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Abstract. -It is well-known that the quotient of the derived subgroup of the Shephard-Todd complex reflection group G32 (which has rank 4) by its center is isomorphic to the derived subgroup of the Weyl group of type E6. We show that this isomorphism can be realized through the second exterior power, and take the opportunity to propose an alternative construction of the group G32.

Let G 32 denote the complex reflection group constructed by Shephard-Todd [ShTo] and let E 6 be a Weyl group of type E 6 (which is denoted by G 35 in the Shephard-Todd classification). Let Sp 4 (F 3 ) (resp. SO 5 (F 3 )) denote the symplectic (resp. orthogonal) group of dimension 4 (resp. 5) over the finite field with three éléments F 3 . Let Ω 5 (F 3 ) be the image of Sp 4 (F 3 ) in SO 5 (F 3 ) through the natural morphism Sp 4 (F 3 ) → SO 5 (F 3 ): this is the normal subgroup of index 2 of SO 5 (F 3 ). Finally, if G is a group, let D(G) and Z(G) denote respectively its derived subgroup and its center and, if d is a non-zero natural number, let µ d be the group of d-th roots of unity in C.

It is shown in [START_REF] Lehrer | Unitary reflection groups[END_REF]théo. 8.43 et 8.54] that G 32 ≃ µ 3 × Sp 4 (F 3 ) and that E 6 ≃ SO 5 (F 3 ). In particular,

( * ) D(G 32 )/µ 2 ≃ Ω 5 (F 3 ) ≃ D(E 6 ).
The purpose of this note is to present a direct elementary explanation of the isomorphism D(G 32 )/µ 2 ≃ D(E 6 ), which in fact allows us to construct the the complex reflection group G 32 from the rational reflection group E 6 . This construction uses the classical morphism SL 4 (C) -→ SO 6 (C), and follows the same lines as our previous paper [Bon] (in which we constructed the complex reflection group G 31 from the Weyl group of type B 6 ). This note does not pretend to prove a deep result: it is just a a nice example of the application of the classical theory of reflection groups (invariants, Springer theory,...).

Remark.

It is shown in [START_REF] Lehrer | Unitary reflection groups[END_REF]Theo. 8.53] that G 33 ≃ µ 2 × Ω 5 (F 3 ). In particular, this gives an indirect isomorphism D(G 33 ) ≃ D(E 6 ). However, we do not know of any construction of this isomorphism which would be in the same spirit as above.

The morphism SL

4 (C) → SO 6 (C)
We recall here the construction of this morphism, using some notation from [Bon]. Let us fix a complex vector space V of dimension 4 and let

Λ : GL(V ) -→ GL(∧ 2 V ) g -→ ∧ 2 g
be the natural morphism of algebraic groups. Note that ∧ 2 V has dimension 6 and that

(1.1)

Ker Λ ≃ µ 2 = {± Id V }.
The lists of eigenvalues of elements of GL(V ) or GL(∧ 2 V ) will always be given with multiplicities. If g ∈ GL(V ) admits a, b, c and d as eigenvalues, then

(1.2) Λ(g) admits ab, ac, ad, bc, bd and cd as eigenvalues.

In particular,

(1.3) det Λ(g) = (det g) 3 .
Let us fix now a generator ε of the one-dimensional vector space ∧ 4 V . The choice of this generator allows to identify C and ∧ 4 V and to define a bilinear form

β ∧ : ∧ 2 V × ∧ 2 V -→ C (x, y) -→ x ∧ y.
This bilinear form is symmetric and non-degenerate. By definition of the determinant,

(1.4) β ∧ (Λ(g)(x), Λ(g)(y)) = (det g)β ∧ (x, y)
for all g ∈ GL(V ) and x, y ∈ ∧ 2 V . For dimension and connectedness reasons, the image of

GL(V ) through Λ is the neutral component CO(∧ 2 V ) • of the conformal orthogonal group CO(∧ 2 V ) = CO(∧ 2 V, β ∧ )
and Λ induces an isomorphism of algebraic groups

(1.5) SL(V )/µ 2 ≃ SO(∧ 2 V ).
The next elementary lemma will be useful (in this paper, we denote by j a primitive third root of unity).

Lemma 1.6. -Let g ∈ SO(∧ 2 V ) having j, j, j, j 2 , j 2 and j 2 as eigenvalues. Then there exists a unique element g ∈ SL(V ), having 1, j, j and j as eigenvalues, and such that

Λ -1 ({g, g -1 }) = {±g, ±g -1 }. Proof. -Let h ∈ SL(V ) be such that Λ(h) = g. Then Λ -1 ({g, g -1 }) = {±h, ±h -1 }. Let a,
b, c and d be the eigenvalues of h. By (1.2), by reordering if necessary the eigenvalues of h, we may assume that ab = ac = j. In particular, b = c. So bd = cd, which implies that bd = cd = j 2 (for otherwise j would be an eigenvalue of g with multiplicity ⩾ 4). Still by (1.2), (ad, bc) = (j, j 2 ) or (ad, bc) = (j 2 , j).

If (ad, bc) = (j, j 2 ), then b = c = d and b 2 = j 2 , so b = c = d = ηj and a = η, for some η ∈ {±1}. By replacing h by -h if necessary, the eigenvalues of h are then 1, j, j, j and so h is indeed the unique element of Λ -1 ({g, g -1 }) admitting this list of eigenvalues.

If (ad, bc) = (j 2 , j), then d = jb = jc and b 2 = j, which implies that a = b = c = ηj 2 and d = η, for some η ∈ {±1}. By replacing h by -h if necessary, the eigenvalues of h are then 1, j 2 , j 2 , j 2 and so h -1 is indeed the unique element of Λ -1 ({g, g -1 }) admitting 1, j, j, j as list of eigenvalues.

Corollary 1.7. -Let g ∈ SO(∧ 2 V ) having j, j, j, j 2 , j 2 and j 2 as eigenvalues. Then g and g -1 are not conjugate in SO(∧ 2 V ).

Proof. -Assume that we have found w ∈ SO(∧ 2 V ) such that wgw -1 = g -1 . Let ω and γ be respective preimages of w and g in SL(V ). Then Λ(ωγω -1 ) = g -1 = Λ(γ -1 ). This shows that γ -1 is conjugate to γ or to -γ, which is impossible by examining the possible lists of eigenvalues of γ obtained in the proof of Lemma 1.6.

Construction of G 32

Let us see E 6 as a finite subgroup of O(∧ 2 V ) generated by reflections. Set

jSO(∧ 2 V ) = ⟨SO(∧ 2 V ), j Id ∧ 2 V ⟩ and 3 √ SL(V ) = {g ∈ GL(V ) | det(g) 3 = 1} = ⟨SL(V ), j Id V ⟩. Then (2.1) Λ -1 jSO(∧ 2 V ) = 3 √ SL(V ).
We then define

W = Λ -1 (⟨D(E 6 ), j Id ∧ 2 V ⟩).
It is a subgroup of 3 √ SL(V ). The aim of this note is to show that W is isomorphic to the complex reflection group G 32 of Shephard-Todd. Note first that (2.2) µ 6 ⊂ W.

2.A. Reflections in W .

-The list of degrees E 6 is 2, 5, 6, 8, 9, 12 while its list of codegrees is 0, 3, 4, 6, 7, 10 (see [START_REF] Broué | Introduction to complex reflection groups and their braid groups[END_REF]Table A.3]). In particular, exactly 3 of the degrees are divisible by 3, which shows [START_REF] Springer | Regular elements of finite reflection groups[END_REF]Theo. 3.4] that E 6 contains an element w 3 admitting the eigenvalue j with multiplicity 3. We will denote by C 3 the conjugacy class of w 3 in W . Since also exactly 3 of the codegrees are divisible by 3, this implies, for instance by [START_REF] Lehrer | Invariant theory and eigenspaces for unitary reflection groups[END_REF]Theo. 1.2], that w 3 is regular in the sense of Springer [START_REF] Springer | Regular elements of finite reflection groups[END_REF]§4] (that is, admits an eigenvector for the eigenvalue j whose stabilizer in E 6 is trivial). Since E 6 is a rational group, w 3 also admits j 2 as an eigenvalue with multiplicity 3. Hence, the eigenvalues of w 3 are j, j, j, j 2 , j 2 and j 2 . In particular, det w 3 = 1 and so

w 3 ∈ D(E 6 ) = E 6 ∩ SO(∧ 2 V ).
By [START_REF] Springer | Regular elements of finite reflection groups[END_REF]Theo. 4.2(iii)], the centralizer of w 3 in E 6 has order 6 • 9 • 12, which shows that

(2.3) |C 3 | = 2 • 5 • 8 = 80.
Moreover [START_REF] Springer | Regular elements of finite reflection groups[END_REF]Theo. 4.2(iii)], if w ∈ E 6 , then

(2.4) w ∈ C 3 if and only if dim Ker(w -j Id V ) = 3.

Hence, if w ∈ C 3 , then w -1 ∈ C 3 but w -1 is not conjugate to w in D(E 6 ) (by Corollary 1.7). Now, let Ref(W ) denote the set of reflections of W . If s ∈ Ref(W ), the eigenvalues Λ(s) are 1, 1, 1, det(s), det(s), det(s). Since det(s) ∈ {j, j 2 }, the eigenvalues of det(s)Λ(s) are then j, j, j, j 2 , j 2 , j 2 . It follows from (2.4) that det(s)Λ(s) ∈ C 3 . This defines a map

λ : Ref(W ) -→ C 3 s -→ det(s)Λ(s).
The next result will be very useful:

Lemma 2.5. -The map λ is bijective.

Proof. -First, if λ(s) = λ(s ′ ), then there exists ξ ∈ C × such that s ′ = ξs. Since s and s ′ are reflections, this is possible only if ξ = 1, and so s = s ′ . This shows that λ is injective.

Let us now show the surjectivity. Let w ∈ C 3 . By Corollary 1.7, there exists a unique w ∈ Λ -1 ({w, w -1 }) admitting 1, j, j, j as eigenvalues. Then j 2 w and j w-1 are reflections satisfying λ(j 2 w) = det(j 2 w)Λ(j 2 w) = j 8 • j 4 Λ( w) = Λ( w) and λ(j w-1 ) = det(j w-1 )Λ(j w-1 ) = j 4 • j 2 Λ( w-1 ) = Λ( w) -1 .

So w ∈ {λ(j 2 w), λ(j w-1 )}, which shows that λ is surjective.

We then deduce from (2.3) and Lemma 2.5 that

(2.6) |Ref(W )| = 80.

2.B.

Structure of W . -Our main result is Theorem 2.7 below: the proof we propose here uses neither known properties of the group G 32 nor the classification of complex reflection groups and so might be viewed as an alternative construction of G 32 starting from E 6 (however, note that we use properties of E 6 ).

Theorem 2.7. -The group W : (a) has order 155 520; (b) is generated by reflections of order 3; (c) is irreducible and primitive;

(d) admits 12, 18, 24, 30 as list of degrees.

Proof. (2.9)

-Set E # 6 = ⟨D(E 6 ), j Id ∧ 2 V ⟩ and W + = W ∩ SL(V ). Recall that |E 6 | = 51 840. So (2.8) |D(E 6 )| =
Z(W ) = µ 6 and W/µ 6 ≃ D(E 6 ). Let R = {det(s) -1 s | s ∈ Ref(W )}. Set G = ⟨Ref(W )⟩ and H = ⟨R⟩.
The statement (b) is equivalent to the following one

(#) W = G.
First, Λ(R) = C 3 and so Λ(H) = D(E 6 ) (as this last group is simple and C 3 is a conjugacy class). In particular, W = H • µ 6 and so, since H ⊂ G • µ 3 , we obtain

W = G • µ 6 ,
which is almost the expected result (#). Before showing (#), note that, since Λ(H) = D(E 6 ), we have that H (and so G) acts irreducibly on V . Moreover, if G is not primitive, then G (and so H) would be monomial [START_REF] Lehrer | Unitary reflection groups[END_REF]Lem. 2.12], which would imply that Λ(H) = D(E 6 ) is monomial, which is false. So From the second equality, we deduce that at least one of the e i 's (say e 3 ) is odd. From the first equality, we deduce that at least one of the e i 's (say e 2 ) is even and so e 1 is also even.

The first equality shows that e 1 or e 2 (say e 2 ) is divisible by 8. So e 2 ∈ {8, 16, 24}. A quick inspection of the possibilities shows that e 1 = 4, e 2 = 16 and {e 3 , e 4 } = {3, 5}. The degrees of G are then 9, 12, 15 and 48. Since 16 divides one of the degrees, it then follows from [START_REF] Springer | Regular elements of finite reflection groups[END_REF]théo. 3.4(i)] that G = H × µ 3 contains an element of order 16 and so H contains an element of order 16. Therefore, D(E 6 ) = Λ(H) contains an element of order 8, which is impossible (see Remark 2.11 below for a proof of this fact based only on Springer theory). This contradicts the fact that |G| = 77 760. So we have shown (#), that is,

W = ⟨Ref(W )⟩ = G.
This is statement (b). In particular, µ 6 ⊂ W and so all the d i 's are divisibles by 6. Set

a i = d i /6. Then (♢) implies that a 1 a 2 a 3 a 4 = 120 = 2 3 • 3 • 5, a 1 + a 2 + a 3 + a 4 = 14,
By the same argument as before, since µ 12 ̸ ⊂ W , we may assume that a 3 and a 4 are odd and that a 1 and a 2 are even. A quick inspection of the possibilities shows that {a 1 , a 2 } = {2, 4} and {e 3 , e 4 } = {3, 5}. This concludes the proof of (d).

Corollary 2.10. -The group W is isomorphic to the reflection group G 32 of Shephard-Todd.

Proof. -This follows from Theorem 2.7 and from the classification of complex reflection groups [ShTo].

Hence, Corollary 2.10 gives an explanation for the fact, mentioned in the introduction, that D(G 32 )/µ 2 ≃ D(E 6 ): the isomorphism is realized by Λ.

Remarque 2.11. -In the proof of Theorem 2.7, we have used the fact that D(E 6 ) does not contain any element of order 8. This fact can be easily obtained by a computer calculation for instance, but we propose here a proof using only Springer theory. Let w ∈ E 6 be an element of order 8. Then w necessarily admits an eigenvalue which is a primitive 8-th root of unity ζ. As only one of the degrees of E 6 and only one of the codegrees of E 6 is divisible by 8, this implies that w is a regular element in the sense of Springer [START_REF] Lehrer | Invariant theory and eigenspaces for unitary reflection groups[END_REF]Theo. 1.2]. Then [START_REF] Springer | Regular elements of finite reflection groups[END_REF]Theo. 4.2(v)] the list of eigenvalues of w is ζ -1 , ζ -4 , ζ -5 , ζ -7 , ζ -8 , ζ -11 , and so det(w) = ζ -36 = -1. So w ∈ D(E 6 ).

  25 920, |E # 6 | = 77 760, |W | = 155 520 and |W + | = 51 840. This shows (a). Moreover,

  this proof by showing simultaneously (b) et(d). Let d 1 , d 2 , d 3 , d 4 be the degrees of G. It follows from (2.6) and for instance from[START_REF] Broué | Introduction to complex reflection groups and their braid groups[END_REF] Theo. 4.1] that(♢) d 1 d 2 d 3 d 4 = |G|, d 1 + d 2 + d 3 + d 4 = 84.The morphism det : G → µ 3 is surjective (since det(s) ∈ {j, j 2 } for any s ∈ Ref(W )), and this implies thatµ 3 ⊂ G (because G/(G ∩ µ 6 ) ≃ D(E 6 ) is simple). Itremains to show that |G| ̸ = |W |/2 = 77 760. So assume that |G| = 77 760. Since µ 3 ⊂ G, all the d i 's are divisible by 3 and, since µ 6 ̸ ⊂ G, at least one of them (say d 4 ) is not divisible by 6. Write e i = d i /3. 2 e 3 e 4 = 960 = 2 6 • 3 • 5, e 1 + e 2 + e 3 + e 4 = 28, e 4 is odd.