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Abstract

In this work we complement the description of the extreme rays of the 6 × 6 copositive cone with
some topological structure. In a previous paper we decomposed the set of extreme elements of this
cone into a disjoint union of pieces of algebraic varieties of different dimension. In this paper we link
this classification to the recently introduced combinatorial characteristic called extended minimal zero
support set. We determine those components which are essential, i.e., which are not embedded in the
boundary of other components. This allows to drastically decrease the number of cases one has to
consider when investigating different properties of the 6 × 6 copositive cone. As an application, we
construct an example of a copositive 6 × 6 matrix with unit diagonal which does not belong to the
Parrilo inner sum of squares relaxation K(1)

6 .

Keywords: copositive matrix, extreme ray, Parrilo relaxation, generic element
MSC: 15B48; 90C26

1 Introduction

An element A of the space Sn of real symmetric n×n matrices is called copositive if xTAx ≥ 0 for all vectors
x ∈ Rn

+. The set of such matrices forms the copositive cone COPn. This cone plays an important role in
non-convex optimization, as many difficult optimization problems can be reformulated as conic programs
over COPn. For a detailed survey of the applications of this cone see, e.g., [7, 2, 3, 13, 8].

An important characteristic of the copositive cone in relation to optimization over COPn are its extreme
rays. Knowledge of the extreme rays allows, e.g., to check the exactness of tractable inner relaxations of
the cone [5]. While the extreme rays of COPn for n ≤ 5 are well understood [9],[10], those of COP6

are completely classified [1], but the geometry and importance of different types of extreme elements is
still obscure. The classification consists of a finite list of parameterized analytic expressions together with
constraints on the parameters. Thus the extreme elements of COP6 constitute a finite union of pieces of
analytic (in fact, algebraic) manifolds.

In [1] the main tool for the classification of the extreme elements of COP6 was the minimal zero support
set introduced in [11]. However, it turned out that there can be several types of extreme elements, described
by different parameterized analytic expressions, which nevertheless share the same minimal zero support
set. Hence this characteristic is too coarse to explain the decomposition. A more adequate characteristic
has been developed in [12], the extended minimal zero support set. The latter was implicitly discovered
already in [6]. Elements of COPn which share the same extended minimal zero support set are described
by the same polynomial relations on their matrix entries, and hence lie on one algebraic manifold and are
described by the same parameterized analytic formula.

In this paper we review the classification of the exceptional extreme rays of COP6 in connection to the
extended minimal zero support set. It turns out that one given piece can contain matrices with different
extended minimal zero support sets, so the correspondence between pieces and support sets is not one-to-
one. However, for every piece there exists a single (we shall call it main) extended minimal zero support
set which characterizes almost all matrices in this piece, and the remaining matrices with different support
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sets lie on the boundary of the piece. In Section 2 we provide this main support set for each of the pieces
from [1]. The results are summarized in Table 1.

For some purposes, when using the classification, it is sufficient to consider only the main extended
zero support sets. Suppose, e.g., that we want to check inclusion of the extreme elements of COP6 into
some closed set C, and this is most simply done by examinating the extended minimal zero support sets of
extreme matrices. Then it is sufficient to check only the main support sets, because inclusion of the relative
interior of a piece in C implies also inclusion of its boundary by closedness of C.

However, this idea can be carried further, because one piece of extreme matrices can lie entirely on the
boundary of another piece, and in this case we do not need to consider the former. One of the results
presented in this paper is to single out those pieces of extreme matrices of COP6 which do not lie on the
boundary of another such piece. We shall call such a piece essential. It turns out that only few of the main
components are essential, which for some purposes leads to a significant reduction in complexity. The main
tool for detecting the considered topological relation between the components is the extended minimal zero
support set. The list of essential components is deduced in Section 3 and summarized in Theorem 3.2. It
may also be helpful in the study of the 6× 6 completely positive cone [16].

We apply the obtained reduction in complexity to investigate the exactness of the Parrilo K(1)
6 inner

approximating cone (see [15]) on the unit diagonal affine section of COP6. It is known that for n ≤ 5 the

corresponding affine sections of COPn and K(1)
n coincide [5], and that they do not coincide for n ≥ 7 [14].

In Section 4 we give a negative answer for the remaining case n = 6 by presenting an example of a matrix

in COP6 with unit diagonal which does not lie in K(1)
6 (Theorem 4.3).

1.1 Notations and preliminaries

The space of real symmetric matrices of size n×n will be denoted by Sn, the cone of positive semi-definite
such matrices by Sn

+.
A copositive matrix A ∈ COPn which is not the sum of a positive semi-definite matrix and an entry-

wise nonnegative matrix is called exceptional. A non-zero copositive matrix A ∈ COPn is called extremal
if whenever A = A1 +A2 with A1, A2 ∈ COPn, the summands A1, A2 must be nonnegative multiples of A.

For an index set I ⊂ {1, . . . , n}, denote by I its complement {1, . . . , n} \ I.
We shall denote vectors with lower-case letters and matrices with upper-case letters. Individual entries

of a vector u and a matrix A will be denoted by ui and Aij respectively. For a matrix A and a vector
u of compatible dimension, the i-th element of the matrix-vector product Au will be denoted by (Au)i.
Inequalities u ≥ 0 on vectors will be meant element-wise, where we denote by 0 = (0, . . . , 0)T the all-zeros
vector. Similarly we denote by 1 = (1, . . . , 1)T the all-ones vector. We further let ei be the unit vector with
i-th entry equal to one and all other entries equal to zero. For a subset I ⊂ {1, . . . , n} we denote by AI the
principal submatrix of A whose elements have row and column indices in I, i.e. AI = (Aij)i,j∈I ∈ S |I|. For
subsets I, J ⊂ {1, . . . , n} we denote by AI×J the submatrix of A whose elements have row indices in I and
column indices in J . Similarly for a vector u ∈ Rn we define the subvector uI = (ui)i∈I ∈ R|I|.

Let ∆ = {u ∈ Rn
+ | 1Tu = 1} be the standard simplex.

For a nonnegative vector u ∈ Rn
+ we define its support as suppu = {i ∈ {1, . . . , n} | ui > 0}.

A zero u of a copositive matrix A is called minimal if there exists no zero v of A such that the inclusion
supp v ⊂ suppu holds strictly. We shall denote the set of minimal zeros of a copositive matrix A by VA

min

and the ensemble of supports of the minimal zeros of A by suppVA
min. To each index set I there exists at

most one minimal zero u ∈ ∆ of A with suppu = I [11, Lemma 3.5], hence the minimal zero support set
suppVA

min is in bijective correspondence to the minimal zeros of A which are contained in ∆.
For a zero u of a copositive matrix A, the matrix-vector product Au is nonnegative. We call the set

compu := supp(Au) the complementary index set of the zero, and the pair esuppu = (suppu, compu) of
index sets the extended support. The ensemble of extended supports of the minimal zeros of A will be called
the extended minimal zero support set and denoted by esuppVA

min.
By [4, Lemma 2.5] we have that suppu ⊂ compu for every zero u of a copositive matrix A.
We now briefly recollect the necessary results from [12]. Let E = {(Iα, Jα)}α=1,...,m be a collection of

pairs of index sets. Define the sets

SE = {A ∈ COPn | esuppVA
min = E}, ZE = {A ∈ Sn | AIα×Jα is rank deficient ∀ α = 1, . . . ,m}.
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The set ZE is algebraic, given by the zero locus of a finite number of determinantal polynomials. The set
SE is a relatively open subset of ZE [12, Corollary 1].

If ZE is irreducible, then either SE does not contain extremal matrices at all, or all matrices in SE are
extremal except possibly in an algebraic subset [12]. Hence the set of extremal matrices of COPn is a finite
union of such sets SE , possibly minus some submanifolds of lower dimension. We shall call the sets SE in
this decomposition components of the set of extremal matrices of COPn. Extremal matrices in the same
component SE share the extended minimal zero support set E and hence many properties in connection to
zeros and positive semi-definiteness of submatrices.

Some components SE may be contained in the closure of others. This defines a hierarchical structure
on the ensemble of these components and motivates the following notion [1].

Definition 1.1. A component of extremal matrices of COPn is called essential if it is not contained in the
closure of another such component.

This notion is useful in the following situation.

Lemma 1.2. Let C ⊂ Sn be a closed convex set. Then COPn ⊂ C if and only if all essential components
of extremal matrices of COPn are contained in C.

Proof. Clearly if COPn ⊂ C, then all extremal matrices of COPn are contained in C, and hence all
components of extremal matrices.

Let us show the reverse implication. Since C is closed, it contains the boundaries of all essential
components. But then by definition all non-essential components of extreme matrices are contained in C,
and C contains all extreme matrices of COPn. The desired inclusion then follows from convexity of C.

2 Extended minimal zero support sets of main components

In this section we determine the generic extended minimal zero support set for the pieces of exceptional
extreme matrices of COP6 obtained in [1]. These sets are provided in Table 1.

The extreme matrices of COP6 have been classified in [1] with respect to their minimal zero support
sets, which are listed in Table 1 of that paper. For each case, the corresponding extreme matrices are given
by one or several analytic expressions which are parameterized by the diagonal elements of some scaling
matrix D and may be by some angles ϕj ([1, Section 5]). The minimal zeros of these matrices depend on
the same parameters.

However, matrices having the same minimal zero support set can belong to different components SE ,
i.e., have different extended minimal zero support sets. To determine the extended minimal zero support set
of an analytically given copositive matrix A with known minimal zeros is straightforward. To this end, one
has to determine the complement Jα of the support of the product Auα for each minimal zero uα of A, i.e.,
to find those indices i such that (Auα)i = 0. The expression (Auα)i depends on the parameters entering
in the analytic expression of A and uα. In particular, whether (Auα)i = 0 depends only on the angles
ϕj . Therefore different values of the parameters ϕj may yield different index sets Jα and hence a different
extended minimal zero support set esuppVA

min. Larger complementary supports correspond to additional
equality relations on ϕj , and the corresponding component of extreme matrices has lower dimension.

The derivation of the support sets is straightforward, and we shall demonstrate it in detail on one
example, namely the extreme matrices corresponding to minimal zero support set 13 in [1, Table 1].

Example: Minimal zero support set I = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {1, 5, 6}, {1, 2, 6}}. The
extreme matrices with this support set are of the form X = DAD, where

A =


1 − cosϕ1 cos(ϕ1+ϕ2) − cos(ϕ1+ϕ2+ϕ3) cos(ϕ5+ϕ6) − cosϕ6

− cosϕ1 1 − cosϕ2 cos(ϕ2+ϕ3) A25 cos(ϕ1+ϕ6)

cos(ϕ1+ϕ2) − cosϕ2 1 − cosϕ3 cos(ϕ3+ϕ4) − cos(ϕ3+ϕ4+ϕ5)

− cos(ϕ1+ϕ2+ϕ3) cos(ϕ2+ϕ3) − cosϕ3 1 − cosϕ4 cos(ϕ4+ϕ5)

cos(ϕ5+ϕ6) A25 cos(ϕ3+ϕ4) − cosϕ4 1 − cosϕ5

− cosϕ6 cos(ϕ1+ϕ6) − cos(ϕ3+ϕ4+ϕ5) cos(ϕ4+ϕ5) − cosϕ5 1

 , (1)
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D is a positive definite diagonal matrix, ϕi > 0,
∑6

j=1 ϕj < 2π, ϕi + ϕi+1 < π, i = 1, . . . , 5, ϕ1 + ϕ6 < π,
ϕ1 + ϕ2 + ϕ3 ≥ ϕ4 + ϕ5 + ϕ6, ϕ3 + ϕ4 + ϕ5 ≥ ϕ1 + ϕ2 + ϕ6. In addition, if ϕ2 + ϕ3 + ϕ4 ≥ ϕ1 + ϕ5 + ϕ6,
then A25 = − cos(ϕ2 + ϕ3 + ϕ4), and if ϕ2 + ϕ3 + ϕ4 ≤ ϕ1 + ϕ5 + ϕ6, then A25 = − cos(ϕ1 + ϕ5 + ϕ6).

Furthermore,
∑6

j=1 ϕj ̸= π, or at least two of the three non-strict inequalities are equalities. The two cases
with different expression for A25 have been listed in [1] as 13.1 and 13.2, respectively.

If u is a minimal zero of A, then D−1u is a minimal zero of X, and the supports of u and D−1u as well
as Au and XD−1u = DAu are the same. Therefore the extended minimal zero support set of X equals
that of A. The minimal zeros u1, . . . , u6 of A are given by the columns of the matrix

U =


sinϕ2 0 0 0 sinϕ5 sin(ϕ1 + ϕ6)

sin(ϕ1 + ϕ2) sinϕ3 0 0 0 sinϕ6

sinϕ1 sin(ϕ2 + ϕ3) sinϕ4 0 0 0
0 sinϕ2 sin(ϕ3 + ϕ4) sinϕ5 0 0
0 0 sinϕ3 sin(ϕ4 + ϕ5) sinϕ6 0
0 0 0 sinϕ4 sin(ϕ5 + ϕ6) sinϕ1

 . (2)

Let us compute the extended support sets of these zeros. The products Auα appear in the columns of the
matrix product AU , which equals

0 0 c56 sin(ϕ3) c456 sin(ϕ5) 0 0
0 0 0 c16 sin(ϕ4) c156 sin(ϕ6) 0
0 0 0 0 c12 sin(ϕ5) c126 sin(ϕ1)
0 0 0 0 c456 sin(ϕ5) c45 sin(ϕ1)

c56 sin(ϕ2) 0 0 0 0 c156 sin(ϕ6)
c126 sin(ϕ1) c16 sin(ϕ3) 0 0 0 0


in case 13.1 and

0 0 c56 sin(ϕ3) c456 sin(ϕ5) 0 0
0 0 c234 sin(ϕ3) c23 sin(ϕ5) 0 0
0 0 0 0 c12 sin(ϕ5) c126 sin(ϕ1)
0 0 0 0 c456 sin(ϕ5) c45 sin(ϕ1)

c34 sin(ϕ1) c234 sin(ϕ3) 0 0 0 0
c126 sin(ϕ1) c16 sin(ϕ3) 0 0 0 0


in case 13.2. Here we denoted for brevity

cij = cos(ϕi + ϕj)− cos
∑

k ̸∈{i,j}

ϕk, cijk = cos(ϕi + ϕj + ϕk)− cos
∑

l ̸∈{i,j,k}

ϕl.

Note that sinϕi > 0 for all i, and the expressions cij are also positive wherever they appear, because if
0 < ϕ < ϕ′ with ϕ + ϕ′ < 2π, then cosϕ > cosϕ′. Hence the complementary supports can change only in
dependence on whether the expressions cijk are zero or positive. We obtain for the complementary supports

J1\I1 =

{
{4}, ϕ3 + ϕ4 + ϕ5 > ϕ1 + ϕ2 + ϕ6,

{4, 6}, ϕ3 + ϕ4 + ϕ5 = ϕ1 + ϕ2 + ϕ6,
J2\I2 =

{
{1, 5}, ϕ2 + ϕ3 + ϕ4 ≥ ϕ1 + ϕ5 + ϕ6,
{1}, ϕ2 + ϕ3 + ϕ4 < ϕ1 + ϕ5 + ϕ6,

J3\I3 =

{
{6}, ϕ2 + ϕ3 + ϕ4 < ϕ1 + ϕ5 + ϕ6,

{2, 6}, ϕ2 + ϕ3 + ϕ4 ≥ ϕ1 + ϕ5 + ϕ6,
J4\I4 =

{
{1, 3}, ϕ1 + ϕ2 + ϕ3 = ϕ4 + ϕ5 + ϕ6,
{3}, ϕ1 + ϕ2 + ϕ3 > ϕ4 + ϕ5 + ϕ6,

J5 \ I5 =


{4}, ϕ2 + ϕ3 + ϕ4 > ϕ1 + ϕ5 + ϕ6, ϕ1 + ϕ2 + ϕ3 = ϕ4 + ϕ5 + ϕ6,

{2, 4}, ϕ2 + ϕ3 + ϕ4 ≤ ϕ1 + ϕ5 + ϕ6, ϕ1 + ϕ2 + ϕ3 = ϕ4 + ϕ5 + ϕ6,
∅, ϕ2 + ϕ3 + ϕ4 > ϕ1 + ϕ5 + ϕ6, ϕ1 + ϕ2 + ϕ3 > ϕ4 + ϕ5 + ϕ6,

{2}, ϕ2 + ϕ3 + ϕ4 ≤ ϕ1 + ϕ5 + ϕ6, ϕ1 + ϕ2 + ϕ3 > ϕ4 + ϕ5 + ϕ6,

J6 \ I6 =


{3}, ϕ2 + ϕ3 + ϕ4 > ϕ1 + ϕ5 + ϕ6, ϕ3 + ϕ4 + ϕ5 = ϕ1 + ϕ2 + ϕ6,

{3, 5}, ϕ2 + ϕ3 + ϕ4 ≤ ϕ1 + ϕ5 + ϕ6, ϕ3 + ϕ4 + ϕ5 = ϕ1 + ϕ2 + ϕ6,
∅, ϕ2 + ϕ3 + ϕ4 > ϕ1 + ϕ5 + ϕ6, ϕ3 + ϕ4 + ϕ5 > ϕ1 + ϕ2 + ϕ6,

{5}, ϕ2 + ϕ3 + ϕ4 ≤ ϕ1 + ϕ5 + ϕ6, ϕ3 + ϕ4 + ϕ5 > ϕ1 + ϕ2 + ϕ6.
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Since always Iα ⊂ Jα, we provided only the differences of the two sets for brevity.
Thus the extended minimal zero support set depends on whether ϕ2 + ϕ3 + ϕ4 is smaller, equal, or

greater than ϕ1 + ϕ5 + ϕ6, on whether ϕ3 + ϕ4 + ϕ5 is greater or equal to ϕ1 + ϕ2 + ϕ6, and on whether
ϕ1 + ϕ2 + ϕ3 is greater or equal to ϕ4 + ϕ5 + ϕ6. Together this yields 12 different combinations, so the
set of extreme matrices with minimal zero support set I decomposes into 12 components SE for different
extended minimal zero support sets E . Some of these components are equivalent under permutations of the
index set {1, . . . , 6}.

Clearly only the combinations with exclusively strict inequalities on the ϕi yield components which do
not lie on the boundary of components generated by other combinations. We shall call such components
main components. We hence obtain as the main component for case 13.1 the complementary supports

J1 = {1, 2, 3, 4}, J2 = {1, 2, 3, 4, 5}, J3 = {2, 3, 4, 5, 6}, J4 = {3, 4, 5, 6}, J5 = {1, 5, 6}, J6 = {1, 2, 6},

corresponding to the combination ϕ2+ϕ3+ϕ4 > ϕ1+ϕ5+ϕ6, ϕ3+ϕ4+ϕ5 > ϕ1+ϕ2+ϕ6, ϕ1+ϕ2+ϕ3 >
ϕ4 + ϕ5 + ϕ6, and for case 13.2

J1 = {1, 2, 3, 4}, J2 = {1, 2, 3, 4}, J3 = {3, 4, 5, 6}, J4 = {3, 4, 5, 6}, J5 = {1, 2, 5, 6}, J6 = {1, 2, 5, 6},

corresponding to the combination ϕ2+ϕ3+ϕ4 < ϕ1+ϕ5+ϕ6, ϕ3+ϕ4+ϕ5 > ϕ1+ϕ2+ϕ6, ϕ1+ϕ2+ϕ3 >
ϕ4 +ϕ5 +ϕ6. Thus each of the two pieces are contained in the closure of a single component SE of extreme
matrices, which justifies the notation ”main”.

It turns out that this holds for all pieces of exceptional extreme matrices in the classification in [1]:
almost all matrices in each piece belong to a single component, while the rest is located on the boundary of
this component. As in the above example, one computes the extended minimal zero support sets for these
main components of the other pieces. The result is provided in Table 1. For brevity we present only the
differences Jα \ Iα, along with the dimension of each component, taken from [1, Table 2].

3 Essential components of extremal matrices in COP6

In this section we investigate which of the obtained 22 main components of exceptional extreme matrices
listed in Table 1 are essential, i.e., do not lie on the boundary of other main components. The main tool is
the following result, which is a consequence of [12, Lemma 6].

Lemma 3.1. Let a component SE′ of extremal matrices be contained in the closure of another component
SE . Let E = {(Iα, Jα)}α=1,...,m, E ′ = {(I ′α, J ′

α)}α=1,...,m′ . Then for every α = 1, . . . ,m there exists
α′ ∈ {1, . . . ,m′} such that I ′α′ ⊂ Iα, Jα ⊂ J ′

α′ .

Note that as in the classification in [1], Table 1 lists the extended minimal zero support sets of the main
components only up to a permutation of the index set {1, . . . , 6}. This means that every entry in Table 1
stands for potentially up to 6! = 720 different main components, and each of these components can contain
another main component from Table 1 in its boundary. We hence have to allow for this freedom when
checking the criterion in Lemma 3.1 on pairs of extended minimal zero support sets from Table 1. Direct
verification of the criterion in conjunction with a strict inequality between the dimension of the components
(the boundary of SE can contain SE′ only if dim SE > dim SE′) yields the set of potential pairs satisfying
an inclusion relation which is listed in Table 2.

From Table 2 it follows that the main components corresponding to cases 13.1,13.2,16,17,19 are essential.
For the remaining 17 components we now show that they lie on the boundary of other components and are
hence non-essential, by providing an appropriate permutation of the indices {1, . . . , 6} and an explicit limit.

� Case O5 is in the closure of Case 18 when the last row and column tend to zero.

� Case 14 is in the closure of Case 1 after the substitution ϕ1 → 0, ϕ2 → 0.

� Case 1 is in the closure of Case 2 after the substitution ϕ1 → ϕ2, ϕ2 → 0, ϕ3 → π − ϕ1 − ϕ2.

� Case 2 is in the closure of Case 3 after the permutation (124356) and the substitution ϕ1 → ϕ1,
ϕ2 → π − ϕ1,ϕ3 → ϕ3, ϕ4 → ϕ2.
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� Case 3 is in the closure of Case 5 after the permutation (152346) and the substitution ϕ1 → ϕ1,ϕ2 →
(π − ϕ1 − ϕ2),ϕ3 → ϕ4, ϕ4 → ϕ3,ϕ5 → 0.

� Case 10 is in the closure of Case 17 after the permutation (241536) and the substitution ϕ1 → ϕ3,
ϕ2 → ϕ2, ϕ3 → 0, ϕ4 → π − ϕ1 − ϕ2, ϕ5 → ϕ6, ϕ6 → ϕ5, ϕ7 → ϕ4.

� Case 11 is in the closure of Case 19 after the permutation (514263) and the substitution ϕ1 → ϕ4,
ϕ2 → ϕ1, ϕ3 → ϕ2, ϕ4 → ϕ3, ϕ5 → ϕ5, ϕ6 → π − ϕ2 − ϕ6, ϕ7 → π − ϕ6 + ϕ3, a24 → cos(ϕ4 + ϕ5),
a36 → b3.

� Case 12 is in the closure of Case 19 after the permutation (152463) and the substitution ϕ1 → ϕ6,
ϕ2 → ϕ3, ϕ3 → ϕ2, ϕ4 → ϕ1, ϕ5 → ϕ5, ϕ6 → ϕ4, ϕ7 → π − ϕ5 − ϕ7, a24 → b1, a36 → − cosϕ7.

� Part 0 ≤ ϕ6 < ϕ2 of case 18 is in the closure of case 16 after the permutation (631254) and the
substitution ϕ1 → ϕ5, ϕ2 → ϕ1, ϕ3 → ϕ2 − ϕ6, ϕ4 → ϕ2, ϕ5 → ϕ4, ϕ6 → ϕ3 + ϕ6, ϕ7 → ϕ3. Using
the permutation (213654) instead we obtain the part −ϕ3 < ϕ6 ≤ 0 of case 18, because this part is
obtained from the former part by the permutation (432156). As a result, Case 18 is in the closure
of Case 16.

� Case 15 is in the closure of Case 16 after the permutation (654321) and the substitution ϕ1 → ϕ4,
ϕ2 → ϕ5, ϕ3 → ϕ3, ϕ4 → π − ϕ5 − ϕ6, ϕ5 → ϕ1, ϕ6 → ϕ2, ϕ7 → 0.

� Case 9.1 is in the closure of Case 16 after the permutation (241356) and the substitution ϕ1 → ϕ1,
ϕ2 → ϕ2, ϕ3 → 0, ϕ4 → π − ϕ2 − ϕ3, ϕ5 → ϕ4, ϕ6 → ϕ5, ϕ7 → ϕ6.

� Case 9.2 is in the closure of Case 16 after the permutation (643152) and the substitution ϕ1 → ϕ1,
ϕ2 → ϕ4, ϕ3 → ϕ5, ϕ4 → ϕ6, ϕ5 → ϕ2, ϕ6 → 0, ϕ7 → π − ϕ2 − ϕ3.

� Case 8 is in the closure of Case 16 after the permutation (316452) and the substitution ϕ1 → 0,
ϕ2 → ϕ5, ϕ3 → ϕ4, ϕ4 → ϕ6, ϕ5 → ϕ2, ϕ6 → ϕ1, ϕ7 → ϕ3.

� Case 5 is in the closure of Case 16 after the permutation (654132) and the substitution ϕ1 → ϕ2,
ϕ2 → ϕ1, ϕ3 → ϕ3, ϕ4 → ϕ4, ϕ5 → ϕ5, ϕ6 → 0, ϕ7 → 0.

� Case 7 is in the closure of Case 16 after the permutation (463125) and the substitution ϕ1 → ϕ3,
ϕ2 → ϕ4, ϕ3 → 0, ϕ4 → ϕ5, ϕ5 → ϕ2, ϕ6 → ϕ1, ϕ7 → 0.

� Case 6 is in the closure of Case 16 after the permutation (426135) and the substitution ϕ1 → ϕ3,
ϕ2 → ϕ2, ϕ3 → 0, ϕ4 → π − ϕ2 − ϕ4, ϕ5 → ϕ1, ϕ6 → 0, ϕ7 → ϕ5.

� Case 4 is in the closure of Case 16 after the permutation (645213) and the substitution ϕ1 → ϕ3,
ϕ2 → ϕ2, ϕ3 → 0, ϕ4 → ϕ1, ϕ5 → ϕ4, ϕ6 → 0, ϕ7 → 0.

We obtain the following result.

Theorem 3.2. Out of the 22 mutually non-equivalent main components of exceptional extremal matrices
in COP6 exactly the 5 components 13.1,13.2,16,17,19 in Table 1 are essential.

Let us remark that in the case of the cone COP5, there are two mutually non-equivalent components of
exceptional extremal matrices, of which one is essential.

4 Relation of COP6 and the Parrilo cone K(1)
6

In [15, Theorem 5.2] the following inner approximation of the copositive cone COPn was established. The

cone K(1)
n is defined as the set of matrices A ∈ Sn such that there exist symmetric matrices Λ1, . . . ,Λn ∈ Sn

satisfying
M i := A− Λi ⪰ 0, Λi

ii = 0, Λi
jj + 2Λj

ij = 0, mijk := Λi
jk + Λj

ik + Λk
ij ≥ 0 (3)

for all distinct i, j, k ∈ {1, . . . , n}. In this section we shall construct an extreme matrix A ∈ COP6 \ K(1)
6

with unit diagonal. By [15, Theorem 5.2] any such matrix must be exceptional.
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If such a counterexample exists, it must lie in one of the components of exceptional extreme matrices.

But the cone K(1)
6 is closed, and so is its affine section consisting of unit diagonal matrices. Hence there

must be at least one essential component which also contains matrices in the difference A ∈ COP6 \ K(1)
6

with unit diagonal. It is hence sufficient to search for a counterexample in the essential components. The
counterexample constructed below was found in the main component corresponding to case 13.1.

We briefly outline our strategy. First we show that if x is a zero of a matrix A ∈ K(1)
n , then x must be in

the kernel of the matrices M i with i ∈ supp x. If A is in the main component corresponding to case 13.1 in
Table 1, then these zeros are sufficiently numerous to determine the M i completely. We then derive explicit

conditions on the angles ϕi such that A ∈ K(1)
n and construct an example which violates these conditions.

Lemma 4.1. Let A ∈ K(1)
n , let x be a zero of A, and let M i,Λi be as in (3). Then M ix = 0 for every

i ∈ supp x.

Proof. By definition we have xTAx = 0 and hence

0 ≤
n∑

i=1

xi · (xTM ix) = −
n∑

i=1

xi · (xTΛix) = −
n∑

i,j,k=1

Λi
jkxixjxk ≤ 0,

because the totally symmetric part of the tensor Λi
jk is element-wise nonnegative, and x ≥ 0. It follows

that xi · (xTM ix) = 0 for all i, which yields the desired conclusion by virtue of M i ⪰ 0.

Corollary 4.2. Let xα, xβ be minimal zeros of A ∈ K(1)
n with extended supports (Iα, Jα), (Iβ , Jβ), respec-

tively, and suppose that Iα ∪ Iβ ⊂ Jα ∩ Jβ. Then with M i as in the previous lemma we have M ixα = 0 for
all i ∈ Iα ∪ Iβ.

Proof. Since Iβ ⊂ Jα, we have (xβ)TAxα = 0. But then (xα + xβ)TA(xα + xβ) = 0, and xα + xβ is a zero
of A with support Iα ∪ Iβ . By the previous lemma we obtain that xα + xβ is in the kernel of M i for all
i ∈ Iα ∪ Iβ . However, also by this lemma xα is in the kernel of M i for all i ∈ Iα, and xβ is in the kernel of
M i for all i ∈ Iβ . The claim of the corollary now follows.

Let now A be of the form (1) with A25 = − cos(ϕ2 + ϕ3 + ϕ4) and ϕi satisfying the conditions

ϕi > 0,

6∑
j=1

ϕj < 2π, ϕi + ϕi+1 < π, ϕ1 + ϕ6 < π,

6∑
j=1

ϕj ̸= π,

ϕ1 + ϕ2 + ϕ3 > ϕ4 + ϕ5 + ϕ6, ϕ3 + ϕ4 + ϕ5 > ϕ1 + ϕ2 + ϕ6, ϕ2 + ϕ3 + ϕ4 > ϕ1 + ϕ5 + ϕ6,

(4)

i.e., A is in the main component corresponding to case 13.1 in Table 1.

We shall deduce when the inclusion A ∈ K(1)
6 is valid. Let M i,mijk be as in (3). Recall that the minimal

zeros x1, . . . , x6 of A are given by the columns of (2), and let (Iα, Jα) be the extended support set of xα.
By virtue of Table 1 we have Iα∪Iβ ⊂ Jα∩Jβ for (α, β) = (1, 2), (2, 3), (3, 4). By Lemma 4.1 and Corollary
4.2 we then have that M1 is orthogonal to x1, x2, x5, x6, M2 to x1, x2, x3, x6, M3 and M4 to x1, x2, x3, x4,
M5 to x2, x3, x4, x5, and M6 to x3, x4, x5, x6.

It is easily seen that the listed quadruples of minimal zeros are linearly independent, and the M i have
to be of rank at most 2. Direct verification shows that the ranges of M i are contained the column spaces
of the matrices

R1 =


1 0

− cosϕ1 sinϕ1

cos(ϕ1 + ϕ2) − sin(ϕ1 + ϕ2)
− cos(ϕ1 + ϕ2 + ϕ3) sin(ϕ1 + ϕ2 + ϕ3)

cos(ϕ5 + ϕ6) sin(ϕ5 + ϕ6)
− cos(ϕ6) − sin(ϕ6)

 , R2 =


− cos(ϕ1) − sin(ϕ1)

1 0
− cosϕ2 sinϕ2

cos(ϕ2 + ϕ3) − sin(ϕ2 + ϕ3)
− cos(ϕ2 + ϕ3 + ϕ4) sin(ϕ2 + ϕ3 + ϕ4)

cos(ϕ1 + ϕ6) sin(ϕ1 + ϕ6)

 ,
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R3 =


cos(ϕ1 + ϕ2) sin(ϕ1 + ϕ2)
− cos(ϕ2) − sin(ϕ2)

1 0
− cosϕ3 sinϕ3

cos(ϕ3 + ϕ4) − sin(ϕ3 + ϕ4)
− cos(ϕ3 + ϕ4 + ϕ5) sin(ϕ3 + ϕ4 + ϕ5)

 , R4 =


− cos(ϕ1 + ϕ2 + ϕ3) − sin(ϕ1 + ϕ2 + ϕ3)

cos(ϕ2 + ϕ3) sin(ϕ2 + ϕ3)
− cos(ϕ3) − sin(ϕ3)

1 0
− cosϕ4 sinϕ4

cos(ϕ4 + ϕ5) − sin(ϕ4 + ϕ5)

 ,

R5 =


cos(ϕ5 + ϕ6) − sin(ϕ5 + ϕ6)

− cos(ϕ2 + ϕ3 + ϕ4) − sin(ϕ2 + ϕ3 + ϕ4)
cos(ϕ3 + ϕ4) sin(ϕ3 + ϕ4)
− cos(ϕ4) − sin(ϕ4)

1 0
− cosϕ5 sinϕ5

 , R6 =


− cosϕ6 sinϕ6

cos(ϕ1 + ϕ6) − sin(ϕ1 + ϕ6)
− cos(ϕ3 + ϕ4 + ϕ5) − sin(ϕ3 + ϕ4 + ϕ5)

cos(ϕ4 + ϕ5) sin(ϕ4 + ϕ5)
− cos(ϕ5) − sin(ϕ5)

1 0

 ,

respectively, such that M i = RiDi(Ri)T with Di ∈ S2
+.

The conditions Aii = 1 = M i
ii lead to Di

11 = 1 for all i. Further with

j =

{
i+ 1, i = 1, . . . , 5;

1, i = 6

the conditions 2Aij = 2M i
ij + 2Λi

ij = 2M i
ij − Λj

ii = 2M i
ij +M j

ii −Aii become

−2 cosϕi = 2 ·
(
1
0

)T (
1 Di

12

Di
12 Di

22

)(
− cosϕi

sinϕi

)
+

(
− cosϕi

− sinϕi

)T (
1 Dj

12

Dj
12 Dj

22

)(
− cosϕi

− sinϕi

)
− 1,

which simplifies to
2Di

12 + 2Dj
12 · cosϕi + (Dj

22 − 1) · sinϕi = 0.

Similarly, the conditions 2Aij = 2M j
ij + 2Λj

ij = 2M j
ij − Λi

jj = 2M j
ji +M i

jj −Ajj become

−2 cosϕi = 2 ·
(
1
0

)T (
1 Dj

12

Dj
12 Dj

22

)(
− cosϕi

− sinϕi

)
+

(
− cosϕi

sinϕi

)T (
1 Di

12

Di
12 Di

22

)(
− cosϕi

sinϕi

)
− 1,

which simplifies to
−2Dj

12 − 2Di
12 · cosϕi + (Di

22 − 1) · sinϕi = 0.

This yields a homogeneous linear system of equations on the quantities 2D1
12, . . . , 2D

6
12, D

1
22−1, . . . , D6

22−1
with coefficient matrix

1 cosϕ1 sinϕ1

1 cosϕ2 sinϕ2

1 cosϕ3 sinϕ3

1 cosϕ4 sinϕ4

1 cosϕ5 sinϕ5

cosϕ6 1 sinϕ6

− cosϕ1 −1 sinϕ1

− cosϕ2 −1 sinϕ2

− cosϕ3 −1 sinϕ3

− cosϕ4 −1 sinϕ4

− cosϕ5 −1 sinϕ5

−1 − cosϕ6 sinϕ6



.

The determinant of this matrix is a non-vanishing trigonometric polynomial in ϕ1, . . . , ϕ6, and hence for
almost all values of these angles we must have Di

12 = 0, Di
22 = 1 for all i. This determines the matrices

M i = Ri(Ri)T and hence the Λi = A−Ri(Ri)T completely.
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Direct calculation yields that 12 of the 20 independent mijk are zero, and the remaining are given by

m125 = cos(ϕ1+ϕ5+ϕ6)−cos(ϕ2+ϕ3+ϕ4)+cos(ϕ5+ϕ6)−cos(ϕ1+ϕ2+ϕ3+ϕ4)−cos(ϕ1)+cos(ϕ2+ϕ3+ϕ4+ϕ5+ϕ6),

m135 = [cos(ϕ1+ϕ2)−cos(ϕ3+ϕ4+ϕ5+ϕ6)]+[cos(ϕ5+ϕ6)−cos(ϕ1+ϕ2+ϕ3+ϕ4)]+[cos(ϕ3+ϕ4)−cos(ϕ1+ϕ2+ϕ5+ϕ6)],

m136 = cos(ϕ1+ϕ2+ϕ6)−cos(ϕ3+ϕ4+ϕ5)+cos(ϕ1+ϕ2)−cos(ϕ3+ϕ4+ϕ5+ϕ6)−cos(ϕ6)+cos(ϕ1+ϕ2+ϕ3+ϕ4+ϕ5),

m145 = cos(ϕ4+ϕ5+ϕ6)−cos(ϕ1+ϕ2+ϕ3)+cos(ϕ5+ϕ6)−cos(ϕ1+ϕ2+ϕ3+ϕ4)−cos(ϕ4)+cos(ϕ1+ϕ2+ϕ3+ϕ5+ϕ6),

m146 = cos(ϕ4+ϕ5+ϕ6)−cos(ϕ1+ϕ2+ϕ3)+cos(ϕ4+ϕ5)−cos(ϕ1+ϕ2+ϕ3+ϕ6)−cos(ϕ6)+cos(ϕ1+ϕ2+ϕ3+ϕ4+ϕ5),

m236 = cos(ϕ1+ϕ2+ϕ6)−cos(ϕ3+ϕ4+ϕ5)+cos(ϕ1+ϕ6)−cos(ϕ2+ϕ3+ϕ4+ϕ5)−cos(ϕ2)+cos(ϕ1+ϕ3+ϕ4+ϕ5+ϕ6),

m246 = [cos(ϕ2+ϕ3)−cos(ϕ1+ϕ4+ϕ5+ϕ6)]+[cos(ϕ1+ϕ6)−cos(ϕ2+ϕ3+ϕ4+ϕ5)]+[cos(ϕ4+ϕ5)−cos(ϕ1+ϕ2+ϕ3+ϕ6)],

m256 = cos(ϕ1+ϕ5+ϕ6)−cos(ϕ2+ϕ3+ϕ4)+cos(ϕ1+ϕ6)−cos(ϕ2+ϕ3+ϕ4+ϕ5)−cos(ϕ5)+cos(ϕ1+ϕ2+ϕ3+ϕ4+ϕ6).

In order for A to be in K(1)
6 all mijk have to be nonnegative (and this is actually an equivalence). This

is, however, not guaranteed by conditions (4). Note that for 0 < ϕ < ϕ′ such that ϕ + ϕ′ < 2π we have
cosϕ− cosϕ′ ≥ 0. This yields nonnegativity of the expressions in square brackets and hence nonnegativity
of m135,m246. The other mijk may be negative, however, as the following example shows.

For
ϕ1 = 0.20π, ϕ2 = 0.29π, ϕ3 = 0.30π, ϕ4 = 0.23π, ϕ5 = 0.06π, ϕ6 = 0.02π

we get m136 < − 4
3 , and the above-mentioned determinant of the linear system on Di

12, D
i
22 is non-zero. We

obtain the following result.

Theorem 4.3. There exist matrices with unit diagonal in the difference COP6 \ K(1)
6 . An example is the

extreme copositive matrix
1 − cos(0.20π) cos(0.49π) − cos(0.79π) cos(0.08π) − cos(0.02π)

− cos(0.20π) 1 − cos(0.29π) cos(0.59π) − cos(0.82π) cos(0.22π)
cos(0.49π) − cos(0.29π) 1 − cos(0.30π) cos(0.53π) − cos(0.59π)
− cos(0.79π) cos(0.59π) − cos(0.30π) 1 − cos(0.23π) cos(0.29π)
cos(0.08π) − cos(0.82π) cos(0.53π) − cos(0.23π) 1 − cos(0.06π)
− cos(0.02π) cos(0.22π) − cos(0.59π) cos(0.29π) − cos(0.06π) 1

 .
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No. sets main extended minimal zero support set dim

O5 Iα {1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5},{6} 10
Jα \ Iα ∅,∅,∅,∅,∅,{1,2,3,4,5}

1 Iα {1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6} 8
Jα \ Iα {3,4,5},{2,4,6},{2,3},{1,6},{1,5},∅

2 Iα {1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6} 9
Jα \ Iα {3,4,5},{2,4,6},{2,3},{1,6},∅,∅

3 Iα {1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6} 10
Jα \ Iα {3,4,5},{2,4},{2,3,6},∅,∅,∅

4 Iα {1,2},{1,3},{2,4},{3,4,5},{1,5,6},{4,5,6} 10
Jα \ Iα {3,4,6},{2,6},{1,5},∅,∅,∅

5 Iα {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6} 11
Jα \ Iα {3,5},{2,5,6},∅,∅,∅,∅

6 Iα {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,5,6} 11
Jα \ Iα {3,4},{2,5,6},∅,∅,∅,{1}

7 Iα {1,5},{2,6},{1,2,3},{2,3,4},{3,4,5},{4,5,6}
Jα \ Iα {2,4},{1,3},{6},∅,∅,∅ 11

8 Iα {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6}
Jα \ Iα {3,6},{5},{4},∅,∅,∅ 12

9 Iα {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{4,5,6}
9.1 Jα \ Iα {3,6},∅,∅,{5},∅,{2} 12
9.2 Jα \ Iα {3,5,6},∅,{2},∅,∅,∅ 12

10 Iα {1,2},{1,3,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6} 12
Jα \ Iα {3,6},∅,∅,{5},∅,{2}

11 Iα {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6} 12
Jα \ Iα {5},{5},{3,4},∅,∅,{5}

12 Iα {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6} 13
Jα \ Iα ∅,{5},{4},∅,∅,{4}

13 Iα {1,2,3},{2,3,4},{3,4,5},{4,5,6},{1,5,6},{1,2,6}
13.1 Jα \ Iα {4},{1,5},{2,6},{3},∅,∅ 12
13.2 Jα \ Iα {4},{1},{6},{3},{2},{5} 12

14 Iα {1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6} 6
Jα \ Iα {3,4,5},{2,4,6},{2,3,5},{1,4,6},{1,2,6},{1,5},{2,3,4}

15 Iα {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
Jα \ Iα {3,4},{2},∅,∅,∅,∅,∅ 12

16 Iα {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6},{3,5,6}
Jα \ Iα ∅,∅,∅,∅,∅,{5},{4} 13

17 Iα {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6},{4,5,6} 13
Jα \ Iα ∅,∅,∅,∅,∅,{4},{3}

18 Iα {1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5},{3,4,6},{1,4,6},{1,2,6} 12
Jα \ Iα ∅,∅,{6},{6},{6},{5},{5},{5}

19 Iα {3,4,5},{1,4,5},{1,2,5},{1,2,3},{1,5,6},{2,3,4,6}
Jα \ Iα ∅,{6},∅,∅,{4},∅ 14

Table 1: Extended minimal support sets E = {(Iα, Jα)}α=1,...,m and dimensions of main components of
exceptional extreme matrices in COP6. Since Iα ⊂ Jα, for brevity only Iα and Jα \ Iα are given for each
minimal zero.
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No. may possibly be in the closure of

O5 8,16,17
1 2,3,4,5,6,7,8,9.1,9.2,10,15,16,17
2 3,4,5,6,7,8,9.1,9.2,10,15,16,17
3 5,9.2,15,16,17
4 5,6,7,8,9.1,9.2,10,15,16,17
5 9.2,15,16,17
6 8,9.1,9.2,10,16,17
7 8,9.1,10,15,16,17
8 16
9.1 16
9.2 16,17
10 17
11 19
12 19
13.1
13.2
14 1,2,3,4,5,6,7,8,9.1,9.2,10,11,12,13.1,13.2,15,16,17,18
15 16,17
16
17
18 12,16,19
19

Table 2: Pairs of main components of exceptional extremal matrices in COP6 satisfying both the criterion
in Lemma 3.1 and a strict inequality on the dimensions.
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