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A CONSTRUCTION OF THE SHEPHARD-TODD GROUP G32

THROUGH THE WEYL GROUP OF TYPE E6

by

CÉDRIC BONNAFÉ

Abstract. — It is well-known that the quotient of the derived subgroup of the Shephard-Todd
complex reflection group G32 (which has rank 4) by its center is isomorphic to the derived sub-
group of the Weyl group of type E6. We show that this isomorphism can be realized through
the second exterior power, and take the opportunity to propose an alternative construction of the
group G32.

Let G32 denote the complex reflection group constructed by Shephard-Todd [ShTo] and let
E6 be a Weyl group of type E6 (which is denoted by G35 in the Shephard-Todd classification).
Let Sp4(F3) (resp. SO5(F3)) denote the symplectic (resp. orthogonal) group of dimension 4
(resp. 5) over the finite field with three éléments F3. Let Ω5(F3) be the image of Sp4(F3) in
SO5(F3) through the natural morphism Sp4(F3) → SO5(F3): this is the normal subgroup of
index 2 of SO5(F3). Finally, if G is a group, let D(G) and Z(G) denote respectively its derived
subgroup and its center and, if d is a non-zero natural number, let µd be the group of d-th
roots of unity in C.

It is shown in [LeTa, théo. 8.43 et 8.54] that G32 ≃ µ3 × Sp4(F3) and that E6 ≃ SO5(F3). In
particular,

(∗) D(G32)/µ2 ≃ Ω5(F3) ≃ D(E6).

The purpose of this note is to present a direct elementary explanation of the isomorphism
D(G32)/µ2 ≃ D(E6), which in fact allows us to construct the the complex reflection group
G32 from the rational reflection group E6. This construction uses the classical morphism
SL4(C) −→ SO6(C), and follows the same lines as our previous paper [Bon] (in which we
constructed the complex reflection group G31 from the Weyl group of type B6).

This note does not pretend to prove a deep result: it is just a a nice example of the appli-
cation of the classical theory of reflection groups (invariants, Springer theory,...).

Remark. It is shown in [LeTa, Theo. 8.53] that G33 ≃ µ2 × Ω5(F3). In particular, this gives
an indirect isomorphism D(G33) ≃ D(E6). However, we do not know of any construction of
this isomorphism which would be in the same spirit as above.
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1. The morphism SL4(C) → SO6(C)

We recall here the construction of this morphism, using some notation from [Bon]. Let us
fix a complex vector space V of dimension 4 and let

Λ : GL(V ) −→ GL(∧2V )
g 7−→ ∧2g

be the natural morphism of algebraic groups. Note that ∧2V has dimension 6 and that

(1.1) KerΛ ≃ µ2 = {± IdV }.
The lists of eigenvalues of elements of GL(V ) or GL(∧2V ) will always be given with multi-
plicities. If g ∈ GL(V ) admits a, b, c and d as eigenvalues, then

(1.2) Λ(g) admits ab, ac, ad, bc, bd and cd as eigenvalues.

In particular,

(1.3) detΛ(g) = (det g)3.

Let us fix now a generator ε of the one-dimensional vector space ∧4V . The choice of this
generator allows to identify C and ∧4V and to define a bilinear form

β∧ : ∧2V × ∧2V −→ C
(x, y) 7−→ x ∧ y.

This bilinear form is symmetric and non-degenerate. By definition of the determinant,

(1.4) β∧(Λ(g)(x),Λ(g)(y)) = (det g)β∧(x, y)

for all g ∈ GL(V ) and x, y ∈ ∧2V . For dimension and connectedness reasons, the image of
GL(V ) through Λ is the neutral component CO(∧2V )◦ of the conformal orthogonal group
CO(∧2V ) = CO(∧2V, β∧) and Λ induces an isomorphism of algebraic groups

(1.5) SL(V )/µ2 ≃ SO(∧2V ).

The next elementary lemma will be useful (in this paper, we denote by j a primitive third
root of unity).

Lemma 1.6. — Let g ∈ SO(∧2V ) having j, j, j, j2, j2 and j2 as eigenvalues. Then there exists a
unique element g̃ ∈ SL(V ), having 1, j, j and j as eigenvalues, and such that

Λ−1({g, g−1}) = {±g̃,±g̃−1}.

Proof. — Let h ∈ SL(V ) be such that Λ(h) = g. Then Λ−1({g, g−1}) = {±h,±h−1}. Let
a, b, c and d be the eigenvalues of h. By (1.2), by reordering if necessary the eigenvalues
of h, we may assume that ab = ac = j. In particular, b = c. So bd = cd, which implies
that bd = cd = j2 (for otherwise j would be an eigenvalue of g with multiplicity ⩾ 4). Still
by (1.2), (ad, bc) = (j, j2) or (ad, bc) = (j2, j).

If (ad, bc) = (j, j2), then b = c = d and b2 = j2, so b = c = d = ηj and a = η, for some
η ∈ {±1}. By replacing h by −h if necessary, the eigenvalues of h are then 1, j, j, j and so h
is indeed the unique element of Λ−1({g, g−1}) admitting this list of eigenvalues.

If (ad, bc) = (j2, j), then d = jb = jc and b2 = j, which implies that a = b = c = ηj2 and
d = η, for some η ∈ {±1}. By replacing h by −h if necessary, the eigenvalues of h are then 1,
j2, j2, j2 and so h−1 is indeed the unique element of Λ−1({g, g−1}) admitting 1, j, j, j as list
of eigenvalues.
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Corollary 1.7. — Let g ∈ SO(∧2V ) having j, j, j, j2, j2 and j2 as eigenvalues. Then g and g−1

are not conjugate in SO(∧2V ).

Proof. — Assume that we have found w ∈ SO(∧2V ) such that wgw−1 = g−1. Let ω and γ
be respective preimages of w and g in SL(V ). Then Λ(ωγω−1) = g−1 = Λ(γ−1). This shows
that γ−1 is conjugate to γ or to −γ, which is impossible by examining the possible lists of
eigenvalues of γ obtained in the proof of Lemma 1.6.

2. Construction of G32

Let us see E6 as a finite subgroup of O(∧2V ) generated by reflections. Set

jSO(∧2V ) = ⟨SO(∧2V ), j Id∧2V ⟩

and 3
√
SL(V ) = {g ∈ GL(V ) | det(g)3 = 1} = ⟨SL(V ), j IdV ⟩.

Then

(2.1) Λ−1
(
jSO(∧2V )

)
=

3
√
SL(V ).

We then define
W = Λ−1(⟨D(E6), j Id∧2V ⟩).

It is a subgroup of 3
√
SL(V ). The aim of this note is to show that W is isomorphic to the

complex reflection group G32 of Shephard-Todd. Note first that

(2.2) µ6 ⊂ W.

2.A. Reflections in W . — The list of degrees E6 is 2, 5, 6, 8, 9, 12 while its list of codegrees
is 0, 3, 4, 6, 7, 10 (see [Bro, Table A.3]). In particular, exactly 3 of the degrees are divisible by 3,
which shows [Spr, Theo. 3.4] that E6 contains an element w3 admitting the eigenvalue j with
multiplicity 3. We will denote by C3 the conjugacy class of w3 in W . Since also exactly 3 of the
codegrees are divisible by 3, this implies, for instance by [LeMi, Theo. 1.2], that w3 is regular
in the sense of Springer [Spr, §4] (that is, admits an eigenvector for the eigenvalue j whose
stabilizer in E6 is trivial). Since E6 is a rational group, w3 also admits j2 as an eigenvalue
with multiplicity 3. Hence, the eigenvalues of w3 are j, j, j, j2, j2 and j2. In particular,
detw3 = 1 and so

w3 ∈ D(E6) = E6 ∩ SO(∧2V ).

By [Spr, Theo. 4.2(iii)], the centralizer of w3 in E6 has order 6 · 9 · 12, which shows that

(2.3) |C3| = 2 · 5 · 8 = 80.

Moreover [Spr, Theo. 4.2(iii)], if w ∈ E6, then

(2.4) w ∈ C3 if and only if dimKer(w − j IdV ) = 3.

Hence, if w ∈ C3, then w−1 ∈ C3 but w−1 is not conjugate to w in D(E6) (by Corollary 1.7).
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Now, let Ref(W ) denote the set of reflections of W . If s ∈ Ref(W ), the eigenvalues Λ(s)
are 1, 1, 1, det(s), det(s), det(s). Since det(s) ∈ {j, j2}, the eigenvalues of det(s)Λ(s) are then
j, j, j, j2, j2, j2. It follows from (2.4) that det(s)Λ(s) ∈ C3. This defines a map

λ : Ref(W ) −→ C3

s 7−→ det(s)Λ(s).

The next result will be very useful:

Lemma 2.5. — The map λ is bijective.

Proof. — First, if λ(s) = λ(s′), then there exists ξ ∈ C× such that s′ = ξs. Since s and s′ are
reflections, this is possible only if ξ = 1, and so s = s′. This shows that λ is injective.

Let us now show the surjectivity. Let w ∈ C3. By Corollary 1.7, there exists a unique
w̃ ∈ Λ−1({w,w−1}) admitting 1, j, j, j as eigenvalues. Then j2w̃ and jw̃−1 are reflections
satisfying

λ(j2w̃) = det(j2w̃)Λ(j2w̃) = j8 · j4Λ(w̃) = Λ(w̃)

and λ(jw̃−1) = det(jw̃−1)Λ(jw̃−1) = j4 · j2Λ(w̃−1) = Λ(w̃)−1.

So w ∈ {λ(j2w̃), λ(jw̃−1)}, which shows that λ is surjective.

We then deduce from (2.3) and Lemma 2.5 that

(2.6) |Ref(W )| = 80.

2.B. Structure of W . — Our main result is Theorem 2.7 below: the proof we propose here
uses neither known properties of the group G32 nor the classification of complex reflection
groups and so might be viewed as an alternative construction of G32 starting from E6 (how-
ever, note that we use properties of E6).

Theorem 2.7. — The group W :
(a) has order 155 520;
(b) is generated by reflections of order 3;
(c) is irreducible and primitive;
(d) admits 12, 18, 24, 30 as list of degrees.

Proof. — Set E#
6 = ⟨D(E6), j Id∧2V ⟩ and W+ = W ∩ SL(V ). Recall that |E6| = 51 840. So

(2.8) |D(E6)| = 25 920, |E#
6 | = 77 760, |W | = 155 520 and |W+| = 51 840.

This shows (a). Moreover,

(2.9) Z(W ) = µ6 and W/µ6 ≃ D(E6).

Let R = {det(s)−1s | s ∈ Ref(W )}. Set

G = ⟨Ref(W )⟩ and H = ⟨R⟩.
The statement (b) is equivalent to the following one

(#) W = G.
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First, Λ(R) = C3 and so Λ(H) = D(E6) (as this last group is simple and C3 is a conjugacy
class). In particular, W = H · µ6 and so, since H ⊂ G · µ3, we obtain

W = G · µ6,

which is almost the expected result (#). Before showing (#), note that, since Λ(H) = D(E6),
we have that H (and so G) acts irreducibly on V . Moreover, if G is not primitive, then G
(and so H) would be monomial [LeTa, Lem. 2.12], which would imply that Λ(H) = D(E6) is
monomial, which is false. So

(♣) G is irreducible and primitive.

Statement (c) follows.

Let us conclude this proof by showing simultaneously (b) et (d). Let d1, d2, d3, d4 be the
degrees of G. It follows from (2.6) and for instance from [Bro, Theo. 4.1] that

(♢)

{
d1d2d3d4 = |G|,
d1 + d2 + d3 + d4 = 84.

The morphism det : G → µ3 is surjective (since det(s) ∈ {j, j2} for any s ∈ Ref(W )), and
this implies that µ3 ⊂ G (because G/(G ∩ µ6) ≃ D(E6) is simple). It remains to show that
|G| ≠ |W |/2 = 77 760.

So assume that |G| = 77 760. Since µ3 ⊂ G, all the di’s are divisible by 3 and, since µ6 ̸⊂ G,
at least one of them (say d4) is not divisible by 6. Write ei = di/3. Then

e1e2e3e4 = 960 = 26 · 3 · 5,
e1 + e2 + e3 + e4 = 28,

e4 is odd.

From the second equality, we deduce that at least one of the ei’s (say e3) is odd. From the
first equality, we deduce that at least one of the ei’s (say e2) is even and so e1 is also even.
The first equality shows that e1 or e2 (say e2) is divisible by 8. So e2 ∈ {8, 16, 24}. A quick
inspection of the possibilities shows that e1 = 4, e2 = 16 and {e3, e4} = {3, 5}. The degrees
of G are then 9, 12, 15 and 48. Since 16 divides one of the degrees, it then follows from [Spr,
théo. 3.4(i)] that G = H×µ3 contains an element of order 16 and so H contains an element of
order 16. Therefore, D(E6) = Λ(H) contains an element of order 8, which is impossible (see
Remark 2.11 below for a proof of this fact based only on Springer theory). This contradicts
the fact that |G| = 77 760. So we have shown (#), that is,

W = ⟨Ref(W )⟩ = G.

This is statement (b). In particular, µ6 ⊂ W and so all the di’s are divisibles by 6. Set
ai = di/6. Then (♢) implies that{

a1a2a3a4 = 120 = 23 · 3 · 5,
a1 + a2 + a3 + a4 = 14,

By the same argument as before, since µ12 ̸⊂ W , we may assume that a3 and a4 are odd and
that a1 and a2 are even. A quick inspection of the possibilities shows that {a1, a2} = {2, 4}
and {e3, e4} = {3, 5}. This concludes the proof of (d).

Corollary 2.10. — The group W is isomorphic to the reflection group G32 of Shephard-Todd.
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Proof. — This follows from Theorem 2.7 and from the classification of complex reflection
groups [ShTo].

Hence, Corollary 2.10 gives an explanation for the fact, mentioned in the introduction, that
D(G32)/µ2 ≃ D(E6): the isomorphism is realized by Λ.

Remarque 2.11. — In the proof of Theorem 2.7, we have used the fact that D(E6) does not
contain any element of order 8. This fact can be easily obtained by a computer calculation
for instance, but we propose here a proof using only Springer theory. Let w ∈ E6 be an
element of order 8. Then w necessarily admits an eigenvalue which is a primitive 8-th root
of unity ζ. As only one of the degrees of E6 and only one of the codegrees of E6 is divisible
by 8, this implies that w is a regular element in the sense of Springer [LeMi, Theo. 1.2].
Then [Spr, Theo. 4.2(v)] the list of eigenvalues of w is ζ−1, ζ−4, ζ−5, ζ−7, ζ−8, ζ−11, and so
det(w) = ζ−36 = −1. So w ̸∈ D(E6).
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