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Linear investigation of sound-flow interaction along a
corrugated plate

Massimo E. D’Elia *, Thomas Humbert, Yves Aurégan

Laboratoire d’Acoustique de I’Université du Mans (LAUM),
Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

Abstract

The experimental investigation of the aeroacoustic behaviour of a corrugated
plate with small cavities in presence of a grazing flow is discussed. In partic-
ular, the linear regime of the aeroacoustic interaction has been investigated.
The obtained Strouhal number corresponds to those used in the recent litera-
ture for nonlinear investigations. Even if acoustic feedback was eliminated in
the experimental setup, loss and gain frequency bands can still be identified.
Then, the acoustic and Laser Doppler Velocimetry (LDV) measurements
were used to analyse the acoustic power at four different frequencies: the
four components that compose the acoustic power have been characterised
and their relative importance identified. Finally, the difference behind gain
and loss mechanisms are spotted and explained.

Keywords: Aeroacoustics, Corrugated pipes, Duct acoustics,
Hydrodynamic modes

1. Introduction

Corrugations are a technological solution used to meet the needs for
strength and flexibility of pipes in industrial applications (e.g. gas extrac-
tion). However, intense whistling can occur in these pipes, which can lead

s to fatigue-related failures and noise disturbances [1, 2]. The first investi-
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gations on corrugated tubes focused on the whistling behaviour in order to
identify the main parameters underneath. The driving mechanism inducing
whistling is a feedback-loop between two systems, a fluid-dynamic and an
acoustic one. The free shear layer past a cavity is unstable and could self
sustain when encountering the trailing edge of the cavity, thus behaving as a
sound amplifier. When the natural frequency of this amplifier is close to one
of the acoustic resonant frequencies of the corrugated tube, then an energy
transfer is possible and a feedback loop is created (see for example [3, 4, 5]
and Figure 1 for a schematic image where f, is a general feedback frequency).
Specifically, the acoustic system act as a filter, as the standing wave resonant
frequencies are discrete, amplification can be obtained around these discrete
points. It is possible to identify a linear and a nonlinear amplification regime.
The latter is characterised by large and finite vortex structures that can pro-
duce whistling and the acoustic power grows linearly with the amplitude of
the hydrodynamic perturbations. In the linear regime, on the other hand,
vorticity is at a smaller scale, while the acoustic power grows quadratically
with hydrodynamic perturbations amplitudes. Recent literature has focused
mainly on whistling and the nonlinear regime, in order to characterise this
striking effect, both from an experimental and numerical point of view. In [6],
the amplification characteristic Strouhal numbers were identified, as well as
the saturation mechanism of the perturbation velocity which separates linear
and nonlinear behaviours. Several other works [7, 8, 9, 10, 11] investigated
the details of corrugated walls and side cavity branches in their similarities
and differences. In all these works, a detailed analysis of the literature fo-
cused on the nonlinear regime can be found. In the case of moderate to high
amplitude perturbations the shear layer vorticity concentrates into discrete
vortices shed at the upstream edge of the cavity. To model this behaviour
a Discrete Vortex (DV) model has been developed[12, 13, 14]. One of the
first application is shown in [15], where a single vortex is shed everytime the
acoustic velocity changes its direction inward /outward the cavity. This vor-
tex then moves at constant velocity along the cavity width. In this model,
the vortex convective speed is an empirical parameter of the problem and
therefore also the Strouhal number. In a different approach [16], vorticity
can be thought as distributed along an infinitely small shear layer in a Con-
tinuous Vortex (CV) model: the distributed vorticity eliminates the vortex
singularity at the upstream edge of the cavity. In [17], this model improves
the estimations of the acoustic power when compared with the results from
[14]. However, also in this case, the lenght of the vorticity strip is inherently
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an empirical parameter to be fitted.

Regarding the linear regime, on the other hands, literature lacks both exper-
imental and theoretical results. Experimental data of the linear aeroacoustic
field in the linear regime are scarce (e.g. [18]) and they give mainly a global
analysis of the aeroacoustic interaction. Theoretical works based on the sta-
bility theory from [19] tried to assess the shear layer perturbation due to
the acoustic forcing but failed in explaining fundamental effects. Others,
like in [20], used an infinitely small shear layer whose vertical displacement
represents the driving mechanism for the cavity oscillations due to the Kelvin-
Helmholtz instability. In all cases, the difference w.r.t. experimental data
remains large.

Uoso

Figure 1: Schematic view of the impinging mechanism along a corrugated surface.

Therefore, the main target of the present study is to retrieve, by means
of Laser Doppler Velocimetry (LDV), the aeroacoustic field inside a single
cavity of a corrugated plate operating in a linear regime and check whether
the aforementioned models remain applicable. For this reason, a configura-
tion with small cavities and small amplitude perturbations have been chosen
in a non-whistling case. In sections 2.1 and 2.2, the experimental rig and
the investigated corrugated plates are introduced. In section 3, the velocity
retrieval process through the LDV technique is presented. Finally, acoustic
and optical results, as well as the retrieved acoustic power, are presented in
section 4.

All LDV and acoustic measurements can be found at [21].
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2. Experimental Setup

2.1. Test Rig
Upstream Downstream
acoustic acoustic
source Upstream Downstream source

microphones microphones

u, uszu, u,l,u

Upstream Glass windows x. Downstream

anechoic anechoic
termination termination
Velocimetry
laser

Corrugated plate
Figure 2: Schematic view of the experimental setup.

The test rig is a uniform rectangular duct whose section is B = 50 mm x
H = 40 mm, see Fig. 2. In this duct, a mean flow is produced by a centrifugal
fan whose flow rate can be continuously adjusted up to a mean velocity of 85
m st The flow velocity is measured by a Pitot tube (diameter 2.1 mm) in
the center of the rectangular duct and by Laser Doppler Velocimetry (LDV).
The duct has upstream and downstream anechoic terminations which ensure
low reflection coefficients on both side of the studied corrugated plate. The
upstream anechoic termination is sealed to prevent any leakage of the mean
flow. From this upstream termination up to the studied element, a 1.90 m
long smooth rigid pipe segment is installed to allow a complete development
of the flow. The investigated element is located in a test section of length
L = 200 mm. To allow access for optical measurements, a side wall and
the top wall are made of glass, the floor being the position of the tested
acoustic treatments that can be easily changed. Downstream of the test
section, a second rigid duct segment connects to the downstream anechoic
termination. The sound field is produced by a compression driver (Beyma
CP850Nd) which can provide an acoustic level up to 150 dB SPL in the test
section over a frequency range going from 500 to 4000 Hz. The acoustic
source can be placed either upstream or downstream of the studied element
in order to obtain two different states of the system.

The test rig has been conceived so that both acoustic and optical mea-
surements can be carried out exactly on the same test section and sample.
In order to determine the tested element transmission and reflection coeffi-
cients, T* and R*, the upstream and downstream rigid ducts are equipped

4



95

with 4 microphones each. This allows an over-determination of the incoming
and outgoing acoustic waves upstream and downstream of the tested element
[22]. Using the two acoustic sources to obtain two different acoustic states
of the system [23], the four elements of the scattering matrix for plane waves
(transmission and reflection coefficients on both directions: 7% and R*) can
be evaluated.

A 2D Laser Doppler Velocimetry (LDV) Dantec Dynamics 2D FlowEx-
plorer system is used to measure the vertical (v along y) and horizontal (u
along z) velocities inside a selected cavity (see Figure 2). Its lasers wave-
lengths are of 532 and 560 nm at a f = 300 mm focus length. The system
has a measurement volume of 0.7 mm? and its support system is capable of
displacing with a spatial resolution of 0.10 mm. Therefore, the attainable
spatial resolution inside the cavity is hardly beatable by other (optical and
not) techniques. One main constraint in applying such a technique to small
corrugations is the finite angle between the laser beams. Indeed, as we are
interested in measuring as close as possible to the horizontal and vertical
wall, it is important to tilt the LDV system. This is achieved, vertically, by
rotating the LDV sytem of a compensating angle S which must be greater
than half the angle between the laser beams (this is schematically shown
in Figure 3). On the other hand, for measuring as close as possible to the
vertical walls, and yet be as close as possible to the duct centerline, it is nec-
essary to carry out the measurements in two sub-domains, each accounting
for half of the cavity (again, schematically displayed in Figure 3 using the
angle «). In this way, the interference between the laser beams and the rigid
walls is avoided (at least inside the measurement area of interest). These tilt
angles are very small as they are equal to the half-angle between the laser
beams and they are compensated for during the post-processing of the data.
Once these constraints are taken into account, measurements can be carried
out: the LDV system comes together with a Burst Spectrum Analyzer (BSA)
Dantec Dynamics software which manages the laser position in space and the
acquisition procedure. Regarding the latter, main attention has to be given
to the synchronization between the laser and the acoustic source, in order to
have measurements throughout the whole reference signal period. This can
be done by a phase-locked approach but, in order to reduce errors (e.g. data
folding over one period), and as we are working at one frequency at the time,
a simpler approach was used. For the latter, a source signal produced by a
frequency generator feeds both the loudspeaker through an amplifier and the
LDV trigger entrance. This feeding signal is also reacquired into the LDV
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acquisition system (in order to always know the reference electronic signal
that is given to the system). In this way, we can produce a single frequency
signal in the duct while having a reference trigger for the acquisition system
always identically syncronised at the same time reference. This appears to
be even more important when we have to correlate two sub-volumes data, as
mentioned before.

Finally, scattering particles are needed to measure quantities inside the duct.
Here, incense has been used since it produces smoke particles with favorable
diameters [24], [25],[26]. Indeed, the corresponding Stokes number is about
St ~ 0.006 - 0.008, if we also consider the typical forcing frequency of 2kHz
and a dynamic viscosity of air of v = 1.81 » 107> kg m~! s~!. This value is
obtained by applying the formula:

5t = (8)5 0 1)

14

from [27], where w is the forcing frequency and d, the particle diameter.

2.2. Corrugated Walls

The studied corrugated plate is shown in Figure 3-b. It is a 200 mm
long anodized plate characterized by an array of 16 cavities: each cavity
measures 4x4x50 mm? (covering the entire transverse span B = 50 mm of
the duct), has square and sharp edges on both sides and is separated by a
12 mm pitch. The cavity investigated is the third from the end of the plate
(w.r.t. the flow direction) because here the boundary layer is fully developed.

To have a phase reference, the horizontal periodic velocity u!  was mea-
sured away from the corrugations in the central part of the duct (reference
box on Figure 4-a). Indeed, in the central part of the duct, it is possible to
consider that the hydrodynamic disturbances are low and that the horizontal
periodic velocity is only due to the acoustics. Thus, the value of the horizontal
acoustic velocity (averaged over the reference box) was taken as a reference
for the amplitude of the incident acoustic wave and, more importantly, as
a phase reference that does not depend on the acoustic path between the
source and the measurement position. Therefore, all phase values presented
in the following are taken relative to this reference.
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Figure 3: (a) Schematic view (not at scale) of the optical experimental setup and (b)
picture of the investigated corrugated plate.

2.3. Mean Flow in the Setup

In this section, we look at the mean quantities associated to the flow.
Figure 5-a,b and Figure 5-d,e display the mean horizontal and vertical ve-
locity contours when the upstream source position is working at 1400 Hz
and 2000 Hz. We can see that the velocity field is well resolved and there
is no major difference between the two measurements in the mean velocity
distribution. This is further confirmed in Figure 5-c, where the horizontal
velocity is shown along the vertical lines indicated in open and filled symbols,
which correspond to the lines for « =0, W /3,2W /3, V. We can see that the
curves are similar for the two frequencies and that, outside the cavity, the
velocity profile of the shear layer doesn’t change with the longitudinal po-
sition. Equally important is to notice from the streamlines in Figures 5-d.e
that this shear layer is layed out above a recirculation zone, regardless of the
frequency case. In Figure 6-c, the velocity profiles along the vertical lines
at © = 0,W/3,2W /3 for the 2000 Hz case, are again shown, from inside the
cavity up to the centerline of the channel. In this case, the velocity profiles
are shown in the so called wall coordinates y* = yv/U, and u* = Uy/U,, where
v is the dynamic viscosity of the air and U, is the friction velocity defined
through the shear stress 7 = udUy/dyl, at the wall as U, = \/7/p. This ve-
locity was obtained from the slope of the velocity inside the logaritmic layer
28, 29] and its value is found to be 1.01 m s~'. Two layers are then identified:
the above mentioned logaritmic layer, closer to the wall, and an external core
layer, where the viscosity due to the turbulence v; is supposed to be constant.
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Figure 4: (a) Position of the measurement box and of the reference box. (b) Values of the
mean vorticity for M, = 0.07.

In the first, a velocity profile of the kind

u*z%ln(%+y+)+5.5 (2)

is obtained, while for the core layer, a parabolic profile is retrieved

UOO—UO_HUT( y)2 )

= 1-=
UT 2Vt H

where H is the channel half-height and K is the von Karman constant, K =
0.41. These two layers match around y* = 120 (i.e. y » 2 mm) to which
a v, = 8.02-107* m2?s7! corresponds. In Figure 6-b, a cavity close-up of
the horizontal mean velocity Uy along the same three lines is shown. The
boundary layer outside the cavity seems to remain unchanged along the cavity
length (for y > 0.2 mm), while this is not true for the shear layer inside the
cavity itsef. Inside the cavity, the velocity changes until it reaches an almost
steady value. Then, we can define the thickness of the shear layer as the
distance between these two points. For the x = 0 position, this is roughly 0.6
mm, while for the x = 21¥//3 mm this grows up to ~ 1 mm.
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Figure 5: Horizontal mean velocity for the upstream source case at (a) 1400 Hz and (b)
2000 Hz. In (c) the velocity close to the cavity is shown along the vertical lines as indicated
in the (a-b) Figures. The open and filled symbols represent the 1400 and 2000 Hz case,
respectively. The vertical mean velocity has been shown for the (d) 1400 and (e) 2000 Hz
cases, together with streamlines.
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Figure 6: Horizontal mean velocity for the 2000 Hz upstream source case (a). The velocity
is shown along three vertical lines corresponding to the z = 0,1/3W,2/3W horizontal
positions, to which the <, >, A symbols corresponds. In (b) a zoomed figure of the same
velocities inside the cavity is shown, while in (¢) the analytical curves are plotted together
with the experimental ones in wall coordinates.
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2.4. Acoustic Velocity Modeling

As shown later in section 5, in the present configuration, the acoustic

power can be described by the Howe analogy, which basically accounts for
the interaction between a Coriolis force (i.e. the —py (w x u) term, where u
and w are the total velocity and vorticity vectors, respectively, and pg the
density of the fluid) and the acoustic velocity u,. As from the measurements
it is not feasible to extract only the acoustic potential velocity component, it
is necessary to obtain it through modelling. There are several ways of solving
the compressible flow field, but a rather simple way was to use the commer-
cial code COMSOL. To retrieve the acoustic velocity in quiescent conditions
(as the Mach number considered is very small), the ACPR Module was used
to solve the Helmholtz equation in frequency domain.
In Figure 7 we can observe the potential flowfield obtained for a single cavity:
the net flow entering in the cavity is zero and the minimum and maximum
velocity values appear at the leading and trailing edge, respectively. Since
this is a potential flow, the velocity ug in all points of the domain is defined
w.r.t. areference value. Therefore, we need to scale the simulated velocity to
the actual velocity field at a reference ”free stream” position (i.e. the "refer-
ence box” indicated in Figure 7). At this position, the measured horizontal
coherent velocity component is the actual acoustic velocity.

3. LDV Experimental Investigation

3.1. Retrieving the Fluctuating Velocity Component

With the LDV technique it is possible to measure the velocity of a single
scattering particle which crosses the measurement volume. During a given
time interval, several particles goes through this volume and a velocity distri-
bution is obtained. Moreover, the larger the data set, the more converged will
the measurement distribution be. Therefore, for each measurement point,
thousands of particle velocities have to be acquired in order to have a com-
plete statistical representation of the velocity. This velocity has three main
contributions

u:U0+u'+ut (4)

which are respectively the time-averaged, the phase-averaged coherent and
the turbulent velocity vectors. The phase-averaged component is the time

11
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Figure 7: (a) Potential velocity field contour as obtained from the COMSOL simulation.
The reference box indicates where the reference velocity was calculated. The (b) zoomed-
in contour shows the velocity field close to the cavity while the underlying plot shows the
potential velocity along three horizontal lines above the cavity lid.

dependent velocity at the frequency of the acoustic source and therefore will
be described as

u' =a'sin (27 fst + ), (5)

where f, is the acoustic source frequency. The turbulent component u; ac-
counts for the remaining time dependent component inside the velocity sig-
nal.

In order to retrieve the periodic component of the velocity, measurements
could be carried out through a phase locked approach, where different mea-
surements at different positions along the signal feed cycle are needed. This
implies that these data need to be folded inside the same cycle, introduc-
ing a truncation error. In our case, as the signal frequency is known and
constant, we decided to directly investigate the presence of such a sinusoidal
signal (whose amplitude and phase have to be retrieved) inside the whole
temporal acquired data. The first step consists in checking that the signal
frequency remains constant all over the acquisition window. In fact, if the

12
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time window width becomes large (mainly according to the seeding particle
density at measurement point), this frequency could suffer a drift. Therefore,
the sinusoidal signal feed is also reacquired and these acquisition points are
folded into one cycle: if the drift exists, it will induce an uncertainty interval
around the pure sine. Then, a frequency correction which minimizes such
spread is introduced and a corrected frequency is obtained.

Figure 9-a shows the total, coherent and mean velocities for a single
spatial position, while in Figure 9-b the corresponding histogram points out
the gaussian nature of the velocity distribution. In Figure 9-a, the velocities
have been folded over one period as a function of the phase, in order to
enhance readibility. It can be noticed that the coherent velocity component
is rather smaller than the turbulent one, suggesting that, in order to reduce
the error in the coherent component, a large number of particle velocities is
needed. This can also be appreciated from Figure 8, where the amplitude and
phase of the coherent velocity have been traced as a function of the number
of measured particles through the volume of measurement. The subscript
N represents the velocity measured for a given number N of particles while
the subscript s indicates the final ‘steady’ value. We can see a convergence
towards the steady value as the number of retrieved particles increases.

Number of Scattering Particles
—_ NN

0N oS wn o W

S O O O O O

((sw)n
0¢ 8C 9T ¥T TCT 0T 81 91

6 L L L L L L L L L
0 0.1 02 03 04 0.5 06 0.7 0.8 09 1

¢/ Z)T ) ®

Figure 8: Example of retrieved fluctuating horizontal velocity at a given position in space
(a) and relative histogram (b). The total acquired and the reconstructed coherent velocities
are shown in dots and solid line, respectively, after being carried over a single (nondimen-
sionalised) time period. Finally, the dash-dotted line represents the time-averaged velocity.

Finally, the reconstruction of the coherent velocity in the form of Eq. 5

13
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Figure 9: Retrieved amplitude (a) and phase (b) of the vertical fluctuating velocity at a
given position in space as a function of the number of measured particles.
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Figure 10: Absolute value of transmission coefficients without flow and with flow (M =
0.07). The continuous lines represent |T*| and the dashed lines |T7|.

is achieved by the Maximum Likehood (ML) method. As the latter is fully
described in [30], the details are not reported here.

4. Results

4.1. Acoustic Measurements

The corrugated plate is first characterised by acoustic measurements. Us-
ing the 2 x 4 microphones placed on each side of the plate, the transmission
and reflection coefficients are measured with and without flow. The mag-
nitudes of the transmission coefficients (along/against the flow, T+ and T~
respectively) are given in Figure 10.

14
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In the no-flow case, due to reciprocity, T+ and T~ are quite identical
and the differences between both curves are only due to measurement errors
(limited to 0.5%).The deviation to 1 of these curves indicates that visco-
thermal losses are present along the walls of the duct corrugated on one of
its faces.

When the flow is present, several observations can be made. First, the
|T*| and |T~| curves are no longer the same, meaning that reciprocity is lost.
Secondly, it can be noted that the transmission curves oscillate around the
no-flow value. At low frequencies (f < 1800 Hz), the attenuation with flow
is greater than in the no-flow case. Then, over a specific frequency range
(1880 Hz < f < 3100 Hz for T* and 1820 Hz < f < 2400 Hz for T-), the flow
reduces the attenuation. This kind of behavior has already been observed in
cylindrical corrugated pipes [18] as well as in the effect of flow on a rectangular
slot in a wall [31]. The last point to note is that the transmission coefficients
always remain below unity. This means that the acoustic losses due to visco-
thermal effects are not compensated by hydrodynamic effects. As a result,
and contrary to what would happen with a cylindrical corrugated pipe with
similar cavities [18], this plate cannot start a whistling process at this flow
velocity. This is mainly due to the fact that, unlike a cylindrical pipe where
the entire inner surface is corrugated, only the lower quarter of the channel
is corrugated here. The Strouhal number at the frequency (f = 2200 Hz) for
which the hydrodynamic amplification is maximum for 7™ is given by

_Iv

St
Un

=0.37,

where W = 4 mm is the cavity width in the flow direction and U,, = 24
m s~! is the mean velocity of the flow. Since this value is close to that
found in cylindrical pipes (St ~ 0.4, [6, 18]), it can be assumed that the same
underlying physical phenomenon occurs in the two-dimensional (2D) case
and in the cylindrical case.

From the scattering matrix measurement, it is also possible to estimate
the sound power produced (or absorbed) at each frequency by the grazing
flow. The ratio of the produced sound power to the incident sound power is
given by [32]:

2+Lﬂ4i|R*|2—1. (6)
(1+M)

The difference between the P* evaluated with and without flow gives the

Pt = T+

15
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Figure 11: Normalized sound power generated by the grazing flow (M = 0.07). The solid
line corresponds to the flow with incident sound in the same direction and the dashed
lines to the case where waves travel against the flow. The red dashed arrows point out the
frequencies at which the LDV measurements were carried out.

sound power produced by the flow and normalized by the incident sound
power. This is shown in Figure 11.

4.2. LDV Results

In this section, the interactions between acoustics and hydrodynamics are
investigated using LDV. First, it is possible to see in Figure 12(a) that the
periodic velocity field is well resolved with the LDV technique, except, per-
haps, in the vicinity of the cavity walls where the measurements are slightly
under-resolved. Each pixel in the Figure 12(a) represents a measured value of
the vertical periodic velocity v'/|ul . The measured coherent velocities have
been nondimensionalised with the respective horizontal coherent velocity at
the reference position u.f in order to have a proper comparison between the
sets of measurements.

The periodic field is characterized by very clear structures that move
horizontally at the cavity lid. Figure 12(b,c) gives the amplitude and the
phase of the periodic vertical velocity, respectively, along the cavity which
is represented for six horizontal lines corresponding to the axis y = 0, 0.1

. 0.5 mm (y = 0 mm is the surface of the plate). The slope of the phase
indicates the convection velocity of the structures. In this particular case,
the variation of the phase is nearly linear, indicating a constant convection
velocity given by the slope of the straight line. Surprisingly, the maximum
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phases: ¢, = 7/3,27r/3...27 for the upstream 2000 Hz source position and M =0.07. Vertical
periodic velocity modulus (b) and phase (c¢) along the six horizontal lines corresponding
toy =0, 0.1, ... , 0.5 mm. The thick black line in (c) is the average over the six values
and the blue straight line is a linear fit.
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Figure 13: Normalized horizontal periodic velocity u'/|u ¢ colormaps at different relative
phases: ¢5 = 7/3,27/3...27 for the upstream 2000 Hz source position and M =0.07

amplitude of v/ is rather constant over the length of the cavity as can be
seen in Figure 12(b). In general, an exponential increase of the disturbance
is expected, whereas here there is only a slight increase over the length of
the cavity. In Figure 13, the horizontal coherent velocity is shown. Here, the
coherent structures are more elongated in the horizontal direction and their
amplitude decreases when arriving close the trailing edge of the cavity due
to the presence of the wall.

The coherent vorticity w’ = 9,u’ — 0,v’, nondimensionalised by the ref-
erence vorticity wper = |uref]/W, is depicted in Figure 14. This vorticity is
computed using the central difference for inner data points and using one-
sided differences for the edges of the domain. The periodic vorticity is tightly
packed at the leading edge of the cavity (w.r.t. the trailing edge) and the
phase has the same linear variation as the vertical velocity. Then, in this
linear regime, the measured structures are associated with a vortical hydro-
dynamic perturbation at the leading edge of the cavity. However, periodic
vorticity cannot be considered to be concentrated on an infinitely thin line
nor at a point. Thus, none of the simplest models, i.e. shear layer oscillations
that increase exponentially with distance from the upstream edge [33, 34| or
shear layer oscillations that break down into discrete vortices [14], can be
applied here. This is due to the finite thickness of the mean shear layer with
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Figure 14: Normalized vorticity w’/w/| colormaps at different relative phases: ¢s =
w/3,27/3...2% for the upstream 2000 Hz source position and M =0.07.

respect to the size of the cavity [15].

Furthermore, from Figure 15, we can see that the vorticity structure is
composed of counter-rotating vorticity zones tightly packed. At the leading
edge, the vorticity is governed by the term —0u'/dy, while, at the trailing
edge, it is the term 0v’/0z which prevails. This could be expected, as at the
leading edge the sudden expansion along y is the dominating effect, while at
the trailing edge the hard wall imposes a strong x gradient. At the begin-
ning of the cavity, we can observe counter rotating vorticity zones (almost)
stacked on top of each other. This is due to the u’ profile shape which is
not monotonic: instead, a crest shape can be observed, whose maximum is
around y = 0 (as shown in Figure 15-inset). This is due to the interaction
between the potential acoustic velocity (which would be infinite at the sharp
edge) and the hydrodynamic velocity through the Kutta condition. There-
fore, when u’ is positive, this translates in a positive vorticity area on top of
a negative one. Near the trailing edge, instead, the vorticity distribution w’
is similar to the v’ distribution (as here the term Jv’'/0x dominates), where
wider opposite sign zones follow each other.

To test the linearity hypothesis, the corrugated plate was exposed to
two different sound levels, while keeping all other parameters constant. By
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decreasing the voltage supplied to the source, the horizontal sound velocity
in the reference box u! was reduced from 0.56 m s7! to 0.24 m s™ (7.5
dB decrease, see table 1). Testing the linearity hypothesis is particularly
important because, in order to work with the largest possible value of the
signal-to-noise ratio, the ratio u’/U0 must be close to the threshold for which
non-linear effects appear, which is of the order of 1% (see Fig. 9 in [18]). In
our study, for the highest sound level (140 dB), this ratio is 2% and decreases
to 1% for a sound level of 132 dB. The level used is therefore at the upper
limit of the level that can be considered to be linear. The colormaps of
the vertical periodic velocity normalized by u.  are presented in Figure 16.
Despite some minor differences, the normalized velocities are globally similar,
which indicates the linearity of the studied phenomena. It should be noted
that in the case of lower amplitudes, the signal-to-noise ratio is lower, which
leads to less accurate and more difficult measurements.

In the following subsections, different setup configurations have been
studied as shown in the table 1. These configurations have been chosen
in order to investigate the effects of the position of the sound source (w.r.t.
the direction of the mean flow) and its frequency. Also, a separate subsec-
tion is devoted to the discussion of the convective velocity of aeroacoustic
structures.
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Figure 16: Nondimensionalized vertical periodic velocity colormaps for the (a) low and
(b) high amplitude acoustic source cases at ¢ = 7/3.

Frequency Source Position Sound Level Acoustic Amplitudes
f = 1000 Hz Upstream 140 dB 0.56 m s7!
f= 1400 Hz Upstream 140 dB 0.56 m s~!
Downstream 140 dB 0.56 m s7!
f = 1700 Hz Upstream 140 dB 0.56 m s7!
f = 2000 Hz Upstream 140 dB 0.56 m s7!
Upstream (low amp) 132.5 dB 0.24 m s!
Downstream 140 dB 0.56 m s7!

Table 1: LDV measurement configurations
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4.2.1. Frequency Effects

In this section, we analyze the corrugated plate for two different values
of the source frequency: 1400 and 2000 Hz. These two configurations are
detailed in Table 1 and the only difference is the source frequency: the value of
2000 Hz corresponds to a (nearly) maximum produced acoustic power (w.r.t
the baseline no-flow case), while the 1400 Hz corresponds to an absorbed
one. From Figure 17, it is possible to appreciate how frequency difference
creates a different relative position of the maxima and minima in the velocity
field, for the f = 2000 and 1400 Hz upstream source cases. Furthermore, we
can see that in the 2000 Hz case, a third positive velocity area appears at
the trailing edge of the cavity. It is important to outline that the velocity
distribution is directly responsible for acoustic production, as shown in the
later Section 5. These structures are characterised by a wavelength A; which

is given by
Ue
=— 7
7. (7)

where f; is the source frequency and U, is the velocity at which such struc-
tures are convected downstream, i.e. the convective velocity. For the 1400 Hz
case (17-a), this length is A;/2 ~ 2.7 mm while for the 2000 Hz case (17-b) the
length is A\y/2 ~ 2.2 mm. On the other hand, the ratio between the lengths
A1 and Ay is not exactly equal to the inverse of the frequency ratio, as one
might expect: while the ratio of lengths is ~ 1.23, the inverse ratio of fre-
quency is ~ 1.43 suggesting that the velocity of propagation of disturbances
is a function of frequency. This is shown in Figure 18, where the vertical
coherent velocity phases have been traced along the cavity. As this slope is
directly linked to the convective velocity through the acoustic frequency as

Ai

2n fW (8)
[Ag/W|
where now |A¢/W| is the phase slope, we can see that the convective velocity
grows with the signal frequency at most 16%. This result challenges the
common assumption, when modeling the shear layer amplification in the
linear regime, that this velocity is constant.

U.=

4.2.2. Acoustic Source Position Effect

In this paragraph, we are interested in analysing the effect of the of the
relative direction of propagation between the acoustic wave and the flow.
The main discrepancy introduced by the different propagation direction of
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Figure 18: Vertical periodic velocity phases (a-d) along the six horizontal lines correspond-
ing toy =0, 0.1, ... , 0.5 mm for the fy =1000, 1400, 1700, 2000 H z upstream cases. In
(e) the convective velocities calculated from the phase slopes for the same four cases are

shown.
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Figure 19: Vertical periodic velocity (Real part) colormaps for the (a) downstream and (b)
upstream fs = 2000 Hz cases, ¢ = 0. In (c¢) the vertical periodic velocity phases calculated
along the corresponding indicated lines are also shown

the acoustic wave is a phase difference. As the measurements are taken
w.r.t. the reference box, we can see that, at the same phase reference, for the
downstream case, the velocity structures are lagging behind by a small phase
difference. This can be directly seen from the periodic velocity colormaps,
as done in the precedent paragraph and shown here in Figure 19, which
show the vertical periodic velocity for the two cases. It can be seen that
the same field structures are retrieved and in the downstream case the cores
of these structures are slightly closer to each other (again, from Eq. 7, we
can measure Ay = 2 mm for the downstream case while A\, = 2.2 mm for the
upstream one). The same results, not shown here, have been obtained at the
forcing frequency of f,.r = 1400 Hz.
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5. Acoustic Power

Considering an homoentropic flow (with the additional constraint of a
low Mach number), Howe [35] computed the acoustic power formulation as
follows:

(Py) = - fv pol(w x 1) -ug)dV = fv (Fyti + F02))dV, 9)

where w = (Qy+w')z, u=(Up+u')x+ (Vo+0')y and u, = u,Xx + v,y are
respectively the total vorticity, the total velocity and the acoustic (i.e. po-
tential) velocity of the flow, while F = F,x+ F,y = —po (w x u) is the Coriolis
force vector. The symbol () represents the average over one time period. In
the case of complex functions, such average can be directly computed as (e.g.
for the first term inside the integral of Eq. 9) :

(Fina) = 5 Re (Fiu) (10)

for i = 2,y and Fj is the complex conjugate of vector Fj.

It is interesting to notice that the vector product F = (F,, F})) = —po (w x u) is
composed of an horizontal and a vertical Coriolis force term (by unit volume).
As explained in section 2.4, since the acoustic velocity in Eq. 9 cannot
be measured directly, a COMSOL frequency domain simulation was carried
out to solve the Helmholtz equation. Furthermore, the acoustic power is
nondimensionalised w.r.t. a reference power calculated as follows:

P, - |Uref|2poco (11)
2

since, in a centerline position, the relationship pins/trer = poco is a fair as-
sumption and the periodic horizontal velocity equals the acoustic velocity,
1.e. Upef ™ Ug.
It should also be noted that from the vector F = —pg ((€2p + w’) x (Ug +u’)),
when the time average inside Eq. 9 is carried out, the inner product of the
mean values do not contribute, while, at order one, the inner product of the
coherent terms can be neglected. Then, each component of the vector F can
be written as

F, = po (W'Vy+ Qov') (12)
Fy=—=po (w'Uy+ Qou') (13)
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Therefore, each component of the Coriolis force can be split into two
contributions and the total acoustic power will result from their inner product
with the acoustic velocity. In other words, the more the Coriolis vector
is aligned along the acoustic velocity streamlines, the larger the acoustic
production will be. We can then define, in a definitely improper but practical
way, an "horizontal’ and ’vertical’ acoustic power as the contributions due to
the corresponding horizontal and vertical Coriolis forces. In Figure 20, these
components are shown, time-averaged, for the 2000 Hz upstream source case,
together with the total acoustic power distribution. It is interesting to notice
that the two contributions inside each component of the Coriolis force are
of the same order of magnitude, while, on the other hand, they are not at
all similarly distributed. In the following sections we consider the spatial
distributions of the four contributions for the f = 2000 Hz upstream source
case. This frequency corresponds to a net positive normalized sound-power
generation.

5.1. Acoustic Power po(w'Vy)u, contribution

The acoustic power generated by the Coriolis component pg(w’Vp) is
po(w'Vp)u, and is shown, averaged over one period, in Figure 20-b. As we
can see, this power contribution is very small at all points in the flowfield. By
looking at the mean vertical velocity V, (see Figure 5), we can see that this
velocity is small (when compared with Uj) and confined inside the cavity,
while almost zero elsewhere. At the same time, the coherent vorticity w’ is
concentrated inside the shear layer, which is thin along the cavity lid (see
Figure 14). Only near the trailing edge, the vorticity slightly spreads inside
the cavity as the shear layer becomes thicker. Then, these terms cannot
interact with each other: the Coriolis component py(w’Vy) and, as a con-
sequence, the corresponding acoustic power po(w’Vp)u,, will be very small.
These observations would probably still hold when the frequency changes.

5.2. Acoustic Power po(Qov")u, contribution

The term po(20v")u, is the one which gives the global structure to the
total horizontal power, as can be observed from Figure 20-a,c (time aver-
aged) and Figure 21 for ¢ = /3. In this case, we can identify two dinstinct
absorption and production areas which are isolated from each other. The
mean vorticity €2y is shed clockwise (i.e. negative) at the leading edge dis-
continuity. Furthermore, from Figure 12, we can see that the velocity v’ has
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Figure 20: Normalised acoustic power due to the horizontal (c) and vertical (f) Coriolis
force, respectively split into their two main contributions (a-b) and (d-e) following Eq. 13,
for the 2000 Hz case. Finally, the total acoustic power (g) is shown.

a very small phase gap with the vertical acoustic velocity v, and therefore
the two components have the same sign. Therefore, when the vertical acous-
tic velocity v, is negative at the leading edge, the Coriolis term po(gv’) is
here positive. At the same time, the horizontal acoustic velocity u, here is
positive and so is the contribution py(ov")u,. Meanwhile, at the trailing
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Figure 21: The acoustic power contribution (v")u, for the (a) 2000 Hz and (b) 1400 Hz
upstream case at ¢ = /3.

edge, the vertical velocity v’ is now positive (see Figure 12) while €2 is still
negative and the Coriolis term po(€pv’) is therefore negative. As the hori-
zontal acoustic velocity u, is here still positive, an acoustic absorption will
be observed. From Figure 21, we notice that the main change with frequency
is the absorption position at the trailing edge. This is due to the fact that
the length ); is influenced by the frequency while the phase gap between the
acoustic and coherent velocities is not. Furthermore, the fact that the mag-
nitudes of the velocities v/ (see Figure 13-b) and u, don’t change along the
cavity and that the ) integral along the y-axis is supposed to stay constant
while moving from the leading onto the trailing edge, suggests why the con-
tribution po(2v")u, does not show a dependency on frequency (see Figure
24).

In Figure 21, the comparison of the py(€yv")u, contribution for the 2000 and
1400 Hz case is shown, at ¢ = /3.

5.8. Acoustic Power —po(Qou’)v, contribution

In order to describe the —pg(Q2u’)v, contribution, the same considerations
that were made above for the {2y term apply also here. At the leading edge, it
can be seen from Figure 13 that the horizontal coherent velocity u’ is positive
when the acoustic velocity v, is negative. Then, in this position, the Cori-
olis force is positive when it interacts with a negative (downward) acoustic
velocity, and viceversa. Thus, a negative acoustic contribution —pg(Qou’)v,
is induced. Also, we can see from Figure 13, that the velocity u’ is always
very small close to the trailing edge of the cavity, due to the presence of the
cavity hard wall. This explains why, in Figures 22, the acoustic power at the
trailing edge is very small. From this follows also why this contribution is
negative over the period and for all frequencies (see Figure 24).
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In Figure 22, the comparison of the —po(Qu’)v, contribution for the 2000
and 1400 Hz case is shown, for ¢ = /3.

5.4. Acoustic Power —po(w'Uy)v, contribution

If we look at the acoustic power contributions from the vertical Corio-
lis force F, (see Figure 20-ef), the term —po(w'Up)v,, which is the largest
contribution, appears to be the one that gives the power distribution its com-
plexity. Inside the Coriolis force —po(w’Up), the mean horizontal velocity Uy
is positive at all points. Moreover, its magnitude does not change strongly
along the cavity length and these variations are confined in a very thin shear
layer at the cavity lid. The largest thickness of this layer is around 1 mm
(see Figures ba-c). Therefore, the Coriolis contributions inside the cavity
are filtered out and their sign are opposite to the vorticity one. Then, at
the leading edge, two counter rotating vorticity zones (as explained before,
see Figure 15) will interact with the v, component, giving opposite acoustic
powers, of which the positive one (over the cycle) is larger. At the trailing
edge, the w’ structure will vary with frequency as the v’ structure does. In
order to have production at the trailing edge, vorticity here should have the
same sign of the prevailing vorticity at the leading edge, as here the velocity
v, has an opposite sign. This should happen optimally when the vorticity
period is » 2(W/U.)/3. For the 2000 Hz case, the period is slightly larger
at » W /U.. Thus, we are not at the point of maximal production, but two
co-rotating vorticity areas at the edges of the cavity are however allowed.
When the period becomes larger (e.g. for the 1400 Hz case), this is not pos-
sible anymore and the vorticity at the leading and trailing edges will have
opposite sign, which translates in absorption at the trailing edge. In Figure
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Figure 23: The acoustic power contribution (-w'Up)v, for the (a) 2000 Hz and (b) 1400
Hz upstream cases at ¢ = 7/3. In (c) and (d) the Coriolis force —po(w'Uy) is shown for the
2000 and 1400 Hz cases, respectively, at the same phase.

23, the comparison of the —pg(w'Uy)v, contribution for the 2000 and 1400
Hz case is shown, for ¢ = /3.

5.5. Acoustic Power Contributions: Summary

In summary, it has been shown that the acoustic power related to the
horizontal Coriolis force is on the average close to zero: this is because the
component po(w’Vj)u, is negligible everywhere in the aeroacoustic field while
the integral of the po(2v")u, contribution over the period is zero, even if
local production and absorption areas are present at the cavity edges. There-
fore, it is the vertical Coriolis force contribution who finally determine the
behaviour of the corrugated wall. In this contribution, the —po(Qou’)v, term
is responsible for an absorption area at the leading edge which is always neg-
ative with frequency. Then, the frequency dependency of the absorption and
production mechanisms derives from the —py(w'Uy)v, term, which is also re-
sponsible for the complexity of the acoustic power distribution. In this case,
the acoustic frequency influences the hydrodynamic wavelength and the cou-
pling with the cavity length: when the wavelength is close to the 2W /3+nW
value (with n integer), global acoustic production is possible.
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total acoustic power is shown in filled circles

The complexity resulting from the different contributions to acoustic pro-
duction cannot be captured through the models usually employed when
whistling is present. The simplifications adopted in this case are not ap-
plicable here: vorticity cannot be considered concentrated in a single moving
vortex (like in the SCV model) as it is distributed over the entire cavity.
Furthermore, it has a complex distribution perpendicular to the shear layer
while spreading out along the cavity, a behaviour which is not taken into
account in the SDV model. This shows that the models usually adopted in
presence of the whistling cease to be applicable in the linear regime. This
is also confirmed by the optical results of [10, 11]. In [10], it is shown that
the vorticity field is driven by a large amplitude vortex that extends over
the cavity. In [11], the time-averaged acoustic power field is calculated in
a similar way to the present work. It is possible to appreciate how, even
when the second hydrodynamic mode dominates and the acoustic field can
be considered as linear, the source-sink pairs can be identified and still re-
main separated from each other. This is a consequence of the large-scale
vortices present in the flow field, as confirmed by the authors.

5.6. Effect of Sound Propagation Direction

As explained before (see section 4.2.2); the main effect of changing the
acoustic source position is the introduction of a phase difference in the hy-
drodynamic structures. This influences the acoustic production, as shown
in Figure 25, where the total acoustic production for an acoustic source fre-
quency of 2000 Hz is presented, for both a relative upstream and downstream
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Figure 25: The acoustic power contribution (-w'Up)v, for the 2000 Hz (a) upstream and
(b) downstream case at ¢ = 7/3. In (c) and (d) the Coriolis force —pg(w'Up) is shown for
the 2000 Hz upstream and downstream cases, respectively, at the same phase.

source positions. Indeed, the phase difference for the downstream case shifts
upstream the production region at the trailing edge, which increases the over-
all interaction. At the same time, the differences at the leading edge appears
negligible. This is highlighted in Figure 25-c,d, where the nondimensionalised
vertical Coriolis force —po(w’Up) is shown. There, it appears that the main
difference in the Coriolis distribution is the upstream shift of the trailing
peak, which will therefore have a larger contribution.

6. Conclusions

The aeroacoustic field around a corrugated wall in a grazing flow con-
figuration has been studied. First, we investigated the behaviour of the
corrugated plate over a wide frequency band by measuring the scattering
matrix of the test sample. This allows to understand how the corrugations
behaved globally and whether or not the Strouhal numbers corresponding to
the characteristic frequencies were similar to the ones obtained in previous
studies. Indeed, as expected from the literature, characteristical frequency
ranges where transmission coefficients were higher /lower (namely ”gain/loss”
zones) than the corresponding no-flow configuration have been identified. For
all cases, however, the transmission coefficients stay below unity as opposed
to other studies. This is mainly because in the present setup the corrugated
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plate is covering only one side of the waveguide. Then, the acoustic source
frequency and the flow Mach number have been set in order to investigate
four points between the ”gain” and the ”loss” zones using the optical LDV
technique. The main quantities which identify the fluid-dynamic as well as
the acoustic fields have been fully resolved. In particular, coherent velocity
structures are clearly visible and their propagation velocity appears to be
weakly function of frequency. Also, the coherent vorticity, which is directly
responsible for the acoustic power production/absorption is well resolved.
However, it is not possible to isolate distinct zones of absolute acoustic power
absorption or production as these are usually entangled in a complex form
due to the acoustic forcing of the hydrodynamic velocity at the leading edge.
However, even in this complex scenario, it is possible to appreciate how a
change in frequency (i.e. a different separation between the velocity struc-
ture) or in the source position (i.e. a relative space shift in the velocity
structures) can explain the gain/loss mechanism. These results also indicate
that either one of the 1D models (DV/CV models) is hardly going to give
good predictions. First, source/sink contributions are not distinct between
each other in the measurement volume. Furthermore, the entanglement at
the leading edge cannot be considered in a 1D modeling, as well as the power
contribution from the longitudinal Coriolis term. Also, the contribution to
the vertical Coriolis term of the horizontal coherent velocity (i.e. (Qpu’)) is
somewhat non negligible and usually not considered. All these contributions
are necessarily not taken into account in a 1D model, which suggests that
such a model would not be a good predictor of the acoustic power. Further
studies will therefore need to account for these discrepancies in order to im-
prove the modeling accuracy. Hopefully, open access to the dataset [21] will
be beneficial to the combined efforts towards this scope.
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