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DIMENSION GAP AND VARIATIONAL PRINCIPLE FOR

ANOSOV REPRESENTATIONS

FRANÇOIS LEDRAPPIER AND PABLO LESSA

Abstract. We consider a representation of a finitely generated group Γ in
SL(d,R) that is Zariski dense and k-Anosov for at least two values of k. We
exhibit a gap for the Minkowski dimension of minimal sets for the action of Γ
on flags spaces. The proof uses a variational principle for the action on partial
flags.

1. Introduction

1.1. Main results. Let (Γ,S) be a finitely generated group with a symmetric set
of generators S.

For d ≥ 2, consider P a subset of {1, . . . , d−1}. A representation ρ : Γ → SL(d,R)
is called a P -Anosov representation if there exists c > 0 such that

sp(ρ(γ))

sp+1(ρ(γ))
> c exp(c|γ|),

for all γ ∈ Γ and p ∈ P . Here |γ| denotes word length in Γ with respect to some
fixed finite symmetric generating set S and, for 1 ≤ i ≤ d, si(γ) denotes the i-th
largest singular value of γ ∈ SL(d,R) with respect to the usual inner product on
R
d. A representation is called Borel-Anosov if it is {1, . . . , d− 1}-Anosov.

Anosov representations have been introduced by F. Labourie ([Lab06]) and have
been the subject of many studies (cf. in particular [GGKW17], [KLP16], [KLP17],
[KLP18], [BPS19] and [Can] for a recent survey). It is widely accepted that non-
trivial Anosov representations present the right analog of convex cocompact rep-
resentations in higher rank. Many properties are suggested by this analogy. In
another direction, we present in this note a phenomenon which is purely higher
rank: there is a dimension gap for minimal invariant subsets for the action of ρ(Γ)
on the spaces of flags. The proof uses a new variational principle for the action of
ρ(Γ) on the spaces of partial flags (see below theorem 1.7).

Let Q be a non-empty subset of {1, . . . , d − 1}. We consider the space FQ of
partial flags with signature Q, endowed with a rotationally invariant Riemannian
metric. Let us recall the definition of the Minkowski dimension of a set Λ ⊂ FQ:
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2 FRANÇOIS LEDRAPPIER AND PABLO LESSA

for ε > 0, let N(Λ, ε) be the covering number of the set Λ by balls of radius ε in
the metric of FQ. The Minkowski dimension dimM (Λ) is defined by

dimM (Λ) := lim sup
ε→0

logN(Λ, ε)

log(1/ε)
.

Our result is

Theorem 1.1 (Dimension gap for minimal sets of Anosov representations). With
the above notations, let (Γ, S) be a finitely generated group and Λ be a minimal
invariant set for the action of ρ(Γ) on FQ. Assume that the representation ρ is P -
Anosov for some P ⊂ {1, . . . , d−1} and such that ρ(Γ) is Zariski dense in SL(d,R).
Then, with M := #(Q ∩ P ),

dimM (Λ) ≤ dim(FQ)−
M − 1

2
.

In the case d = 2 the bound given by the above theorem is trivial. And, indeed,
uniform discrete subgroups of SL(2,R) have full limit set. A dimension gap for the
limit set of classical Schottky groups was proved in [Doy88]. We note however, that
there exist uniform discrete (and thus convex co-compact) subgroups of isometries
of rank one symmetric spaces and thus there is no dimension gap for convex cocom-
pact representations in rank one. On the other hand, there are many conditions
that ensure that the limit set is a Lipschitz submanifold of the flag space (see the
discussions in [PSW23]). Our result is easy in those cases.

If ρ is P -Anosov then it is also P ∪P ∗-Anosov for P ∗ = {d−p : p ∈ P}. Theorem
1.1 gives a non-trivial upper bound for the dimension of any minimal invariant set in
FQ for all Q with #(Q∩ (P ∪P ∗)) ≥ 2. In particular, as soon as the representation
is k-Anosov for some k 6= d/2 and Zariski dense, then the codimension of the limit
set in the full flag space is at least 1/2.

There are a few simple reductions which allow us to state our core result. Firstly,
we observe that the bundle πQ,Q∩P : FQ → FQ∩P is smooth, so that for any closed
Λ ⊂ FQ∩P , we have

dimM ((πQ,Q∩P )
−1(Λ)) = dimM (Λ) + dimFQ − dimFQ∩P .

So, it suffices to show theorem 1.1 for the case Q = P . In that case, the unique
minimal invariant subset of FP is the limit set Λρ.

By considering Γ/Kerρ, we may assume that the representation ρ is faithful.
Furthermore, we may assume that Γ is non-elementary hyperbolic since, on the one
hand, an Anosov subgroup of SL(d,R) is hyperbolic ([BPS19], theorem 3.2) and,
on the other hand, the limit set of an Anosov representation of an elementary (i.e.
virtually cyclic) hyperbolic group is finite. Taking all this into account, we only
have to prove

Theorem 1.2 (Dimension gap for limit sets of Anosov representations). Let (Γ, S)
be a non-elementary, hyperbolic, finitely generated group, P ⊂ {1, . . . , d − 1} with
M := #P ≥ 2 , ρ a faithful P -Anosov representation of Γ in SL(d,R) with ρ(Γ)
Zariski dense in SL(d,R) and Λρ ⊂ FP the limit set of the representation ρ. Then,

dimM (Λρ) ≤ dim(FP )−
M − 1

2
.
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It seems natural to conjecture that a dimension gap will exist between the limit
set and the corresponding space of flags, for any Zariski dense representation into
a reductive algebraic Lie group of rank r ≥ 2 which is Anosov with respect to at
least two simple roots.

Let g ∈ SL(d,R). The numbers λi(g) := lim
n

1/n log si(g
n) are the logarithms

of the moduli of the eigenvalues of g. Apply the Oseledets theorem in the trivial
case of one matrix g ∈ SL(d,R). The Oseledets decomposition is obtained from
the Jordan decomposition by grouping together the spaces corresponding to the
eigenvalues with the same modulus. These moduli are the expλi(g).

In our setting, if γ ∈ Γ, for all p ∈ P, λp(ρ(γ)) − λp+1(ρ(γ)) ≥ c|γ|. For all
γ ∈ Γ, we obtain a coarser decomposition by grouping together, for 1 ≤ k ≤M +1,
the Oseledets subspaces associated with λi(ρ(γ)) with λpk−1

(ρ(γ)) > λi(ρ(γ)) ≥

λpk(ρ(γ)).
1 This associates to every γ ∈ Γ an element η(ρ(γ)) of the space XP of

decompositions of Rd = E1 ⊕ . . .⊕ EM+1, with dimEk = pk − pk−1, namely

η(ρ(γ)) = E1(ρ(γ))⊕ . . .⊕ EM+1(ρ(γ))

with the property that for all k = 1, . . . ,M +1, the space Ek(ρ(γ)) is generated by
the Jordan spaces of ρ(γ) such that the modulus expλ of the eigenvalue satisfies

expλpk−1
(ρ(γ)) > expλ ≥ expλpk(ρ(γ)).

Corollary 1.3. Let (Γ, S) be a hyperbolic finitely generated group, P ⊂ {1, . . . , d−
1} with M := #P. With the above notations, if ρ is a P -Anosov, Zariski dense
representation of Γ in SL(d,R), set Ωρ ⊂ XP the closure of the set {η(ρ(γ)); γ ∈ Γ}.
Then,

dimM (Ωρ) ≤ dimXP −M + 1.

Indeed, corollary 1.3 is trivial for d = 2 and for M = 1. It is trivial as well if Γ is
elementary. For d ≥ 3 and M ≥ 2, we show in section 2.3 why corollary 1.3 follows
from theorem 1.2.

The first non-trivial case for our results is when d = 3 and P = {1, 2}. So,
let ρ be a Borel-Anosov representation of the finitely generated non-elementary
group (Γ, S) in SL(3,R) and we can consider the limit set Λρ of the action of
ρ(Γ) on the space F of complete flags in R

3. Besides, for all γ ∈ Γ, the matrix
ρ(γ) admits three distinct eigenspaces written (E1(ρ(γ)), E2(ρ(γ)), E3(ρ(γ))) in the
order of the absolute values of the eigenvalues. Let Ωρ denote the closure of the
{(E1(ρ(γ)), E2(ρ(γ)), E3(ρ(γ))), γ ∈ Γ} in P

2 × P
2 × P

2. We obtain, from theorem
1.2 and corollary 1.3,

Corollary 1.4.

dimM (Λρ) ≤
5

2
< 3 = dim(F), dimM (Ωρ) ≤ 5 < 6 = dim(P2 × P

2 × P
2).

Let Γ be a surface group. For the Hitchin component, the dimension of the
projective limit set is 1 (see [Lab06]) and our result is not new. It is is new and un-
expected, as far as the authors are aware, for the Zariski dense representations that

1With the convention that p0 = 0, λp0 = +∞ and pM+1 := d.
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lie in the Barbot component, i.e. the same connected component as the Teichmüller
times Identity representations.

1.2. Strategy of the proof of theorem 1.2.

1.2.1. Random walk entropy. Let M be the set of probability measures µ on Γ with
countable support and with finite first moment, meaning

∑

γ∈Γ

µ(γ)|γ| < +∞,

such that the semi-group Γµ generated by the support of µ is non-elementary (i.e.
contains two independent loxodromic elements).

It is well known that if µ ∈ M then µ has finite Shannon entropy, meaning

H(µ) = −
∑

γ∈Γ

µ(γ) log(µ(γ)) < +∞.

The random walk entropy hµ of µ ∈ M is defined by

(1) hµ = lim
n→+∞

1

n
H(µ∗n),

where µ∗n is the n-fold convolution of µ with itself.

1.2.2. Lyapunov exponents. Denote a
+ the cone

a
+ := {a ∈ R

d : a1 ≥ · · · ≥ ad,
∑

ai = 0}.

For g ∈ SL(d,R), logS(g) ∈ a
+, where

logS(g) := (log s1(g), . . . , log sd(g)).

The Lyapunov exponents {λi(ρ∗µ)} ∈ a
+ induced by ρ, are defined by

(2) λ(ρ∗µ) := {λi(ρ∗µ)} = lim
n→+∞

1

n

∑

γ∈Γ

µ∗n(γ) log (S(ρ(γ))) .

The limits exist by Fekete lemma applied to {
∑

j≤i

∑

γ∈Γ

µ∗n(γ) log (sj(ρ(γ)))}n∈N.

1.2.3. Lyapunov and Falconer dimension. We say a pair (i, j), 0 < i < j ≤ d is
separated by p ∈ P if i ≤ p < j. For each p ∈ P let Sp be the set of pairs separated
by p, and define S(P ) =

⋃

p∈P

Sp. On the cone a
+ we define the roots

αi,j(a) = ai − aj ,

for i < j and notice that they are non-negative on a
+. Lyapunov and Falconer

dimensions are special values of Lyapunov and Falconer functionals on a
+.
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We define for h ≥ 0 the Lyapunov functional on a
+ by

LPh (a) = maximum of
∑

(i,j)∈S(P )

ri,j

subject to 0 ≤ ri,j ≤ 1 and
∑

(i,j)∈S(P )

ri,jαi,j(a) ≤ h.

For r ≥ 0 we also define the Falconer functional on a
+ by

FPr (a) = minimum of
∑

(i,j)∈S(P )

ri,jαi,j(a)

subject to 0 ≤ ri,j ≤ 1 and
∑

(i,j)∈S(P )

ri,j ≥ r.

Lemma 1.5 (Duality between Falconer and Lyapunov functionals). Given a ∈ a
+,

for all r, h ≥ 0 one has FPr (a) ≤ h if and only if LPh (a) ≥ r.

Furthermore, let d(a) be the number of pairs (i, j) in S(P ) with αi,j(a) = 0.
Then, FPr (a) = 0 for r ∈ [0, d(a)] and r 7→ FPr (a) is an increasing homeomorphism
from [d(a), D] to [0, FPD (a)] where D = #S(P ) = dim(FP ), and h 7→ LPh (a) is its
inverse.

Proof. To establish the first claim observe that directly from the definitions, both
conditions FPr (a) ≤ h and LPh (a) ≥ r are equivalent to there being some choice of
ri,j ∈ [0, 1] for (i, j) ∈ S(P ) such that

∑

(i,j)∈S(P )

ri,jαi,j(a) ≤ h and
∑

(i,j)∈S(P )

ri,j ≥ r.

Moreover, in computing FPr (a), we can always take ri,j = 1 for the pairs (i, j) in
S(P ) with αi,j(a) = 0. It follows that FPr (a) = 0 for r ∈ [0, d(a)]. Then, there
is ε > 0 with αi,j(a) > ε for all the other pairs (i, j). It follows immediately that
FPr+s(a) > FPr (a) + εs for all d(a) ≤ r < r+ s ≤ D. Hence r 7→ FPr (a) is increasing

on [d(a), D]. Since FP
d(a)(a) = 0, r 7→ FPr (a) it is an increasing homeomorphism as

claimed.

Similarly, picking ε > 0 small enough so αi,j(a) < ε−1 for all (i, j) ∈ S(P ), it
follows that LPh+s(a) > LPh (a)+εs for all 0 ≤ h < h+s < FPD (a). Hence, h 7→ LPh (a)
is an increasing homeomorphism as well.

Let f : I → J and g : J → I be the two homeomorphisms under consideration
where I = [d(a), D] and J = [0, FPD (a)]. By our first claim we have g(f(r)) ≥ r for
all r ∈ I and f(g(h)) ≤ h for all h ∈ J . However, substituting r = f−1(h), the first
inequality implies g(h) ≥ f−1(h) for all h ∈ J , from which we obtain f(g(h)) ≥ h
for all h ∈ J . Hence, we have f(g(h)) = h for all h ∈ J as required. �

Following [DO80] and [KY79], we define the Lyapunov dimension of ρ∗µ on FP
by

dimP
LY (ρ∗µ) := Lhµ

(λ(ρ∗µ)).
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In the spirit of [Fal88], we define the Falconer dimension dimP
F (ρ) of ρ relative to

FP as the critical parameter r ≥ 0 for convergence of the series

(3) ΦPρ (r) :=
∑

γ∈Γ

exp(−(FPr ◦ log ◦S ◦ ρ)(γ)).

1.2.4. Proof of theorem 1.2. Theorem 1.2 is a direct consequence of the three fol-
lowing results. We assume that (Γ,S) is a non-elementary, hyperbolic, finitely
generated group, P a subset of {1, . . . , d − 1} with M := #P ≥ 2, ρ a faithful
P -Anosov representation of Γ in SL(d,R) with ρ(Γ) Zariski dense in SL(d,R) and
we denote Λρ ⊂ FP the limit set of the action of ρ(Γ).

Theorem 1.6 (Upper bound on Lyapunov dimension). For all µ ∈ M, one has

dimP
LY (ρ∗µ) ≤ dim(FP )−

M − 1

2
.

Theorem 1.7 (Variational principle). One has

(4) dimP
F (ρ) = sup

µ∈M
dimP

LY (ρ∗µ).

Theorem 1.8 (Inequality between Minkowski and Falconer dimension). One has

dimM (Λρ) ≤ dimP
F (ρ).

The key observation behind theorem 1.6 is that the entropy hµ is realized as
the Furstenberg entropy of the action of ρ(Γ) on the Grassmannian Gr(p,Rd) for
any p ∈ P. This follows from the P -Anosov property and identification of the
Poisson boundary and geometric boundary for µ-random walks on Γ ([Kai00]).
The inequality in theorem 1.6 is then a consequence of the inequality between
Furstenberg entropy and the sum of the relevant exponents (see [LL23b] and section
3).

The fact that

(5) dimP
LY (ρ∗µ) ≤ dimP

F (G)

is classical. We recall the proof in section 2.2.2.

The converse is due to Yuxiang Jiao, Jialun Li, Wenyu Pan and Disheng Xu
([JLPX23]) in the case when the representation is Borel-Anosov. In [JLPX23], given
ε > 0, the authors construct a free semi-group in Γ that is rich enough that the uni-
form probability measure µε on the generators satisfies dimLY (ρ∗µε) ≥ dimF (ρ)−ε.
The complete dominated splitting is used to control the almost additivity of the
singular values. Here, we consider a general subset P and we assume that the repre-
sentation ρ(Γ) is Zariski dense in SL(d,R). In the spirit of [Gou22], [AGG+23] and
[JLPX23], we prove in the appendix a general proposition about free subsemigroups
in hyperbolic groups (see the appendix for the definition of a quasi-geodesic set; see
also [Yan19] for a construction of free sub-semi-groups with convexity properties in
a more general context.)

Proposition 1.9 (=Proposition A.1). Let (Γ,S) be a non-elementary hyperbolic
group with a finite symmetric generator S. Then there exists a semigroup S ⊂ Γ,
a finite set F ⊂ Γ and mappings L,R : Γ → F with the following properties:
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(1) S generates Γ as a group,
(2) S is quasi-geodesic, and
(3) L(γ)γR(γ) ∈ S for all γ ∈ Γ.

Then, by Zariski density and [AMS95], there is a measurable complete splitting
and we are able to control the almost additivity of the singular values.

Finally, the proof of theorem 1.8 is done in section 5. Similarly to other previous
works (see [Zha97], [BCH10], [PSW21], [GMT23], [FS20]), it rests on covering the
limit set in ∂Γ by shadows and counting the covering numbers of the images of
these shadows in Λρ.

1.3. Related facts. For convex cocompact groups in SO(n, 1), Dennis Sullivan
proved in [Sul79] that the Hausdorff dimension and the Minkowski dimension of the
limit set coincide with the Poincaré exponent of the group (which is the Falconer
dimension in that case). This result can be extended to more general cases if one
uses a conformally invariant metric on the boundary (see [Lin04], [DK22]). The
problem is more delicate for the rotation invariant Riemannian metric (see e.g.
[Duf17] for the SU(n, 1) case).

Following the pioneer work of Falconer ([Fal88]), there are many results com-
paring Hausdorff dimension and Falconer dimension for affine IFS. The variational
principle (4) for IFS can be found in [Fal88] and [K04]. Under the form (4), it is
due to Ian D. Morris and Pablo Shmerkin ([MS19]) in the case of dimension 2, Ian
D. Morris and Çağri Sert ([MS21]) in general.

Given theorems 1.7 and 1.8, a natural step to prove dimH(Λρ) = dimM (Λρ) =

dimP
F (ρ) for P -Anosov representations is finding necessary conditions on a given

probability µ on Γ and a ρ∗(µ)-stationary probability measure ν on FP for having

(6) dimloc ν = dimP
LY (ρ∗µ).

Here, dimloc ν is the ν-a.e. constant value of lim
ε→0

log ν(B(x,ε))
log ε (cf. [LL23b]). Relation

(6) for IFS is a famous problem, with many deep contributions (most relevant
for us are [Fal88], [JPS07], [Hoc14], [BHR19], [HR19], [FS22], [Rap22], [MS21]).
For random walks on discrete subgroups of SL(d,R), relation (6) is classical when
d = 2 (see [HS17] for the general non-discrete case). [LL23a] prove relation (6)
for the Hitchin component of the representation of a surface group in SL(d,R). In
[LPX23], Jialun Li, Wenyu Pan and Disheng Xu prove relation (6) for d = 3 when
the representation ρ is Borel-Anosov and ρ(Γ) is Zariski dense. They also observe
that relation (6) may be wrong when the Zariski closure of ρ(Γ) is conjugated to
SL(2,R). See [DS22] for the case of SU(2, 1).

Acknowledgments
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2. Random walk entropy

Let Γ be a non-elementary finitely generated word hyperbolic group, P ⊂ {1, . . . , d−
1} with M := #P ≥ 2, ρ a P -Anosov representation of Γ in SL(d,R). We let M
denote the set of probability measures µ on Γ with finite first moment

∑

γ∈Γ

|γ|µ(γ) < +∞,

and such that the semi-group Γµ generated by the support of µ contains two inde-
pendent loxodromic elements.

In this section, we prove that the random walk entropy hµ given by (1) coincides
with the Furstenberg entropy (see below) of the stationary measure on the Gromov
boundary of Γ and its images on adequate flag spaces. We also relate the Falconer
dimension and the random walk entropy to the growth indicator defined by [Qui02].
To conclude the section, we prove corollary 1.3.

2.1. Furstenberg entropy. Recall that a probability measure ν on a compact
space X on which Γ-acts continuously is said to be µ-stationary where µ is a
probability measure on Γ, if and only if

ν =
∑

γ∈Γ

µ(γ)γ∗ν.

The Furstenberg entropy of a µ-stationary measure is defined as

κ(µ, ν) =
∑

γ∈Γ

µ(γ)

∫

X

log

(

dγ∗ν

dν
(γx)

)

dν(x),

or +∞ if the Radon-Nikodym derivative in the integral does not exist for some γ
in the support of µ.

In this subsection we show that for µ ∈ M, the Furstenberg entropy of the natural
µ-stationary measures on the Gromov boundary ∂Γ, the Grasmannian manifolds
of p-dimensional subspaces of Rd for p ∈ P , and the space of partial flags FP all
coincide with the random walk entropy hµ.

This particular feature of Anosov representations is useful since the Furstenberg
entropy is what occurs in the dimension formulas of [LL23b].

2.1.1. Stationary measure on the Gromov boundary ∂Γ.

Theorem 2.1. For each µ ∈ M there exists a unique µ-stationary measure νµ on
the Gromov boundary ∂Γ of Γ, and its Furstenberg entropy is given by κ(µ, νµ) = hµ.

Proof. If γ−1, . . . , γ−n, . . . are i.i.d. random elements in Γ with common distribution
µ. Then by [Kai00, Theorem 7.6] there exists a random limit point

X = lim
n→+∞

γ−1 · · · γ−n ∈ ∂Γ,

almost surely, and the distribution νµ of X is the unique µ-stationary measure on
∂Γ.
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Furthermore, (∂Γ, νµ) is isomorphic to the Poisson boundary of (Γ, µ) by [Kai00,
Theorem 7.7].

The Furstenberg entropy κ(µ, νµ) is equal to the difference between hµ and the
entropy of the random walk γ1, γ1γ2, . . . conditioned on X (see [KV83, Corollary
2]). However, because (∂Γ, ν) is the Poisson boundary this conditional entropy is
zero ([Kai00, Theorem 4.3 and 4.5]) and therefore hµ = κ(µ, νµ) as claimed. �

2.1.2. Boundary maps. Let p ∈ P and γ ∈ Γ be such that sp(ρ(γ)) > sp+1(ρ(γ)).

There exists a unique p-dimensional subspace ξp(γ) ⊂ R
d on which p-dimensional

volume is most contracted by ρ(γ)−1.

We let ξ(γ) = ({0} ⊂ ξp1(γ) ⊂ . . . ⊂ ξpM (γ)) ⊂ R
d ∈ FP where P = {p1 < · · · <

pM}, whenever all ξp(γ) are well defined.

Since ρ is P -Anosov this is the case outside of a finite subset of Γ.

We refer to [GdlH90, Chapitre 7] for basic properties of the Gromov compact-
ification of Γ. We briefly recall that Γ with its word metric is a proper geodesic
metric space.

The group Γ is word hyperbolic, so there exists δ > 0 such that for every geodesic
triangle each side is contained in the δ-neighborhood of the other two.

The Gromov boundary ∂Γ is the set of equivalence classes of word geodesic rays
in Γ, where two rays are equivalent if they are at bounded Hausdorff distance.

A basis of neigborhoods of a point x ∈ ∂Γ in the Gromov compactification
Γ = Γ ∪ ∂Γ is defined by taking for each C > 0 the set

N(x,C) = {x} ∪ {y ∈ Γ : min
n

|αn| > C for all geodesics α joining x and y}.

Proposition 2.2. The map ξ defined above extends Hölder continuously to the
Gromov boundary ∂Γ. Furthermore, ξp : ∂Γ → Gr(p,Rd) is injective for each
p ∈ P \ {0, d}.

Proof. For each p ∈ P, the extension of ξp to a continuous mapping from ∂Γ to
Gr(p,Rd) (the Cartan property ) is due to [GGKW17] (see [Can], Proposition 30.3).
Notice that if p ∈ P then ρ is also (d − p)-Anosov. From [BPS19, Proposition
4.9] one has that if x, y ∈ ∂Γ are distinct then ξp(x) ⊕ ξd−p(y) = R

d. Since
ξmin(p,d−p)(x) ⊂ ξmax(p,d−p)(x), this implies, for p 6= 0, d, that ξp(x) 6= ξp(y) so
that ξp is injective as claimed. �

2.1.3. Dynamical stationary measures. Fix µ ∈ M, let γ−1, . . . , γ−n, ... be i.i.d.
random elements of Γ with common distribution µ, χ1 > · · · > χN be the distinct
Lyapunov exponents of µ, and d1, . . . , dN their multiplicities. Let A = {d1, d1 +
d2, . . . , d1 + · · · + dN−1}. By Oseledets theorem for each a ∈ A there is a random
limit

Ua = lim
n→+∞

ξa(γ−1 · · · γ−n),

almost surely.
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The collection U of Ua for a ∈ A is a random element in the space of flags
of signature A. Its distribution, and the projections of its distribution to coarser
partial flag spaces are what were called dynamical stationary measures in [LL23b].
In particular since λp(ρ∗µ) > λp+1(ρ∗µ) for all p ∈ P we have that ξ∗νµ is the
dynamical stationary measure on FP , and ξ

p
∗νµ is the dynamical stationary measure

on the Grasmannian of p-dimensional subspaces of Rd for each p ∈ P .

2.1.4. Furstenberg entropy.

Theorem 2.3. For each µ ∈ M one has

hµ = κ(µ, ξ∗νµ) = κ(µ, ξp∗νµ),

for all p ∈ P, p 6= 0, d.

Proof. This is immediate from the injectivity of the maps ξp given by proposition
2.2. �

2.2. Growth indicator function.

2.2.1. Growth function and Falconer dimension. Given a ∈ a
+ we define the growth

indicator at a by

(7) ψρ(a) = ‖a‖ inf
C∋a

lim sup
T→∞

1

T
log#{γ ∈ Γ, log ◦S◦ρ(γ)) ∈ C, || log ◦S◦ρ(γ)|| ≤ T }

where the infimum is over all open subcones C ⊂ a
+ that contain a.

Theorem 2.4 (Quint, [Qui02]). The growth indicator function ψρ is concave and
{ψρ > 0} is the interior of the limit cone defined by

LΓ = lim
t→+∞

1

t
logS(Γ),

where the limit is taken in the Hausdorff topology on closed sets.

Recall that we defined the Falconer dimension dimP
F (ρ) as the critical value of

the series r 7→
∑

γ∈Γ

exp
(

−FPr ◦ log ◦S ◦ ρ(γ)
)

. We have (see [Sam14, Lemma 4.2],

[Qui02, Lemma III.1.3]):

Lemma 2.5. Assume r ≥ 0 is such that there is a ∈ a
+ inside the interior of the

limit cone LΓ with ψρ(a) > FPr (a). Then,

r ≤ dimP
F (ρ).

2.2.2. Proof of (5). The following inequality is essentially due to Guivarc’h.

Lemma 2.6 (Fundamental inequality). For all µ ∈ M one has

hµ ≤ ψρ(λ(ρ∗µ)).

Proof. Indeed, by the subadditive ergodic theorem applied to the shift space di-
recting the random walk, for all ε > 0 and n large enough, there are at least
exp(n(hµ − ε)) elements γ of Γ with log(S(ρ(γ))) nε-close to nλ(ρ∗µ). �



DIMENSION GAP AND VARIATIONAL PRINCIPLE FOR ANOSOV REPRESENTATIONS 11

Recall that, given µ ∈ M we defined the Lyapunov dimension by

dimP
LY (ρ∗µ) = Lhµ

(λ(ρ∗µ)).

Relation (5) is the following statement

sup
µ∈M

dimP
LY (ρ∗µ) ≤ dimP

F (ρ).

.

Proof. Fix µ ∈ M and let r0 = dimP
LY (ρ∗µ) = Lhµ

(λ(ρ∗µ)). From the duality
between Lyapunov and Falconer functionals we have Fr0(λµ) = hµ.

We have hµ ≤ ψΓ(λ(ρ∗µ)) by the fundamental inequality, i.e. Fr0(λ(ρ∗µ)) ≤

ψΓ(λ(ρ∗µ)). Hence, r0 ≤ dimP
F (ρ) by lemma 2.5. �

2.3. Eigenspace splitting. In this subsection, we show that theorem 1.2 implies
corollary 1.3.

Consider, for γ ∈ Γ, the P -decomposition η(ρ(γ)) = E1(ρ(γ))⊕. . .⊕EM−1(ρ(γ)).
By the P -Anosov property, the angles between E1(ρ(γ)) ⊕ . . . ⊕ Ek(ρ(γ)) and
Ek+1(ρ(γ))⊕ . . .⊕EM−1(ρ(γ)) are uniformly bounded from below by some positive
number for all 1 ≤ k ≤M − 2 and for all γ but a finite number.

Recall that we denote, for all γ but a finite number, ξ(γ) = {0} ⊂ ξp1(γ) ⊂
. . . ⊂ ξpM−2(γ) ⊂ R

d ∈ FP . In the same way, ξ(γ−1) = {0} ⊂ ξd−pM−2(γ−1) ⊂
. . . ⊂ ξd−p1(γ−1) ⊂ R

d ∈ FP∗ . It follows from [GGKW17], lemma 2.262 that the
unstable flag f(ρ(γ)) ∈ FP ,

f(ρ(γ)) := {0} ⊂ E1(ρ(γ)) ⊂ . . . ⊂ E1(ρ(γ))⊕ . . .⊕ EM−2(ρ(γ)) ⊂ R
d

and the stable flag f ′(ρ(γ)) ∈ FP∗ ,

f ′(ρ(γ)) := {0} ⊂ EM−1(ρ(γ)) ⊂ . . . ⊂ E2(ρ(γ))⊕ . . .⊕ EM−1(ρ(γ)) ⊂ R
d

are given by

f(ρ(γ)) = lim
n→+∞

ξ(γn), f ′(ρ(γ)) = lim
n→−∞

ξ(γn).

In particular, f(ρ(γ)) ∈ Λρ ⊂ FP , and f ′(ρ(γ)) ∈ Λ∗
ρ, where Λ∗

ρ is the limit set
associated to the representation ρ in FP∗ . Thus, (f, f ′) ∈ (Λρ×Λ∗

ρ)
′ ⊂ (FP ×FP∗)′,

where ′ indicates that the pairs of flags are in general position.

The set of pairs (f, f ′) ∈ (FP ×FP∗)′ such that the angles between the opposite
partial spaces are bounded from below by some positive number form a compact
subset of (FP × FP∗)′ and the mapping that associates to (f, f ′) the underlying
decomposition is uniformly Lipschitz on that compact set. For almost all γ ∈ Γ,
the decomposition η(ρ(γ)) is obtained by this mapping from (f(ρ(γ)) × f ′(ρ(γ)).
Therefore the closure Ωρ of the set of splittings {η(γ), γ ∈ Γ} is the image of a
compact subset of (Λρ×Λ∗

ρ)
′ by a Lipschitz mapping and its Minkowski dimension

is at most the Minkowski dimension of Λρ×Λ∗
ρ. Since the Minkowski dimension of a

product is the sum of the Minkowski dimensions, corollary 1.3 follows from theorem
1.2 applied to the representation ρ which is both P -Anosov and P ∗-Anosov.

2The argument in the non-hyperbolic case goes back to David Ruelle’s proof of Oseledets
theorem ([Rue79], cf. [Led84] proposition 3.2 or [Sim15], pages 141–142 for details).
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3. Entropy gap and proof of theorem 1.6

In this section we write λi for λi(ρ∗µ). The purpose of this section is to show
that for all µ ∈ M, the random walk entropy hµ is far from the sum

∑

(i,j)∈S(P )

λi − λj ,

which would be needed to maximize the value of the Lyapunov dimension dimP
LY (ρ∗µ).

This is the main estimate needed for the proof of theorem 1.6:

Proposition 3.1. For each µ ∈ M it holds that

hµ +
M − 1

2
(λ1 − λd) ≤

∑

(i,j)∈S(P )

λi − λj .

3.1. Proof of theorem 1.6 assuming proposition 3.1. Given µ ∈ M by defi-
nition we have, setting bi,j := 1− ai,j ,

(8) dimP
LY (ρ∗µ) = #S(P )−min

∑

(i,j)∈S(P )

bi,j ,

where the minimum is over all choices of bi,j satisfying 0 ≤ bi,j ≤ 1 and
∑

(i,j)∈S(P )

bi,j(λi − λj) ≥ −hµ +
∑

(i,j)∈S(P )

(λi − λj).

Since λ1 − λd is the largest possible difference λi − λj , it follows that

(9) dimP
LY (ρ∗µ) ≤ #S(P )−

(

∑

(i,j)∈S(P )

λi − λj

)

− hµ

λ1 − λd
.

Letting P = {p1 < · · · < pM} one has

#S(P ) = p1(d− p1) + (p2 − p1)(d− p2) + · · ·+ (pM − pM−1)(d− pM ) = dim(FP ).

Substituting this into the inequality (9), and using proposition 3.1 we obtain

dimP
LY (ρ∗µ) ≤ dim(FP )−

M − 1

2
,

as claimed.

3.2. Upper bounds for Furstenberg entropy. In view of theorem 2.3 it will be
useful to bound the Furtenberg entropy of the stationary measures ξp∗νµ for each
p ∈ P .

Lemma 3.2. For each µ ∈ M and p ∈ P one has

hµ ≤
∑

(i,j)∈Sp

λi − λj .
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Proof. Let χ1 > · · · > χN be the distinct Lyapunov exponents and d1, . . . , dN their
multiplicities. For each l = 1, . . . , N let Al = {i : λi = χl}.

Fix p ∈ P , because ρ is p-Anosov one has λp > λp+1 and therefore there exists k
such that d1 + · · ·+ dk = p.

From [LL23b, Theorem 2.1] the dynamical stationary measure ξp∗νµ on the Gras-
mannian of p-dimensional subspaces has Furstenberg entropy bounded by

κ(µ, ξp∗νµ) ≤
∑

l≤k<m

dldm(χl − χm).

Noticing that #Al = dl we obtain
∑

l≤k<m

dldm(χl − χm) =
∑

l≤k<m

∑

i∈Al,j∈Am

λi − λj

=
∑

i≤p<j

λi − λj

=
∑

(i,j)∈Sp

λi − λj ,

which concludes the proof. �

3.3. Proof of proposition 3.1. Let M = #P , αk = λk − λk+1 for each k =
1, . . . , d− 1, and for A ⊂ P let S(A) be the set of (i, j) such that 1 ≤ i ≤ a < j ≤ d
for some a ∈ A.

We write

M





∑

(i,j)∈S(P )

λi − λj



−
∑

p∈P

∑

(i,j)∈Sp

λi − λj

=

d−1
∑

k=1



Mak(P )−
∑

p∈P

bk(p)



αk,

where ak(A) is the number of (i, j) ∈ S(A) with i ≤ k < j, and bk(p) = ak({p}).

Since by lemma 3.2

Mhµ ≤
∑

p∈P

∑

(i,j)∈Sp

λi − λj ,

it suffices to show that for each k = 1, . . . , d− 1 one has

Mak(P )−
∑

p∈P

bk(p) ≥
M(M − 1)

2
.

For this purpose we fix k and enumerate P = {p1, . . . , pM} in such a way that

|p1 − k| ≥ |p2 − k| ≥ · · · ≥ |pM − k|,

and set Ai = {p1, . . . , pi} for i = 1, . . . ,M .

The desired lower bound will follow from the following two claims:
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(1) For each i = 1, . . . ,M one has ak(Ai) ≥ bk(pi).
(2) For each i = 1, . . . ,M − 1 one has ak(Ai+1) ≥ ak(Ai) + 1.

Claim (1) is trivial since {pi} ⊂ Ai.

To establish claim (2) we first suppose that pi+1 ≤ k. If this is the case then
(pi+1, k + 1) ∈ S(Ai+1). If (pi+1, k + 1) ∈ S(Ai) there would have to be some
j ≤ i with pi+1 < pj < k + 1 contradicting the choice of enumeration of P .
Hence ak(Ai+1) ≥ ak(Ai) + 1 in this case. Similarly, if pi+1 > k then (k, pi+1) ∈
S(Ai+1) \ S(Ai) and claim (2) follows.

To conclude the proof we observe that from claim (1) we have ak(A1)− bk(p1) ≥
0 = 1×0

2 .

Using claims (1) and (2) we show inductively for i = 1, . . . ,M − 1 that

(i+ 1)ak(Ai+1)−

i+1
∑

j=1

bk(pj) = ak(Ai+1)− bk(pi+1) + iak(Ai+1)−

i
∑

j=1

bk(pj)

≥ i+ iak(Ai)−

i
∑

j=1

bk(pj)

≥ i+
i(i− 1)

2
=

(i + 1)i

2
,

which concludes the proof setting i =M − 1.

4. Proof of theorem 1.7

The inequality (5), sup
µ∈M

dimP
LY (ρ∗µ) ≤ dimP

F (ρ), was proven in section 2.2.2.

4.1. Proof of dimP
F (ρ) ≤ sup

µ∈M
dimP

LY (ρ∗µ). We recall that the limit cone of ρ is

defined as

Lρ = lim
T→+∞

1

T
(log ◦S ◦ ρ)(Γ),

in the Hausdorff topology. It is a closed convex cone in a
+.

By the P -Anosov property if a ∈ Lρ \ {0} we obtain

αi,j(a) > 0 for all (i, j) ∈ S(P ).

Assume that r < r′ < dimP
F (ρ) so that the series (3) diverges at r′. By com-

pactness there exists a ∈ Lρ \ {0} such that for all open cones C containing a we
have

∑

γ∈Γ:(log ◦S◦ρ)(γ)∈C

exp(−(FPr′ ◦ log ◦S ◦ ρ)(γ)) = +∞.

We fix such a choice of a and notice that ψ(a) ≥ FPr′ (a) by [Sam14, Lemma 4.2].
Then, by lemma 1.5, we have ψ(a) > FPr (a). We will prove:
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Proposition 4.1. There exists a sequence Tk → +∞ and µk ∈ M such that
hµk

= Tkψ(a) + o(Tk) and λ(ρ∗µk) = Tka+ o(Tk) when k → +∞.

Since ψ(a) > FPr (a) we have from lemma 1.5 that LPψ(a)(a) > r.

Assuming proposition 4.1 we obtain

dimP
LY (ρ∗µk) = LPhµk

(ρ∗µk) = LPTkψ(a)+o(Tk)
(Tka+ o(Tk))

= LPψ(a)+o(1)(a+ o(1)) = LPψ(a)(a) + o(1) > r,

for k large enough. Which concludes the proof of the inequality and of theorem 1.7.

4.2. Proof of proposition 4.1. Fix β : a → R linear such that β(a) = FPr (a),
and a decreasing sequence of open cones Ck, k = 1, 2, 3, . . . whose intersection is
R+a.

For a given k set

ψk(a) := lim sup
T→+∞

1

T
log#{γ ∈ Γ : (log ◦S ◦ ρ)(γ) ∈ Ck ∩ {β ≤ Tβ(a)}.

We have ψ(a) = lim
k→∞

ψk(a) and

ψk(a) = lim sup
T→+∞

1

T
log#{γ ∈ Γ : (log ◦S ◦ ρ)(γ) ∈ Ck ∩ {(T − 1)β(a) ≤ β ≤ Tβ(a)}.

Hence, we may choose Tk → +∞ such that the sets

Ak = {γ ∈ Γ : (log ◦S ◦ ρ)(γ) ∈ Ck ∩ {(Tk − 1)β(a) ≤ β ≤ Tkβ(a)}} ,

satisfies

ψ(a) = lim
k→+∞

1

Tk
log#Ak.

Moreover, by the Anosov properties, there are constants C1, C2 such that for γ ∈
Ak, C1Tk ≤ |γ| ≤ C2Tk. So there exist ℓk, ℓk → ∞ as k → ∞, such that the sets

A′
k = {γ ∈ Γ : (log ◦S ◦ ρ)(γ) ∈ Ck ∩ {(Tk − 1)β(a) ≤ β ≤ Tkβ(a)}, |γ| = ℓk} ,

still satisfies

ψ(a) = lim
k→+∞

1

Tk
log#A′

k.

We now fix a semi-group S of Γ, a finite subset F , and maps L,R : Γ → F given
by proposition A.1. Observe, that ρ(S) is Zariski dense since the Zariski closure of
a semi-group is a group(see [GM89]), and S generates Γ.

Let Bk ⊂ S be defined by

Bk = {L(γ)γR(γ) : γ ∈ A′
k}.

Since, F is finite there exists C > 0 such that

#Bk ≥ C−1#A′
k,

||γ| − ℓk| ≤ C for γ ∈ Bk
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and fixing some norm on a we have

‖ log ◦S ◦ ρ(γ)− log ◦S ◦ ρ(L(γ)γR(γ))‖ ≤ C,

for all γ ∈ Γ.

Fix a parameter ε > 0, we say a splitting R
d = E1⊕· · ·⊕Ed into one dimensional

subspaces is ε-non-degenerate if the angle between Ei and
⊕

j 6=i

Ej is at least ε for all

i. We say two splittings (E1, . . . , Ed), (E
′
1, . . . , E

′
d) are ε-close if the angle between

Ei and E
′
i is at most ε for all i.

We say that an element g ∈ SL(d,R) is ε-diagonalizable if it has d distinct real
eigenvalues |λ1| > · · · > |λd| satisfying |λi|/|λi+1| > eε for i = 1, . . . , d− 1, and the
corresponding splitting into eigenspaces is ε-non-degenerate.

Since ρ(S) is Zariski dense we obtain from [AMS95, Theorem 6.8]:

Lemma 4.2 (Abels-Margulis-Soifer). There exists ε0 > 0 and a finite set S0 ⊂ S
such that for all γ ∈ Γ the set ρ(γS0) contains at least one ε0-diagonalizable element.

For what follows we fix S0 and ε0 > 0 given by the previous lemma. We also fix
δ0 > 0 given by the following:

Lemma 4.3. There exists δ0 > 0 such that if B ⊂ SL(d,R) is a set of ε0-
diagonalizable elements whose eigenspace splittings are δ0-close then γ1 · · · γn is
ε0/2-diagonalizable for all n and γ1, . . . , γn ∈ B.

Proof. This follows directly from [BS21, Lemma 2.17]. �

We now refine the family Bk so as to obtain images under ρ which are diagonal-
izable with nearby splittings.

Lemma 4.4. There exists a decreasing positive sequence ǫk ↓ 0 and a sequence
ℓ′k ↑ ∞ such that for all k large there exists Ck ⊂ Bk · S0 with the following
properties:

(1) Ck freely generates a free semi-group in Γ.
(2) For all γ ∈ Ck the element ρ(γ) is ε0-diagonalizable.
(3) For all γ1, γ2 ∈ Ck the eigenspace splittings of ρ(γ1) and ρ(γ2) are δ0-close.
(4) One has ψ(a) = lim

k→+∞

1
Tk

log#Ck.

(5) |γ| = ℓ′k for γ ∈ Ck.
(6) For all γ ∈ Ck one has ‖(log ◦S ◦ ρ)(γ)− Tka‖ ≤ ǫkTk.

Proof. The space of ε0-non-degenerate splittings is compact and hence we may
cover it by some finite number N of subsets with the property that if two splittings
belong to the same subset they are δ0-close.

From lemma 4.2 it follows that for all γ ∈ Bk there exists fγ ∈ S0 such that
ρ(γfγ) is ε0-diagonalizable. By the pigeonhole principle we may choose a set C′

k of
at least #Bk/N of the elements γfγ such that the eigenspace splitting of ρ applied
to any two are δ0-close.
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Hence, we have constructed C′
k with properties (2), (3) and (4) above.

Since F ∪ S0 is finite there exists C > 0 such that, for all k and γ ∈ Ak,

||L(γ)γR(γ)fL(γ)γR(γ)| − ℓk| ≤ C and

‖(log ◦S ◦ ρ)(L(γ)γR(γ)fL(γ)γR(γ))− (log ◦S ◦ ρ)(γ)‖ ≤ C.

By the pigeonhole principle again, we can find ℓ′k, |ℓ
′
k − ℓk| ≤ C, such that C′′

k :=
γ ∈ C′

k, |γ| = ℓ′k satisfies properties (2), (3), (4) and (5). Moreover, if γ ∈ Ak then
by definition we have

(
1

Tk
(log ◦S ◦ ρ)(γ)− a) ∈ Ck ∩ {

Tk − 1

Tk
β(a) ≤ β ≤ β(a)},

hence setting ǫk to be C/Tk plus the diameter of the set on the right-hand side, we
have

‖(log ◦S ◦ ρ)(L(γ)γR(γ)fγ)− Tka‖ ≤ ǫkTk,

for all γ ∈ Ak, which establishes property (6) for C′
k and C′′

k .

To establish (1) we notice that S is a quasi-geodesic semi-group. Therefore, by
Morse lemma, there is some R > 0 such that if γ1, . . . , γn, η1, . . . , ηn ∈ S and
γ1 · · · γn = η1 · · · ηn, then there is a geodesic ray α = {αn}n≥0, such that for all
j ∈ [0, n],

(10) dist(γ1 · · · γj , α), dist(η1 · · · ηj , α) < R.

We claim that if we assume that the elements of Ck ⊂ C′′
k are 6R-separated,

equation (10) forces γj = ηj for all j ∈ [0, n]. Hence it suffices to refine C′′
k so that

it is a 6R-separated set to obtain that it freely generates a free sub-semi-group of
Γ. Doing this decreases the number of elements at most by a factor equal to the
number of elements in a ball of radius 6R in Γ, so property (4) still holds.

To prove the claim, we prove by induction on j that γi = ηi for i ≤ j. We have
γ0 = η0 = e. Assume that γi = ηi for i ≤ j. Then γ1 · · · γj = η1 · · · ηj and there are
N1, N2 and N3 such that

dist(γ1 · · · γj , αN1
), dist(γ1 · · · γjγj+1, αN2

) and dist(γ1 · · · γjηj+1, αN3
) ≤ R.

Setting βt := (γ1 · · · γj)
−1αNt

for t = 1, 2, 3, we have βN1
, βN2

and βN3
aligned on

the same geodesic and satisfying:

|β1|, dist(γj+1, β2), dist(ηj+1, β3) < R and |γj+1| = |ηj+1| = ℓ′k.

If ℓ′k is large enough, β1 is outside the interval [β2, β3] (see lemma A.7) and

dist(β1, β2), dist(β1, β3) ∈ [ℓ′k − 2R, ℓ′k + 2R].

It follows that dist(β2, β3) ≤ 4R and therefore that dist(αj+1, ηj+1) < 6R. Since
Ck is 6R-separated, αj+1 = ηj+1 as claimed. �

Corollary 4.5. If µk is the uniform probability measure on Ck then one has

lim
k→+∞

1

Tk
hµk

= ψ(a).

Proof. This follows immediately from properties (1) and (4) of the previous lemma.
�
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We now use the fact that for ε0-diagonalizable elements with close splittings the
singular values and eigenvalues are close and they almost multiply under composi-
tion.

Lemma 4.6. There exists a decreasing positive sequence ǫ′k ↓ 0 such that for all k
large enough, all n and γ1, . . . , γn ∈ Ck one has

‖
1

n
(log ◦S ◦ ρ)(γ1 · · · γn)− Tka‖ ≤ ǫ′kTk.

Proof. Let L(g) denote the vector of absolute values of eigenvalues of a diagonaliz-
able element g ∈ SL(d,R) in decreasing order.

By [BS21, Lemma 2.16] there exists C > 0 such that for all ε0/2-diagonalizable
g ∈ SL(d,R) one has

‖ log ◦S(g)− log ◦L(g)‖ ≤ C.

By [BS21, Proposition 2.17] there exists C > 0 independent of k and n such that
we have

‖(log ◦L ◦ ρ)(γ1 · · · γn)−

n
∑

i=1

(log ◦L ◦ ρ)(γi)‖ ≤ Cn.

Combining this with lemma 4.4 we obtain

‖(log ◦S ◦ ρ)(γ1 · · · γn)− nTka‖ ≤ C + ‖(log ◦L ◦ ρ)(γ1 · · · γn)− nTka‖

≤ C(n+ 1) + ‖

n
∑

i=1

(log ◦L ◦ ρ)(γi)− nTka‖

≤ C(2n+ 1) + ‖

n
∑

i=1

(log ◦S ◦ ρ)(γi)− nTka‖

≤ C(2n+ 1) + nǫkTk.

This proves the desired result with ǫ′k = 3C/Tk + ǫk. �

The following immediate corollary concludes the proof of proposition 4.1.

Corollary 4.7. For any sequence of probability measures µk with µk(Ck) = 1 one
has

lim
k→+∞

1

Tk
λ(ρ∗µk) = a.

5. Covering by balls and proof of theorem 1.8

Fix η > 0 and set s := dimP
F (ρ) + η. We may assume s < dim(FP ), other-

wise dimM (Λρ) ≤ dimP
F (ρ) + η holds trivially. Since s > dimP

F (ρ), the series
ΦPρ (s) :=

∑

γ∈Γ

ϕPs (ρ(γ)) converges. We are going to construct covers U of Λρ by

balls of arbitrarily small radius ε with less than ΦPρ (s)ε
−s+o(ε) elements. This

shows that the ratio N(Λρ, ε)/ε
−s+o(ε) is bounded from above by ΦPρ (s) uniformly
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in ε. Therefore, dimM (Λρ) ≤ s = dimP
F (ρ) + η for all positive η and theorem 1.8

follows.

5.1. Shadows and Anosov representations. Recall that Γ is a hyperbolic group
and that we chose the generating set S to be symmetric. The distance d(γ, γ′) on
Γ is given by the word length of γ−1γ′. A geodesic σ = {γn}n∈Z in Γ is a sequence
such that for all (i, j), d(γi, γj) = |j − i|. Any point x ∈ ∂Γ is the limit point of (at
least) one geodesic ray σ = {γj}j≥0 with γ0 = e.

For a geodesic ray σ = {γj}j≥0 with γ0 = e, we call the R-shadow of the geodesic
ray the image by ξ of the set of limit points of geodesic rays σ′ = {γ′j}j≥0 satisfying
γ′j = γj for j ≤ R. By definition, the R-shadow of a geodesic ray is a subset of FP .

For (i, j) ∈ S(P ), γ ∈ Γ, write ζi,j(γ) := log(si(ρ(γ))/sj(ρ(γ))). The main step
for the proof of theorem 1.8 is the following proposition:

Proposition 5.1. For each geodesic ray σ = {γj}j≥0 with γ0 = e, all ζ > 0,
the number of balls of radius exp(−ζ) in FP needed to cover the R-shadow of the
geodesic ray is at most

exp





∑

(i,j)∈S(P )

[ζ − ζi,j(γR)]
+ + o(R)



 ,

where, for a real ̟, ̟+ = max{̟, 0}.

5.2. Proof of Theorem 1.8 assuming proposition 5.1. Fix ε > 0 small. We
need to cover Λρ by well-chosen shadows and then cover these shadows by ε-balls.

For γ ∈ Γ, we write the ζi,j(γ), (i, j) ∈ S(P ), in nondecreasing order as 0 <

ζ1(γ) ≤ ζ2(γ) < . . . ≤ ζ#S(P )(γ). For η > 0, write s := dimP
F (ρ) + η. We may

assume s < #S(P ) and let q be a positive integer such that q− 1 ≤ s ≤ q. For any
geodesic ray σ = {γj}j≥0, we will use proposition 5.1 with ζ = ζq(γR) to estimate
the ε-covering number of its R-shadow.

Let σ = {γj}j≥0 be a geodesic ray such that γ0(x) = e. Then, the sequence
{ζq(γn)}n≥0 diverges to infinity, has bounded gaps and there are C,K > 0 such
that ζq(γn+K)− ζq(γn) > C (see [GGKW17, theorem 1.3]). It follows that for any
chosen geodesic ray σ, there is a well defined smallest index n(ρ, σ) and C > 1 such
that

(11) log(1/ε) ≤ ζq((γn(ρ,σ))) < log(1/ε) + C.

By proposition 5.1 applied with R = n(ρ, σ) and ζ = ζq(γn(ρ,σ)), we can cover
the R-shadow of γR with less than

exp





∑

(i,j)∈S(P )

[ζq(γR)− ζi,j(γR)]
+ + o(log(1/ε))





balls of radius ε. We claim that
∑

(i,j)∈S(P )

[ζq(γR)− ζi,j(γR)]
+ ≤ −min

∑

(i,j)∈S(P )

ci,jζi,j(γR) + s log(1/ε) + C,
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where the minimum is over 0 ≤ ci,j ≤ 1 with
∑

ci,j = s.

Indeed, since we have ordered the values ζk(γR) in nondecreasing order, the above
minimum is attained for

ck = 1 for k < q, cq = s− q + 1, ck = 0 for k > q.

With that choice of ck’s, we have

∑

(i,j)∈S(P )

[ζq(γR)− ζi,j(γR)]
+ = −

(

∑

k

ckζk(γR) + cqζq(γR)

)

+ sζq(γR)

and the claim follows from (11).

Cover now Λρ by n(ρ, σ)-shadows of distinct γn(ρ,σ). As announced, this proves
that

N(Λρ, ε) ≤
∑

γ∈Γ

exp(−(FPs ◦ log ◦S ◦ ρ)(γ))ε−s+o(ε) = ΦPρ (s)ε
−s+o(ε).

5.3. Geometry of FP . We recall the description in [LL23b] of the geometric
structure of the successive Lipschitz foliations by Euclidean spaces on FP . Write
P = {p1, . . . , pM}. Recall that, by convention, pM+1 = d.

Recall that a topology on {1 . . . ,M +1} is called admissible if the subsets {i, i+
1, . . . ,M + 1} are open. An admissible topology is described by its atoms T (i),
where T (i) is the smallest open set containing {i}. We write T0 for the topology
with atoms T (i) = {i, i+1, . . . ,M+1}, TP for the topology with atoms T (i) = {i}.
An admissible topology T is finer than another one T ′ (denoted T ≺ T ′) if any
T ′-open set is T -open. By definition, any admissible topology is finer that T0.

Given an admissible topology T , we define the (weighted) configuration space XT
(with weights p1, p2 − p1, . . . , d− pM ) as the space of sequences (xI)I∈T such that

(1) xI is a
∑

i∈I(pi − pi−1)-dimensional subspace of Rd for each I ∈ T ,
(2) xI∪J = xI + xJ for all I, J ∈ T , and
(3) xI∩J = xI ∩ xJ for all I, J ∈ T .

Each configuration space XT is endowed with the distance corresponding to its
natural embedding in the product of Grassmannian manifolds.

For T ≺ T ′, there is a natural projection πT,T ′ : XT → XT ′ . The space XTP

is identified with the pairs in (FP ,FP∗) in general position. In particular, given
y ∈ FP∗ the projection πTP ,T0

is of the form πy × Id, where πy is the natural
projection from the set of flags in FP in general position with y to a point. The
fibers (πy)−1(y) are #S(P )-dimensional open subsets of FP .

We say a sequence of subspaces V = (V1, . . . , VM+1) is a splitting compatible
with y ∈ FP∗ if for all i, 1 ≤ i ≤M + 1,

(12) y{j:j≥i} =
⊕

{j:j≥i}

Vj .
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Notice that in particular this implies dim(Vi) = pi−pi−1 for all i andR
d =

M+1
⊕

i=1

Vi.

In [LL23b] lemma 4.1, we show that setting

(13) Vi(y) = y
{j:j≥i}∩(y{j:j>i})

⊥ ,

yields a compatible splitting for each y ∈ FP∗ that we call the perpendicular split-
ting compatible with y.

Given y ∈ FP∗ and V a splitting compatible with y, we denote by Nil(V ) the
space of linear mapping f : Rd → R

d such that

(14) f (VM+1) = {0} and f (Vi) ⊂
⊕

j:j>i

Vj ,

for i = 1, . . . ,M . We have dimNil(V ) = #S(P ). Given y ∈ FP∗ and a compatible
splitting V we define a mapping

ϕV : Nil(V ) → Fy

by setting

(15) ϕV (f)I = (Id+f)

(

⊕

i∈I

Vi(y)

)

,

for all I ∈ TP , where Id : Rd → R
d is the identity mapping.

For each y ∈ FP∗ we consider the perpendicular compatible splitting V (y) =
(V1(y), . . . , VM+1(y)) and we define

(16) V = {(y, f) : y ∈ FP∗ , f ∈ Nil(V )}.

This is a vector bundle with base FP∗ given by the projection onto the first
coordinate. It is a sub-bundle of the product FP∗ × Hom(Rd,Rd). We endow it
with the metric given by the sum of the distance in FP∗ and the Hilbert-Schmidt
norm on Hom(Rd,Rd) associated with the Euclidean structures on Vi, Vj . We have

Theorem 5.2. The mapping ϕ : V → FP defined by

ϕ(y, f) = ϕV (y)(f),

is a locally bilipschitz homeomorphism.

Proof. This follows from [LL23b] theorem 2.4 and its proof ([LL23b], section 4). �

Theorem 5.3. Let y ∈ FP∗ and V,W be two splittings compatible with y. Then,
the mapping

ϕ−1
W ◦ ϕV : Nil(V ) → Nil(W ),

is affine.

Proof. See [LL23b], lemma 5.8. �

Let g ∈ SL(d,R). We note that if V = (V1, . . . , VM+1) is a splitting compatible
with y then g−1V = (g−1V1, . . . , g

−1VM+1) is a splitting compatible with g−1y.
For the coordinates given by these two splittings the action of g is linear between
the corresponding fibers:
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Theorem 5.4 (Linearizing coordinates). For each y ∈ FP∗ and each adapted split-
ting V one has

ϕ−1
V ◦ g ◦ ϕg−1V (f) = gfg−1,

for all g ∈ G and all f ∈ Nil(g−1V ).

In particular, ϕ−1
V ◦ g ◦ ϕg−1V : Nil(g−1V ) → Nil(V ) is linear and the action of

SL(d,R) on XTP
is affine on each fiber.

Proof. See [LL23b] lemma 6.2 and corollary 6.3. �

5.4. Proof of proposition 5.1. Let γ 6= e ∈ Γ. Recall that we defined ξp(γ) ⊂
R
d as the unique p-dimensional subspace on which p-dimensional volume is most

contracted by ρ(γ)−1. Since the representation ρ satisfies the P ∗-Anosov condition,
we can associate to the matrix ρ(γ) the flag

ξ∗(γ) := ({0}, ξd−pM (γ−1), . . . , ξd−p1(γ−1),Rd) ∈ FP∗ .

From the definitions we obtain:

Lemma 5.5. The sequence of subspaces V = (V1, . . . , VM+1) is a splitting com-

patible with y = ξ∗(γR) where Vj is the sum of the eigenspaces of
√

ρ(γR)(ρ(γR))t

corresponding to the singular values si for pj−1 < i ≤ pj .

Let y = ξ∗(γR). Using the coordinates on the space Fy
P given by theorem 5.2

with the splitting compatible with y given by lemma 5.5, we can write

Lemma 5.6. Let y = ξ∗(γR) and V the splitting compatible with y given by lemma
5.5. Write ϕV : NilTP ,T0

(V ) → X y
TP ,T0

= Fy
P for the coordinate mapping given by

(15). Let x belong to the R-shadow of the geodesic ray σ = {γj}0≤j≤R. Then, there
exists K, τ > 0 such that for R ≥ K,

‖ϕ−1
V (γ−1

R x)‖ < τ.

Proof. Since x belong to the R-shadow of the geodesic ray σ = {γj}0≤j≤R there
is a geodesic ray σ′(x) =: {γ′j}j≥0 such that γ′0 = e, γ′R = γR and ξ(σ′) = x.

Applying γ−1
R , there is a geodesic ray σ′′(x) = γ−1

R σ′(x) =: {γ′′j }j≥0 such that

γ′′0 = γ−1
R , γ′′R = e and ξ(σ′′) = γ−1

R x. By the proof of theorem 2.2, if R is large
enough, there is τ0 such that

dist(ξ(V ), γ−1
R x) ≤ τ0,

where ξ(V ) ∈ FP is given by ξ(V ) := 0 ⊂ V1 ⊂ V1⊕V2 ⊂ . . . ⊂ R
d. Using theorems

5.2 and 5.3, the lemma folllows. �

We can now prove proposition 5.1: let σ = {γj}j≥0 be a geodesic ray with
γ0 = e. Let V the splitting compatible with ξ∗(γR) given by lemma 5.5. By lemma
5.6, if R > K, the R-shadow of σ is contained in ϕ−1

ρ(γR)V ◦ ρ(γR) ◦ ϕV (B(0, τ)),

where B(0, τ) is the ball of radius τ in NilTP ,T0
(V ). Proposition 5.1 amounts to the

following

Lemma 5.7. With the preceding notations, the image of B(0, τ) by ϕ−1
ρ(γR)V ◦ρ(γR)◦

ϕV is an ellipsoid with axes τ exp(ζi,j(γR)), for all (i, j) ∈ S(P ).
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Proof. By theorem 5.4,

ϕ−1
ρ(γR)V ◦ ρ(γR) ◦ ϕV (f) = ρ(γR)fρ(γR)

−1.

Write NilTP ,T0
(V ) as

⊕

1≤i<j≤M+1 Hom(Vi, Vj) and f ∈ B(0, τ) as f = {fi,j}1≤i<j≤M+1,

with all |fi,j | < τ. The matrix ρ(γR) is block diagonal, made of matrices gi ∈
Hom(Vi, Vi). Therefore, ρ(γR)fρ(γR)

−1 = {gjfi,j(g
i)−1, 1 ≤ i < j ≤M + 1}.

There is an orthonormal basis of Vi, namely {v1, . . . , vpi−pi−1
}, such that (gi)−1vℓ, ℓ =

1, . . . , pi − pi−1 form an orthogonal system with ‖(gi)−1vℓ‖ = (si−1+ℓ(ρ(γR)))
−1.

Similarly, there is an orthonormal basis of Vj , namely {u1, . . . , upj−pj−1
}, such that

gjuk, k = 1, . . . , pj−pj−1 form an orthogonal system with ‖gjuk‖ = sj−1+k(ρ(γR)).

For 1 ≤ ℓ ≤ pi−pi−1, 1 ≤ k ≤ pj−pj−1, write f
ℓ,k for the element of Hom(Vi, Vj)

that sends (gi)−1vℓ/‖(g
i)−1vℓ‖ to uk and the orthogonal space ((gi)−1vℓ)

⊥ to 0.
For all ℓ, k, 0 < ℓ ≤ pi − pi−1, 0 < k ≤ pj − pj−1, the f

ℓ,k form an orthogonal basis

of Hom(Vi, Vj) such that the ϕ−1
ρ(γR)V ◦ ρ(γR) ◦ ϕV (f

ℓ,k) are orthogonal with norm

(si−1+ℓ(ρ(γR)))
−1sj−1+k(ρ(γR)) = exp(−ζi−1+k,j−1+ℓ(γR)). The lemma follows by

putting all the Hom(Vi, Vj) together. �

Appendix A. Quasi-geodesic semi-groups

A.1. Goal. If Γ is the free group with generators a, b then the semi-group S consist-
ing of reduced words which begin and end with a has the following nice properties:

(1) S generates Γ as a group.
(2) For every n and γ1, . . . , γn ∈ S the geodesic joining the neutral element e

to γ1 · · · γn passes through all partial products γ1 · · · γk for k = 1, . . . , n.
(3) For every γ ∈ Γ there exists two letter words L(γ) and R(γ) such that

L(γ)γR(γ) ∈ S.

Our goal in this appendix is to give a similar construction for a general hyperbolic
group.

For this purpose we fix a group Γ with a finite symmetric generating set S.

We let |γ| be the word length of γ ∈ Γ with respect to S and consider the word
distance dist(γ, η) = |γ−1η|.

We assume that there is δ > 0 (fixed from now on) such that Γ is δ-hyperbolic
with respect to dist, and non-elementary (i.e. contains two independent loxodromic
elements).

Recall that given positive constants C,D > 0 a (C,D)-quasi-geodesic is a se-
quence x : I ∩ Z → Γ where I is an interval, satisfying

C−1|m− n| −D ≤ dist(xm, xn) ≤ C|m− n|+D,

for all m,n ∈ I ∩ Z.
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We say a semigroup S ⊂ Γ is quasi-geodesic if there exist constants C,D > 0
such that for all n and γ1, . . . , γn ∈ S the sequence

e, γ1, γ1γ2, . . . , γ1 · · · γn,

is visited in left to right order by some (C,D)-quasi-geodesic.

We now state the main result of the appendix.

Proposition A.1. Let (Γ,S) be a non-elementary hyperbolic group with a finite
symmetric generator S. Then there exists a semigroup S ⊂ Γ, a finite set F ⊂ Γ
and mappings L,R : Γ → F with the following properties:

(1) S generates Γ as a group,
(2) S is quasi-geodesic, and
(3) L(γ)γR(γ) ∈ S for all γ ∈ Γ.

In the case Γ is the free group generated freely by S = {a, b, a−1, b−1} we may
set S to be the semigroup of elements beginning and ending in a in reduced form,
L(γ) to be a if the reduced form of γ does not begin with a−1 and ab otherwise,
and R(γ) similarly to be a if the last letter of γ is not a−1 and ba otherwise.

The arguments in what follows use the local-to-global principle for hyperbolic
groups as in [Gou22, Section 3].

A.2. Proof of proposition A.1. Recall that the Gromov product (based at the
neutral element e ∈ Γ) is defined by

(γ, η) =
|γ|+ |η| − |γ−1η|

2
.

We assume δ > 0 is such that

min{(γ1, γ2), (γ2, γ3)} ≤ (γ1, γ3) + δ,

for all γ1, γ2, γ3 ∈ Γ. We further assume that

dist(e, α) ≤ (p, q) + δ,

for all p, q ∈ Γ and geodesic α joining them (such a choice of δ is possible by [BH99,
Proposition 1.22]).

Lemma A.2. For each C ≥ 1 there exist a, b ∈ Γ such that setting A = {a, b, a−1, b−1}
and defining

c1 = max
x,y∈A: x 6=y

(x, y) and c2 = min
x∈A

|x|,

one has c1 + 2δ + r < 1
2c2 for some r > C(c1 + 2δ + 1).

Proof. Since Γ is non-elementary we may take x, y two independent loxodromic
elements (i.e. the set of boundary fixed points of x and y are disjoint).

Letting a = xn and b = yn for sufficiently large n establishes the claim since
c1(x

n, yn) remains bounded, while c2(x
n, yn) goes to infinity. �
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We fix from now on a set A as in the previous lemma with corresponding constants
c1, c2, r satisfying

(17) r > 32(c1 + 2δ + 1).

Lemma A.3. The sets defined for x ∈ A by V (x) = {γ : (γ, x) ≥ c1 + 2δ + r} are
pairwise disjoint.

For all x ∈ A and γ /∈ V (x−1) one has xγ ∈ V (x).

For all x, y ∈ A with x 6= y, if γ ∈ V (x) and η ∈ V (y) then (γ, η) ≤ c1 + 2δ.

If γ ∈ V (x) for some x ∈ A then |γ| ≥ r.

Proof. By hypothesis 2δ + r ∈ (2δ, c2/2 − c1). With this property, the first three
statements are claims 1-3 in the proof of [AGG+23, Lemma 4.1].

For the last statement observe that

|γ| = (γ, γ) ≥ min{(γ, x), (x, x)} − δ ≥ min{c1 + 2δ + r, c2} − δ ≥ r.

�

Lemma A.4. There exists m such that for all γ ∈ V (a) and all η with dist(γ, η) ≤
2c2 one has amη ∈ V (a).

Proof. We first observe that by lemma A.3 we have (a−1, a) ≤ c1+2δ and therefore
a geodesic fixed under multiplication by a is at distance at most c1 + 3δ from am

for all m.

It follows, letting ℓ = lim
n→+∞

1
n
|an| be the translation length of a that

ℓ ≥ |a| − 2(c1 + 3δ) ≥ 2(c1 + 2δ + r)− 2(c1 + 3δ) ≥ 2r − 2δ.

Hence we obtain for all m ≥ 1 that

(a, am) =
|a|+ |am| − |am−1|

2

≥
ℓ− 2(c1 + 3δ) +mℓ− 2(c1 + 3δ)− (m− 1)ℓ− 2(c1 + 3δ)

2
= ℓ− 3(c1 + 3δ)

≥ 2r − 3c1 − 11δ

≥ c1 + 3δ + r.

In what follows we will need to switch basepoints so we recall that the Gromov
product

(x, y)z =
dist(x, z) + dist(y, z)− dist(x, y)

2
,

satisfies (x, y)z + (z, y)x = dist(x, z).
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We now calculate using lemma A.3

(am, amη) = (e, η)a−m

= |am| − (a−m, η)e

≥ |am| − (a−m, γ)e − 2c2

≥ |am| − c1 − 2δ − 2c2

≥ c1 + 3δ + r,

if we choose m large enough depending only on c1, c2 and δ.

We now conclude the proof using the hyperbolicity property since

(a, amη) ≥ min{(a, am), (am, amη)} − δ ≥ c1 + 2δ + r,

so amη ∈ V (a) as required. �

We define

T = {γ : γ ∈ V (a) and γ−1 ∈ V (a−1)}.

With m given by the previous lemma, for each γ ∈ Γ let

L(γ) =

{

am+1 if γ /∈ V (a−1),
am+1b otherwise,

and

R(γ) =

{

a if (L(γ)γ)−1 /∈ V (a),
ba otherwise.

Lemma A.5. One has L(γ)γR(γ) ∈ T for all γ ∈ Γ.

Proof. Since dist(L(γ)γ, L(γ)γR(γ)) ≤ 2c2 this follows immediately from lemma
A.4. �

We now let S be the semigroup generated by T .

Lemma A.6. The semigroup S generates Γ as a group.

Proof. From the definition a ∈ S and (using lemma A.3) aba ∈ S. Therefore
L(γ), R(γ) belong to the group generated by S for all γ.

The equation

γ = L(γ)−1 (L(γ)γR(γ))R(γ)−1

now implies that S generates Γ as a group, as required. �

As a first step towards showing that S is quasi-geodesic we prove the following.

Lemma A.7. For any n and γ1, . . . , γn ∈ T , letting α be a geodesic joining e and
γ1 · · · γn, one has

|γ1 · · · γn| ≥ |γ1 · · · γk|+ |γk+1 · · · γn| − r/8,

amd dist(γ1 · · · γk, α) ≤ r/8 for all k = 0, . . . , n.
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Proof. Setting xk = γ1 · · · γk for k = 0, . . . , n we observe that

(xk−1, xk+1)xk
= (γ−1

k , γk+1) ≤ c1 + 2δ,

and dist(xk, xk+1) = |γk+1| ≥ r by lemma A.3.

Hence the sequence is a (c1 + δ, r)-chain as in [Gou22].

We observe that

r > 2(c1 + 2δ) + 4δ + 1,

and therefore by [Gou22, Lemma 3.8] we have

(x0, xn)xk
≤ c1 + 4δ,

for all k.

This implies that

dist(xk, α) ≤ c1 + 5δ < r/8.

Also since (x0, xn)xk
= (x−1

k , x−1
k xn)e we get by definition

|γ1 · · · γk|+ |γk+1 · · · γn| − |γ1 · · · γn|

2
≤ c1 + 4δ ≤ r/16,

which yields the required lower bound for |γ1 · · · γn|. �

We now conclude the proof of proposition A.1.

Lemma A.8. The semigroup S is quasi-geodesic.

Proof. Fix n and γ1, . . . , γn ∈ T , and let α be a geodesic with α0 = e and αNn
=

γ1 · · · γn with Nn = |γ1 · · · γn|.

Since the word distance is integer valued setting C = ⌊r/8⌋ we have by lemma
A.7 that there exist N0 = 0, N1, . . . , Nn = |γ1 · · · γn| such that,

dist(γ1 · · · γk, αNk
) ≤ C ≤ r/8,

for all k.

We also obtain from lemma A.7 applied to γ1, . . . , γk+1 and lemma A.3 that

Nk+1 −Nk ≥ |γ1 · · · γk+1| − r/8− |γ1 · · · γk| − r/8

≥ |γk+1| − 3r/8 ≥ 5r/8 ≥ 5C,

and in particular Nk ≤ Nk+1 for k = 0, . . . , n− 1.

We now construct a path β which we claim to be quasi-geodesic (with constants
independent of n and γ1, . . . , γn) by concatenating segments of α with a paths to
and from each γ1 · · · γk (which will have length at most 2C as seen above).

To be precise we choose β : [0, Nn + 2(n− 1)C] ∩ Z → Γ such that

(1) For each k = 0, . . . , n − 1 one has βm+Nk+2kC = αm+Nk
for all m ∈

[0, Nk+1 −Nk] ∩ Z.
(2) βNk+2(k−1)C+C = γ1 · · · γk for k = 1, . . . , n− 1.
(3) dist(βm, βm+1) ≤ 1 for all m.
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In view of the third property above we have dist(βl, βm) ≤ |l −m|.

For the lower bound given 0 ≤ l < m ≤ Nn + 2(n− 1)C we write

dist(βl, βm) =

m−l
∑

k=0

dist(βl+k, βl+k+1) ≥

m−l
∑

k=0

f(k),

where we set f(k) = 1 if k ∈ [Ni + 2iC,Ni+1 + 2iC] for some i and f(k) = −1
otherwise.

Since the sequence f(0), . . . , f(l−m) consists of subsequences of runs of at most
2C consecutive times the value −1, with runs of at least 5C times the value 1 in
between, we obtain

dist(βl, βm) ≥ 3(|m− l| − 4C)/7− 4C,

which establishes that S is (7/3, 6C)-quasi-geodesic. �

References
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