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Abstract

In this paper we construct new families of extremal copositive matrices in arbitrary dimension by
an algorithmic procedure. Extremal copositive matrices are organized in relatively open subsets of
real-algebraic varieties, and knowing a particular such matrix A allows in principle to obtain the variety
in which A is embedded by solving the corresponding system of algebraic equations. We show that
if A is a matrix associated to a so-called COP-irreducible graph with stability number equal 3, then
by a trigonometric transformation these algebraic equations become linear and can be solved by linear
algebra methods. We develop an algorithm to construct and solve the corresponding linear systems and
give examples where the variety contains singularities at the initial matrix A. For the cycle graph C7

we completely characterize the part of the variety which consists of copositive matrices.

1 Introduction

Copositive matrices appear to have been introduced in 1952 by Motzkin [1]. A real symmetric n×n matrix
A is called copositive if xTAx ≥ 0 for all x ∈ Rn+. The set of copositive matrices forms a convex cone, the
copositive cone COPn.

The matrix cone COPn is of interest for optimization, as various difficult non-convex optimization prob-
lems can be reformulated as conic programs over the copositive cone, so-called copositive programs. Among
these are combinatorial problems such as the bandwidth problem [2], graph partitioning [3], computing the
stability number [4], clique number [5], and chromatic number [6] of graphs, and the quadratic assignment
problem [7]. Copositive formulations have been derived for quadratic programming problems [8, 9, 10] and
mixed-integer programs [11]. For quadratically constrained quadratic programming problems with addition-
al linear constraints copositive relaxations are tighter than standard Lagrangian semi-definite relaxations
[12]. More applications of copositive programming can be found in the surveys [13, 14].

Verifying copositivity of a given matrix is a co-NP-complete problem [15]. Likewise, verifying whether a
given linear hyperplane in the space Sn of n×n real symmetric matrices is supporting to COPn at the zero
matrix is NP-hard [16]. Therefore much research has been focused on finding tractable approximations of
the copositive cone, in particular, semi-definite approximations.

In [17] a hierarchy of inner semi-definite approximations for COPn has been constructed. In [10] this
hierarchy has been relaxed to a hierarchy of polyhedral inner approximations.

For testing the quality of inner semi-definite approximations, and more generally algorithms for solving
copositive programs, it is advantageous to use extremal copositive matrices, which are the hardest to
approximate. An element x ∈ K is called extremal if a decomposition x = x1 + x2 of x into elements
x1,x2 ∈ COPn is only possible if x1 = λx, x2 = (1 − λ)x for some λ ∈ [0,1]. The set of positive multiples
of an extremal element is called an extreme ray. The set of extreme rays is an important characteristic of
a convex cone. Its structure, first of all its stratification into a union of manifolds of different dimension,
yields much information about the shape of the cone. Since the extreme rays of COPn determine the facets
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of its dual cone, they are also important tools for the study of this dual cone, the completely positive cone
[18, 19, 20, 21, 22, 23].

However, explicit families of non-trivial extremal copositive matrices or methods for their construction
are relatively scarce [24, p.25], [25, Theorem 3.8], [26, 27, 28, 29, 30, 31, 32, 33]. Many of these are either
discrete up to symmetry, or in a fixed low dimension.

In this paper we propose a method to construct multi-parametric families of extremal copositive matrices
of arbitrary sizes. The main idea is to use result [34], which for every extremal copositive matrix A
constructs an algebraic system of equations whose locus entirely consists of extremal copositive matrices
in the neighbourhood of A. In general this system is difficult to solve. However, we show that for some of
the matrices constructed in [32], namely the matrices obtained from COP-irreducible graphs with stability
number 3, one may transform this system to a linear one by a trigonometric transformation. This allows
to design an automated procedure to construct manifolds of extremal copositive matrices of arbitrary size.

We provide characteristics of the solution set for many examples (for graphs with up to 10 vertices) and
a code to compute the solutions corresponding to arbitrary such graphs. We provide explicit examples of
algebraic varieties of extremal copositive matrices with singularities.

For the cycle graph C7 we completely characterize the portion of the solution set which consists of
copositive matrices, up to symmetries. It may be parameterized by 7 angle parameters varying in a polytope.

For further surveys on copositive matrices see [35, 36], for a list of open problems see [37].

The remainder of the paper is structured as follows. In Section 2 we provide auxiliary results which are
useful later on. In Section 3 we provide the necessary background on copositive matrices obtained from
COP-irreducible graphs. In Section 4 we construct the linear systems representing the algebraic varieties
after a trigonometric transformation. In Section 5 we provide an analytic representation of the solution set
around the matrix obtained from the cycle graph C7. In the Appendix we present the solution set for some
graphs with 8, 9, or 10 vertices.

2 Known results

2.1 Known extreme matrices family

As already mentioned in the introduction, the extreme rays of small dimensional copositive cones are
completely characterized. There are algorithms that allow to construct an extreme ray of COPn+1 from an
extreme ray of COPn. One of them duplicates a row and the corresponding column [25, Theorem 3.8].

Theorem 2.1. If Qn, n ≥ 3, is an extreme copositive quadratic form in variables x1, . . . , xn, then replacing
any xi by xi + xn+1 yields a new copositive form Qn+1 which is extreme.

This allows in principle to obtain multi-parametric families of extreme copositive matrices in arbitrary
dimension from a single such family in a given dimension.

In this paper we present another way to construct such families which does not rely on row and column
duplication.

2.2 Irreducible matrices

In this section we introduce a concept which is slightly weaker than extremality.
The cone of copositive matrices COPn has the following two symmetry groups.

1. Permutation group: A 7→ PAPT , P ∈ Sn

2. Group of positive definite diagonal matrices: A 7→ DAD

By the action of the second group any copositive matrix with positive diagonal elements can be scaled to
a copositive matrix with all diagonal elements equal to 1.

Definition 2.2. For a matrix A ∈ COPn and a setM⊂ COPn we say that A isM-irreducible if there do
not exist γ > 0 and M ∈M\{0n} such that A− γM ∈ COPn. 0n here denotes a zero matrix.
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Lemma 2.3. Extremality and irreducibility with respect to the coneM = Sn+ +Nn of positive semi-definite
plus element-wise nonnegative matrices are invariant with respect to the action of the above-mentioned
groups.

Proof. • Let A ∈ COPn be extreme, then PAPT is extreme too. Indeed, if there exist linearly inde-
pendent B,C ∈ COPn such that PAPT = B+C, then A = P−1BP−T +P−1CP−T , a contradiction.
The reverse direction is proven similarly.

• For irreducibility the proof is similar.

Thus we will not lose much if we restrict to the construction of extreme or/and irreducible matrices
with all diagonal elements equal to 1.

2.3 Zeros and support sets

A useful characteristic of a copositive matrix A ∈ COPn are its minimal zeros, that is, non-zero vectors
u ∈ Rn+, such that uTAu = 0 and there exists no other zero v of A with supp(v) ⊂ supp(u). Here
supp(u) = {i|ui > 0} is the set of indices of non-zero elements of the vector. The following lemma [25, p.
200] holds for minimal zeros.

Lemma 2.4. If u is a minimal zero of a copositive matrix A, then Au ≥ 0.

Definition 2.5. The complementary set of indices for a zero u of A ∈ COPn is the set of indices j such
that (Au)j = 0.
The extended minimal zero support set E = {(Iα, Jα)}α=1,...,m of a matrix A is the set of pairs of supports
Iα of minimal zeros and the corresponding complementary sets Jα of indices.

2.4 Trigonometric parametrization

The presence of zeros with supports of cardinality 3 allows to parameterize off-diagonal elements of the
scaled matrix with all diagonal elements equal to 1 by angles.

The following result [33, Lemma 3] is a direct consequence of [38, Lemma 5.4 (e)] and [39, Lemma 4.7].

Lemma 2.6. Let A ∈ COPn be a matrix with all diagonal elements equal to 1, let u ∈ Rn+ be a minimal
zero of A with support u = {i,j,k}. Then there exists a scalar λ > 0 and angles ϕ1, ϕ2, ϕ3 > 0, such that
ϕ1 + ϕ2 + ϕ3 = π, (ui,uj ,uk) = λ(sinϕ1, sinϕ2, sinϕ3) and Aij = − cosϕ3, Aik = − cosϕ2, Ajk = − cosϕ1.

We define a submatrix A{a1,...,ak}, where 1 ≤ a1 < a2 < · · · < ak ≤ n as

A{a1,...,ak} =


Aa1,a1 Aa1,a2 . . . Aa1,ak
Aa2,a1 Aa2,a2 . . . Aa2,ak
. . .

Aak,a1 Aak,a2 . . . Aak,ak


Lemma 2.7. Let A ∈ COPn be a matrix with all diagonal elements equal to 1, let u,v ∈ Rn+ be its minimal
zeros with supports supp(u) = {i,j,k}, supp(v) = {j,k,l}. Let the element l of the vector Au equal zero.
Then there are positive ϕ1, ϕ2, ϕ3 such that ϕ1 +ϕ2 < π, ϕ2 +ϕ3 < π, the submatrix A{i,j,k,l} has the form

1 − cos (ϕ1) cos (ϕ1 + ϕ2) − cos (ϕ1 + ϕ2 + ϕ3)
− cos (ϕ1) 1 − cos (ϕ2) cos (ϕ2 + ϕ3)

cos (ϕ1 + ϕ2) − cos (ϕ2) 1 − cos (ϕ3)
− cos (ϕ1 + ϕ2 + ϕ3) cos (ϕ2 + ϕ3) − cos (ϕ3) 1

 ,

and in addition (Av)i = 0.

Proof.
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1. According to Lemma 2.6, we can parametrize Asupp(u) as

i j k( )
i 1 − cosϕ3 − cosϕ2

j − cosϕ3 1 − cosϕ1

k − cosϕ2 − cosϕ1 1

with u = λ(sinϕ1, sinϕ2, sinϕ3), ϕ1+ϕ2+ϕ3 = π. For Asupp(v) there exists a similar parametrization,
where the coefficient Ajk is already known from the representation of the matrix Asupp(u). We get for
Asupp(v)

j k l( )
j 1 − cosϕ1 − cosϕ4

k − cosϕ1 1 − cosϕ5

l − cosϕ4 − cosϕ5 1

with v = λ1(sinϕ4, sinϕ5, sinϕ1), ϕ1 + ϕ4 + ϕ5 = π. Combining these two parametrizations, we
obtain the following representation of A{i,j,k,l} (see also [33, p. 164]):

i j k l


i 1 − cosϕ3 − cosϕ2 Ai,l
j − cosϕ3 1 − cosϕ1 − cosϕ4

k − cosϕ2 − cosϕ1 1 − cosϕ5

l Ai,l − cosϕ4 − cosϕ5 1

2. We have cosϕ2 = cos (π − ϕ1 − ϕ3) = − cos (ϕ3 + ϕ1) and cosϕ4 = − cos (ϕ1 + ϕ5). By assumption
(Au)l = λ(Ai,l sinϕ1 − cosϕ4 sinϕ2 − cosϕ5 sinϕ3) = 0, which yields

Ai,l sinϕ1 = cosϕ5 sinϕ3 − cos (ϕ1 + ϕ5) sinϕ3 + ϕ1

= cosϕ5 sinϕ3 − cos (ϕ1 + ϕ5) cosϕ3 sinϕ1 − cos (ϕ1 + ϕ5) sinϕ3 cosϕ1 =

= sinϕ1(sinϕ3 sin (ϕ1 + ϕ5)− cosϕ3 cos (ϕ1 + ϕ5)),

Ai,l = − cos (ϕ1 + ϕ3 + ϕ5).

We get a parametrization of the desired type, wherein ϕ1 + ϕ3 < π,ϕ1 + ϕ5 < π, and all the angles
are greater than 0.

3. Finally for the i-th component of Av we get

(Av)i = λ1(− sin (ϕ1 + ϕ5) cosϕ3 + sinϕ5 cos (ϕ3 + ϕ1)− sinϕ1 cos (ϕ1 + ϕ3 + ϕ5)) = 0.

2.5 Cone stratification

Let us consider the cone stratification tool proposed in [34], which allows one to study the local structure
of the boundary of the copositive cone and which is conveniently used to study its extreme rays. We shall
need the following definition from convex analysis.

Definition 2.8. A convex set F ⊂ COPn is called a face of COPn if for any closed segment l ⊂ COPn
having at least one relative interior point in F , both end points of l lie in F .
The minimal face FA of the matrix A ∈ COPn is the intersection of all faces containing the matrix A.

4



For an extremal matrix A ∈ COPn we have FA = {λA|λ ≥ 0} by definition, i.e. for an extremal matrix,
the minimum face has dimension 1.

Let us move on to the stratification method itself. The cone COPn can be partitioned into a disjoint
union of sets SE . Here SE consists of matrices with extended minimal zero support set being equal to E .
In [34] it is shown that SE is locally an algebraic variety. More precisely, by introducing

ZE = {A ∈ Sn|AJα×Iαhas incomplete rank ∀α ∈ {1, . . . ,m}},

where Sn is the space of n× n real symmetric matrices, the following theorem holds [34, Theorem 1].

Theorem 2.9. Let A ∈ COPn, let E = {(Iα, Jα)}α=1,...,m be the extended minimal zero support set of the
matrix A. Then there exists a neighborhood U ⊂ Sn of matrix A such that U ∩ SE = U ∩ ZE .

This implies that in the neighborhood of any point the component SE is given by the solution set of a
finite number of algebraic equations.
This extension method is convenient for studying extremal rays of the copositive cone due to the following
lemma [34, Lemma 9].

Lemma 2.10. Let E be a set of pairs of indices, let C be an irreducible component of the algebraic variety
ZE , such that S = SE ∩ C 6= ∅. Then the dimension of the minimum face of the matrix A ∈ S is the same
for all matrices of this set, possibly excluding a subset of lower dimension.

An irreducible component of an algebraic set is an algebraic subset that cannot be decomposed into
a union of two nontrivial algebraic subsets. It follows that if we take an extremal matrix, i.e., such that
the dimension of the minimum face is equal to 1, almost all matrices in its component will have the same
dimension of the minimal face, i.e., they will also be extreme.

In the next section we present a method to construct extremal copositive matrices using a specific graph
family. This technique allows to construct discrete extremal rays of the copositive cone. The purpose of
this paper is to extend them to a whole manifold of extreme rays.

3 COP-irreducible graphs and associated matrices

In [32] a method of construction of irreducible and extreme matrices using a special graph family was
proposed. For all graphs G with adjacency matrix AG the following matrix is copositive:

ZG = α(G)(I +AG)− E,

where α(G) is the stability number of G (the cardinality of its maximum stable sets), and E is the all-ones
matrix. We have the following [32, Theorem 3]:

Theorem 3.1. For a graph G we have that ZG is irreducible with respect to Sn+ +Nn if and only if G is
connected, α-critical, and α-covered.

Here a graph is α-critical if removing any edge will increase its stability number, it is α-covered if for
all (i,j) ∈ E(G) there exists a maximum stable set A of G such that {i,j} ⊆ A. In [32] graphs which are
connected, α-critical, and α-covered are called COP-irreducible graphs.

Thus, to construct an irreducible matrix of dimension n, one may first take a COP-irreducible graph
on n vertices, and then construct the corresponding matrix ZG. For constructing matrices of arbitrary size
some methods were proposed in [32]:

• Take an infinite family of COP-irreducible graphs. For example, antiwebs W
n

t : graphs such that
V (W

n

t ) = {1, . . . , n}, E(W
n

t ) = {ij : i < j < i+ t, j < i+ t− n}

• There are techniques for taking a COP-irreducible graph and constructing a larger COP-irreducible
graph from this. For example, vertex duplication: take a graph G and a vertex v ∈ V (G), then add
a new vertex w and some edges:

H = E(G) + w + vw +
∑

x:xv∈E(G)

xw
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This method is suitable for construction of irreducible matrices. However, it is also established that
almost every matrix constructed from a COP-irreducible graph on ≤ 13 vertices is extreme. Thus, the
method is interesting also for constructing extremal copositive matrices.

We shall introduce the following notations. Let G be a COP-irreducible graph with stability number 3,
and E be the extended minimal zero support set of ZG. Then we shall denote by SG the set of matrices in
the component SE which have all ones on the diagonal, and by ZG the matrices in the algebraic variety ZE
which have all ones on the diagonal. Then ZG ∈ SG ⊂ ZG, and if ZG is extremal, then SG also consists of
extremal matrices near ZG. In the next section we shall describe an algorithm to compute ZG explicitly.

4 Construction of linear systems

For a COP-irreducible graph G the corresponding matrix ZG lies in some component SE . In this section
we show that for stability number α(G) = 3, the corresponding algebraic variety ZG is described by linear
relations on the angles parameterizing the matrices in ZG, and construct the linear systems on these angles.

First let us take a COP-irreducible graph G = (V,E), V = {1, . . . , n} with a stability number α(G) = 3.
Dividing each row by 2 we get that the corresponding copositive matrix ZG looks as follows:

ZGij =


1, (i,j) ∈ E
1, i = j

− 1
2 , (i,j) /∈ E

The extended minimal zero support set of this matrix is clearly connected to the structure of the graph’s
stable sets. The following lemma is proved in the above-mentioned paper [32, Lemma 6].

Lemma 4.1. The set I is a minimal zero support set of the matrix ZG if and only if I is a maximal stable
set of the graph G. Further, let u be a minimal zero of ZG and l /∈ suppu. Then the following conditions
are equivalent:

• (ZGu)l = 0

• exactly one pair of vertices (i,l) with i ∈ suppu is connected by an edge in G.

We get that the extended minimal zero support set of the matrix ZG can be described in terms of the
graph G. We further go on to describe the structure of the set SG, the set of copositive matrices with all
diagonal elements being equal to 1 and having the same extended minimal zero support set as ZG.

Lemma 4.2. Let G = (V,E) be a COP-irreducible graph with stability number 3, and let A ∈ SG. Then
every off-diagonal element Aij can be represented as − cosϕij, where ϕij ∈ (0,π) for (i,j) 6∈ E and ϕij ∈
(0,2π) for (i,j) ∈ E.

Proof. • If we take Aij such that (i,j) /∈ E then because of α-coveredness of the graph G the vertices
i,j should belong to some maximal stable set. Therefore they belong to some minimal zero support
set of cardinality 3. Then such an angle exists by Lemma 2.6.

• If (i,j) ∈ E then because of α-criticality there should exist a subgraph on 4 vertices in which (i,j) is
the only edge, therefore we can use Lemma 2.7 to find the angle.

Each matrix A ∈ SG is symmetric with all 1 diagonal, therefore we need just n(n−1)
2 angles to describe

it. Introduce a parameter vector of angles ϕ ∈ R
n(n−1)

2 and a matrix function

A(ϕ) =


1 − cosϕ1 · · · − cosϕn−1

− cosϕ1 1 · · · − cosϕ2n−3
...

...
. . .

...
− cosϕn−1 − cosϕ2n−3 · · · 1

 (1)
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The relationship between an angle with one index and one with two indices is as follows:

ϕij = ϕk, k(i,j) = j + (i− 1) · n− i(i+ 1)

2
, ∀1 ≤ i < j ≤ n

Now we can reformulate the previous lemma as follows.

Corollary 4.3. Assume the conditions of Lemma 4.2. Then there exists a subset OG ⊂ R
n(n−1)

2 such that
A[OG] = SG.

Here we denote A[OG] = {A(ϕ) | ϕ ∈ OG}.

This set is never empty: if we take the angles ϕij =

{
π
3 , (i,j) /∈ E
π, (i,j) ∈ E

and assemble a corresponding

vector ϕ0, then we get that A(ϕ0) = ZG. The hope for this set OG to have a simple description led to this
research. We will spend the rest of the paper constructing this set for one graph and finding weaker results
for all COP-irreducible graphs with α(G) = 3.

Lemmas 2.6 and 2.7 not only prove the existence of parameter angles but also provide certain conditions
that they must satisfy.

Conditions from Lemma 2.6
From this lemma we get conditions on the elements that correspond to miminal zeros. From Lemma

4.1 we obtain that the minimal zero support sets coincide with the maximal stable sets of the graph G. We
will call the collection of these sets SS(G). Combining these facts we get the following conditions:

∀{i,j,k} ∈ SS(G)⇒ ϕij + ϕjk + ϕik = π

0 < ϕij , ϕjk, ϕik < π

We will write the first group of conditions as a system of linear equations: A1ϕ = b, where b is a vector
where all components are equal to π.

Conditions from Lemma 2.7
From this lemma we get conditions on the angles ϕij such that there exist minimal zeros with support

sets {i,k,l} and {j,k,l} for some k,l distinct from i,j. From Lemma 4.1 we know that these pairs (i,j) are
exactly the edges of the graph. Then for every (i,j) ∈ E and every k,l ∈ V such that {i,k,l}, {j,k,l} ∈ SS(G)
we get:

− cosϕij = − cos (ϕik + ϕkl + ϕjl)⇔ ϕij = π±(ϕik+ϕkl+ϕjl−π)⇔
[
ϕij = ϕik + ϕkl + ϕjl
ϕij = 2π − (ϕik + ϕkl + ϕjl)

(2)

As we can see, for each angle corresponding to an edge two linear conditions are possible: one with the
plus sign and one with minus. If we fix one choice of all signs then the conditions imposed by Lemma 2.7
are a set of linear equations.

Note that 2π − (ϕik + ϕkl + ϕjl) = ϕil + ϕkl + ϕjk by the conditions imposed by Lemma 2.6, i.e.,
exchanging k,l is equivalent to choosing the opposite sign in (2). We shall therefore specify the sign always
together with the triple of angles ϕik,ϕkl,ϕjl. In the tables in the Appendix the angles in this triple are
listed in their single-indexed version.

For any given combination of signs used in the equations on ϕij , (i,j) ∈ E, the system of linear equalities
and inequalities on the angles yields a solution set in angle space. We shall refer to such a combination by
an opening, denoted o, to the corresponding solution set by Uo, and to the set of all combinations by O.

For every (i,j) ∈ E, there exists a number Nij of pairs (k,l) 6∈ E as above. For every such pair, fix a
triple ϕik,ϕkl,ϕjl of angles. Then we may associate the choice in the corresponding equation (2) to a sign
±1. Denote this sign by o.ϕij [r], or o.ϕm[r] in the equivalent single-indexed version of the angle, where
r ∈ {1, . . . ,Nij} is the number of the pair (k,l). The opening o then consists of blocks o.ϕij , each block
consisting of Nij signs.

In tables from Appendix we use the following format to describe our openings:

k0(i,j) : [([k0(i,l), k0(l,m), k0(j,m)] : c(i,j,l,m)), ∀l,m : {i,l,m},{j,l,m} ∈ SS(G)] (i,j) ∈ E

7



where c(i,j,l,m) ∈ {1,−1} and it shows which linear equation we are using: ϕk(i,j) = π+c(i,j,l,m) ·(ϕk(i,l)+
ϕk(l,m) +ϕk(j,m)−π), k0(i,j) = k(i,j)− 1 - we have to subtract one from the vector index because indexing
used in our software starts from 0.

For each opening the equality relations from Lemma 2.7 can be collected into a linear system Aoϕ = bo,
where the coefficient matrix and the right-hand side now depend on o.

Lemma 4.4. For any opening o, the solution set Uo is mapped by the map (1) to an analytic manifold.

Proof. The conditions on the angles amount to linear equalities and strict linear inequalities. Since the
angles are bounded, the solution set Uo is a relatively open polytope in angle space. Moreover, the angles
ϕij , (i,j) ∈ E are explicit linear functions of the remaining angles. But these remaining angles vary in the
interval (0,π) on which the cosine is strictly monotone. Hence map (1) is analytic and invertible on the
solution set, and its image is an analytic manifold.

The dimension of this manifold is equal to the dimension of the polytope, and hence to the dimension
of the affine subspace determined by the equality relations on the angles. Note that ϕ0 ∈ Uo for all o, so
the manifolds all contain the central matrix ZG.

Remark 4.5. If the angles ϕkl, (k,l) 6∈ E are given, then the image A(ϕ) is uniquely determined, because
the element Aij = − cosϕij for (i,j) ∈ E does not depend on the choice of the opening. However, different
openings may still lead to different manifolds in matrix space, because the relations determining the angles
ϕij , (i,j) ∈ E may imply additional linear equality constraints on the angles ϕkl, (k,l) 6∈ E, and these can
be dependent on the opening o.

Now we can view the non-linear conditions imposed on the entries of A by the lemmas as a union of
linear systems on the angles ϕ corresponding to different openings. Combining these conditions we get that
our angles should lie in the following set:

UG = {ϕ : A1ϕ = b} ∩
⋃
o∈O
{ϕ : Aoϕ = bo} ∩ {0 < ϕij < π, (i,j) /∈ E} ∩ {0 < ϕij < 2π, (i,j) ∈ E} =

=
⋃
o∈O

{
{ϕ : Boϕ = co} ∩ {0 < ϕij < π, (i,j) /∈ E} ∩ {0 < ϕij < 2π, (i,j) ∈ E}

}
=
⋃
o∈O

Uo

Bo =

[
A1

Ao

]
, co =

[
b
bo

]
Thus the set UG is a union of relatively open polytopes with the following properties:

Lemma 4.6. Let G be a COP-irreducible graph with stability number 3, and UG be the set in which the
parametrization angles must lie. Then

SG ⊆ A[UG] (3)

Proof. The assertion follows from Lemmas 2.6 and 2.7.
However, not for every element in ϕ ∈ UG the matrix A(ϕ) is necessarily an element of SG. Some of the

matrices might not be copositive or might have additional elements in their extended minimal zero support
set.

4.1 Determining smoothness and dimension of SG

The set UG can be used to derive some fundamental properties of the SG variety. We have the following
connection:

Lemma 4.7. ∃o ∈ O : UG = Uo ⇔ SG is a smooth set and dim(UG) = dim(SG)

Proof. This is a direct consequence of Lemma 4.4.
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If there is no such opening then UG is a union of polytopes and their common points are points of
singularity.

So to determine smoothness of set SG we need to find whether there exists an opening obase ∈ O such
that Uo ⊆ Uobase ∀o ∈ O. Since all of the sets lie in the same (0,π) cube and all of them share at least one
point ϕ0 in common, this condition comes down to finding obase such that Ker(B0) ⊆ Ker(Bobase)∀o ∈ O.

The simplest algorithm to find such an opening would be to build the constraint systems Bo for all
openings o, compute the basis of their kernels, sort them in descending order by their dimension and then
go linearly through it checking what spaces can not be embedded into previous ones. But this algorithm
would be too expensive even for small graphs. Below we propose a couple of improvements to check graphs
with at least 11 vertices on a personal computer.

First we don’t need to check all of the openings because some of them correspond to the same set of
matrices.

Lemma 4.8. Let o1, o2 ∈ O be two openings such that for each (i,j) ∈ E we have either o1.ϕ = o2.ϕ or
o1.ϕ = −o2.ϕ. Then A(Uo1) = A(Uo2), i.e., the openings yield the same manifold.

Proof. The solution set Uo2 can be obtained from the solution set Uo1 by the transformations ϕij 7→{
ϕij
2π − ϕij

, depending on whether o1.ϕij = o2.ϕij or o1.ϕij = −o2.ϕij . This has, however, no impact on

the values of Aij = − cosϕij .

This allows us to reduce the number of openings that we have to check by a factor of 2|E|:

Corollary 4.9. UG =
⋃
o∈O Uo, O = {o ∈ O : ∀ϕ o.ϕ[1] = 1}

A further improvement of the straight-forward algorithm is not to store a basis of the subspaces but to
compute them on the fly. By combining these two ideas we get Algorithm 4.1 to determine the smoothness
and dimensionality of SG.

Algorithm 1 Algorithm to determine smoothness and dimensionality of SG
BS ← ∅ . An array of ”basic” subspaces that we keep sorted by the dimensionality of their kernel.
for o ∈ O do

cp← 1
. We check if the new subspace can be embedded into the ones in the ”basic” array.

while cp < len(BS) and dim(Ker(BS[cp])) ≥ dim(Ker(Bo)) do
if Ker(Bo).is subspace(Ker(BS[cp])) then return
end if
cp← cp+ 1

end while
. We either came to the end of the array or subspaces after position cp have smaller dimension than the
current one

BS.insert(Bo, cp)
. Now we need to check whether the subspaces of smaller dimension are embedded into the new one.
while cp < len(BS) do

if Ker(BS[cp]).is subspace(Ker(Bo)) then
BS.pop(cp)

end if
cp← cp+ 1

end while
end for

If after running the algorithm we have only one subspace in the array BS, then SG is smooth and
dim(SG) = dim(BS[1]). If there is more than one subspace then the variety ZG contains a singularity
at ZG. The is subspaces function just concatenates two matrices and checks whether the rank of the
concatenation is the same as the rank of the matrix that corresponds to the ambient space. We compute
the rank of the matrix by the standard matlab function that uses a singular value decomposition and checks
the number of non-zero singular values.
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A code for this algorithm can be found in our repository [40]. In the table in Section 8 we provide
examples of graphs which correspond to smooth components SG.

The varieties corresponding to some graphs turn out to have singular points. We describe one such
graph in the next section.

4.2 Components with singularity

Figure 1: Example of a graph corresponding to a singular component

Not in all cases the conditions on the angles ϕ for the matrix A(ϕ) to belong to a component ZG define
a polytope. Consider for example the graph in Fig. 1. The component corresponding to it has the following
structure of the extended minimal zero support set:

I = [[1, 3, 6],[1, 3, 8],[1, 4, 8],[1, 9, 4],[1, 10, 4],[1, 9, 6],[1, 10, 6],[2, 4, 8],[2, 4, 10],

[2, 5, 6],[2, 5, 8],[2, 6, 10],[3, 5, 6],[3, 5, 7],[3, 5, 8],[9, 4, 7],[10, 4, 7],[9, 5, 6],[9, 5, 7]]

J = [[1, 3, 5, 6, 8, 9, 10],[1, 3, 4, 5, 6, 8],[1, 2, 3, 4, 8, 9, 10], [1, 4, 6, 7, 8, 9, 10],

[1, 2, 4, 6, 7, 8, 9, 10],[1, 3, 4, 5, 6, 9, 10], [1, 2, 3, 4, 6, 9, 10],[1, 2, 4, 5, 8, 10],

[1, 2, 4, 6, 7, 8, 10], [2, 3, 5, 6, 8, 9, 10],[2, 3, 4, 5, 6, 8],[1, 2, 4, 5, 6, 10],

[1, 2, 3, 5, 6, 7, 8, 9],[3, 5, 6, 7, 8, 9],[1, 2, 3, 5, 6, 7, 8], [1, 4, 5, 7, 9, 10],

[1, 2, 4, 7, 9, 10],[1, 2, 3, 5, 6, 7, 9], [3, 4, 5, 6, 7, 9]]

In order to describe the structure of the component, we shall temporarily change the restrictions (Au)l =
0 associated with the complementary sets of the zeros with supports {2,4,8}, {2,5,8}, {4,7,9}, {5,7,9}, and
pass to larger components SE (or more precisely, their intersections with the all-ones diagonal subspace).
Instead of demanding equality, we shall demand the conditions (Au248)5 = (Au258)4 > 0 and (Au479)5 =
(Au579)4 > 0. This corresponds to removing the index 4 from J11 and J19 and the index 5 from J8 and
J16. Recall that the inequality cannot be in the opposite direction without violating the copositivity of A.

Let us also shift the angles by an affine transformation, introducing parameters a1, . . . ,a9, such that the
matrix components Aij are parameterized as in (5) in the Appendix. Then the central point ZG is obtained
by setting all parameters equal to zero.

The new inequalities impose the following restrictions on the angle ϕ45, or equivalently, the parameter
a9:

cos(π · (1− a7 − a8)) > cos(π · (1− a9)), cos(π · (1 + a7 − a8)) > cos(π · (1− a9)).

In the neighbourhood of the central point a7 = a8 = a9 = 0 this can be equivalently written as

|a9| < |a7 + a8|, |a9| < |a8 − a7|.
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S7,1

S7,2

S8,2

S8,2

S8,1

S8,1

Figure 2: Components S8,1,S8,2 in the parameter plane of a7,a8. The cross corresponds to the singular
variety ZG, with the singularity in the central point.

Thus, we have obtained a 9-dimensional component S9, whose parameters a1, . . . ,a8 take any values
near the central point, and for the last parameter we have

A45 = − cos(π(1− a9)) > max(− cos(π · (1− a7 − a8)),− cos(π · (1 + a7 − a8))).

Enforcing one of the two equality constraints (Au248)5 = (Au258)4 = 0 or (Au479)5 = (Au579)4 = 0
individually, we get two smaller components S8,1, S8,2 of dimension 8, for which the parameter a9 obeys

|a9| = |a7 + a8|

or
|a9| = |a8 − a7|,

respectively. In addition we have the remaining inequality constraint, for S8,1 |a7 + a8| < |a8 − a7| and for
S8,2 |a8 − a7| < |a7 + a8|. In Fig. 2 the corresponding loci for the pairs (a7,a8) are depicted. We see that
the areas are not connected.

The component SG is located on the intersection of the boundaries of S8,1,S8,2, where all the inequalities
considered above are equalities. However, the equality |a7 + a8| = |a8− a7| is equivalent to a7a8 = 0, which
factorizes in two different linear equations on the parameters. These correspond to two different manifolds
which are the images of different polytopes in angle space. In the a7,a8 parameter plane the manifolds
correspond to the horizontal and the vertical line in Fig. 2. We shall denote these two 7-dimensional
components by S7,1, S7,2. We stress that they both belong to the same variety ZG. However, this variety
presents a singularity at ZG.

More examples of graphs defining a component with a singularity are given in the table in Section 9,
examples corresponding to smooth extensions as in Lemma 4.7 are given in the table in Section 8 of the
Appendix.

5 Case of cycle graph C7

A cycle graph with 7 vertices, denoted C7, is COP-irreducible [32] and α(C7) = 3. We may then apply the
results developed in the previous section to compute the corresponding component SC7 .

7

1

2

3

4
5

6

(4)
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Considering the independent sets of the graph, we obtain the following structure of the extended minimal
zero support set.

I = {{1,3,5}, {2,4,6}, {3,5,7}, {4,6,1}, {5,7,2}, {6,1,3}, {7,2,4}}
J = {{6, 7,1 ,3 ,5 }, {1,7,2 ,4 ,6 }, {1,2,3 ,5 ,7 }, {2,3,4 ,6 ,1 }, {3,4,5,7 ,2 }, {4,5,6 ,1 ,3 }, {5,6,7 ,2 ,4 }}

For each edge, there is only one pair of independent sets that the edge connects. Therefore, the signs in (2)
do not affect the solution set A[Uo] by virtue of Lemma 4.8.

Considering the resulting system of linear equations, we find that all elements of the matrix A ∈ SG can
be represented in terms of 7 base angles.

1 3 5 7 2 4 6



1 1 −ϕ1 (ϕ1 + ϕ2) −(ϕ1 + ϕ2 + ϕ3) −(ϕ5 + ϕ6 + ϕ7) (ϕ6 + ϕ7) −ϕ7
3 −ϕ1 1 −ϕ2 (ϕ2 + ϕ3) −(ϕ2 + ϕ3 + ϕ4) −(ϕ6 + ϕ7 + ϕ1) (ϕ7 + ϕ1)
5 (ϕ1 + ϕ2) −ϕ2 1 −ϕ3 (ϕ3 + ϕ4) −(ϕ3 + ϕ4 + ϕ5) −(ϕ7 + ϕ1 + ϕ2)
7 −(ϕ1 + ϕ2 + ϕ3) (ϕ2 + ϕ3) −ϕ3 1 −ϕ4 (ϕ4 + ϕ5) −(ϕ4 + ϕ5 + ϕ6)
2 −(ϕ5 + ϕ6 + ϕ7) −(ϕ2 + ϕ3 + ϕ4) (ϕ3 + ϕ4) −ϕ4 1 −ϕ5 (ϕ5 + ϕ6)
4 (ϕ6 + ϕ7) −(ϕ6 + ϕ7 + ϕ1) −(ϕ3 + ϕ4 + ϕ5) (ϕ4 + ϕ5) −ϕ5 1 −ϕ6
6 −ϕ7 (ϕ7 + ϕ1) −(ϕ7 + ϕ1 + ϕ2) −(ϕ4 + ϕ5 + ϕ6) (ϕ5 + ϕ6) −ϕ6 1

Here we have for brevity noted −ϕi instead of − cosϕi, (ϕi + ϕj) instead of cos(ϕi + ϕj), and −(ϕi +
ϕj + ϕk) instead of − cos(ϕi + ϕj + ϕk). The indices of the rows and columns have been rearranged such
that the stable sets are composed of cyclically adjacent elements.

The following constraints are imposed on the angles: ϕi > 0, ϕi + ϕi+1 < π, i ∈ {1, . . . , 7}. Here and
below, the indices are meant modulo 7, i.e., if an index satisfies i > 7, one should subtract 7 from this
index. These conditions define an open polytope in the 7-dimensional parameter space, but not every point
in the polytope corresponds to a matrix in SC7

.
Instead, SC7

turns out to be the image of a smaller polytope PC7
, of which we now derive a complete

description. First, we need the following criterion for the copositivity of a matrix [41, Theorem 4.6]:

Theorem 5.1. A symmetric matrix A ∈ Sn is copositive if and only if ∃U ⊂ Rn\(−R+), such that
∀I ∈ P[n] ∃u ∈ U : suppu ⊆ I ⊆ supp≥0Au.

Here P[n] consists of all non-empty subsets of the set {1, . . . ,n}.
In this case, the conditions imposed on the angles by Lemma 2.4 also look quite simple. From (Au)l > 0

for appropriate minimal zeros u and indices l we get

cos(ϕ1 + ϕ2 + ϕ3 + ϕ4) + cos(ϕ5 + ϕ6 + ϕ7) < 0

cos(ϕ2 + ϕ3 + ϕ4 + ϕ5) + cos(ϕ6 + ϕ7 + ϕ1) < 0

cos(ϕ3 + ϕ4 + ϕ5 + ϕ6) + cos(ϕ7 + ϕ1 + ϕ2) < 0

cos(ϕ4 + ϕ5 + ϕ6 + ϕ7) + cos(ϕ1 + ϕ2 + ϕ3) < 0

cos(ϕ5 + ϕ6 + ϕ7 + ϕ1) + cos(ϕ2 + ϕ3 + ϕ4) < 0

cos(ϕ6 + ϕ7 + ϕ1 + ϕ2) + cos(ϕ3 + ϕ4 + ϕ5) < 0

cos(ϕ7 + ϕ1 + ϕ2 + ϕ3) + cos(ϕ4 + ϕ5 + ϕ6) < 0

Taking into account ϕi+ϕi+1 < π, i ∈ {1, . . . , 7} this system is equivalent to the following two conditions:{
π <

∑
i ϕi < 3π

−π <
∑
±(i) < π

where
∑
±(i) = ϕi + ϕi+1 + ϕi+2 + ϕi+3 − ϕi+4 − ϕi+5 − ϕi+6.

Now we can prove the following lemma:

Lemma 5.2.

A(ϕ) ∈ SC7 ⇔ ϕ ∈ PC7 = {ϕ : Aϕ = co} ∩


π <

∑
i ϕi < 3π

−π <
∑
±(i) < π

0 < ϕ < π

where A =

[
A1

Ao

]
, co =

[
b
bo

]
, o = {1, . . . ,1}, A1, Ao - linear constraint matrices, b, bo - linear constraint

vectors, resulting from Lemmas 2.6 and 2.7, respectively. ϕ - vector of parameters. PC7 - polytope in the
parameter space.
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Proof.
⇒: was shown above.
⇐: It is necessary to show that for all angles from the described polytope the corresponding matrices A(ϕ)
will be copositive, with the same extended minimal zero support set as ZC7 , i.e. it is in the component
SC7

.
To show that the matrices are copositive we consider all subsets I of P[n] and either show that the submatrix
AI is copositive, or present a corresponding certificate u of copositivity. For simplicity we shall sometimes
present the shorter subvector uI , since ui for i 6∈ I have to be zero anyway.

• For a subset of size 1 and 2, the certificate u = eI =
∑
i∈I ei can be taken.

• For subsets of size 3:

– If the set coincides with the support of some minimal zero, then this minimal zero itself will be
a certificate.

– {1,3,7}: Since the corresponding submatrix of A is singular matrix, we have 1 −ϕ1 −(ϕ1 + ϕ2 + ϕ3)
−ϕ1 1 (ϕ2 + ϕ3)

−(ϕ1 + ϕ2 + ϕ3) (ϕ2 + ϕ3) 1

 sin(ϕ2 + ϕ3)
sin(ϕ1 + ϕ2 + ϕ3)

− sinϕ1

 = 0

and the vector above can be taken as a certificate. {1,3,4} is analyzed in similar way.

– {1,3,2}: From Lemma 2.4 follows

cos(ϕ1 + ϕ2 + ϕ3 + ϕ4) + cos(ϕ5 + ϕ6 + ϕ7) < 0⇒

∃t > 0 : − cos(ϕ5 + ϕ6 + ϕ7) = cos(ϕ1 + ϕ2 + ϕ3 + ϕ4) + t.

Then we can represent the submatrix as a sum of two matrices, one of which has non-negative
elements, and the other is copositive. Hence the submatrix

 1 −ϕ1 (ϕ1 + ϕ2 + ϕ3 + ϕ4)
−ϕ1 1 −(ϕ2 + ϕ3 + ϕ4)

(ϕ1 + ϕ2 + ϕ3 + ϕ4) −(ϕ2 + ϕ3 + ϕ4) 1

+ E1,3t = A(1,3,2)

will also be copositive. Here Ei,j is a matrix which has zero entries everywhere except at (i,j) and
(j,i), where the entries equal 1. To prove the copositivity of the first term, we take a certificate
similar to the previous case. Hence the matrix A(1,3,2) is copositive. {1,5,2} is analyzed in similar
way.

– The remaining subsets are obtained by a cyclic shift of those considered.

• For subsets of size 4:

– If the set of matrix indices includes the minimal zero support, then the minimal zero could be
taken as a certificate. Au ≥ 0 will imply that this is a certificate.

– {1,3,7,2}:
We have

 1 (ϕ2 + ϕ3) −(ϕ2 + ϕ3 + ϕ4)
(ϕ2 + ϕ3) 1 −ϕ4

−(ϕ2 + ϕ3 + ϕ4) −ϕ4 1

 − sin(ϕ4)
sin(ϕ2 + ϕ3 + ϕ4)

sin(ϕ2 + ϕ3)

 = 0

Define the certificate u such that u(3,7,2) equals the vector above. It remains to show that
(Au)1 ≥ 0:

sinϕ4 cosϕ1 − cos(ϕ1 + ϕ2 + ϕ3) sin(ϕ2 + ϕ3 + ϕ4)− cos(ϕ5 + ϕ6 + ϕ7) sin(ϕ2 + ϕ3) ≥ 0

After simplifying:
cos(ϕ1 + ϕ2 + ϕ3 + ϕ4) + cos(ϕ5 + ϕ6 + ϕ7) ≤ 0

And this is just one of the restrictions on the angles we received.
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– {1,5,2,4}:

A =


1 (ϕ1 + ϕ2) −(ϕ5 + ϕ6 + ϕ7) (ϕ6 + ϕ7)

(ϕ1 + ϕ2) 1 (ϕ3 + ϕ4) −(ϕ3 + ϕ4 + ϕ5)
−(ϕ5 + ϕ6 + ϕ7) (ϕ3 + ϕ4) 1 −ϕ5

(ϕ6 + ϕ7) −(ϕ3 + ϕ4 + ϕ5) −ϕ5 1


Let’s start with the simplest certificate u = (0,− sinϕ5, sin(ϕ3 + ϕ4 + ϕ5), sin(ϕ3 + ϕ4))T . The
Au components will then be non-negative if cos(ϕ1 + ϕ2) + cos(ϕ3 + · · ·+ ϕ7) ≤ 0, i.e. for such
angles we have provided a certificate.

Now consider the case when cos(ϕ1 + ϕ2) + cos(ϕ3 + · · ·+ ϕ7) > 0.

Further the notation will be used:

cos(ϕ1 + ϕ2) = − cos(ϕ3 + · · ·+ ϕ7) + t1

ψ1 = ϕ3 + ϕ4, ψ2 = ϕ6 + ϕ7, ψ3 = ϕ5

Then the submatrix can be represented as:

A(1,5,2,4) =


1 −(ψ1 + ψ2 + ψ3) −(ψ2 + ψ3) ψ2

−(ψ1 + ψ2 + ψ3) 1 ψ1 −(ψ1 + ψ3)
−(ψ2 + ψ3) ψ1 1 −ψ3

ψ2 −(ψ1 + ψ3) −ψ3 1

+ E1,2t1

The first term can be transformed by permuting rows and columns, and then decomposing it
into a product of two matrices as follows:

B =


1 ψ2 −(ψ2 + ψ3) −(ψ1 + ψ2 + ψ3)
ψ2 1 −ψ3 −(ψ1 + ψ3)

−(ψ2 + ψ3) −ψ3 1 ψ1

−(ψ1 + ψ2 + ψ3) −(ψ1 + ψ3) ψ1 1

 =

=


sinψ2 cosψ2

0 1
sinψ3 − cosψ3

sin (ψ1 + ψ3) − cos(ψ1 + ψ3)

 ∗


sinψ2 cosψ2

0 1
sinψ3 − cosψ3

sin (ψ1 + ψ3) − cos(ψ1 + ψ3)


T

= U ∗ UT .

Hence this matrix turns out to be positive semi-definite, and then the first term in the represen-
tation of A(1,5,2,4) will also be positive semi-definite, hence A(1,5,2,4) is copositive.

– The remaining subsets are obtained from the previous one by a cyclic permutation of the indices.

• Subsets of size 5,6,7: In this case, the sets will always include minimal zero supports, and then we
can take the corresponding minimal zeros u as a certificate. From Au ≥ 0 we get that they fit the
conditions.

Thus, we have shown that for any set of angles, for the corresponding matrix, one can give certificates of
copositivity.

6 Generation scheme

There is a different way to generate extreme matrices depending on the size n we need.

• n = 7: Here we use Lemma 5.2 for a cycle graph: we take a vector of angles that satisfy the conditions
of the lemma and construct the corresponding matrix A(ϕ). This matrix will be copositive and since
it belongs to the same variety as ZC7 it will almost certainly be extreme because of Lemma 2.10.
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• 8 ≤ n ≤ 12: The process here involves a couple of more steps:

1. Take one of the graphs G for which we have precomputed the base opening in the table in Section
8. Then we take the basis given by the matrix Bo, generate a random direction r lying in the
matrix kernel.

2. Then find a small enough scalar α such that A(ϕ0 + αr) ∈ SG. This can be done by decreasing
α from 1 to 0 and algorithmically checking copositivity and the extended minimal zero support
set structure.

3. By Lemma 2.10 the matrix is almost certainly extreme.

• n > 12: Here another task we need to solve is to generate a COP-irreducible graph G with α(G) = 3
such that ZG is an extreme matrix. There are multiple ways to do that:

1. In [32, Lemma 11] it is shown that by using vertex duplication from a COP-irreducible graph we
can get a COP-irreducible graph with the same α(G). Hence graphs with any number of vertices
can be constructed from graphs in the table.

2. From [32, Lemma 2] we get that by taking an antiweb W
n

t with parameters t = k ∈ N \ {1}, n =
4k−1 we get a COP-irreducible graph with α(W

n

t ) = 3 with arbitrary large numbers of vertices.

To check that the graph corresponds to an extreme matrix we can use one of the algorithmic tests,
e.g., [42, Theorem 17].

Now if you want to determine whether the variety is smooth or not you can use Algorithm 1 but it
can be infeasible for graphs of medium size. If this fact isn’t relevant to your research then you can
take a random opening o. After getting a matrix Bo we repeat steps from the previous part.

Now we have generated an extreme copositive matrix with all ones on the diagonal, to go even further
we can generate a random permutation matrix P and a diagonal matrix D to get an extreme matrix with
a different diagonal. The fact the matrix would be extreme follows from Lemma 2.3.

7 Conclusion

There are two main contributions in this paper:

• An algorithm to generate a non-degenerate extreme copositive matrix of arbitrary dimension in generic
position in a multi-parameter family.

• We have shown that the extended minimal zero support set varieties proposed in [34] can contain
singular points.

References

[1] Theodore Samuel Motzkin. Copositive quadratic forms. Technical Report 1818, National Bureau of
Standards, 1952.

[2] Janez Povh. Application of semidefinite and copositive programming in combinatorial optimization.
PhD thesis, University of Ljubljana, 2006.

[3] Janez Povh and Franz Rendl. A copositive programming approach to graph partitioning. SIAM J.
Optim., 18(1):223–241, 2007.

[4] Etienne de Klerk and Dmitri V. Pasechnik. Approximation of the stability number of a graph via
copositive programming. SIAM J. Optim., 12(4):875–892, 2002.
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Appendix

8 Examples of smooth components

Here we present a part of the results in repository [40]. In file results.txt more are listed.

Graph dim(SG) Basic opening
6 0: [([2, 20, 11], 1)],

3: [([1, 16, 23], 1)],
4: [([1, 17, 26], 1), ([2, 21, 26], 1)],
7: [([9, 22, 15], 1), ([9, 23, 16], 1)],

12: [([8, 19, 26], 1)],
13: [([1, 5, 20], 1), ([1, 6, 21], 1),

([15, 26, 21], 1)],
18: [([8, 10, 22], 1), ([8, 11, 23], 1)],

24: [([14, 15, 26], 1)],
25: [([10, 8, 20], 1), ([10, 9, 23], 1),

([15, 14, 23], 1)],
27: [([5, 1, 17], 1), ([5, 2, 21], 1)]

8 0: [([5, 33, 13], 1)],
2: [([3, 27, 23], 1)],

4: [([1, 16, 26], 1), ([1, 19, 31], 1)],
8: [([11, 31, 19], 1)],

10: [([9, 22, 26], 1), ([9, 23, 27], 1)],
15: [([16, 26, 22], 1)],

18: [([1, 3, 27], 1), ([1, 6, 33], 1)],
24: [([9, 11, 31], 1), ([9, 12, 33], 1)],

28: [([3, 1, 19], 1), ([3, 5, 33], 1),
([16, 17, 31], -1)],

29: [([3, 1, 20], 1)],
30: [([11, 9, 23], 1), ([11, 13, 33], 1),

([22, 21, 27], -1)],
32: [([11, 9, 25], 1)],
34: [([12, 9, 25], 1)],
35: [([6, 1, 20], 1)]

7 0: [([2, 23, 12], 1), ([3, 27, 12], 1)],
4: [([1, 19, 31], 1), ([2, 24, 31], 1)],

7: [([1, 16, 29], 1)],
8: [([14, 29, 16], 1), ([14, 32, 17], 1)],

13: [([9, 22, 31], 1)],
15: [([1, 6, 24], 1), ([17, 31, 24], 1)],

18: [([1, 3, 27], 1)],
21: [([2, 5, 27], 1), ([9, 12, 27], 1)],

25: [([9, 11, 32], 1)],
26: [([29, 14, 11], 1), ([29, 20, 17], 1)],

28: [([3, 1, 19], 1)],
30: [([11, 9, 23], 1)],
33: [([5, 2, 24], 1)],

34: [([12, 10, 29], 1)],
35: [([19, 17, 32], 1)]
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Graph dim(SG) Basic opening
7 0: [([2, 22, 11], 1), ([7, 29, 10], 1),

([7, 32, 11], 1)],
5: [([1, 16, 27], 1), ([2, 24, 33], -1),

([3, 28, 33], -1)],
8: [([10, 27, 18], 1)],

13: [([9, 23, 33], 1), ([10, 27, 33], 1)],
15: [([1, 4, 22], 1)],

19: [([1, 3, 28], 1), ([16, 27, 33], -1)],
20: [([1, 3, 29], 1), ([1, 4, 32], 1)],

21: [([2, 6, 28], 1), ([9, 12, 27], -1),
([23, 33, 28], 1)],

25: [([2, 4, 32], 1), ([9, 11, 32], 1)],
26: [([3, 1, 17], 1), ([3, 7, 32], 1),

([29, 14, 11], -1)],
30: [([11, 9, 23], 1)],
31: [([4, 2, 24], 1)],

34: [([12, 10, 29], 1)],
35: [([6, 3, 29], 1)]

8 1: [([7, 28, 17], 1)],
3: [([0, 13, 31], 1), ([7, 15, 11], -1)],
6: [([0, 12, 36], 1), ([2, 25, 36], 1)],
8: [([0, 12, 38], 1), ([0, 13, 41], 1),

([2, 25, 38], 1), ([2, 26, 41], 1)],
9: [([11, 32, 21], 1), ([15, 33, 18], -1)],

10: [([0, 4, 25], 1), ([0, 5, 26], 1),
([0, 7, 28], 1), ([12, 36, 27], -1),

([16, 38, 25], 1), ([16, 41, 26], 1)],
19: [([17, 27, 36], 1), ([23, 29, 25], -1)],

20: [([23, 29, 26], 1)],
24: [([17, 21, 32], 1), ([28, 22, 18], -1)],

30: [([11, 14, 36], 1)],
34: [([11, 13, 41], 1)],

35: [([4, 0, 13], 1), ([4, 2, 26], 1),
([12, 16, 41], -1), ([38, 29, 26], 1)],
37: [([4, 0, 15], 1), ([4, 2, 28], 1)],

39: [([13, 11, 32], 1)],
40: [([5, 0, 15], 1), ([5, 2, 28], 1),

([13, 11, 33], -1)],
42: [([14, 11, 33], 1), ([21, 17, 28], 1),

([21, 18, 33], 1)],
43: [([14, 12, 38], 1), ([21, 17, 29], -1),

([27, 25, 38], 1)],
44: [([22, 17, 29], 1)]

8 2: [([0, 7, 13], 1)],
3: [([4, 25, 23], 1)],
6: [([0, 7, 17], 1)],

9: [([7, 13, 18], 1), ([7, 17, 24], 1)],
10: [([0, 5, 25], 1)],

15: [([13, 18, 22], 1), ([14, 24, 26], -1)],
16: [([1, 0, 11], 1)],

20: [([18, 22, 25], 1)],
21: [([8, 7, 17], 1), ([13, 14, 24], -1),

([18, 22, 26], 1)],
27: [([23, 22, 26], 1)]
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Graph dim(SG) Basic opening
8 0: [([3, 32, 14], 1), ([5, 39, 14], 1)],

1: [([7, 40, 20], 1)],
2: [([5, 39, 27], 1)],

4: [([8, 34, 30], 1), ([7, 44, 38], -1)],
10: [([9, 19, 25], 1), ([9, 20, 26], 1),

([13, 39, 27], -1)],
15: [([9, 19, 37], 1), ([9, 20, 40], 1)],

16: [([11, 30, 38], 1)],
18: [([9, 12, 30], 1)],

21: [([9, 13, 39], 1), ([17, 26, 39], 1)],
23: [([17, 25, 38], 1), ([22, 37, 38], 1)],

24: [([29, 38, 30], 1)],
28: [([17, 19, 37], 1), ([17, 20, 40], 1),

([29, 38, 37], 1)],
31: [([3, 6, 39], 1), ([11, 14, 39], 1)],
33: [([3, 8, 44], 1), ([34, 38, 37], -1)],
35: [([12, 9, 20], 1), ([19, 17, 26], -1),

([37, 22, 20], 1)],
36: [([12, 11, 32], 1)],
41: [([5, 7, 44], 1)],
42: [([6, 5, 40], 1)],
43: [([6, 3, 34], 1)]

10 0: [([8, 29, 10], 1)], 1: [([4, 36, 21], 1)],
3: [([8, 41, 31], 1)], 7: [([2, 25, 37], 1)],

9: [([11, 32, 21], 1)], 12: [([15, 28, 25], 1)],
13: [([16, 34, 31], 1)], 17: [([22, 37, 25], 1)],
23: [([18, 31, 41], 1)], 24: [([10, 16, 34], 1)],

26: [([2, 8, 41], 1)], 27: [([2, 4, 36], 1)],
30: [([18, 21, 36], 1)], 33: [([18, 20, 40], 1)],
35: [([37, 22, 20], 1)], 38: [([4, 2, 29], 1)],

39: [([20, 18, 32], 1)],42: [([21, 19, 37], 1)],
43: [([14, 11, 34], 1)],44: [([15, 10, 29], 1)]

7 0: [([8, 29, 10], 1)],
3: [([1, 20, 31], 1), ([8, 23, 18], -1),

([7, 40, 31], 1)],
4: [([1, 20, 35], 1), ([2, 26, 35], 1),

([7, 40, 35], 1)],
6: [([2, 26, 39], 1)],
9: [([16, 34, 18], 1)],

13: [([10, 25, 35], 1), ([10, 27, 39], -1),
([11, 32, 39], -1), ([15, 33, 31], -1),

([15, 37, 35], -1)],
17: [([1, 5, 26], 1), ([1, 8, 29], 1),

([19, 35, 26], 1)],
21: [([18, 31, 39], 1)],

22: [([1, 5, 40], 1), ([18, 31, 40], 1),
([19, 35, 40], 1)],

24: [([10, 14, 32], 1), ([10, 16, 34], 1),
([26, 39, 32], 1)],

28: [([2, 5, 40], 1), ([10, 12, 37], -1),
([25, 35, 40], 1)],

30: [([33, 15, 12], 1), ([18, 20, 35], 1),
([33, 40, 35], 1)],

36: [([12, 10, 27], 1), ([25, 26, 39], -1)],
38: [([12, 10, 29], 1)],

41: [([5, 1, 23], 1), ([5, 2, 29], 1),
([20, 18, 34], -1)],

42: [([14, 11, 33], 1), ([32, 31, 40], -1)],
43: [([14, 10, 29], 1), ([14, 11, 34], 1)],

44: [([15, 11, 34], 1)]
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9 Varieties with singularity

Graph dim(Uo) Openings
8 0: [([2, 27, 14], 1), ([8, 29, 10], -1),

([8, 38, 12], -1)],
3: [([1, 19, 30], 1), ([1, 21, 32], 1),

([7, 37, 30], 1)],
5: [([7, 28, 26], 1), ([8, 29, 26], 1)],

9: [([11, 30, 19], 1), ([11, 32, 21], 1)],
13: [([16, 29, 26], 1)],
15: [([11, 30, 37], 1)],
17: [([1, 6, 27], 1)],

22: [([1, 4, 37], 1), ([18, 30, 37], 1),
([18, 31, 40], 1)],

23: [([1, 4, 38], 1)],
24: [([10, 14, 32], 1), ([28, 40, 31], -1)],
35: [([19, 18, 31], 1), ([37, 33, 31], 1)],
36: [([4, 1, 21], 1), ([12, 11, 32], -1),

([19, 18, 32], -1)],
39: [([20, 18, 32], 1)],
42: [([6, 2, 28], 1)],

43: [([6, 2, 29], 1), ([14, 10, 29], 1)],
44: [([7, 2, 29], 1), ([7, 4, 38], 1),

([28, 26, 41], -1)],
8 same but

24: [([10, 14, 32], 1), ([28, 40, 31], 1)],
5 0: [([2, 26, 13], 1), ([7, 44, 16], -1)],

3: [([1, 20, 31], 1), ([1, 21, 32], 1),
([7, 42, 32], 1)],

4: [([1, 21, 36], 1), ([8, 23, 19], -1),
([2, 27, 36], 1)],

9: [([11, 31, 20], 1), ([16, 38, 19], -1)],
14: [([10, 25, 36], 1), ([15, 33, 32], -1)],

17: [([1, 5, 26], 1), ([1, 6, 27], 1),
([19, 36, 27], 1)],

22: [([1, 6, 42], 1), ([1, 8, 44], 1),
([18, 32, 42], 1)],

24: [([10, 13, 31], 1)],
28: [([2, 6, 42], 1)],

29: [([10, 12, 38], 1)],
30: [([18, 21, 36], 1)],
34: [([33, 15, 16], 1)],
35: [([12, 10, 26], 1)],
37: [([12, 16, 44], 1)],

39: [([5, 1, 21], 1), ([5, 2, 27], 1),
([20, 18, 32], -1)],

40: [([13, 11, 33], 1)],
41: [([5, 1, 23], 1)],

43: [([6, 1, 23], 1), ([6, 7, 44], 1),
([21, 19, 38], -1)]

5 same but
0: [([2, 26, 13], 1), ([7, 44, 16], -1)]

9: [([11, 31, 20], 1), ([16, 38, 19], 1)],
14: [([10, 25, 36], 1), ([15, 33, 32], -1)]

5 same but
0: [([2, 26, 13], 1), ([7, 44, 16], 1)]

9: [([11, 31, 20], 1), ([16, 38, 19], 1)],
14: [([10, 25, 36], 1), ([15, 33, 32], -1)]

5 other variant on angles 0, 9 and 14.
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