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A method of higher-order modes filtering in an air-filled waveguide using a resistive layer is proposed.
An analogue of Cremer’s criterion is discussed and used to obtain the optimal modal attenuation of the
non-planar waves while the plane wave is preserved. Numerical validation of the concept is performed for a
straight waveguide and an abrupt expansion in a waveguide.

1 Introduction
Attenuation in acoustic waveguides with lossy wall impedance has been widely studied for a long time as it
has important applications for noise attenuation in ducts [1]. Cremer impedance is a well known solution to
try to optimise the damping of mode propagation in a duct. This impedance corresponds to the creation of
an exceptional point where two modes merge [2, 3, 4, 5, 6, 7, 8]. These modes correspond to the two lowest
order modes (mode 0 and 1) and it is conjectured that this impedance leads to the highest attenuation for
all propagating modes.

On the other hand, more recently, dissipative screens have been used to filter the modes. For example,
radial screens in a circular duct have been introduced to stop the spinning modes [9]. This idea has also been
applied for pressure field symmetrization with a wiremesh installed in the middle of a cavity [10]. In this
case, the symmetrical modes are insensitive to the wiremesh, while all non-symmetrical modes are absorbed.

In this letter, we present a method for optimally filtering all modes except the plane mode in a two-
dimensional duct with a longitudinal resistive screen. We find an exceptional point where mode 1 and mode
2 merge: it corresponds to a critical position dc equal to 0.22659 times the height of the waveguide and a
critical resistance that depends linearly on frequency. Then, we use an analogue of Cremer’s criterion to
find the optimal parameters of the screen since the mode 1 and 2 are optimally absorbed at the exceptional
point while mode 0 is unaffected by the wiremesh. We illustrate ability of this system to filter an acoustic
field over two configurations.

2 Modes of the waveguide with an embedded wiremesh

2.1 Dispersion relation for the transverse modes
We consider the propagation of sound waves in a two-dimensional waveguide (see Fig. 1) in the harmonic
regime with the convention e−iωt. In the following we work with dimensionless quantities, all lengths being in
unit of the height of the waveguide H. In the waveguide, the acoustic pressure field obeys the wave equation

∆p+ k2p = 0, (1)
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where p is the pressure and k = ωH/c0 is the dimensionless frequency (speed of sound c0). At the wiremesh
located at y = d we have the pressure jump given by

[p] = i
R

k

∂p

∂y
(2)

with R the dimensionless (in unit of ρ0c0, ρ0 being the density) resistance of the wiremesh. The rigid walls
imply ∂p

∂y = 0 at y = 0 and y = 1.
As classically, we look for solutions of the Helmholtz equation in transverse mode form p(x, y) = p(y)e−iβx,

we obtain:

p′′ + α2p = 0, with α2 = k2 − β2, (3)

where the prime indicates the y-derivative.

Figure 1: An infinite planar waveguide with the inserted wiremesh (red dotted line).

The boundary conditions on the walls (y = 0, y = 1) are p′(0) = 0 and p′(1) = 0. The wiremesh of
resistance R induces a pressure jump at y = d given by p(d+) − p(d−) = iCp′(d) with C = R/k, while
the transverse velocity is constant p′(d+) = p′(d−). Using these conditions, the dispersion relation for the
transverse modes can be written as

D ≡ sin(α) + iCα sin(αd) sin(α(d− 1)) = 0. (4)

The solutions of this dispersion relation define a set of modes having complex transverse wavenumbers
{αn}n≥0. With the exception of α0 = 0, which corresponds to the plane wave not affected by the wiremesh
since it has zero vertical velocity (∂p/∂y = 0), the αn (n ≥ 1) follow specific paths in the complex plane as the
resistance increases from 0 to infinity. For small C → 0 one has αn ≃ πn+iCπn(cos 2πnd−1)/2. As C → ∞
a wiremesh becomes an impenetrable wall and divides the waveguide into two sections with non-interacting
sets of modes with wavenumbers αnd ≃ πn− i/Cπn and αn(1− d) ≃ πn− i/Cπn correspondingly.

2.2 Exceptional points and Cremer criterion analogue
We now follow the same idea as Cremer [2] to try to find the maximum attenuation of the higher order
modes by the resistive wiremesh: this is why we look for the creation of the exceptional point where the first
two higher transverse wavenumbers (α1 and α2) merge. In order to find an exceptional point (double roots
of D), we impose dD/dα = 0 which leads to

dD
dα

= cos(α) + iC [sin(αd) sin(α(d− 1)) + αd sin(α(2d− 1))− α sin(αd) cos(α(d− 1))] = 0. (5)

Eliminating iC between Eqs. (4) and (5), for α ̸= 0, leads to:

−α sin(αd)2 + sin(α) sin(αd) sin(α(d− 1)) + αd sin(α) sin(α(2d− 1)) = 0. (6)

For each value of d, the Eq. (6) has several discrete solutions α in the complex plane. Lets focus on the
solution of Eq. (6) αc closest to 0. We still have to make sense of this solution and to impose that C is
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real (C = R/k and both R and k are assumed to be real)); indeed using Eq. (4) with this αc we obtain a
complex-valued function C(d). Among the values of C(d) only one is purely real

Cc = 0.47606 (7)

for the particular value

dc = 0.22659. (8)

Then, in the complex plane the exceptional point occurs at αc/π = 1.13208− 0.34857i, where the transverse
wavenumbers α1 and α2, solutions of Eq. (4), coalesce. By analogy with the Cremer criterion, we expect to
obtain the strongest attenuation of the modes at this point. We can notice that the resistance

Rc = Cck (9)

which allows to obtain an exceptional point is thus linearly proportional to the frequency k.
In Fig. 2 we plot the transverse αn and longitudinal βn wavenumbers in the complex plane. It can be

remarked that for a given d, the curves in the α-plane, Fig. 2(a), are independent of the frequency k. Those
curves are plotted for three values of the wiremesh position d = 0.2 (blue), d = 0.3 (red) and d = dc (black),
when C varies from 0 to 2.8. By choosing k = 1.5π/H in Fig. 2(b), we ensure that only two modes propagate
in the empty waveguide (C = 0). The plane mode (α = 0, β = 1.5π) is not affected by the wiremesh due
to the zero transverse velocity. When d = dc, β2 (evanescent for C = 0) coalesces with the second initially
propagating mode β1. These two modes then tend to become propagating when C → ∞, one tending towards
the plane mode and the other being oscillating in the transverse direction (λ/2 in the largest width).

(a) (b)
�0 �1 �2 �3

�0

�1

�2

�3

Figure 2: Trajectories of the complex transverse wavenumbers α (a) and longitudinal wavenumbers β =√
k2 − α2 (with positive real and imaginary parts) (b) when C varies from 0 to 2.8. k = 1.5π and d = 0.2

(blue), d = 0.3 (red) and d = dc (black) with the exceptional point. The circles denote the values for C → ∞
and the asterisk corresponds to the mode 0.

3 Mode filtering
To illustrate higher-order modes filtering, we first simulate the sound propagation in an infinite waveguide
for a frequency k = 1.5π/H for which two modes are propagating in the empty guide. In the sense of the
Cremer criterion, an optimal wiremesh (C = Cc) of length L = 6 is placed at an optimal distance from a
wall (d = dc). This waveguide is excited by a monopole point source located to the left of the wiremesh.
The pressure field, computed with the Comsol Multiphysics software using perfectly matched layers on both
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sides to avoid reflections, is shown in Fig. 3(b) without a wiremesh and in Fig. 3(c) with a wiremesh, and
demonstrates very clearly this filtering effect which allows only the plane mode to propagate. The position
of the point source is illustrated by the white circle and the dashed red line represents the wiremesh. To
quantify this filtering effect, we computed the ratio between the amplitude of the second propagating mode
|a1| and the amplitude of the plane mode |a0| downstream of the wiremesh. The dependence of this ratio on
the length of the wiremesh L is shown in Fig. 3(a) in logarithmic scale, hence in practice one may pick the
desired level of the attenuation of the first mode and adjust the length of the wiremesh in the setup. The
dashed lines correspond to the parameters of Fig. 3(c).

Figure 3: (a) The ratio of the amplitudes on the mode 0 and mode 1 as a function of the wiremesh length
L for d = dc, R = Cck, (b) the pressure field in the waveguide excited by a monopole point source with
k = 1.5π for R = Cck, L = 6 without a wiremesh and (c) with a wiremesh. The pressure field inside a
waveguide with an abrupt expansion from dc to 1 in the absence (d) and in the presence (e) of the wiremesh
with R = Cck and L = 6.

A second illustration of this filtering effect is shown in Figs. 3(d), (e) again for k = 1.5π/H. This is
the case of a sudden expansion where the height of the guide changes abruptly from dc to 1. In the small
guide only the plane mode propagates. When there is no wiremesh, Fig. 3(d), due to the asymmetry of this
expansion both propagating modes are present in the large guide. By inserting the wiremesh at the outlet of
the expansion, Fig. 3(e), only the plane mode remains in the large tube. This method can be used practically
to optimally produce a plane mode in a guide where several other modes are propagating by using a source
in the small guide.

4 Conclusions
Inserting a wiremesh into the waveguide parallel to its walls is an efficient method of modal attenuation
and higher-order modes filtering. For the critical location of the wiremesh dc, varying the resistance of the
wiremesh one can achieve the exceptional point of the first two higher order modes, where analogously to
the Cremer criterion, the strongest attenuation is expected. This allows for efficient plane wave selection in
a waveguide with multiple propagating modes.

5 Acknowledgments
This work was supported by the French National Agency for Research (SelfiXs Project, ANR-18-CE92-0001).
The authors have no conflicts of interest to declare. The data that support the findings of this study are

4



available from the corresponding author upon reasonable request.

References
[1] Philip M Morse. The transmission of sound inside pipes. J. Acoust. Soc. Am., 11(2):205–210, 1939.

[2] Lothar Cremer. Theory regarding the attenuation of sound transmitted by air in a rectangular duct
with an absorbing wall, and the maximum attenuation constant produced during this process. Acustica,
3(1):249–263, 1953.

[3] BJ Tester. The optimization of modal sound attenuation in ducts, in the absence of mean flow. J.
Sound Vib., 27(4):477–513, 1973.

[4] Wenping Bi and Vincent Pagneux. New insights into mode behaviours in waveguides with impedance
boundary conditions. arXiv:1511.05508, 2015.

[5] Zhe Zhang, Hans Bodén, and Mats Åbom. The Cremer impedance: An investigation of the low frequency
behavior. J. Sound Vib., 459:114844, 2019.

[6] Mats Åbom and Stefan Jacob. A comment on the correct boundary conditions for the Cremer impedance.
JASA Express Letters, 1(2):022801, 2021.

[7] Jane B Lawrie, Benoit Nennig, and E Perrey-Debain. Analytic mode-matching for accurate handling of
exceptional points in a lined acoustic waveguide. Proc. R. Soc. A, 478(2268):20220484, 2022.

[8] E Perrey-Debain, Benoit Nennig, and JB Lawrie. Mode coalescence and the Green’s function in a
two-dimensional waveguide with arbitrary admittance boundary conditions. J. Sound Vib., 516:116510,
2022.

[9] Stefan Sack and Mats Åbom. Modal filters for mitigation of in-duct sound. Proc. Mtgs. Acoust.,
29:040004, 2016.

[10] M Farooqui, Yves Aurégan, and V Pagneux. Ultrathin resistive sheets for broadband coherent absorption
and symmetrization of acoustic waves. Phys. Rev. Appl., 18(1):014007, 2022.

5


	 Introduction
	Modes of the waveguide with an embedded wiremesh
	Dispersion relation for the transverse modes
	Exceptional points and Cremer criterion analogue

	Mode filtering
	Conclusions
	Acknowledgments

