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Abstract—This paper provides a new classification method
of covariance matrices exploiting the t-Wishart distribution,
which generalizes the Wishart distribution. Compared to the
Wishart distribution, it is more robust to aberrant covariance
matrices and more flexible to distribution mismatch. Following
recent developments on this matrix-variate distribution, the
proposed classifier is obtained by leveraging the Discriminant
Analysis framework and providing original decision rules. The
practical interest of our approach is shown thanks to numerical
experiments on real data. More precisely, the proposed classifier
yields the best results on two standard electroencephalography
datasets compared to the best state-of-the-art minimum distance-
to-mean (MDM) classifiers.

Index Terms—EEG, Covariance matrices, t-Wishart, Bayseian
classification, Discriminant Analysis, BCI.

I. INTRODUCTION

In signal processing, covariance matrices have recently
gained interest in classification problems. Not only do they
embed relevant information from signals, but they also fall into
the domain of Riemannian geometry. They have proved their
merit in radar and image processing [1], biomedical signals
analysis, etc. For instance, their use has revolutionized the field
of Electroencephalography (EEG), which consists in recording
brain signals for medical purposes or to help people with
motor impairment via brain-computer interfaces (BCI) [2], [3].
The first generation of EEG classification methods uses spatial
filters paired with Euclidean classifiers [2]. Such an approach
has been outperformed for a decade using spatial covariance
matrices as features [4]. There are two main methods for
classifying covariance matrices either directly on their native
space of symmetric positive definite (SPD) matrices via the
Minimum Distance to Mean (MDM) or by projecting them
onto a tangent space at a reference SPD matrix and then using
a Euclidean classifier for the projected matrices [4].

In order to face the challenges of the intrinsic non-
Gaussianity of signals, covariance matrices are often estimated
thanks to robust techniques [5] before proceeding to MDM or
tangent space projection methods. However, this trick needs
to be more efficient in the case of aberrant recordings or
mislabelling. Such situations, which often occur when manip-
ulating signals, explain the motivation to consider the outliers
at the scale of the covariance matrices and not only at the
scale of a single measurement. Accordingly, it is interesting to
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design probabilistic classifiers that exploit statistics over SPD
[6], particularly heavy-tailed matrix-variate distributions. We
would mention that such a strategy was already implemented
on matrices (not specifically SPD) [7] where an Expectation-
Maximization algorithm is suggested using matrix-variate t-
distributions. Among the distributions handling outliers over
SPD matrices, figure the t-Wishart ones [8], [9]. They are
known to generalize the most classical distribution on SPD
matrices, the Wishart distribution [10]. The latter is the distri-
bution of sample covariance matrices of random vectors drawn
from a multivariate Gaussian distribution. The generalization
brought by the t-Wishart distributions can be similarly inter-
preted as the extension to the multivariate Gaussian distribu-
tion brought by the multivariate t-distributions [11].

The main contribution of this paper is the development of
a new Bayesian classifier, t-WDA (t-Wishart Discriminant
Analysis), that uses the t-Wishart distribution for the likeli-
hood of observed data. Moreover, the Discriminant Analysis
framework offers a novel interpretation of the most classical
versions of MDM. A particular focus is drawn on the merit
of t-WDA for EEG classification.

The paper is organized as follows. Section II provides a
brief background about EEG classification, mainly on the
methods based on covariance matrices as features. Section III
reviews the t-Wishart distributions. Then, Section IV derives
the t-Wishart Discriminant Analysis classifier. Some numerical
experiments in Section V validate its merit for BCI. Finally,
concluding remarks and perspectives are drawn in Section VI.

II. BACKGROUND ON EEG CLASSIFICATION: MDM
CLASSIFIER

As the introduction mentions, various methods have been
considered to classify EEG signals [2]. The most efficient ones
usually rely on covariance matrices. In particular, the reference
method in the BCI community is the MDM classifier [4]. This
section introduces this EEG classification method, which will
be used as a baseline in this work.

The MDM classifier can be seen as a supervised k-means
classification method: it aims to minimize the dispersion
inside classes according to a given distance or divergence.
In EEG, signals X ∈ Rp×n (p, number of electrodes; n
number of samples) are supposed centered, i.e., E[X] = 0.



The covariance matrix of X is estimated with the sample
covariance matrix (SCM), defined as

C =
1

n
XXT . (1)

By construction, C ∈ S++
p , the set of p× p SPD matrices. In

the training step, a barycenter Σ̂k is computed for each class
k. Given covariance matrices {Ci}Nk

i=1 in class k, it is

Σ̂k = argmin
Σ∈S++

p

Nk∑
i=1

d(Ci,Σ), (2)

where d is a divergence or the square of a distance on S++
p . In

the testing step , a covariance matrix C is assigned to the class
y whose barycenter Σ̂y is the closest. Formally, the decision
rule is:

y = argmin
k∈[[1,K]]

d(C, Σ̂k). (3)

Several divergences/distances have been considered; see
e.g., [3] for a review. The original choice, which is also one
of the most natural since it corresponds to the Fisher distance
of the multivariate Gaussian distribution [12], is the natural
Riemannian – or affine-invariant – distance defined as

δ2R(A,B) = ∥ log(B−1A)∥22, (4)

where ∥ · ∥2 denotes the Frobenius norm and log(·) is the
matrix logarithm. The corresponding barycenter of {Ci}Ni=1

is the so-called geometric mean, which is the unique solution
to the fixed-point equation

Σ̂ = Σ̂ exp

(
1

N

N∑
i=1

log(Σ̂
−1

Ci)

)
. (5)

where exp(·) is the matrix exponential. As no closed-form
expression is known for p > 2, it is computed using a recursive
algorithm based on (5) (see, e.g., [4]).

Another choice of particular interest for d is the Kullback-
Leibler divergence between two centered multivariate Gaus-
sian distributions [13], defined as

dKL(A,B) = tr(AB−1)− log |AB−1| − p, (6)

where tr(·) and |·| denote the trace and determinant operators,
respectively. Since the Kullback-Leibler divergence is not
symmetric, one can obtain two barycenters. Here, we use the
“right” barycenter, i.e., we choose A = Ci and B = Σ as in
(2) (see [14] for a review on the barycenters of this Kullback-
Leibler divergence). The corresponding right barycenter of
{Ci}Ni=1 is simply the arithmetic mean

Σ̂ =
1

N

N∑
i=1

Ci. (7)

The MDM classifiers associated with (4) and (6) are denoted
RMDM and rKLMDM, respectively. In Section IV, it is shown
that they can be seen as Discriminant Analysis classifiers under
specific assumptions.

III. WISHART AND t-WISHART DISTRIBUTIONS

In this section, we present the Wishart and t-Wishart
distributions. After providing definitions, we give estimation
methods of their parameter, which lies in S++

p . While the
maximum likelihood estimator (MLE) of the Wishart distribu-
tion is known in closed form, one has to employ an iterative
algorithm to obtain the t-Wishart’s one. In this work, we
propose a method relying on Riemannian optimization that
is very similar to the one in [15]. However, it is a bit simpler
as it relies on the usual affine-invariant metric on S++

p rather
than on the Fisher information metric of the distribution.

The probability density function (pdf) of a random matrix
S = XXT ∈ S++

p , with X ∈ Rp×n (n ≥ p), following the
Wishart distribution W(n,Σ) with center Σ ∈ S++

p is, up to
a normalization factor,

fW(S|Σ) ∝ |Σ|−n
2 |S|

n−p−1
2 exp

(
−1

2
tr(Σ−1S)

)
. (8)

As for the usual multivariate t-distribution, the t-Wishart
distribution is obtained by replacing the exponential in (8) with
another density generator. The pdf of S = XXT following
the t-Wishart distribution t-W(n,Σ, ν) with center Σ and
degree of freedom (d.o.f.) ν > 0 is, up to a normalization
factor,

f t-W(S|Σ) ∝ |Σ|−n
2 |S|

n−p−1
2

(
1 +

tr(Σ−1S)

ν

)− ν+np
2

.

(9)
Notice that, compared to the Wishart distribution, the t-
Wishart distribution adds a dependence on the columns of
X . The independence in the case of the Wishart distribution
is a direct consequence of the properties of the exponential
function. Thus, substituting it with another density generator
cancels this property.

Given independent and identically distributed (i.i.d.) sam-
ples {Si}Ni=1, the log-likelihood L associated to the distri-
bution with pdf f is L(Σ) =

∑
i log f(Si|Σ). The log-

likelihoods of the Wishart and t-Wishart distributions are
denoted LW and Lt-W , respectively. To obtain the MLE, one
needs to solve the optimization problem Σ̂ = argmaxΣ L(Σ).
In the case of the Wishart distribution, it is

Σ̂
W

=
1

nN

N∑
i=1

Si. (10)

For the t-Wishart distribution, we must develop an iterative al-
gorithm. Here, we perform a Riemannian gradient descent [16]
on S++

p to obtain the MLE Σ̂
t-W

. Given a sequence of iterates

{Σ̂
(j)

}, the next iterate is

Σ̂
(j+1)

= R
Σ̂

(j)

(
tj∇Lt-W

(
Σ̂

(j)
))

, (11)

where ∇Lt-W is the Riemannian gradient of Lt-W in S++
p ,

R·(·) is a retraction on S++
p (mapping from tangent spaces

back onto the manifold), and tj is a stepsize computed
through a linesearch [16]. To define the Riemannian gradient,
one has to choose a Riemannian metric on S++

p . Here, we
select the usual affine-invariant metric. Given Σ̂ ∈ S++

p and



tangent vectors ξ, η ∈ Sp (set of p× p symmetric matrices),
it is ⟨ξ,η⟩Σ̂ = tr(Σ̂

−1
ξΣ̂

−1
η). The Riemannian gradient

∇Lt-W(Σ̂) at Σ̂ is then defined as the only tangent vector
such that, for all ξ ∈ Sp, ⟨∇Lt-W(Σ̂), ξ⟩Σ̂ = DLt-W(Σ̂)[ξ],
where D denotes the directional derivative. One can show

∇Lt-W(Σ̂) =
1

2

N∑
i=1

ν + np

ν + tr(Σ̂
−1

Si)
Si −

nN

2
Σ̂. (12)

Finally, the retraction we choose is the second-order approx-
imation of geodesics on S++

p (a generalization of straight
lines to manifolds), which is arguably the best choice from
a numerical perspective [17]. Given Σ̂ and ξ, it is

RΣ̂(ξ) = Σ̂+ ξ +
1

2
ξΣ̂

−1
ξ. (13)

IV. DISCRIMINANT ANALYSIS CLASSIFIERS

In this section, a novel Bayesian classifier is proposed for
signal classification. Inspired by Linear/Quadratic Discrimi-
nant Analysis (LDA/QDA) in the multivariate case [18], the
introduced method generalizes the concept of Discriminant
Analysis to the matrix-variate case. It exploits Wishart and
t-Wishart distributions to model the likelihood of observed
samples knowing their associated labels.

A. Wishart and t-Wishart Discriminant Analysis classifiers

Rather than considering SCMs, S = XXT is used. The
following proposition introduces the t-Wishart Discriminant
Analysis, denoted t-WDA.

Proposition 1 (t-WDA). The decision rule of the t-Wishart
Discriminant Analysis, for a testing covariance matrix S, is
given by

ŷ(S) = argmax
k∈[[1,K]]

δt-Wk (S), (14)

with the discriminant function

δt-Wk (S) = log(π̂k)−
n

2
log |Σ̂k|

− ν + np

2
log

(
1 +

tr(Σ̂
−1

k S)

ν

)
, (15)

where π̂k is the proportion of the class k in the training set;
Σ̂k is the estimated barycenter of training covariance matrices
of the class k, computed thanks to (11), and ν is the degree
of freedom of the model1.

Proof. Being a probabilistic classifier, the t-WDA has the
following discrimination rule

ŷ(S) = argmax
k∈[[1,K]]

P (y = k|S). (16)

Using Bayes formula, P (y = k|S) ∝ πkfk(S), where πk is
the prior probability of the class k and fk(S) is the conditional
probability density function observed on the class k.

t-WDA approaches the classification problem by assuming
that S|y = k follows the t-Wishart distribution t-W(n,Σk, ν)

1considered here as a hyperparameter

where Σk is considered as the center of the class k. Hence, by
plugging in the pdf defined in (9) and applying the logarithm
function, (16) becomes

ŷ(S) = argmax
k∈[[1,K]]

log
(
πk f

t-W(S|Σk)
)
. (17)

where f t-W(S|Σk) is defined in (9).
Concerning the prior distribution of the class k, πk is simply

estimated by the proportion of training samples belonging to
class k, denoted as π̂k. Notice that π̂k is a consistent estimate
of πk, a direct consequence of the strong law of large numbers.

The centers {Σk}Kk=1 are also estimated during the training
step. A natural estimation choice is the MLE of t-W(n,Σ, ν),
denoted {Σ̂k}Kk=1. They are computed as described in Section
III. We assume that the MLE of the center for the t-Wishart
distribution is consistent 2. As a result of the continuous map-
ping theorem and the Slutsky lemma, log

(
π̂k f

t-W(S|Σ̂k)
)

converges in probability to log
(
πk f

t-W(S|Σk)
)

when the
size of the training set tends to +∞. The term depending
only on S is then neglected due to the argmax operator, which
concludes the proof.

Remark 1. As mentioned in Proposition 1, the d.o.f. ν is
a hyperparameter; estimating it during the training step is
beyond the scope of this paper. A possible way to tune it is to
perform a grid search. Furthermore, we would highlight that
in the actual model, a unique d.o.f. is chosen for all classes for
simplicity. It would be more realistic to estimate different d.o.f.
for each class to improve discrimination, especially when the
centers of classes are close.

Similarly, the Wishart Discriminant Analysis classifier de-
noted WDA, is derived in the following proposition.

Proposition 2 (WDA). The decision rule of the Wishart
Discriminant Analysis, for a testing covariance matrix S, is
given by

ŷ(S) = argmax
k∈[[1,K]]

δWk (S), (18)

with the discriminant function

δWk (S) = log(π̂k)−
n

2
log |Σ̂k| −

1

2
tr(Σ̂

−1

k S).

where π̂k is the proportion of the class k in the training set,
and Σ̂k is the estimated barycenter of training covariance
matrices of the class k, computed thanks to Eq. (10).

Proof. The proof follows the same steps as for the t-WDA.

The discriminant function of the t-WDA approximates the
WDA’s one when the dof ν tends to +∞.

Remark 2. Let us examine the decision boundary between
two classes k and l for t-WDA and WDA. We recall that it
corresponds to the region {S ∈ S++

p : δk(S) = δl(S)},
where δk := δt-Wk for t-WDA and δk := δWk for WDA.

2Due to the lack of space, this will be proved in a forthcoming paper



The decision boundary is linear in S since it is a solution
to an equation involving the trace of MklS, where Mkl is a
symmetric matrix that depends on the model parameters. This
makes the proposed classifier very close to LDA. However,
finding decision boundaries for WDA/t-WDA is more complex
due the constraint S ∈ S++

p .

B. Interpretation of RMDM and rKLMDM in the framework
of Discriminant Analysis

As mentioned in Section II, rKLMDM can be related to
the proposed WDA classifier. In fact, if the training set is
balanced, rKLMDM corresponds exactly to WDA. First, one
can observe that the MLE for the center of the i.i.d. samples
{Si}Ni=1 following the Wishart distribution is the arithmetic
mean of {Ci}Ni=1 (with the notation Si = nCi). Therefore,
rKLMDM and WDA share the same barycenters of classes.
Furthermore, one can write

n log |Σ̂k|+ tr(Σ̂
−1

k S) = n(dKL(C|Σ̂k) + p+ log |C|).

Hence, rKLMDM and WDA have the same decision rule.
Similarly, under the condition of a balanced training set,

RMDM can be seen as the Discriminant Analysis classifier
associated with the Riemannian Gaussian distribution on S++

p

defined in [19]. We recall that the pdf of the Riemannian
Gaussian distribution G(Σ, σ2) with center Σ and dispersion
parameter σ > 0 is, up to a normalization factor, f(C|Σ) ∝
exp

(
− 1

2σ2 δ
2
R(Σ,C)

)
. Moreover, its MLE corresponds to the

geometric mean of the samples. The observed likelihood
associated with RMDM in a Discriminant Analysis framework
is obtained with the model C|y = k ∼ G(Σk, σ

2) (or
equivalently, S|y = k ∼ G(nΣk, σ

2)). The barycenters of
classes in the MDM classifier are exactly the MLEs for centers
of Riemannian Gaussian distributions. Under the assumption
of equal proportions πk’s, the decision rule for the MDM
given by (3) with the affine-invariant Riemannian distance (4)
is exactly recovered.

V. NUMERICAL EXPERIMENTS

This section aims to show the practical interest of the
proposed t-WDA classifier. To do so, numerical experiments
are conducted on two different real EEG datasets. The datasets,
which are available on the MOABB platform3, correspond to
two different BCI paradigms. The first one [3] contains steady-
state visually evoked potentials (SSVEP) while the second
one [20] concerns motor imagery (MI). In both cases, the
classification performances of RMDM, WDA (or rKLMDM)
and t-WDA are compared.

A. SSVEP dataset

SSVEP signals are natural responses to repetitive visual
stimuli at specific frequencies, i.e., the visual cortex synchro-
nizes with the stimuli. In this work, we employ the dataset
used in [3], where 12 subjects are asked to look at light
emitting diodes (LEDs) blinking at three different frequencies:

3https://github.com/NeuroTechX/moabb

17, 13 and 21 Hz. EEG signals are acquired on eight electrodes
located around the visual cortex and the sampling rate is set
to 256 Hz. For each subject, the recordings of two to five
sessions are available. A session contains 32 labeled trials of
five seconds each. Data are equally divided into four classes:
a class per stimulus frequency and a resting class where no
light is blinking.

Before proceeding to the classification, a preprocessing step
is needed. This allows us to better extract the information at
the frequencies of interest in the data. Following [3], each
EEG trial X becomes

X̃ =

X(17)

X(13)

X(21)

 , (19)

where X(f) is the result of backward-forward filtering of X
with a band-pass region [f −∆f, f +∆f ], where ∆f = 0.5
Hz. Therefore, X̃ ∈ Rp×n with p = 3 × 8 = 24 and n =
5 × 256 = 1280. Transformed signals X̃ are centered and
their covariances are computed.

A within-session classification is run: for each subject, a
session is randomly divided into a training set composed of
20 trials and a testing set of 12 trials such that all classes
are equally represented in the training set. A Monte-Carlo
approach of 100 permutations is performed in each session.
For the t-WDA, the degree of freedom ν is set to 10. The
means and standard deviations of test accuracies for each
subject are reported in Figure 1.

One can observe that the RMDM yields the best results
for two subjects (2 and 4); WDA is the most accurate for
three subjects (6, 8, and 9); and t-WDA features the best
performance for the remaining seven subjects. Averaging over
all the subjects, t-WDA has a 3.11% gain over RMDM and a
1.19% gain over WDA. Thus, our proposed t-WDA classifier
appears advantageous on these SSVEP data.

B. MI dataset

MI is a mental process during which a subject mentally
simulates a physical action, i.e., he/she imagines moving their
right or left hand, feet, tongue, etc. In this work, we consider
the BNCI2014001 dataset [20]. It contains the EEG recordings
from 9 subjects. Signals are acquired via 22 electrodes with
a sampling rate of 250 Hz. For each subject, two sessions
composed of 288 trials are available. Only the four last seconds
of the trial are taken into account. Thus, for each trial, we have
X ∈ Rp×n with p = 22 and n = 4× 250 = 1000.

A within-session classification is run: cross-validation of
stratified 5-folds is considered on each session, dividing it into
228 training samples and 60 testing samples with a balanced
representation of the 4 classes. For the t-WDA, the degree of
freedom ν is set to 10. The means and standard deviations of
test accuracies for each subject are reported in Figure 2.

One can observe that WDA never features the best perfor-
mance on this dataset. RMDM is the most accurate for two
subjects (1 and 5) and has a similar accuracy for subject 2
compared to t-WDA. Finally, t-WDA yields the best results
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Fig. 1. Comparison of classifiers on the SSVEP dataset [3]. Standard
deviations are plotted in dotted lines. The degree of freedom for t-WDA
is ν = 10.
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Fig. 2. Comparison of classifiers on the MI dataset. Standard deviations are
plotted in dotted lines. The degree of freedom for t-WDA is ν = 10.

for the five remaining subjects. Averaging over all the subjects,
t-WDA has a 1.78% gain over RMDM and a 3.39% gain
over WDA. Again, t-WDA appears to be the most powerful
classifier on this MI dataset compared to RMDM and WDA.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose an original classification method
that exploits the t-Wishart distribution over the set of matrices
S++
p . The classifier is obtained by leveraging the Discriminant

Analysis framework. On two standard EEG BCI datasets,
our proposed method outperforms best state-of-the-art MDM
methods.

This work also yields several perspectives. As of now, the
degree of freedom of the t-Wishart distribution is a hyper-
parameter. Instead, it should be estimated during the training
step and different degrees of freedom for the different classes
should be considered. Other Elliptical Wishart distributions
could also be investigated.
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