The diffusion contribution becomes dominant
because the surfactants in the bulk and at the interface
are heterogeneously distributed. Dissipation due to diffu-
sion is then more pronounced and localized in the vicinity
of the interfaces. Finally , a different dissipation pattern
can be observed by varying h while keeping the same ra-
tio ⟨Ddif⟩/⟨Dex⟩ (case 3 of Fig. 4). Here the concentration
and dissipation heterogeneities are parallel to the inter-
face, instead of being normal as in case 2. Overall, we
observe that how and where dissipation occurs depends
sensitively on surfactant properties.

Extended Lucassen model. To shed light on these nu-
merical observations, we revisit the 60-year old model of
Lucassen and van den Tempel [14] who first rationalized
how surfactant dynamics could induce an effective surface

viscosity [30]. For the simplified geometry of Fig. 1c, we
study how a liquid film of finite thickness 2W that con-
tains surfactants responds to an imposed area variation
of relative amplitude ϵ0 and pulsation ω. Our approach
differs from the original model in two ways: (i) Instead
of instantaneous exchanges and an infinite reservoir, we
assume both a finite adsorption/desorption kinetics and
a finite thickness for the film. Though these extensions
were considered separately [13, 31], we treat the general
case here. (ii) More importantly, we adopt a complemen-
tary thermodynamic view where we compute not only
the loss modulus that encapsulates all dissipative relax-
ation processes, but also the separate contributions from
each dissipation mechanism, allowing a measure of their
relative importance. The calculations for this extended
Lucassen model are fully detailed in SM [24].
The main result is a set of explicit formulas for dissi-

pation induced by diffusion and sorption of surfactants.
To quote the result, we introduce the dimensionless num-
bers Pe ≡ ωW 2/D, Bi ≡ rd/ω and h = fe/FeW , whose
definitions match those used for the simulations with the
substitution H = W and U = ωW . Focusing on time
and spatial average for simplicity, we find that:

⟨Ddif⟩
Dun

=
χ̄h

√
8Pe

|ζ−1 + 1− i|2
G(

√
2Pe), (2a)

⟨Dex⟩
Dun

=
4χ̄

Bi|ζ−1 + 1− i|2
, (2b)

with
ζ−1

√
2χ̄

≡ h
√
Pe coth

(
j
√
Pe

)
+

j

Bi
, j ≡ 1 + i√

2

with G(u) ≡ (sinhu− sinu)/(coshu−cosu), and 1− χ̄ ≡
χ ≡ fe/f∞ a parameter for surface coverage that re-
mains constant. The left-hand sides are made dimen-
sionless with Dun ≡ EGMωϵ20/2, where EGM is the
Gibbs-Marangoni elasticity modulus [12]. Thus, from the
physico-chemical properties of the surfactants as spec-
ified through the dimensionless numbers, Eqs. (2a) and
(2b) can predict the origins and magnitudes of surfactant
dissipation induced by solicitation of the interface.
As a first application, we consider the total surfactant-

induced dissipation ⟨Ds⟩ ≡ ⟨Ddif⟩ + ⟨Dex⟩ in our ex-
tended Lucassen model (Fig. 3b). For h → 0 a plateau
is reached, whose value χ̄Bi/(χ̄2 +Bi2) is independent of
Pe. For h → ∞, ⟨Ds⟩ decreases as h−1. At intermediate
values of h, ⟨Ds⟩ exhibits a maximum, whose location
and value can be expressed analytically in the limit of
high Bi that is relevant here (SM [24]). For instance,
hmax ≃ 1/χ̄

√
Pe in the limit of large Pe. The maximum

defines a characteristic length scale fe/Fehmax that when
matching the system size H results in exacerbated sur-
factant dissipation. For large values of h, the surfactant
dissipation always vanishes.
To compare the surfactant dissipation in the model and

in simulations, the use of a re-scaled dissipation ⟨D̃s⟩ is
required. For the model, ⟨D̃s⟩ ≡ ⟨Ds⟩/Dun. For the
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FIG. 4. Origin of surfactant dissipation. (a) Ratio ⟨Ddif⟩/⟨Dex⟩ as a function of h for various Pe and Bi, as obtained from
simulations. (b) Maps of local concentration (top) and dissipation (bottom) for cases 1-2 and 3 circled in (a) and (c). The
color scales are the same as in Fig. 2. (c) Ratio ⟨Ddif⟩/⟨Dex⟩: The simulation data is plotted as a function of the extended
Lucassen prediction (Eq. 3). The dashed black line shows the identity function.

simulations, ⟨D̃s⟩ ≡ ξ⟨Ds⟩/C, where ξ is a constant [32],
and C ≡ ⟨

∫
Γ
(∇s · u)2dΓ⟩ accounts for a heterogeneous

dilatation along the interface. The rescaled dissipations
⟨D̃s⟩ for model and simulation show common features
(Fig. 3b). The Pe-independent plateaus at low h match
quantitatively, whereas the existence and location of the
maximum agrees at least qualitatively. We ascribe the
deviation at large h to longitudinal concentration gra-
dients which exist in simulations (see Fig. 4b) but are
neglected in the one-dimensional geometry of our model.

As a second comparison, we now identify which mech-
anism dominates the surfactant dissipation. In this re-
gard, the prediction of the extended Lucassen model is
remarkably simple:

⟨Ddif⟩
⟨Dex⟩

= Da G(
√
2Pe), (3)

with G defined after Eq. (2b), and Da = χ̄ hBi
√
Pe/2

the Damköhler number, which compares sorption and
diffusion timescales. Plotting the simulation data for
⟨Ddif⟩/⟨Dex⟩ versus the model prediction (Fig. 4c), we
observe a good collapse of all the curves, whatever the
parameters considered. Moreover, for all low or interme-
diate h values, the data and prediction are proportional
to each other (with a prefactor≈ 0.6), showing the ability
of the simple model to capture a complex system. To ex-
plain the deviations visible at large h, we recall that the
model assumes lateral invariance of surfactant concentra-
tion, which has two consequences. First, the contribution
from surfactant diffusion along the interface is neglected.
This is actually legitimate since this term is numerically
negligible [33]. Second, concentration gradients parallel
to the interface are forbidden. This is different from sim-
ulations (cases 2-3 Fig. 4), pointing to a possible cause for
discrepancy at large ratios values. Overall, although its
geometry is drastically simplified compared to a sheared
foam, the model is able to capture some of the generic

features of the dissipation mechanisms.

Conclusion To summarize, we investigated numeri-
cally the surfactant dissipation in a sheared foam and
found that an extended Lucassen model is sufficient to
rationalize some key features. In both simulations and in
a simplified model, we used a thermodynamic approach
to identify which transport mechanisms – diffusion or
exchange – dominates surface dissipation. Our find-
ings may help to rationalize the influence of surfactants
on foam behavior. Strong effects of surfactant physico-
chemistry are reported [8, 20–22], when insoluble surfac-
tants (e.g. dodecanol, fatty acids) are added to solutions
of soluble ones (e.g. sodium dodecyl sulfate, SLES-CAPB
mixtures). In terms of dimensionless numbers, the insol-
uble and soluble molecules are similar in size, hence in
Pe numbers, and the adsorption lengths vary from 1 to
5µm [18], leading to h values with comparable order of
magnitude. By contrast, exchanges can be slowed down
by three orders of magnitude in the presence of insoluble
species [34], corresponding to a decrease in Biot number
by a factor 103. Our results (Fig. 3) show that lower-
ing Bi can increase the total surface dissipation. Such
a trend is qualitatively consistent with the observed in-
crease of foam viscosity [8] and slowing down of bubble
rearrangements [20–22], and suggests that surfactant dis-
sipation might be one key factor controlling the impact
of surfactant composition on foam rheology.

This work should be pursued in several directions.
First, it motivates further experimental work aimed at
correlating specific microscopic surfactant properties and
rheological measurements. Second, future efforts must
be made towards extending our model to account for the
viscous dissipation in the fluid, so as to better under-
stand its coupling with surfactant properties and overall
foam rheology. Finally, from a wider perspective, the
methodology presented here is not specific to foams but
is applicable to many surfactant-controlled systems, in-
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cluding emulsions [9], drop and bubble dynamics [35] and
thin films [36].
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[9] Cohen-Addad, S., Höhler, R., Pitois, O., Flow in Foams
and Flowing Foams. Annu. Rev. Fluid Mech. 45, 241
(2013).

[10] Johnson, D. O., Stebe, K. J., Oscillating bubble tensiom-
etry: A method for measuring the surfactant adsorptive-
desorptive kinetics and the surface dilatational viscosity.
J. Colloid Interface Sci. 168, 21 (1994).

[11] Wantke, K.-D., Fruhner, H., in Studies in Interface Sci-
ence.

[12] Langevin, D., Rheology of Adsorbed Surfactant Mono-
layers at Fluid Surfaces. Annu. Rev. Fluid Mech. 46, 47
(2014).

[13] Christov, C., Ting, L., Wasan, D., The apparent dila-
tional viscoelastic properties of fluid interfaces. J. Colloid
Interface Sci. 85, 363 (1982).

[14] Lucassen, J., Van Den Tempel, M., Dynamic measure-
ments of dilational properties of a liquid interface. Chem.
Eng. Sci. 27, 1283 (1972).
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