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Abstract

Mapping forest resources and carbon is important for improving forest management and meeting the 
objectives of storing carbon and preserving the environment. Spaceborne remote sensing approaches 
have considerable potential to support forest height monitoring by providing repeated observations at 
high  spatial  resolution  over  large  areas. This  study  uses  a  machine  learning  approach  that  was 
previously developed to produce local maps of forest parameters (basal area, height, diameter, etc.). 
The aim of this paper is to present the extension of the approach to much larger scales such as the  
French national coverage. We used the GEDI Lidar mission as reference height data, and the satellite 
images from Sentinel-1, Sentinel-2 and ALOS-2 PALSA-2 to estimate forest height and produce a map 
of France for the year 2020. The height map is then derived into volume and aboveground biomass 
(AGB) using allometric equations. The validation of the height map with local maps from ALS data  
shows an accuracy close to the state of the art, with a mean absolute error (MAE) of 4.3 m. Validation 
on inventory plots representative of French forests shows an MAE of 3.7 m for the height. Estimates 
are slightly better for coniferous than for broadleaved forests. Volume and AGB maps derived from 
height shows MAEs of 75 tons/ha and 93 m³/ha respectively. The results aggregated by sylvo-ecoregion 
and forest types (owner and species) are further improved, with MAEs of 23 tons/ha and 30 m³/ha. The  
precision of these maps allows to monitor forests locally, as well as helping to analyze forest resources  
and carbon on a territorial scale or on specific types of forests by combining the maps with geolocated 
information (administrative area, species,  type of owner, protected areas,  environmental conditions, 
etc.).  Height,  volume  and  AGB  maps  produced  in  this  study  are  made  freely  available  here:  
https://zenodo.org/doi/10.5281/zenodo.8071003.
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1. Introduction
Forests act as carbon sink by capturing carbon from the atmosphere through tree growth and act as 

carbon source through deforestation and wildfires. The monitoring of forest carbon stocks is crucial to  
assess the exchange of carbon between the earth's surface and the atmosphere and therefore to reduce  
the uncertainty in the global carbon budget. Forest height is a key component for forest carbon stocks 
estimation. Deriving forest aboveground biomass (AGB), closely related to carbon, from height relies  
on simple relations called allometric equations for a given tree species.

Spaceborne  remote  sensing  approaches  offer  considerable  potential  in  support  of  forest  height 
monitoring as they provide repetitive observations over large areas.  LiDAR data-based approaches 
have proven to be accurate enough to infer the canopy height and structure, and thus to map the forest 
AGB at a high spatial resolution (Dubayah et al., 2020; Duncanson et al., 2022). Since 2018, Global 
Ecosystem Dynamics Investigation (GEDI) is the first sensor providing high resolution laser ranging 
measures of forest height, canopy vertical structure, and surface elevation, from the International Space  
Station (ISS). Although sparse, lidar data from GEDI can be combined with spaceborne optical and 
radar data to provide continuous wall-to-wall maps of forest height. Among notable examples, (Potapov 
et al., 2021) used Landsat time series and GEDI samples with a machine learning approach to produce 
a global forest canopy height map at 30m spatial resolution for the year 2019. (Lang et al., 2022) used 
Sentinel-2 and GEDI in a convolutional neural network to produce another global forest canopy height 
map at  10m spatial  resolution for the year 2020. On a local  scale,  (Morin  et al.,  2022) combined 
Sentinel-2 optical sensor and Sentinel-1 and ALOS-2 PALSA2 radar sensors with GEDI to estimate 
forest canopy height with a machine learning approach, assessing the use of GEDI samples to replace  
field  height  measurements  in  model  calibration.  Finally,  (Schwartz  et  al.,  2022,  2023) combined 
Sentinel-1 and Sentinel-2 in a deep learning U-Net model to first produce a local map of forest height,  
the method was then extended to produce a national map for France.

The processing chain used in (Morin et al., 2022) has been previously developed and validated using 
local forest measurement datasets  (Morin  et al., 2018, 2019; Morin, 2020). It allows to map several 
forest  structure  parameters:  tree  height,  basal  area,  diameter  at  breast  height  (DBH),  tree  density,  
volume and aboveground biomass. The combined use of both optical and radar sensors, as well as 
spatial  texture  indices  derived from images at  10m spatial  resolution,  is  important  to  obtain good 
estimates of the different forest variables (Morin et al., 2019). The use of these satellite image features 
and geolocated measurement data with a Random Forest (RF) or a Support Vector Regression (SVR) 
showed very good results for the estimation of forest dominant height on different tests sites, errors 
ranging from 1.3 to 3.2m (5% to 21%) depending on test sites and forest species.

Local maps are useful for forest managers and to study forest stands. However, it is difficult to make 
the link between these high resolution maps and statistics on larger areas such as those provided by the 
national  forest  inventory.  In  this  study  we  aim  to  apply  the  methodology  on  a  national  scale  in 
metropolitan France, using GEDI data to replace field height measurements, since there are not enough 
field height measurements over the whole country on a single year and a single protocol to be used to  
calibrate a national model. The objectives are i) to provide useful maps that can be used at multiple  
scales  by  foresters,  decision-makers  and  scientists,  and  ii)  to  consolidate  a  simple  and  adaptable 
processing chain for the estimation and mapping of forest structure parameters.
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2. Matérials and methods

2.1. Study site

The  study  area  is  metropolitan  France,  whose  forests  cover  31%  of  the  metropolitan  surface. 
According to  (FAO, 2020) and the French institute of geographic and forest information (IGN), the 
surface area of French forests increased by 20% between 1990 and 2020 (including 30% which are new 
plantations), and the growing stock volume increased by 50% in the same period. However, since 2012 
tree growth has slowed while mortality and harvesting have increased by 54% and 20% (La forêt en 
France : portrait-robot - Portail IGN - IGN, 2021), hence the need for increased monitoring of forests.

According to the IGN statistics, French forest consists mainly of deciduous trees, covering 67% of 
forest areas. The French forest contains 190 tree species, nearly three quarter of all the tree species in 
Europe. The forest is divided almost equally between pure stands (where one tree species occupies 
more than 75% of the canopy in the dominant storey) and mixed stands. In mixed stands we can find 
for example 5 different tree species per 2,000 m² plot.  The forests of northeastern France and the 
Massif Central (center) are the most diverse. The Landes massif (south-west), on the other hand, is a 
large massif of mono-specific stands, with maritime pine as the main species. The seven main tree 
species are oak (with 44% of hardwood volume), beech and chestnut for hardwoods, and maritime 
pine, Scots pine and spruce for conifers. This diversity can be explained by the variety of environments. 
The  National  Forest  Inventory  (NFI)  differentiates  86  sylvo-ecoregions  in  metropolitan  France 
(Cavaignac,  2009),  within  which  forests  and/or  environmental  factors  are  close.  The  division  into 
sylvo-ecoregions  takes  into  account  biogeographical  factors  (climatic,  geological,  topographical, 
pedological, floristic and landscape variability) that determine forest production and the distribution of 
major  forest  habitat  types.  The 86 sylvo-ecoregions are  grouped into 11 GRECO regions (Grande 
Région  ECOlogique,  i.e.  large  ecological  region).  Sylvo-ecoregions  and  GRECO  regions  are 
represented in  Figure  1,  sylvo-ecoregions are  labelled with a  letter  (corresponding to  the GRECO 
region) and two numbers. 

Today, private forests account for three quarters of forest area. This proportion has grown steadily in 
recent decades since the growth in forest  surfaces results  from land abandoned by agriculture and 
pastoralism. Overall, in western France, the proportion of private forest is significantly higher than the 
national average. The Grand Est region is the only one where private forest is in the minority (44%).  
Figure 1 shows the public (red) and private (blue) forest areas in France.
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Figure 1. Forest areas in France. Red: public forests, blue: private forests; GRECO regions are delimited in black with a 
thick line, sylvo-ecoregions are delimited in black and labelled with a letter and two numbers.

2.2. Reference data

2.2.1. Training data

GEDI data are used in this study as reference data for the calibration of our height estimation method. 
GEDI is a laser instrument on board the International Space Station. It is equipped with three lasers,  
two of them are at full power beams and the other is split into two beams (called coverage beams), 
producing a total of four beams and eight ground tracks (see illustration in Figure 2.a). The footprints 
have an average diameter of 25 m and are separated by 60 m along the track and 600 m cross track. We 
have  downloaded  the  L2A level  data  from  November-December  2019  to  November  2020  which 
provides, among other metrics, the relative height measurements. To assess its relevance for measuring 
tree  height,  we  compared  various  relative  height  metrics  and  GEDI  parameters  with  CHM maps 
supplied by the National Forest Office (ONF) for diverse sites  (Morin et al., 2022). We chose to use 
only  full-power  beams  (not  coverage  beams)  and  good  quality  signal  to  noise  ratio  (sensitivity 
threshold > 0.95) to have good quality reference points. Across the whole of France, we end up with 
around 1 300 000 broadleaved and 500 000 coniferous GEDI samples. We chose the RH98 metric 
(relative  height  measurement  at  98% energy)  which  showed  good  agreement  on  the  CHM maps 
comparison (the MAE ranges from 1.5 to 3m depending on the test sites). Figure 2.b shows an example 
of the GEDI footprints in the Orleans forest.
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a) Illustration of GEDI sampling on the ground (source: 
Royal Society Open Science)

b) Example of GEDI tracks in the Orléans forest

Figure 2. a) Illustration of GEDI sampling. b) false colour image (active vegetation in red), blue plots are GEDI samples. 

2.2.2. Validation data

The validation dataset includes 1) height measurements over forest plots carried out by French NFI 
(IGN),  2)  forest  measurements  with volume and above-ground biomass estimations carried by the 
national forest office (ONF) on public forests in 2020, and 3) canopy height models (CHM) derived 
from airborne Lidar (ALS) measurements over five diversified sites. These data were used only for the 
independent  validation  of  the  height  maps  derived  from  GEDI  reference  data  and  the 
Sentinel-1/Sentinel-2/ALOS-2 PALSAR2 satellite images. Figure 3 shows the distribution of the NFI 
plots and CHM dataset used in this paper.

1) NFI plot measurements: the NFI covers the whole mainland France with a systematic sampling on 
a 1 km square grid. A subsample of these points are visited in the field each year. On the forest plots, 
different information is gathered on concentric plots with radius from 6 to 20m depending on the data 
of  interest.  This  measurement  dataset  is  representative  of  the  French  forest.  Among  other 
measurements, height is measured for a sample of trees representative of diameter categories within the 
plots. The dominant height is defined as the average height of the 100 largest trees per hectare,  the 
calculation is based on the categories of trees measured inside the 20m plot. The volume is calculated 
on the basis of tree height and DBH and shape coefficient depending on tree species. The above-ground 
biomass (AGB) was derived from the NFI volume according to the ratios given in the CARBOFOR 
project (Loustau et al., 2004; Loustau, 2010): 0.89 tons/m³ for broadleaved forests and 0.59 tons/m³ for 
coniferous forests.

2) ONF plot measurements: the ONF carried out measurements in 2020 in public forests on several 
study sites presented in blue in Figure  3. The height, diameter and number of trees per hectare were 
measured. The volume was estimated using the equations by species given in the EMERGE project  
(Rendez-vous techniques de l’ONF - n° 44, 2014), and the biomass was calculated using infradensity by 
species from  (Dupouey, 2002). 745 broadleaved plots and 486 coniferous plots are available over 6 
study sites. 

3) CHMs: the airborne lidar measurements were carried out by the ONF in 2020 in 5 diversified 
sites : Andaine, Carcans-Hourtins, Deodatie, Mouterhouse and Lajoux-Fresse. The Andaine site is on a 
flat area in north-east France with heavily managed stands, the Carcans-Hourtins site in south-west 
France (Landes de Gascogne) is  mainly composed of  maritime pine stands.  The other sites  are in 
mountainous areas in the northeast of France (Jura and Vosges). Canopy height maps (CHM) at 1m 
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spatial resolution were derived from ALS data. We resampled these CHM on a 10m×10m grid using the 
maximum height to compare to our height map. ALS characteristics are presented in table 1.

Table 1. ONF Airborne Lidar characteristics for the 5 sites.

Scanning density 
(points/m²)

Vertical accuracy 
(cm)

Absolute positional accuracy
(cm)

Andaine 22 8 <15

Carcans-Hourtins 31  10 <15

Deodatie 8 5 <10

Mouterhouse 17 5 <10

Lajoux-Fresse 31 4 <20

Figure 3. Validation data: ALS-CHM from ONF on 5 test sites, NFI plots (grey points), ONF plots (blue points) and SER 
(boundaries in red).

2.4. Satellite imagery

This  section  provides  information  on  the  extraction  of  image  features  used  for  forest  height 
prediction.  These  features  come  from  Sentinel-1  and  Sentinel-2  satellites  (European  Copernicus 
program), and ALOS-2 PALSAR-2 (JAXA, Japanese Aerospace Exploration Agency).

The Sentinel-1 satellites provide C-band synthetic aperture radar (SAR) images acquired every 6 to  
12 days at 10m pixel size. We pre-processed GRD (ground range detected) images for calibration, 
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orthorectification, radiometric correction to tackle negative effects of local slope and resampling to 
superimpose on Sentinel-2 images, using the S1Tiling library1.  We exploited data acquired in 2020 
during  the  winter  period  (December,  January,  February)  and  the  summer  period  (June,  July  and 
August), where the phenology is the most stable and spatially homogeneous (Morin et al., 2019). We 
processed ascending (~6pm acquisition time) and descending (~6am acquisition time) orbits separately, 
obtaining winter/summer ascending/descending average values. Ascending and descending averages 
were also combined to attenuate  the differences in climatic conditions between morning and evening 
(presence of dew, wind) that affects the radar signatures. At the end of the Sentinel-1 data processing,  
we have 4 backscatter features (winter and summer VH and VV polarisations).

The  Sentinel-2  satellites  provide  optical  images  acquired  every  5  to  10  days  under  the  same 
acquisition conditions. The reflectances measured are in the visible, near and mid infrared. The level  
2A images were downloaded from the Theia platform2. Images are ortho-rectified and corrected for 
atmospheric effects with automatic cloud detection. We processed data acquired at the same Sentinel-1 
winter and summer periods, temporal composites were computed using the WASP software3. Cloud-
free pixels were averaged using weighting factors. We used the Sentinel 2 spectral bands listed in Table  
2, from which were derived four spectral indices: brightness (BI), vegetation activity (NDVI), wetness 
(NDWI) and chlorophyll (ND56). At the end of the Sentinel-2 data processing, we have 8 spectral 
features (winter and summer BI, NDVI, NDWI and ND56 indices).

Table 2. Sentinel-2 spectral bands information and spectral indices extracted.

BI=√band 22+band 32+band 42

The  L-band  ALOS-2  PALSAR-2  annual  mosaics  at  25m  pixel  size  and  HV/HH  polarisation, 
produced by JAXA, were used in this study. We downloaded the 2015-2021 images and applied multi-
image speckle noise filtering  (Bruniquel and Lopes, 1997; Quegan and Yu, 2001), reprojection and 
retiling to superimpose at the same pixel grid of Sentinel-1 and 2 images. At the end of the ALOS-2 
PALSAR-2 data processing, we have 2 backscatter features (annual HV and HH polarisations).

Spatial  texture  indices  have been generated from both Sentinel-2 10m spatial  resolution spectral  
indices (NDVI, BI) and Sentinel-1 polarisations (VH, VV), using a Grey Level Co-occurrence Matrix 
(GLCM) with the Orfeo Toolbox library (Grizonnet et al., 2017). Three second order Haralick metrics 
were calculated on GLCM: homogeneity (also called Inverse Difference Moment), contrast (also called 
Inertia), and Haralick correlation. Based on a previous sensitivity analysis (Morin, 2020), the following 
parameters were used to obtain the textural metrics for further processing: offset set to 1 pixel; 3 pixels  
radius;  100  grey  levels  (number  of  bins);  minimum and  maximum calculated  separately  between 
Sentinel-2 indices and dates, and between Sentinel-1 polarisations; and orientations 0 ◦ , 45 ◦ , 90 ◦ and  

1 https://s1-tiling.pages.orfeo-toolbox.org/s1tiling/latest/   
2 https://theia.cnes.fr   
3 https://github.com/CNES/WASP   
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135 ◦ were computed then averaged. In total, we have 12 texture features for Sentinel-1 and 12 for 
Sentinel-2.

2.5. Ancillary products

Forest stratification, for example by geographical areas or by species, was tested and used to stratify  
the data used as inputs of our height estimation model. The use of forest stratification improved the  
height estimations  (Morin, 2020, 2022) because the height of a tree is influenced by several factors: 
species, type of soil, climate, topography, and forest silvicultural practices.

For the spatial/geographical  stratification,  we used the IGN's sylvo-ecoregions  (Cavaignac,  2009) 
freely available (see  2.1) to learn a model for each zone. For stratification by species, we used the 
Dominant Leaf Type (DLT) map of the Copernicus HRlayers from 2018 4 which classifies deciduous 
and coniferous trees. DLT map is also freely available and produced throughout Europe.

2.6. Estimation method

Our processing chain was developed previously in  (Morin  et al.,  2019, 2022; Morin, 2020) with 
successful results at local scale using satellite images and ground measurement or GEDI samples as 
reference samples. In this study we have slightly adapted the method in order to improve the estimates 
(modification of the regression algorithm) and to allow scaling up (learning by SER, and with no need 
for feature selection). Figure 4 presents the processing chain workflow. The steps are:

1) First, the calibration dataset consists of satellite image features and GEDI samples. For each GEDI  
footprint the corresponding values in feature images are extracted and averaged (with 4 to 6 pixels per 
footprint) in order to build a general learning table. The dataset is then stratified: the table is separated 
into several learning tables according to sample location in the SER and the type of forest species  
(broadleaved or coniferous).

2)  Model  learning  is  done  using  an  algorithm  that  combines  Random  Forest  (RF)  and  linear 
regression, called Linear Forest Regression (LFR) and available online5. LFR algorithm allows to keep 
the computational efficiency of Random Forest while improving the performances, especially for low 
and high forest heights. After preliminary tests, an optimisation is done for each learning tables on 4 
key parameters: n_estimators [50,100,200], max_features [“auto”,”sqrt”], max_depth [10,20,30] and 
min_samples_split [15,25,35]. The final models are obtained in two steps. i) First, for each dataset 
(SER/forest) a K-fold cross-validation is done using 10 folds. Based on the result, outliers are removed 
from the learning tables. Outliers are defined as follows: more than 10 meters error, or more than 100% 
relative error if reference height is under 10 meters. This step allows to take away samples with large  
geolocation errors (and close to non-forest land cover or forest changes) or height estimation error, 
especially for the GEDI samples where only 1 peak is detected. ii) Then, the new learning tables are 
fully used for learning the models that will be used to produce the maps.

3) Prediction maps are obtained by applying models on the image feature stack, in correspondence 
with the forest class (SER and species) of each pixel.

4) The conversion of height into volume and AGB was achieved using a power law Y=a×Height b 

between height  and volume or  AGB.  All  NFI plot  measurements  since 2005 are  available  online6 
without exact coordinates.  Power laws for volume and AGB were fitted on deciduous and conifer  
classes between dominant height (Hdom) and volume or AGB of the NFI dataset. The parameters to be 

4 https://land.copernicus.eu/pan-european/high-resolution-layers/forests/dominant-leaf-type/status-maps/dominant-leaf-  
type-2018 

5 https://github.com/cerlymarco/linear-tree   ; uses the scikit-learn implementation
6 https://inventaire-forestier.ign.fr/dataIFN/   
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optimised are bounded in order to prevent saturation of the relationship. 82417 plots were available for  
broadleaved forests, and 27588 for coniferous forests. Once the power law parameters were adjusted, 
we applied them to our height map.  Tests were carried out to optimize power laws by SER, without 
improvement (see results section).

5) Finally, an independent validation for the height on a local scale is done using the CHM reference 
maps. Height values are compared pixel by pixel and we computed validation statistics. In addition, we 
extracted the values from the prediction maps on the 2020 ONF plots  and compared them to the  
measured values. Finally, at national scale, NFI plots were crossed with our height map thanks to the 
IGN so we have NFI height, volume and AGB compared to our map values per NFI plot for the years 
2019 and 2020. The same statistics than for CHM were computed. Validation statistics are: coefficient 
of determination r² (Pearson), the root mean squared error (RMSE), the relative RMSE (rRMSE in %, 
RMSE divided by the mean of the reference values), the mean absolute error (MAE), the relative MAE 
(rMAE in %, MAE divided by the mean of the reference values), and the mean bias (sum of all errors).

Figure 4. Flowchart of the height estimation method developed in this study.

3. Results

3.1. Heigh map

The methodology presented above allowed us to produce a map of forest canopy height at 10 m 
spatial resolution on mainland France in 2020. Figure 5 presents this map on a national scale. We can 
see different patterns according to the territories: low and quite open forests in the Mediterranean zone 
(south-east), regular patches with predominance of low to medium heights in the Landes de Gascogne 
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(close-up in the south-west) typical from forest plantations (of maritime pine in this case), large and 
irregular forest areas with predominance of high heights in the mountainous zones (close-up in the 
north-east),  and various configurations (regular and irregular patches, low and high heights) in the 
plains (close-up of center north). Local close-ups in Figure  5 show that forest stands with different 
management and height are easily differentiated.

Figure 5. France canopy height map at 10m spatial resolution, produced using the method developed in this study.
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3.1.1. Height validation with NFI plots

Height estimations maps were crossed with 2019 and 2020 NFI plots by the LIF (IGN). Figure  6 
shows the validation statistics. The mean absolute error (MAE) is around 3.7m for both broadleaved 
and coniferous forests. Coniferous height estimates have a better correlation with the reference (r²=0.6  
against 0.45 for broadleaved), partly because they have a wider distribution of height values, also the 
saturation of high values seems less strong.

Figure 6. Validation of height estimations on NFI plots throughout France.
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3.1.2. Height validation with ONF plots

The height map was also crossed with 2020 ONF plots over 6 study sites in France. The distribution  
of measured height values is a little different from the NFI dataset over the whole of France. There are  
few low heights, and more heights above 25-30m. Figure 7 shows the validation statistics. The MAE is 
4.93  m  (23.8%)  for  broadleaved  and  3.32  m  (14.1%)  for  coniferous.  Again,  the  predictions  for 
coniferous seem better than for broadleaved forests. The heights of broadleaved forests between 12 and 
20 m are overestimated.

Figure 7. Validation of height estimations on ONF plots throughout 2020 measurement sites.
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3.1.3. Height validation with CHMs

We compared  the  predicted  height  map  with  ALS CHM on 5  sites.  The  figure  8 shows visual 
comparison on two small areas: plains on the top line, and mountains on the bottom line. We can see 
that the patterns are well represented, even if we observe some local errors (e.g. center of the bottom 
line images). The 10m spatial resolution is well conserved in our product, despite some degradation 
expected from spatial texture indices.

Figure 8. Maps comparison between CHMs (left column) and the predicted height map (right columns) on a study site in the 
plain (top line) and another in the mountains (bottom line).

The figure  9 shows the comparison statistics between our height map and the CHMs. Heights are 
compared pixel to pixel. Although not representative of all French forests, these local Lidar maps show 
different types of forests, sylvicultural and environmental conditions. The results are very close to the 
previous validation with NFI plots (figure  6). The relative MAE is around 20%. Height prediction 
works slightly better in coniferous forests. Saturation is more pronounced for broadleaved. Table  3 
shows validation statistics on all  5 test  sites separately. Absolute errors range from 17 to 32% for 
deciduous forests, and 15 to 19% for coniferous forests. These results remain accurate on mountainous 
sites despite the slopes,  which introduce noise and can interfere with the relationship between the  
satellite signal and forest height.
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Figure 9. Validation of height estimation: pixel-based comparison between predicted height map and CHM maps. All 5 sites 
are gathered.

Table 3. Validation statistics for the comparison of the height map with the CHMs on the 5 sites.

Height map validation

site forest r2
MAE
(m)

rMAE
(%)

Andaine
managed forest, plain

All forests 0.48 4.1 18.0%

Broadleaved (66%) 0.49 4.1 19.0%

Coniferous (34%) 0.45 3.9 16.2%

CarcansHourtins
coniferous plantations, plain

All forests 0.54 2.3 19.0%

Broadleaved (6%) 0.28 3.4 25.1%

Coniferous (94%) 0.56 2.2 18.5%

Deodatie
mountainous area

All forests 0.48 5.0 21.2%
Broadleaved (24%) 0.32 5.7 32.4%
Coniferous (76%) 0.44 4.7 18.7%

Mouterhouse
mountainous area

All forests 0.40 4.4 17.1%

Broadleaved (11%) 0.44 4.6 17.5%

Coniferous (89%) 0.33 4.1 16.3%

LajouxFresse
mountainous area

All forests 0.53 4.1 16.2%

Broadleaved (65%) 0.50 4.7 27.3%

Coniferous (35%) 0.43 4.1 15.3%
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3.2. Volume and biomass maps

Once the height maps are produced, we need to convert these forest heights into volume and biomass. 
The NFI data downloaded provides us with the height and volume for each plot measured since 2005, 
and AGB was derived from volume using ratios from (Loustau et al., 2004). We used a power law to 
adjust the relationship between height and volume or biomass. Figure 10 shows the relationships and 
equations we calculated for broadleaved and coniferous. The correlations are strong, a little better for 
coniferous (r²=0.68) than for broadleaved forests (r²=0.6). Since AGB is derived directly from volume, 
the correlations are similar between volume and AGB.

We tested extracting different equations by SER or by GRECO, but the overall  results  were not 
significantly  improved so we preferred to  stay with  a  simple  solution differentiated only  between 
broadleaved and coniferous forests. 

Figure 10. Relationships between forest dominant height and above-ground biomass (AGB) and volume (VOL) within the 
French NFI dataset (2005-2021).

After extracting the equations linking height and volume/AGB, we applied these equations to our 
height map in France. Figure  11 shows the map of forest above-ground biomass in France, at 10m 
spatial resolution for the year 2020. As for the height map in Figure 5, we can observe the distribution 
of  forest  biomass  in  France.  The  zooms  in  the  figure  11 show different  forests  and  we  can  see 
significant biomass dynamics in the stands.
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Figure 11. France AGB map at 10m spatial resolution, derived from the height map produced using the method developed in 
this study.

3.2.1. AGB and volume validation with NFI plots

In order to validate these volume and AGB maps, we also applied the allometric equations to the 
heights of our map which had been crossed with the 2019-2020 NFI plots. Figures 12 and 13 show the 
validation of AGB and volume estimations on 2019 and 2020 NFI plots. The precision is less good than 
for height validation, with an MAE of 45% (40% for coniferous). Indeed, the calculation of the AGB 
and  the  volume  from  the  height  introduces  noise,  and  amplifies  the  saturation  in  particular  for 
broadleaved. Nevertheless, these results remain interesting and allow us to observe the dynamics of 
biomass and volume.
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Figure 12. Validation of above-ground biomass (AGB) estimations on NFI plots throughout France.

Figure 13. Validation of wood volume estimations on NFI plots throughout France.
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3.2.2. AGB and volume validation with ONF plots

AGB and volume prediction maps were also crossed with ONF plots. Figure  14 and  15 shows the 
validation statistics for volume and AGB respectively. The relative MAE are around 40% for the AGB 
and  38%  for  volume  estimations.  The  AGB  seems  slightly  overestimated  while  volume  is 
underestimated. The difference in AGB and volume calculation between this dataset and the national 
inventory may affect the results.

Figure 14. Validation of above-ground biomass (AGB) estimations on ONF plots throughout 2020 measurement sites.

Figure 15. Validation of wood volume estimations on ONF plots throughout 2020 measurement sites.
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4. Discussion and conclusion
The methodology presented in this document shows accurate overall results for the estimation and 

mapping of  forest  height,  and its  conversion into  volume and above-ground biomass  (AGB).  The 
processing chain was first designed for small dataset, this study shows that results are interesting on 
both  a  local  and  national  scale  using  GEDI  height  metrics  as  reference  data.  Optical  and  radar 
combination  with  spatial  texture  indices,  used  with  a  simple  machine  learning  algorithm,  allows 
accurate estimations of forest parameter both on a local and national scale.

Forest height, volume and AGB maps are available on Zenodo. The maps are from 2020, at 10 m 
spatial resolution, and the Copernicus Dominent Leaf Type (DLT, HRlayers) mask was applied to mask 
non-forest areas. Link to the maps: https://zenodo.org/doi/10.5281/zenodo.8071003.

The maps can be used on a local scale, the validation on the NFI plots and on the Lidar CHMs shows  
absolute errors around 20% for the height, 40-45% for the volume and AGB. These maps can help to 
implement forest management plans or carbon balances on a territorial scale.

A saturation effect persists in these estimations, doubled for AGB and volume because the power-law 
relationships between forest height and AGB or volume accentuate the saturation. The saturation comes 
partly from the fact that the satellite signal saturates for high values. It can also come in part from the  
distribution  of  the  input  data:  Gaussian  distributions  with  high  concentrations  of  average  values, 
making it difficult for simple algorithms to accurately estimate low and high values. The use of Linear  
Forest Regression, instead of a simple Random Forest regression, already mitigate this issue. Deep 
learning approaches could partly resolve the saturation problem, but they also make the transmission of 
the  method  more  complicated  and  make  difficult  the  interpretation  of  the  physics  behind  the 
relationships between satellite signal and forest parameters.
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