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Abstract

In this paper we consider the problem of finding the optimal step length for the Newton method
on the class of self-concordant functions, with the decrease in function value as criterion. We
formulate this problem as an optimal control problem and use optimal control theory to solve it.

1 Introduction

In this paper we consider Newton’s method with a damped step, producing iterations according to

xk+1 = xk − γk(F ′′(xk))−1F ′(xk), (1)

where γk ∈ (0, 1] is the step-size and γk = 1 corresponds to a full step.
Newton’s method is affinely invariant in the following sense. Let A : x 7→ y be an affine coordinate

transformation, and set y0 = A(x0). Fix a sequence of step lengths γk, k ∈ N. Then produce a sequence
of iterates xk according to (1) with initial point x0, and a sequence yk with the same step lengths, but
with initial point y0 and computed in the coordinate system y. Then yk = A(xk) for all k ∈ N.

Thus it is natural to study the behavior of the method on a class of functions that is also affinely
invariant, i.e., such that membership in the class does not change under affine coordinate transfor-
mations. This leads to the self-concordant functions which naturally arise as an affinely invariant
analogue of functions with a Lipschitz continuous Hessian, and hence is well suited for an analysis of
the behaviour of Newton’s method. Self-concordant functions were introduced by Yu. Nesterov and
A. Nemirovsky [9] when studying the behavior of Newton’s method, as follows.

Definition 1.1. A convex C3 function F : D → R on a convex domain D is called self-concordant if
it satisfies the inequality

|F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (2)

for all x ∈ D and all tangent vectors h.
It is called strongly self-concordant if in addition limx→∂D F (x) = +∞.

The authors in [9] describe the state at iteration k by a single scalar, the Newton decrement

ρk = ||F ′(xk)||F ′′(xk) :=
√

(F ′(xk))>(F ′′(xk))−1F ′(xk). (3)

This paper is devoted to the problem of finding the optimal step length of Newton’s method on
the class of self-concordant functions, motivated by the appearance of this class in barrier methods
for conic programming, in particular, when solving linear programs, second-order cone programs, and
semi-definite programs. Step lengths for the damped Newton method were also considered in [1, 11, 8].
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Step lengths for the damped Newton method were also considered in [1, 11, 8]. The behaviour of
the Newton decrement and the function value under specific step sizes has been studied in [12, Section
2.2]. In [2, Corollary 6.1] the decrease of the distance from the optimum and of the norm of the
gradient, both in the local metric of the initial point, have been bounded for self-concordant functions
if the initial point is close enough to the minimum. The same bound has been obtained in [2, Corollary
6.3] for the local metric of the minimum. A bound on the decrease in function value can be derived
from [2, Theorem 5.3], however, it depends on the difference between the current and optimal function
values. In that paper an inexact Newton step can be taken, and the bound depends on the error. The
methods used in [2] rely on semi-definite programming (see also [3]) and are completely different from
those employed here.

In this paper we find the optimal step length of Newton’s method with respect to the decrease of
the function value. This criterion was considered in [9, Theorem 2.2.1], where the decrease has been
lower bounded by an explicit function of the step length γk and the Newton decrement ρk. The same
bound has been derived in [4] in a more general context. In the latter paper it is shown that the step
length γk = 1

1+ρk
maximizes this lower bound. The same expression for the step length is also proposed

in [9, Theorem 2.2.3] for larger values of the decrement. While in [4], and implicitly in [9], the step
length has been obtained as the maximizer of a bound, in the present paper we show by employing
optimal control theory that this step length is actually optimizing the function value itself. It turns
out, however, that no further improvement over the results in the mentioned papers occurs, despite
the use of the exact criterion.

The idea to use optimal control for the worst-case analysis of first order methods has been developed
by Laurent Lessard and co-authors in [7], where they use this technique to derive numerical upper
bounds on convergence rates for the Gradient method, the Heavy-ball method, Nesterov’s accelerated
method, and related variants by solving small, simple semidefinite programming problems. The same
technique was also considered in [13, 6].

Optimal control theory has already been used in [5] to find an optimal step-length γ∗ for the Newton
method on self-concordant functions. However, a different strategy has been adopted there. Instead
of the worst-case function value, as in the present work, the worst-case Newton decrement in the next
iteration is minimized. This criterion is more in line with the philosophy of interior-point methods as
presented in [9], but it has the drawback that if the decrement is larger than 1, no progress can be
guaranteed at all. Also, the optimal value of the step length turns out to be not expressible in closed
form in general. The criterion used in the present paper, on the contrary, can be strictly improved at
each step, no matter how far we are from the optimum at the current iteration, and the value of the
optimal step length is a simple analytic function of the data available at the current iteration.

In this paper consider the problem of finding a step length γk which maximizes the decrease F (xk)−
F (xk+1) of the function value in the worst case realization of the function F (·). So, we firstly need for
given step length and given decrement to find the worst realization of the function giving the minimal
decrease, and then to maximize this progress over the value of the step length, yielding the optimal
step length as a function of the decrement. This leads to the following optimization problem:

max
γk

min
F∈S

(F (xk)− F (xk+1)) , (4)

where γk is the step length, xk+1 is given by (1), the decrement ||F ′(xk)||F ′′(xk) is fixed to some value
ρk, and S is the class of functions satisfying (2).

2 Solution using optimal control theory

In this section we describe the solution of problem (4).
We consider a single iteration of the Newton method. Let the end point xk+1 be given by (1) and

consider the line segment between xk and xk+1. We study the evolution of the values of the function
and its derivatives along this segment. This distinguishes our approach from the approach in [2], where
n iterations and only the values of the function and its derivatives at the points x1, . . . , xn, i.e., a finite
dimensional object, are considered. In contrast to this we consider an infinite dimensional object. The
suitable apparatus to solve this problem is optimal control theory. We start with formulating our
problem as an optimal control one.
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2.1 Optimal control problem statement

For simplicity we denote γ := γk and ρ := ρk. Parameterize the line segment between the current
iterate xk and the next one xk+1 affinely by a variable s ∈ [0, T ], such that

x(0) = xk, x(s) = xk + sh, x(T ) = xk+1 = xk + Th, (5)

where h is a direction vector along the segment between xk and xk+1. Later we shall impose a
normalization condition on the vector h, thereby determining the value of T .

Let us investigate the evolution of the gradient and Hessian of F along the segment. Since our goal
is to find a realization of the function F (·), which minimizes the decrease of the function value, we
represent the cost function as follows:

F (xk)− F (xk+1) = −
∫ T

0

〈F ′(xk + sh), h〉 ds.

We get the maximization problem ∫ T

0

〈F ′(xk + sh), h〉 ds→ max .

For simplicity we introduce the function g(s) = 〈F ′(xk + sh), h〉, then

ξ(s) :=
dg(s)

ds
= 〈F ′′(xk + sh)h, h〉.

From (2) we get∣∣∣∣dξ(s)ds

∣∣∣∣ = |F ′′′(xk + sh)[h, h, h]| ≤ 2(F ′′(xk + sh)[h, h])3/2 = 2ξ(s)3/2,

or equivalently
dξ(s)

ds
= 2uξ(s)3/2, (6)

where u ∈ [−1, 1]. Thus, u can be interpreted as a control, U = [−1, 1] as the set of admissible
controls, and (6) as a controlled system, where ξ(s) is a positive scalar function. Introducing the
function w(s) :=

√
ξ(s), we get from (6) that

dw2(s)

ds
= 2uw(s)3 ⇒ dw(s)

ds
= uw(s)2.

To impose a normalization condition on h, note that

||h||F ′′(xk) :=
√
F ′′(xk)[h, h] = w(0),

since xk corresponds to the value s = 0. Moreover, from (1) and (5) we get

xk+1 − xk = Th = −γ(F ′′(xk))−1F ′(xk). (7)

Then taking the inner product with F ′(xk) and using (3), we get

T 〈F ′(xk), h〉 = −γρ2. (8)

Moreover, taking the inner product of (7) with F ′′(xk) and h , we obtain

TF ′′(xk)[h, h] = −γ〈F ′(xk), h〉. (9)

Substituting this in (8), we get
T 2F ′′(xk)[h, h] = γ2ρ2.
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Choosing the normalization for h such that ||h||F ′′(xk) = 1, we obtain that T = γρ. Substituting this
into (9), we get that at s = 0

w(0) = 1, g(0) = −ρ.

Finally, we get the following optimal control problem∫ γρ

0

g(s)ds → max,

dg

ds
= w2,

dw

ds
= uw2,

w(0) = 1, g(0) = −ρ

with control u ∈ [−1, 1]. Introducing a new variable t, such that

t = −||xk+1 − x||F ′′(x) = −
√
ξ(s)[h, h] · (T − s)2 = −w · (T − s),

we get

dt

ds
= −w2u · (T − s) + w = w · (ut+ 1),

dg

dt
=

dg

ds
· ds
dt

=
w

1 + ut
,

dw

dt
=

dw

ds
· ds
dt

=
wu

1 + ut
,

and t ∈ [−ργ, 0]. Denoting z = g
w , we obtain

dz

dt
=

d(g/w)

dt
=

w
1+ut · w −

g
w ·

w2u
1+ut

w2
=

1− zu
1 + ut

,

g ds =
g

w(1 + ut)
dt =

z

1 + ut
dt.

So, we can rewrite the optimal control problem as follows∫ 0

−γρ

z

1 + ut
dt → max, (10)

ż =
1− uz
1 + ut

,

z(−γρ) = −ρ,

where u ∈ U = [−1, 1] and z ∈ R.

2.2 Solution of the problem

In this section we solve problem (10).
Firstly, according to Pontryagin’s maximum principle [10], we get the following Hamiltonian for the

optimal control problem (10)

H =
z

1 + ut
+ ψ

1− uz
1 + ut

,

where ψ ∈ R is the adjoint variable to z. The dynamics of the adjoint variable is given by

ψ̇ = −∂H
∂z

=
uψ − 1

1 + ut
.

If the control is bang-bang, i.e., u is piece-wise constant with values in {−1, 1}, then the dynamics
of the primal and adjoint variables can be integrated explicitly. For the primal variable z we get

−u log |1− uz|+ C ′ = u log |1 + ut| ⇒ z(t) =
C + t

1 + ut
,
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where C = (1± eC′u)u is some constant. For the adjoint variable ψ we get the solutions

u log |uψ − 1|+ C ′′ = u log |1 + ut| ⇒ ψ(t) = C1(tu+ 1) +
1

u
,

where C1 = ±e−C′′u is some constant. The transversality condition at the end-point gives ψ(0) = 0,
hence C1 = − 1

u and
ψ(t) = −t

for all t from the last switching point to t = 0.
Our next step is to determine the optimal control u. Maximizing the Hamiltonian over the variable

u we get

u =

{
1, if ψz + tz + tψ < 0,

−1, if ψz + tz + tψ > 0.

For t sufficiently close to 0 we get

ψz + tz + tψ = −t · C + t

1 + ut
+

(
C + t

1 + ut
− t
)
· t = −t2 < 0,

and the control u = 1 is optimal. But the expression −t2 remains negative for all negative t up to the
starting point t = −γρ. Hence the control u = 1 and above expressions for z(t), ψ(t) are valid over the
whole interval.

Using the boundary conditions for z(t), we obtain that

z(−γρ) =
C − γρ
1− γρ

= −ρ ⇒ C = −ρ+ γρ2 + γρ.

Therefore

z(t) =
−ρ+ γρ2 + γρ+ t

1 + t
.

Substituting this value into the objective function, we obtain

−
∫ 0

−γρ

z(t)

1 + t
dt = −

∫ 0

−γρ

(−ρ+ γρ2 + γρ− 1) + (1 + t)

(1 + t)2
dt

= (−ρ+ γρ2 + γρ− 1)

(
1− 1

1− γρ

)
+ log(1− γρ)

= (1 + ρ)γρ+ log(1− γρ) =: f(γ).

To find the optimal step length we need to maximize the function f over γ. The first order optimality
condition gives

∂f

∂γ
=
ρ2(−γρ− γ + 1)

1− ργ
= 0 ⇒ γ? =

1

1 + ρ
.

Since f ′′(γ) = − ρ2

(1−γρ)2 < 0, we get that γ? is a maximum.

Thus we can solve this problem analytically. The same result was proposed in [9], and in [4] it is
shown that this step-size maximizes a lower bound on the decrease of the function value. Here we have
proved that this step length is actually optimal for this criterion.
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