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DIMENSION GAP FOR THE LIMIT SETS OF ANOSOV

REPRESENTATIONS

FRANÇOIS LEDRAPPIER AND PABLO LESSA

Abstract. We consider a representation of a finitely generated CAT(−K)
group Γ in SL(d,R) that is Zariski dense and k-Anosov for at least two values

of k. We exhibit a gap for the Minkowski dimension of minimal sets for the
action of Γ on flags spaces.

1. Introduction

1.1. Main results. Let (Γ, S) be a finitely generated group with a symmetric set
of generators S. Fix K > 0. The finitely generated group (Γ, S) is said to be
CAT(−K) if the Cayley graph has the CAT(−K) property for the word metric, i.e.
geodesic triangles are thinner than in the hyperbolic space of constant curvature
−K (see [GdlH90]).

For d ≥ 2, consider P a subset of {1, . . . , d−1}. A representation ρ : Γ → SL(d,R)
is called a P -Anosov representation if there exists c > 0 such that

sp(ρ(γ))

sp+1(ρ(γ))
> c exp(c|γ|),

for all γ ∈ Γ and p ∈ P . Here |γ| denotes word length in Γ with respect to some
fixed finite symmetric generating set S and, for 1 ≤ i ≤ d, si(γ) denotes the i-th
largest singular value of γ ∈ SL(d,R) with respect to the usual inner product on
Rd. A representation is called Borel-Anosov if it is {1, . . . , d− 1}-Anosov.

Anosov representations have been introduced by F. Labourie ([Lab06]) and have
been the subject of many studies (cf. in particular [GGKW17], [KLP16], [KLP17],
[KLP18] and [BPS19]). It is widely accepted that non-trivial Anosov representa-
tions present the right analog of convex cocompact representations in higher rank.
Many properties are suggested by this analogy. In another direction, we present in
this note a phenomenon which is purely higher rank: there is a dimension gap for
minimal invariant subsets for the action of ρ(Γ) on the spaces of flags.

Let Q be a non-empty subset of {1, . . . , d − 1}. We consider the space FQ of
partial flags with signature Q, endowed with a rotationally invariant Riemannian
metric. Let us recall the definition of the Minkowski dimension of a set Λ ⊂ FQ:
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for ε > 0, let N(Λ, ε) be the covering number of the set Λ by balls of radius ε in
the metric of FQ. The Minkowski dimension dimM (Λ) is defined by

dimM (Λ) := lim sup
ε→0

logN(Λ, ε)

log(1/ε)
.

Our result is

Theorem 1.1 (Dimension gap for minimal sets of Anosov representations). With
the above notations, let (Γ, S) be a CAT(−K) finitely generated group for some
K > 0 and Λ be a minimal invariant set for the action of ρ(Γ) on FQ. Assume that
ρ(Γ) is Zariski dense in SL(d,R). Then, with M := #(Q ∩ P ),

dimM (Λ) ≤ dim(FQ)−
M − 1

2
.

In the case d = 2 the bound given by the above theorem is trivial. And, indeed,
uniform discrete subgroups of SL(2,R) have full limit set. A dimension gap for the
limit set of classical Schottky groups was proved in [Doy88]. We note however, that
there exist uniform discrete (and thus convex co-compact) subgroups of isometries
of rank one symmetric spaces and thus there is no dimension gap for convex cocom-
pact representations in rank one. On the other hand, there are many conditions
that ensure that the limit set is a Lipschitz submanifold of the flag space (see the
discussions in [PSW19]). Our result is easy in those cases.

If ρ is P -Anosov then it is also P ∪P ∗-Anosov for P ∗ = {d−p : p ∈ P}. Theorem
1.1 gives a non-trivial upper bound for the dimension of any minimal invariant set in
FQ for all Q with #(Q∩ (P ∪P ∗)) ≥ 2. In particular, as soon as the representation
is k-Anosov for some k ̸= d/2 and Zariski dense, then the codimension of the limit
set in the full flag space is at least 1/2.

There are a few simple reductions which allow us to state our core result. Firstly,
we observe that the bundle πQ,Q∩P : FQ → FQ∩P is smooth, so that for any closed
Λ ⊂ FQ∩P , we have

dimM ((πQ,Q∩P )
−1(Λ)) = dimM (Λ) + dimFQ − dimFQ∩P .

So, it suffices to show theorem 1.1 for the case Q = P . In that case, the unique
minimal invariant subset of FP is the limit set Λρ.

Furthermore, we may assume that Γ is non-elementary since the limit set of an
Anosov representation of an elementary (i.e. virtually cyclic) hyperbolic group is
finite. Taking all this into account, we only have to prove

Theorem 1.2 (Dimension gap for limit sets of Anosov representations). Let (Γ, S)
be a non-elementary CAT(−K) finitely generated group for some K > 0, P ⊂
{1, . . . , d− 1} with M := #P ≥ 2 , ρ a P -Anosov representation of Γ in SL(d,R)
with ρ(Γ) Zariski dense in SL(d,R) and Λρ ⊂ FP the limit set of the representation
ρ. Then,

dimM (Λρ) ≤ dim(FP )−
M − 1

2
.

It seems natural to conjecture that a dimension gap will exist between the limit
set and the corresponding space of flags, for any Zariski dense representation into
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a reductive algebraic Lie group of rank r ≥ 2 which is Anosov with respect to at
least two simple roots.

Let g ∈ SL(d,R). The numbers λi(g) := lim
n

1/n log si(g
n) are the logarithms

of the moduli of the eigenvalues of g. Apply the Oseledets theorem in the trivial
case of one matrix g ∈ SL(d,R). The Oseledets decomposition is obtained from the
Jordan decomposition by grouping together the eigenspaces corresponding to the
eigenvalues with the same modulus. These moduli are the expλi(g).

In our setting, if γ ∈ Γ, for all p ∈ P, λp(ρ(γ)) − λp+1(ρ(γ)) ≥ c|γ|. For all
γ ∈ Γ, we obtain a coarser decomposition by grouping together, for 1 ≤ k ≤M +1,
the Oseledets subspaces associated with λi(ρ(γ)) with λpk−1

(ρ(γ)) > λi(ρ(γ)) ≥
λpk

(ρ(γ)). 1 This associates to every γ ∈ Γ an element η(ρ(γ)) of the space XP of
decompositions of Rd = E1 ⊕ . . .⊕ EM+1, with dimEk = pk − pk−1, namely

η(ρ(γ)) = E1(ρ(γ))⊕ . . .⊕ EM+1(ρ(γ))

with the property that for all k = 1, . . . ,M +1, the space Ek(ρ(γ)) is generated by
the eigenspaces of ρ(γ) such that the modulus expλ of the eigenvalue satisfies

expλpk−1
(ρ(γ)) > expλ ≥ expλpk

(ρ(γ)).

Corollary 1.3. Let (Γ, S) be a non-elementary CAT(−K) finitely generated group
for some K > 0, P ⊂ {1, . . . , d − 1} with M := #P. With the above notations, if
ρ is a P -Anosov, Zariski dense representation of Γ in SL(d,R), set Ωρ ⊂ XP the
closure of the set {η(ρ(γ)); γ ∈ Γ}. Then,

dimM (Ωρ) ≤ dimXP −M + 1.

Indeed, corollary 1.3 is trivial for d = 2 and for M = 1. For d ≥ 3 and M ≥ 2,
we show in section 2.3 why corollary 1.3 follows from theorem 1.2.

Remark 1.4. In the case when the representation is Borel-Anosov, theorem 1.1,
theorem 1.2 and corollary 1.3 hold for a general non-elementary finitely generated
Gromov hyperbolic group Γ.

The first non-trivial case for our results is when d = 3 and P = {1, 2}. So,
let ρ be a Borel-Anosov representation of the CAT(−K) finitely generated non-
elementary group (Γ, S) in SL(3,R) and we can consider the limit set Λρ of the
action of ρ(Γ) on the space F of complete flags in R3. Besides, all γ ∈ Γ ad-
mit three distinct eigenspaces written (E1(ρ(γ)), E2(ρ(γ)), E3(ρ(γ))) in the or-
der of the absolute values of the eigenvalues. Let Ωρ denote the closure of the
{(E1(ρ(γ)), E2(ρ(γ)), E3(ρ(γ))), γ ∈ Γ} in P2 × P2 × P2. We obtain, from theorem
1.2 and corollary 1.3,

Corollary 1.5.

dimM (Λρ) ≤
5

2
< 3 = dim(F), dimM (Ωρ) ≤ 5 < 6 = dim(P2 × P2 × P2).

Let Γ be a surface group. For the Hitchin component, the dimension of the
projective limit set is 1 (see [Lab06]) and our result is not new. It is is new and un-
expected, as far as the authors are aware, for the Zariski dense representations that

1With the convention that p0 = 0, λp0 = +∞ and pM+1 := d.
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lie in the Barbot component, i.e. the same connected component as the Teichmüller
times Identity representations.

1.2. Strategy of the proof of theorem 1.2.

1.2.1. Random walk entropy. Let M be the set of probability measures µ on Γ with
countable support and with finite first moment, meaning∑

γ∈Γ

µ(γ)|γ| < +∞,

such that the semi-group Γµ generated by the support of µ is non-elementary (i.e.
contains two independent loxodromic elements).

It is well known that if µ ∈ M then µ has finite Shannon entropy, meaning

H(µ) = −
∑
γ∈Γ

µ(γ) log(µ(γ)) < +∞.

The random walk entropy hµ of µ ∈ M is defined by

(1) hµ = lim
n→+∞

1

n
H(µ∗n),

where µ∗n is the n-fold convolution of µ with itself.

1.2.2. Lyapunov exponents. Denote a+ the cone

a+ := {a ∈ Rd : a1 ≥ · · · ≥ ad,
∑

ai = 0}.

For g ∈ SL(d,R), logS(g) ∈ a+, where

logS(g) := (log s1(g), . . . , log sd(g)).

The Lyapunov exponents {λi(ρ∗µ)} ∈ a+ induced by ρ, are defined by

(2) λ(ρ∗µ) := {λi(ρ∗µ)} = lim
n→+∞

1

n

∑
γ∈Γ

µ∗n(γ) log (S(ρ(γ))) .

The limits exist by Fekete lemma applied to {
∑
j≤i

∑
γ∈Γ

µ∗n(γ) log (sj(ρ(γ)))}n∈N.

1.2.3. Lyapunov and Falconer dimension. We say a pair (i, j), 0 < i < j ≤ d is
separated by p ∈ P if i ≤ p < j. For each p ∈ P let Sp be the set of pairs separated
by p, and define S(P ) =

⋃
p∈P

Sp. On the cone a+ we define the roots

αi,j(a) = ai − aj ,

for i < j and notice that they are non-negative on a+. Lyapunov and Falconer
dimensions are special values of Lyapunov and Falconer functionals on a+.
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We define for h ≥ 0 the Lyapunov functional on a+ by

LP
h (a) = maximum of

∑
(i,j)∈S(P )

ri,j

subject to 0 ≤ ri,j ≤ 1 and
∑

(i,j)∈S(P )

ri,jαi,j(a) ≤ h.

For r ≥ 0 we also define the Falconer functional on a+ by

FP
r (a) = minimum of

∑
(i,j)∈S(P )

ri,jαi,j(a)

subject to 0 ≤ ri,j ≤ 1 and
∑

(i,j)∈S(P )

ri,j ≥ r.

Lemma 1.6 (Duality between Falconer and Lyapunov functionals). Let a ∈ a+

be such that αi,j(a) > 0 for all (i, j) ∈ S(P ). Then r 7→ FP
r (a) is an increasing

homeomorphism from [0, D] to [0, FD(a)] where D = #S(P ), and h 7→ LP
h (a) is its

inverse.

In particular, for all r, h ≥ 0 one has FP
r (a) ≤ h if and only if LP

h (a) ≥ r.

Following [DO80] and [KY79], we define the Lyapunov dimension of ρ∗µ on FP

by
dimP

LY (ρ∗µ) := Lhµ(λ(ρ∗µ)).

In the spirit of [Fal88], we define the Falconer dimension dimP
F (ρ) of ρ relative to

FP as the critical parameter r ≥ 0 for convergence of the series

ΦP
ρ (r) :=

∑
γ∈Γ

exp(−FP
r (ρ(γ))).

1.2.4. Proof of theorem 1.2. The proof of theorem 1.2 is a consequence of the fol-
lowing results.

Theorem 1.7 (Upper bound on Lyapunov dimension). For all µ ∈ M, one has

dimP
LY (ρ∗µ) ≤ dim(FP )−

M − 1

2
.

Theorem 1.8 (Inequality between Falconer dimension and Lyapunov dimension).
Assume that (Γ, S) is a non-elementary CAT(−K) finitely generated group for some
K > 0 and that the representation ρ(Γ) is Zariski dense dans SL(d,R). Then,

dimP
F (ρ) ≤ sup

µ∈M
dimP

LY (ρ∗µ)

Theorem 1.9 (Inequality between Minkowski and Falconer dimension). One has

dimM (Λρ) ≤ dimP
F (ρ).

The key observation behind theorem 1.7 is that the entropy hµ is realized as
the Furstenberg entropy of the action of ρ(Γ) on the Grassmannian Gr(p,Rd) for
any p ∈ P. This follows from the P -Anosov property and identification of the
Poisson boundary and geometric boundary for µ-random walks on Γ ([Kai00]).
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The inequality in theorem 1.7 is then a consequence of the inequality between
Furstenberg entropy and the sum of the relevant exponents (see [LL23] and section
3).

Theorem 1.8 is the converse of a general fact about discrete groups in SL(d,R).
Let G be a discrete group of matrices, P be a non-trivial subset of {1, . . . , d − 1}.
Observe that our definition of dimP

F (G) does not depend on the fact that G has the
P -Anosov property. Similarly, if µ is a probability measure on G with finite first
moment, our definition of dimP

LY (ρ∗µ) depends only on P , on the entropy hµ and
on the exponents λi(ρ∗µ), i = 1, . . . , d. Then,

Proposition 1.10. Let G be a discrete subgroup in SL(n,R), µ a probability mea-
sure on G such that

∑
g∈G log ∥g∥µ(g) < +∞. We have

dimP
LY (ρ∗µ) ≤ dimP

F (G).

Proposition 1.10 is proven in section 2.2.2.

When the conclusion of theorem 1.8 holds, its conjunction with proposition 1.10
can be seen as a variational principle for the Falconer dimension:

(3) dimP
F (ρ) = sup

µ∈M
dimP

LY (ρ∗µ).

The proof of theorem 1.8 will appear in a paper by Yuxiang Jiao, Jialun Li,
Wenyu Pan and Disheng Xu ([JLPX23]) in the case when the representation is
Borel-Anosov. Remark 1.4 follows. In [JLPX23], given ε > 0, the authors construct
a free semi-group in Γ that is rich enough that the uniform probability measure µε

on the generators satisfies dimP
LY (ρ∗µε) ≥ dimP

F (ρ) − ε. The complete dominated
splitting is used to control the almost additivity of the singular values. Here, we
consider a general subset P and we assume that the representation ρ(Γ) is Zariski
dense in SL(d,R). We were not able to prove a similar almost additivity in the case
of a partial dominated splitting. Instead, following [Qui02b], we construct a suitable
Patterson-Sullivan measure on FP with the property that if ν is the stationary
measure on FP of some random walk µ ∈ M, then, necessarily, dimP

LY (ρ∗µ) =

dimP
F (ρ).

Thanks to a construction by Chris Connell and Roman Muchnik ([CM07]), such
a probability measure µ exists if (Γ, S) is CAT(−K) for some K > 0. More general
conditions ensuring the existence of such a measure µ are announced by [CEPR].

Finally, the proof of theorem 1.9 is done in section 5. Similarly to other previous
works (see [Zha97], [BCH10], [PSW21], [GMT19], [FS20]), it rests on covering the
limit set in ∂Γ by shadows and counting the covering numbers of the images of
these shadows in Λρ.

1.3. Related facts. For convex cocompact groups in SO(n, 1), Dennis Sullivan
proved in [Sul79] that the Hausdorff dimension and the Minkowski dimension of the
limit set coincide with the Poincaré exponent of the group (which is the Falconer
dimension in that case). This result can be extended to more general cases if one
uses a conformally invariant metric on the boundary (see [Lin04], [DK22]). The
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problem is more delicate for the rotation invariant Riemannian metric (see e.g.
[Duf17] for the SU(n, 1) case).

Following the pioneer work of Falconer ([Fal88]), there are many results com-
paring Hausdorff dimension and Falconer dimension for affine IFS. The variational
principle (3) for IFS can be found in [Fal88] and [K04]. Under the form (3), it is due
to Ian D. Morris and Pablo Shmerkin ([MS19]) in the case of dimension 2, Ian D.
Morris and Çağri Sert ([MS21]) in general. The properties of stationary measures
for random walks on groups of matrices are very parallel.

Given theorems 1.8 and 1.9, a natural step to prove dimH(Λρ) = dimM (Λρ) =

dimP
F (ρ) for P -Anosov representations is finding necessary conditions on a given

probability µ on Γ and a ρ∗(µ)-stationary probability measure ν on FP for having

(4) dimloc ν = dimP
LY (ρ∗µ).

Here, dimloc ν is the ν-a.e. constant value of lim
ε→0

log ν(B(x,ε))
log ε (cf. [LL23]). Relation

(4) for IFS is a famous problem, with many deep contributions (most relevant
for us are [Fal88], [JPS07], [Hoc14], [BHR19], [HR19], [FS22], [Rap22], [MS21]).
For random walks on discrete subgroups of SL(d,R), relation (4) is classical when
d = 2 (see [HS17] for the general non-discrete case). [JLPX23] prove relation (4)
for d = 3 when the representation ρ is Borel-Anosov and ρ(Γ) is Zariski dense.
They also observe that relation (4) may be wrong when the Zariski closure of ρ(Γ)
is conjugated to SL(2,R).

Acknowledgments

The authors would like to thank Jairo Bochi, León Carvajales, Jialun Li, Rafael
Potrie and Andrés Sambarino for many helpful conversations.

2. Random walk entropy

Let Γ be a non-elementary finitely generated word hyperbolic group, P ⊂ {1, . . . , d−
1} with M := #P ≥ 2, ρ a P -Anosov representation of Γ in SL(d,R). We let M
denote the set of probability measures µ on Γ with finite first moment∑

γ

|γ|µ(γ) < +∞,

and such that the semi-group Γµ generated by the support of µ contains two inde-
pendent loxodromic elements.

In this section, we prove that the random walk entropy hµ given by (1) coin-
cides with the Furstenberg entropy (see below) of the stationary measure on the
Gromov boundary of Γ and its images on adequate flag spaces. We also relate the
Falconer dimension, and the random walk entropy to the growth indicator defined
by [Qui02a]. To conclude the section, we prove corollary 1.3.
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2.1. Furstenberg entropy. Recall that a probability measure ν on a compact
space X on which Γ-acts continuously is said to be µ-stationary where µ is a
probability measure on Γ, if and only if

ν =
∑
γ∈Γ

µ(γ)γ∗ν.

The Furstenberg entropy of a µ-stationary measure is defined as

κ(µ, ν) =
∑
γ∈Γ

µ(γ)

∫
X

log

(
dγ∗ν

dν
(γx)

)
dν(x),

or +∞ if the Radon-Nikodym derivative in the integral does not exist for some γ
in the support of µ.

In this subsection we show that for µ ∈ M, the Furstenberg entropy of the natural
µ-stationary measures on the Gromov boundary ∂Γ, the Grasmannian manifolds
of p-dimensional subspaces of Rd for p ∈ P , and the space of partial flags FP all
coincide with the random walk entropy hµ.

This particular feature of Anosov representations is useful since the Furstenberg
entropy is what occurs in the dimension formulas of [LL23].

2.1.1. Stationary measure on the Gromov boundary ∂Γ.

Theorem 2.1. For each µ ∈ M there exists a unique µ-stationary measure νµ on
the Gromov boundary ∂Γ of Γ, and its Furstenberg entropy is given by κ(µ, νµ) = hµ.

Proof. If γ−1, . . . , γ−n, . . . are i.i.d. random elements in Γ with common distribution
µ. Then by [Kai00, Theorem 7.6] there exists a random limit point

X = lim
n→+∞

γ−1 · · · γ−n ∈ ∂Γ,

almost surely, and the distribution νµ of X is the unique µ-stationary measure on
∂Γ.

Furthermore, (∂Γ, νµ) is isomorphic to the Poisson boundary of (Γ, µ) by [Kai00,
Theorem 7.7].

The Furstenberg entropy κ(µ, νµ) is equal to the difference between hµ and the
entropy of the random walk γ1, γ1γ2, . . . conditioned on X (see [KV83, Corollary
2]). However, because (∂Γ, ν) is the Poisson boundary this conditional entropy is
zero ([Kai00, Theorem 4.3 and 4.5]) and therefore hµ = κ(µ, νµ) as claimed. □

2.1.2. Boundary maps. Let p ∈ P and γ ∈ Γ be such that sp(ρ(γ)) > sp+1(ρ(γ)).

There exists a unique p-dimensional subspace ξp(γ) ⊂ Rd on which p-dimensional
volume is most contracted by ρ(γ)−1.

We let ξ(γ) = ({0} ⊂ ξp1(γ) ⊂ . . . ⊂ ξpM (γ)) ⊂ Rd ∈ FP where P = {p1 < · · · <
pM}, whenever all ξp(γ) are well defined.

Since ρ is P -Anosov this is the case outside of a finite subset of Γ.
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We refer to [GdlH90, Chapitre 7] for basic properties of the Gromov compact-
ification of Γ. We briefly recall that Γ with its word metric is a proper geodesic
metric space.

The group Γ is word hyperbolic, so there exists δ > 0 such that for every geodesic
triangle each side is contained in the δ-neighborhood of the other two.

The Gromov boundary ∂Γ is the set of equivalence classes of word geodesic rays
in Γ, where two rays are equivalent if they are at bounded Hausdorff distance.

A basis of neigborhoods of a point x ∈ ∂Γ in the Gromov compactification
Γ = Γ ∪ ∂Γ is defined by taking for each C > 0 the set

N(x,C) = {x} ∪ {y ∈ Γ : min
n

|αn| > C for all geodesics α joining x and y}.

The Gromov product may be used to give this compactification a class of Hölder
equivalent metrics (see below).

Theorem 2.2. The map ξ defined above extends Hölder continuously to the Gromov
boundary ∂Γ. Furthermore, ξp : ∂Γ → Gr(p,Rd) is injective for each p ∈ P \{0, d}.

Proof. For each p ∈ P, the extension of ξp to a continuous mapping from ∂Γ to
Gr(p,Rd) (the Cartan property ) is due to [GGKW17] (see [Can], Proposition 30.3).
Notice that if p ∈ P then ρ is also (d − p)-Anosov. From [BPS19, Proposition
4.9] one has that if x, y ∈ ∂Γ are distinct then ξp(x) ⊕ ξd−p(y) = Rd. Since
ξmin(p,d−p)(x) ⊂ ξmax(p,d−p)(x), this implies, for p ̸= 0, d, that ξp(x) ̸= ξp(y) so
that ξp is injective as claimed.

The proof of the Hölder property follows from the proof of proposition 30.3 in
[Can] by keeping track of the distance dist(ξp(x), ξp(y)), for x, y ∈ ∂Γ and p ∈ P.
Recall that the Gromov product (x|y) defined, for x, y ∈ Γ, by

(x|y) :=
1

2
(|x|+ |y| − |x−1y|)

extends to Γ∪∂Γ. M. Gromov defines a metric d on ∂Γ such that (cf e.g. [CDP90],
Ch. 11) there exist constants c0 > 0, C0 > 1, with

C−1
0 exp(−c0(x|y)) ≤ d(x, y) ≤ C0 exp(−c0(x|y)).

Let x, y ∈ ∂Γ and choose a geodesic [x, y] from x to y. Let α be the point in the
geodesic [x, y] with the smallest word length. By the triangle inequality,

|α| ≥ (x|y).

Moreover, if we write [x, y] = {αn}n∈Z with α0 = α, then there is D such that

|αn| ≥ (x|y) +D−1|n| −D

By [Can], lemma 29.3, there is a constant C ′ such that, for all γ ∈ Γ and s in
the generating set S, we have

dist(ξp(ρ(γs)), ξp(ρ(γ))) ≤ C ′σp+1(ρ(γ))

σp(ρ(γ))
.
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Therefore, if p ∈ P, for all γ ∈ Γ and s in the generating set S,

dist(ξp(ρ(γs)), ξp(ρ(γ))) ≤ C ′c−1 exp(−c|γ|).

It follows that

dist(ξp(α), ξp(x)) ≤ [C ′c−1 exp(cD)

∞∑
n=0

exp(−cD−1n)] exp(−c(x|y)).

The estimate is similar for dist(ξp(α), ξp(y)). We have a constant D′ such that

dist(ξp(x), ξp(y)) ≤ dist(ξp(α), ξp(x)) + dist(ξp(α), ξp(y)) ≤ D′d(x, y)c/c0 .

□

2.1.3. Dynamical stationary measures. Fix µ ∈ M, let γ−1, . . . , γ−n, ... be i.i.d.
random elements of Γ with common distribution µ, χ1 > · · · > χN be the distinct
Lyapunov exponents of µ, and d1, . . . , dN their multiplicities. Let A = {d1, d1 +
d2, . . . , d1 + · · · + dN−1}. By Oseledets theorem for each a ∈ A there is a random
limit

Ua = lim
n→+∞

ξa(γ−1 · · · γ−n),

almost surely.

The collection U of Ua for a ∈ A is a random element in the space of flags
of signature A. Its distribution, and the projections of its distribution to coarser
partial flag spaces are what were called dynamical stationary measures in [LL23].
In particular since λp(ρ∗µ) > λp+1(ρ∗µ) for all p ∈ P we have that ξ∗νµ is the
dynamical stationary measure on FP , and ξ

p
∗νµ is the dynamical stationary measure

on the Grasmannian of p-dimensional subspaces of Rd for each p ∈ P .

2.1.4. Furstenberg entropy.

Theorem 2.3. For each µ ∈ M one has

hµ = κ(µ, ξ∗νµ) = κ(µ, ξp∗νµ),

for all p ∈ P, p ̸= 0, d.

Proof. This is immediate from injectivity of the maps ξp given by theorem 2.2. □

2.2. Growth indicator function.

2.2.1. Growth function and Falconer dimension. Given a subcone C ⊂ a+ let ΓC
denote the set of elements with logS(ρ(γ)) ∈ C.

Given a ∈ a+ we define the growth indicator at a by

(5) ψΓ(a) = ∥a∥ inf
C

lim sup
T→∞

1

T
log#{γ ∈ Γ, logS(ρ(γ)) ∈ C, || logS(ρ(γ))|| ≤ T}

where the infimum is over open cones containing a.
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Theorem 2.4 (Quint, [Qui02a]). The growth indicator function ψΓ is concave and
{ψΓ > 0} is the interior of the limit cone defined by

LΓ = lim
t→+∞

1

t
logS(Γ),

where the limit is taken in the Hausdorff topology on closed sets.

Recall that we defined the Falconer dimension dimP
F (ρ) as the critical value of

the series r 7→
∑
γ∈Γ

exp
(
−FP

r (log(S(ρ(γ))))
)
.

Lemma 2.5. The Falconer dimension dimP
F (ρ) is given by

dimP
F (ρ) = inf{r > 0 : ψΓ(a) < FP

r (a) for all a ∈ LΓ}
= sup{r > 0 : ψΓ(a) ≥ FP

r (a) for some a ∈ LΓ}
.

2.2.2. Proof of proposition 1.10. The following inequality is essentially due to Guiv-
arc’h.

Lemma 2.6 (Fundamental inequality). For all µ ∈ M one has

hµ ≤ ψΓ(λ(ρ∗µ)).

Proof. Indeed, for all ε > 0 and n large enough, there are at least exp(n(hµ − ε))
elements γ of Γ with log(S(ρ(γ))) close to nλ(ρ∗µ). □

Recall that, given µ ∈ M we defined the Lyapunov dimension by

dimP
LY (ρ∗µ) = Lhµ(λ(ρ∗µ)).

Proposition 1.10 is the following statement

sup
µ∈M

dimP
LY (ρ∗µ) ≤ dimP

F (ρ).

.

Proof. Fix µ ∈ M and let r0 = dimP
LY (ρ∗µ) = Lhµ(λ(ρ∗µ)). From the duality

between Lyapunov and Falconer functionals we have Fr0(λµ) = hµ.

We have hµ ≤ ψΓ(λ(ρ∗µ)) by the fundamental inequality, i.e. Fr0(λ(ρ∗µ)) ≤
ψΓ(λ(ρ∗µ). Hence, r0 ≤ dimP

F (ρ) by lemma 2.5. □

2.3. Eigenspace splitting. In this subsection, we show that theorem 1.2 implies
corollary 1.3.

Consider, for γ ∈ Γ, the P -decomposition η(ρ(γ)) = E1(ρ(γ))⊕. . .⊕EM−1(ρ(γ)).
By the P -Anosov property, the angles between E1(ρ(γ)) ⊕ . . . ⊕ Ek(ρ(γ)) and
Ek+1(ρ(γ))⊕ . . .⊕EM−1(ρ(γ)) are uniformly bounded from below by some positive
number for all 1 ≤ k ≤M − 2 and for all γ but a finite number.

Recall that we denote, for all γ but a finite number, ξ(γ) = {0} ⊂ ξp1(γ) ⊂
. . . ⊂ ξpM−2(γ) ⊂ Rd ∈ FP . In the same way, ξ(γ−1) = {0} ⊂ ξd−pM−2(γ−1) ⊂
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. . . ⊂ ξd−p1(γ−1) ⊂ Rd ∈ FP∗ . It follows from [GGKW17], lemma 2.262 that the
unstable flag f(ρ(γ)) ∈ FP ,

f(ρ(γ)) := {0} ⊂ E1(ρ(γ)) ⊂ . . . ⊂ E1(ρ(γ))⊕ . . .⊕ EM−2(ρ(γ)) ⊂ Rd

and the stable flag f ′(ρ(γ)) ∈ FP∗ ,

f ′(ρ(γ)) := {0} ⊂ EM−1(ρ(γ)) ⊂ . . . ⊂ E2(ρ(γ))⊕ . . .⊕ EM−1(ρ(γ)) ⊂ Rd

are given by

f(ρ(γ)) = lim
n→+∞

ξ(γn), f ′(ρ(γ)) = lim
n→−∞

ξ(γn).

In particular, f(ρ(γ)) ∈ Λρ ⊂ FP , and f ′(ρ(γ)) ∈ Λ∗
ρ, where Λ∗

ρ is the limit set
associated to the representation ρ in FP∗ . Thus, (f, f ′) ∈ (Λρ×Λ∗

ρ)
′ ⊂ (FP ×FP∗)′,

where ′ indicates that the pairs of flags are in general position.

The set of pairs (f, f ′) ∈ (FP ×FP∗)′ such that the angles between the opposite
partial spaces are bounded from below by some positive number form a compact
subset of (FP × FP∗)′ and the mapping that associates to (f, f ′) the underlying
decomposition is uniformly Lipschitz on that compact set. For almost all γ ∈ Γ,
the decomposition η(ρ(γ)) is obtained by this mapping from (f(ρ(γ)) × f ′(ρ(γ)).
Therefore the closure Ωρ of the set of splittings {η(γ), γ ∈ Γ} is the image of a
compact subset of (Λρ×Λ∗

ρ)
′ by a Lipschitz mapping and its Minkowski dimension

is at most the Minkowski dimension of Λρ×Λ∗
ρ. Since the Minkowski dimension of a

product is the sum of the Minkowski dimensions, corollary 1.3 follows from theorem
1.2 applied to the representation ρ which is both P -Anosov and P ∗-Anosov.

3. Entropy gap and proof of theorem 1.7

In this section we write λi for λi(ρ∗µ). The purpose of this section is to show
that for all µ ∈ M, the random walk entropy hµ is far from the sum∑

(i,j)∈S(P )

λi − λj ,

which would be needed to maximize the value of the Lyapunov dimension dimP
LY (ρ∗µ).

This is the main estimate needed for the proof of theorem 1.7.

Lemma 3.1 (Main lemma). For each µ ∈ M it holds that

hµ +
M − 1

2
(λ1 − λd) ≤

∑
(i,j)∈S(P )

λi − λj .

3.1. Proof of theorem 1.7 assuming lemma 3.1. Given µ ∈ M by definition
we have, setting bi,j := 1− ai,j ,

(6) dimP
LY (ρ∗µ) = #S(P )−min

∑
(i,j)∈S(P )

bi,j ,

2The argument in the non-hyperbolic case goes back to David Ruelle’s proof of Oseledets
theorem ([Rue79], cf. [Led84] proposition 3.2 or [Sim15], pages 141–142 for details).
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where the minimum is over all choices of bi,j satisfying 0 ≤ bi,j ≤ 1 and∑
(i,j)∈S(P )

bi,j(λi − λj) ≥ −hµ +
∑

(i,j)∈S(P )

(λi − λj).

Since λ1 − λd is the largest possible difference λi − λj , it follows that

(7) dimP
LY (ρ∗µ) ≤ #S(P )−

( ∑
(i,j)∈S(P )

λi − λj

)
− hµ

λ1 − λd
.

Letting P = {p1 < · · · < pM} one has

#S(P ) = p1(d− p1) + (p2 − p1)(d− p2) + · · ·+ (pM − pM−1)(d− pM ) = dim(FP ).

Substituting this into the inequality (7), and using lemma 3.1 we obtain

dimP
LY (ρ∗µ) ≤ dim(FP )−

M − 1

2
,

as claimed.

3.2. Upper bounds for Furstenberg entropy. In view of theorem 2.3 it will be
useful to bound the Furtenberg entropy of the stationary measures ξp∗νµ for each
p ∈ P .

Lemma 3.2. For each µ ∈ M and p ∈ P one has

hµ ≤
∑

(i,j)∈Sp

λi − λj .

Proof. Let χ1 > · · · > χN be the distinct Lyapunov exponents and d1, . . . , dN their
multiplicities. For each l = 1, . . . , N let Al = {i : λi = χl}.

Fix p ∈ P , because ρ is p-Anosov one has λp > λp+1 and therefore there exists k
such that d1 + · · ·+ dk = p.

From [LL23, Theorem 2.1] the dynamical stationary measure ξp∗νµ on the Gras-
mannian of p-dimensional subspaces has Furstenberg entropy bounded by

κ(µ, ξp∗νµ) ≤
∑

l≤k<m

dldm(χl − χm).

Noticing that #Al = dl we obtain∑
l≤k<m

dldm(χl − χm) =
∑

l≤k<m

∑
i∈Al,j∈Am

λi − λj

=
∑

i≤p<j

λi − λj

=
∑

(i,j)∈Sp

λi − λj ,

which concludes the proof. □
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3.3. Proof of lemma 3.1. LetM = #P , αk = λk−λk+1 for each k = 1, . . . , d−1,
and for A ⊂ P let S(A) be the set of (i, j) such that 1 ≤ i ≤ a < j ≤ d for some
a ∈ A.

We write

M

 ∑
(i,j)∈S(P )

λi − λj

−
∑
p∈P

∑
(i,j)∈Sp

λi − λj

=

d−1∑
k=1

Mak(P )−
∑
p∈P

bk(p)

αk,

where ak(A) is the number of (i, j) ∈ S(A) with i ≤ k < j, and bk(p) = ak({p}).

Since by lemma 3.2

Mhµ ≤
∑
p∈P

∑
(i,j)∈Sp

λi − λj ,

it suffices to show that for each k = 1, . . . , d− 1 one has

Mak(P )−
∑
p∈P

bk(p) ≥
M(M − 1)

2
.

For this purpose we fix k and enumerate P = {p1, . . . , pM} in such a way that

|p1 − k| ≥ |p2 − k| ≥ · · · ≥ |pM − k|,

and set Ai = {p1, . . . , pi} for i = 1, . . . ,M .

The desired lower bound will follow from the following two claims:

(1) For each i = 1, . . . ,M one has ak(Ai) ≥ bk(pi).
(2) For each i = 1, . . . ,M − 1 one has ak(Ai+1) ≥ ak(Ai) + 1.

Claim (1) is trivial since {pi} ⊂ Ai.

To establish claim (2) we first suppose that pi+1 ≤ k. If this is the case then
(pi+1, k + 1) ∈ S(Ai+1). If (pi+1, k + 1) ∈ S(Ai) there would have to be some
j ≤ i with pi+1 < pj < k + 1 contradicting the choice of enumeration of P .
Hence ak(Ai+1) ≥ ak(Ai) + 1 in this case. Similarly, if pi+1 > k then (k, pi+1) ∈
S(Ai+1) \ S(Ai) and claim (2) follows.

To conclude the proof we observe that from claim (1) we have ak(A1)− bk(p1) ≥
0 = 1×0

2 .



DIMENSION GAP FOR THE LIMIT SETS OF ANOSOV REPRESENTATIONS 15

Using claims (1) and (2) we show inductively for i = 1, . . . ,M − 1 that

(i+ 1)ak(Ai+1)−
i+1∑
j=1

bk(pj) = ak(Ai+1)− bk(pi+1) + iak(Ai+1)−
i∑

j=1

bk(pj)

≥ i+ iak(Ai)−
i∑

j=1

bk(pj)

≥ i+
i(i− 1)

2
=

(i+ 1)i

2
,

which concludes the proof setting i =M − 1.

4. Proof of theorem 1.8

4.1. Patterson-Sullivan measures and types. Recall theorem 2.4 and the def-
inition of the indicator growth function ψ (see (5)).

Let β : a → R be linear and strictly positive on the interior of L, and let δβ be
the critical value of r for the convergence of the series∑

γ∈Γ

exp(−rβ(logS(ρ(γ)))).

Then,

δβ = inf{r > 0, rβ > ψ},

and furthermore δββ is tangent to ψ along a unique ray R+aβ .

For γ ∈ Γ, t ∈ ∂Γ, we denote i(γ, t) ∈ a+ the value of the Iwasawa cocycle
associated to ρ(γ) and the flag ξ(t), namely:

i(γ, t) = (a1, . . . , ad) with

i∑
j=1

aj = log

∣∣∣∣detξi(t)
ρ(γ)

∣∣∣∣ for i = 1, . . . , d.

Theorem 4.1. [Qui02b] [Higher rank Patterson-Sullivan measures] Assume ρ(Γ)
is Zariski dense dans SL(d,R). Then, given β : a → R linear and positive on
the interior of L, there exists a probability measure νβ on ∂Γ such that, for all
γ ∈ Γ, t ∈ ∂Γ,

dγ∗νβ
dνβ

(γt) = exp(δββ(i(γ, t))).

For a ∈ a+, order the differences ζk(a) := αik,jk(a), for all (ik, jk) ∈ S(P ),
in such a way that 0 ≤ ζ1(a) ≤ . . . ≤ ζ#S(P )(a). We define the type T (a) the
corresponding order on the pairs (i, j) ∈ S(P ). There is a finite set of possible types.
For example, for d = 3, the type is given by the sign of (a1−a2)−(a2−a3) = −3a2.
Similarly, for a matrix γ ∈ Γ, the type T (γ) is the type of the singular values
logS(ρ(γ)) = s1(ρ(γ)) ≥ . . . ≥ sd(ρ(γ)) and for a measure µ ∈ M(Γ), the type
T (µ) is the type of the exponents λ(ρ∗µ) = λ1(ρ∗µ) ≥ . . . ≥ λd(ρ∗µ).
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Let q ∈ N, q − 1 < dimP
F (ρ) ≤ q. For a type T , define a linear functional φT on

a by

(8) φT (a) :=

(
q−1∑
k=1

ζk(a) + (dimP
F (ρ)− q + 1)ζq(a)

)
,

where the order of the indices k, 1 ≤ k ≤ S(P ), corresponds to the type T .

For a type T , define the restricted function ΦP
ρ,T (r) for r > 0 by, for q′ such that

q′ < r ≤ q′ + 1,

ΦP
ρ,T (r) :=

∑
γ∈Γ,T (γ)=T

exp−

q′−1∑
k=1

ζk(ρ(γ)) + (r − q′ + 1)ζq′(ρ(γ))

 ,

where the order of the indices k, 1 ≤ k ≤ S(P ), corresponds to the type T .

Proposition 4.2. There exists a type T0 such that the function r 7→ ΦP
ρ,T0

(r) has

dimF (ρ) as critical value, the functional φ := φT0
is positive on the interior of L

and δφ = 1.

Proof. Write, for a ∈ a+, r ∈ R+, q
′ such that q′ < r ≤ q′ + 1 and a type T ,

φr,T (a) =
(∑q′−1

k=1 ζk(a) + (r − q′ + 1)ζq′(a)
)
, where ζk(a) = αik,jk(a) and the

pairs (ik, jk) are ordered according to T .

Write also ψr(a) :=
(∑q′−1

k=1 ϑk(a) + (r − q′ + 1)ϑq′(a)
)
, where ϑk(a) = αik,jk(a)

are non-decreasing in k. Since we start choosing the ϑ’s in non-decreasing order we
have, for all r, a, T , ψr(a) ≤ φr,T (a) and therefore,

ΦP
ρ (r) =

∑
γ∈Γ

exp (−ψr(logS(ρ(γ)))) ≥ max
T

ΦP
ρ,T (r).

In particular, if r > dimP
F (ρ), and T is any type, ΦP

ρ,T (r) < +∞. On the other

hand, there is a type T0 and r0, r0 < dimP
F (ρ), such that for r0 < r < dimP

F (ρ),

ΦP
ρ,T0

(r) = max
T

ΦP
ρ,T (r) ≥ 1

#S(P )!
ΦP

ρ (r)

and therefore the series ΦP
ρ,T0

(r) diverges.

So, dimP
F (ρ) is the critical value of Φ

P
ρ,T0

=
∑
γ∈Γ

exp (−φr,T0(logS(ρ(γ)))). Choose

this type as T0 and consider the corresponding φ = φdimP
F (ρ),T0

. We have δφ = 1
since

(9) lim sup
T→∞

1

T
log#{γ ∈ Γ, φ(logS(ρ(γ))) ≤ T} = 1.

It remains to show that the functional φ is positive on the interior of L. This follows
from theorem 2.4 and

Lemma 4.3. We have, for any a in the interior of a+, ψ(a) ≤ φ(a).
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Proof. Using the Euclidean scalar product to identify a and a∗, there is a0 ∈ a such
that

φ(a) = < a0, a > .

For C a cone in a, let α(C) be the cosine of the angle between C and a0 :

α(C) := sup
a∈C

< a0, a >

||a0|| ||a||
≤ 1.

Then for γ ∈ Γ such that logS(ρ(γ)) ∈ C, || logS(ρ(γ))|| ≥ φ(logS(ρ(γ)))

α(C)||a0||
, so that

we have

τC(Γ) := lim sup
T→∞

1

T
log#{γ ∈ Γ, logS(ρ(γ)) ∈ C, || logS(ρ(γ))|| ≤ T}

≤ lim sup
T→∞

1

T
log#{γ ∈ Γ, φ(logS(ρ(γ))) ≤ α(C)||a0||T}

= α(C)||a0|| lim sup
T→∞

1

α(C)||a0||T
log#{γ ∈ Γ, φ(logS(ρ(γ))) ≤ α(C)||a0||T}

= α(C)||a0||,

where we used (9) for the last equality. Recall the definition (5) of ψ. It is true that

ψΓ(a) = ||a|| inf
C∋a

τC(Γ) ≤ ||a|| ||a0|| inf
C∋a

α(C) =< a0, a >= φ(a).

□

□

Corollary 4.4. There exists a probability measure ν0 on ∂Γ such that

(10)
dγ∗ν0
dν0

(γt) = exp(φ(i(γ, t))),

where φ = φT0 is given by formula (8) and T0 by proposition 4.2.

Proof. Apply theorem 4.1 with β = φ. □

4.2. The measure ν0 is stationary. We now use the CAT(−K) property to find
a probability measure µ0 ∈ M such that ν0 is the unique stationary measure for
the action of (Γ, µ0) on ∂Γ.

Proposition 4.5. Assume (Γ, S) is a CAT(−K) finitely generated group for some
K > 0 and consider the measure ν0 from corollary 4.4. Then, there exists a prob-
ability measure µ0 on Γ, with

∑
γ∈Γ |γ|µ0(γ) < +∞, such that ν0 is the unique

µ0-stationary measure on ∂Γ.

Proof. Firstly, we have

Lemma 4.6. For all γ ∈ Γ, the function t 7→ φ(i(γ, t)) is Hölder continuous on
∂Γ.
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Proof. By theorem 2.2, t 7→ ξ(t) is Hölder continuous from ∂Γ to FP . Moreover,
since the representation ρ is P -Anosov, the mapping f 7→ i(γ, f) is Hölder contin-
uous on ξ(∂Γ) for all γ ∈ Γ. Indeed, since the splitting is dominated, ξ(∂Γ) is a
compact subset of FP and f 7→ i(γ, f) is smooth. Finally, the function φ on a is
linear. □

Let Γ be a finitely generated Gromov-hyperbolic group and φ(γ, t) a Hölder
continuous cocycle on ∂Γ. We consider a probability measure on ∂Γ that satisfies
the relation (10). We want to find a probability µ0 on Γ, with

∑
γ∈Γ |γ|µ0(γ) < +∞,

such that we have the stationarity relation

ν0 =
∑
γ

µ0(γ)γ∗ν0.

The delicate part is to ensure that
∑

γ∈Γ |γ|µ0(γ) < +∞, Under the hypothesis

that (Γ, S) is a CAT(−K) group for some K > 0, it is proven by C. Connell and
R. Muchnik in [CM07]. 3 This achieves the proof of the proposition. □

We claim that theorem 1.8 follows.

Indeed, recall that, from theorem 2.1 the entropy hµ0 satisfies, by (10),

hµ0 = κ(µ0, ν0) =
∑
γ∈Γ

µ0(γ)

∫
∂Γ

log

(
dγ∗ν0
dν0

(γt)

)
dν0(t)

=
∑
γ∈Γ

µ0(γ)

∫
∂Γ

φ(i(γ, t))dν0(t).

Using the linearity of φ and the stationarity of ν0, we get hµ0
= φ(λ(ρ∗µ0)).

So, if we compute a lower estimate for dimP
LY (ρ∗µ0) = Lhµ0

(λ(ρ∗µ0)) by choosing

ri,j = 1 for the first q− 1 pairs (i, j) ∈ S(P ) in the T0 order, ri,j = dimF (ρ)− q+1
for the qth pair in the T0 order and 0 for the other pairs, we obtain

(11) dimP
LY (ρ∗µ0) ≥ dimP

F (ρ).

5. Covering by balls and proof of theorem 1.9

Fix η > 0 and set s := dimP
F (ρ) + η. We may assume s < dim(FP ), otherwise

dimM (Λρ) ≤ dimP
F (ρ) + η holds trivially. Since s > dimP

F (ρ), the series ΦP
ρ (s) :=∑

γ∈Γ

φP
s (ρ(γ)) converges. We are going to construct covers U of Λρ by balls of

arbitrarily small radius ε with less than ΦP
ρ (s)ε

−s+o(ε) elements. This shows that

the covering number N(Λρ, ε)ε
−s+o(ε) is bounded from above by ΦP

ρ (s) uniformly

in ε. Therefore, dimM (Λρ) ≤ s = dimP
F (ρ) + η for all positive η and theorem 1.9

follows.

3Actually, the hypothesis of [CM07] is that Γ acts cocompactly by isometries on a CAT(−K)
space. The action of Γ on its Cayley graph is by isometries and cocompact. The first moment

property is then proven on page 488 of [CM07].
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5.1. Shadows and Anosov representations. Recall that Γ is a hyperbolic group
and that we chose the generating set S to be symmetric. The distance d(γ, γ′) on
Γ is given by the word length of γ−1γ′. A geodesic σ = {γn}n∈Z in Γ is a sequence
such that for all (i, j), d(γi, γj) = |j − i|. Any point x ∈ ∂Γ is the limit point of (at
least) one geodesic ray σ = {γj}j≥0 with γ0 = e.

For a geodesic ray σ = {γj}j≥0 with γ0 = e, we call the R-shadow of the geodesic
ray the image by ξ of the set of limit points of geodesic rays σ′ = {γ′j}j≥0 satisfying
γ′j = γj for j ≤ R. By definition, the R-shadow of a geodesic ray is a subset of FP .

For (i, j) ∈ S(P ), γ ∈ Γ, write ζi,j(γ) := log(si(ρ(γ))/sj(ρ(γ))). The main step
for the proof of theorem 1.9 is the following proposition:

Proposition 5.1. For each geodesic ray σ = {γj}j≥0 with γ0 = e, all ζ > 0,
the number of balls of radius exp(−ζ) in FP needed to cover the R-shadow of the
geodesic ray is at most

exp

 ∑
(i,j)∈S(P )

[ζ − ζi,j(γR)]
+ + o(R)

 ,

where, for a real ϖ, ϖ+ = max{ϖ, 0}.

5.2. Proof of Theorem 1.9 assuming proposition 5.1. Fix ε > 0 small. We
need to cover Λρ by well-chosen shadows and then cover these shadows by ε-balls.

For γ ∈ Γ, we write the ζi,j(γ), (i, j) ∈ S(P ), in nondecreasing order as 0 <

ζ1(γ) ≤ ζ2(γ) < . . . ≤ ζ#S(P )(γ). For η > 0, write s := dimP
F (ρ) + η. We may

assume s < #S(P ) and let q be a positive integer such that q− 1 ≤ s ≤ q. For any
geodesic ray σ = {γj}j≥0, we will use proposition 5.1 with ζ = ζq(γR) to estimate
the ε-covering number of its R-shadow.

Let σ = {γj}j≥0 be a geodesic ray such that γ0(x) = e. Then, the sequence
{ζq(γn)}n≥0 diverges to infinity, has bounded gaps and there are C,K > 0 such
that ζq(γn+K)− ζq(γn) > C (see [GGKW17, theorem 1.3]). It follows that for any
chosen geodesic ray σ, there is a well defined smallest index n(ρ, σ) and C > 1 such
that

(12) log(1/ε) ≤ ζq((γn(ρ,σ))) < log(1/ε) + C.

By proposition 5.1 applied with R = n(ρ, σ) and ζ = ζq(γn(ρ,σ)), we can cover
the R-shadow of γR with less than

exp

 ∑
(i,j)∈S(P )

[ζq(γR)− ζi,j(γR)]
+ + o(log(1/ε))


balls of radius ε. We claim that∑

(i,j)∈S(P )

[ζq(γR)− ζi,j(γR)]
+ ≤ −min

∑
(i,j)∈S(P )

ci,jζi,j(γR) + s log(1/ε) + C,

where the minimum is over 0 ≤ ci,j ≤ 1 with
∑
ci,j = s.
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Indeed, since we have ordered the values ζk(γR) in nondecreasing order, the above
minimum is attained for

ck = 1 for k < q, cq = s− q + 1, ck = 0 for k > q.

With that choice of ck’s, we have

∑
(i,j)∈S(P )

[ζq(γR)− ζi,j(γR)]
+ = −

(∑
k

ckζk(γR) + cqζq(γR)

)
+ sζq(γR)

and the claim follows from (12).

Cover now Λρ by n(ρ, σ)-shadows of distinct γn(ρ,σ). As announced, this proves
that

N(Λρ, ε) ≤
∑
γ∈Γ

φP
s (ρ(γ))ε

−s+o(ε) = ΦP
ρ (s)ε

−s+o(ε).

5.3. Geometry of FP . We recall the description in [LL23] of the geometric struc-
ture of the successive Lipschitz foliations by Euclidean spaces on FP . Write P =
{p1, . . . , pM}. Recall that, by convention, pM+1 = d.

Recall that a topology on {1 . . . ,M +1} is called admissible if the subsets {i, i+
1, . . . ,M + 1} are open. An admissible topology is described by its atoms T (i),
where T (i) is the smallest open set containing {i}. We write T0 for the topology
with atoms T (i) = {i, i+1, . . . ,M+1}, TP for the topology with atoms T (i) = {i}.
An admissible topology T is finer than another one T ′ (denoted T ≺ T ′) if any
T ′-open set is T -open. By definition, any admissible topology is finer that T0.

Given an admissible topology T , we define the (weighted) configuration space XT

(with weights p1, p2 − p1, . . . , d− pM ) as the space of sequences (xI)I∈T such that

(1) xI is a
∑

i∈I(pi − pi−1)-dimensional subspace of Rd for each I ∈ T ,
(2) xI∪J = xI + xJ for all I, J ∈ T , and
(3) xI∩J = xI ∩ xJ for all I, J ∈ T .

Each configuration space XT is endowed with the distance corresponding to its
natural embedding in the product of Grassmannian manifolds.

For T ≺ T ′, there is a natural projection πT,T ′ : XT → XT ′ . The space XTP

is identified with the pairs in (FP ,FP∗) in general position. In particular, given
y ∈ FP∗ the projection πTP ,T0

is of the form πy × Id, where πy is the natural
projection from the set of flags in FP in general position with y to a point. The
fibers (πy)−1(y) are #S(P )-dimensional open subsets of FP .

We say a sequence of subspaces V = (V1, . . . , VM+1) is a splitting compatible
with y ∈ FP∗ if for all i, 1 ≤ i ≤M + 1,

(13) y{j:j≥i} =
⊕

{j:j≥i}

Vj .



DIMENSION GAP FOR THE LIMIT SETS OF ANOSOV REPRESENTATIONS 21

Notice that in particular this implies dim(Vi) = pi−pi−1 for all i and Rd =
M+1⊕
i=1

Vi.

In [LL23] lemma 4.1, we show that setting

(14) Vi(y) = y{j:j≥i}∩(y{j:j>i})
⊥ ,

yields a compatible splitting for each y ∈ FP∗ that we call the perpendicular split-
ting compatible with y.

Given y ∈ FP∗ and V a splitting compatible with y, we denote by Nil(V ) the
space of linear mapping f : Rd → Rd such that

(15) f (VM+1) = {0} and f (Vi) ⊂
⊕
j:j>i

Vj ,

for i = 1, . . . ,M . We have dimNil(V ) = #S(P ). Given y ∈ FP∗ and a compatible
splitting V we define a mapping

φV : Nil(V ) → Fy

by setting

(16) φV (f)I = (Id+f)

(⊕
i∈I

Vi(y)

)
,

for all I ∈ TP , where Id : Rd → Rd is the identity mapping.

For each y ∈ FP∗ we consider the perpendicular compatible splitting V (y) =
(V1(y), . . . , VM+1(y)) and we define

(17) V = {(y, f) : y ∈ FP∗ , f ∈ Nil(V )}.

This is a vector bundle with base FP∗ given by the projection onto the first
coordinate. It is a sub-bundle of the product FP∗ × Hom(Rd,Rd). We endow it
with the metric given by the sum of the distance in FP∗ and the Hilbert-Schmidt
norm on Hom(Rd,Rd) associated with the Euclidean structures on Vi, Vj . We have

Theorem 5.2. The mapping φ : V → FP defined by

φ(y, f) = φV (y)(f),

is a locally bilipschitz homeomorphism.

Proof. This follows from [LL23] theorem 2.4 and its proof ([LL23], section 4). □

Theorem 5.3. Let y ∈ FP∗ and V,W be two splittings compatible with y. Then,
the mapping

φ−1
W ◦ φV : Nil(V ) → Nil(W ),

is affine.

Proof. See [LL23], lemma 5.8. □

Let g ∈ SL(d,R). We note that if V = (V1, . . . , VM+1) is a splitting compatible
with y then g−1V = (g−1V1, . . . , g

−1VM+1) is a splitting compatible with g−1y.
For the coordinates given by these two splittings the action of g is linear between
the corresponding fibers:
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Theorem 5.4 (Linearizing coordinates). For each y ∈ FP∗ and each adapted split-
ting V one has

φ−1
V ◦ g ◦ φg−1V (f) = gfg−1,

for all g ∈ G and all f ∈ Nil(g−1V ).

In particular, φ−1
V ◦ g ◦ φg−1V : Nil(g−1V ) → Nil(V ) is linear and the action of

SL(d,R) on XTP
is affine on each fiber.

Proof. See [LL23] lemma 6.2 and corollary 6.3. □

5.4. Proof of proposition 5.1. Let γ ̸= e ∈ Γ. Recall that we defined ξp(γ) ⊂
Rd as the unique p-dimensional subspace on which p-dimensional volume is most
contracted by ρ(γ)−1. Since the representation ρ satisfies the P ∗-Anosov condition,
we can associate to the matrix ρ(γ) the flag

ξ∗(γ) := ({0}, ξd−pM (γ−1), . . . , ξd−p1(γ−1),Rd) ∈ FP∗ .

From the definitions we obtain:

Lemma 5.5. The sequence of subspaces V = (V1, . . . , VM+1) is a splitting com-

patible with y = ξ∗(γR) where Vj is the sum of the eigenspaces of
√
ρ(γR)(ρ(γR))t

corresponding to the singular values si for pj−1 < i ≤ pj .

Let y = ξ∗(γR). Using the coordinates on the space Fy
P given by theorem 5.2

with the splitting compatible with y given by lemma 5.5, we can write

Lemma 5.6. Let y = ξ∗(γR) and V the splitting compatible with y given by lemma
5.5. Write φV : NilTP ,T0

(V ) → X y
TP ,T0

= Fy
P for the coordinate mapping given by

(16). Let x belong to the R-shadow of the geodesic ray σ = {γj}0≤j≤R. Then, there
exists K, τ > 0 such that for R ≥ K,

∥φ−1
V (γ−1

R x)∥ < τ.

Proof. Since x belong to the R-shadow of the geodesic ray σ = {γj}0≤j≤R there
is a geodesic ray σ′(x) =: {γ′j}j≥0 such that γ′0 = e, γ′R = γR and ξ(σ′) = x.

Applying γ−1
R , there is a geodesic ray σ′′(x) = γ−1

R σ′(x) =: {γ′′j }j≥0 such that

γ′′0 = γ−1
R , γ′′R = e and ξ(σ′′) = γ−1

R x. By the proof of theorem 2.2, if R is large
enough, there is τ0 such that

dist(ξ(V ), γ−1
R x) ≤ τ0,

where ξ(V ) ∈ FP is given by ξ(V ) := 0 ⊂ V1 ⊂ V1⊕V2 ⊂ . . . ⊂ Rd. Using theorems
5.2 and 5.3, the lemma folllows. □

We can now prove proposition 5.1: let σ = {γj}j≥0 be a geodesic ray with
γ0 = e. Let V the splitting compatible with ξ∗(γR) given by lemma 5.5. By lemma
5.6, if R > K, the R-shadow of σ is contained in φ−1

ρ(γR)V ◦ ρ(γR) ◦ φV (B(0, τ)),

where B(0, τ) is the ball of radius τ in NilTP ,T0(V ). Proposition 5.1 amounts to the
following
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Lemma 5.7. With the preceding notations, the image of B(0, τ) by φ−1
ρ(γR)V ◦ρ(γR)◦

φV is an ellipsoid with axes τ exp(ζi,j(γR)), for all (i, j) ∈ S(P ).

Proof. By theorem 5.4,

φ−1
ρ(γR)V ◦ ρ(γR) ◦ φV (f) = ρ(γR)fρ(γR)

−1.

Write NilTP ,T0
(V ) as

⊕
1≤i<j≤M+1 Hom(Vi, Vj) and f ∈ B(0, τ) as f = {fi,j}1≤i<j≤M+1,

with all |fi,j | < τ. The matrix ρ(γR) is block diagonal, made of matrices gi ∈
Hom(Vi, Vi). Therefore, ρ(γR)fρ(γR)

−1 = {gjfi,j(gi)−1, 1 ≤ i < j ≤M + 1}.

There is an orthonormal basis of Vi, namely {v1, . . . , vpi−pi−1}, such that (gi)−1vℓ, ℓ =

1, . . . , pi − pi−1 form an orthogonal system with ∥(gi)−1vℓ∥ = (si−1+ℓ(ρ(γR)))
−1.

Similarly, there is an orthonormal basis of Vj , namely {u1, . . . , upj−pj−1
}, such that

gjuk, k = 1, . . . , pj−pj−1 form an orthogonal system with ∥gjuk∥ = sj−1+k(ρ(γR)).

For 1 ≤ ℓ ≤ pi−pi−1, 1 ≤ k ≤ pj−pj−1, write f
ℓ,k for the element of Hom(Vi, Vj)

that sends (gi)−1vℓ/∥(gi)−1vℓ∥ to uk and the orthogonal space ((gi)−1vℓ)
⊥ to 0.

For all ℓ, k, 0 < ℓ ≤ pi − pi−1, 0 < k ≤ pj − pj−1, the f
ℓ,k form an orthogonal basis

of Hom(Vi, Vj) such that the φ−1
ρ(γR)V ◦ ρ(γR) ◦ φV (f

ℓ,k) are orthogonal with norm

(si−1+ℓ(ρ(γR)))
−1sj−1+k(ρ(γR)) = exp(−ζi−1+k,j−1+ℓ(γR)). The lemma follows by

putting all the Hom(Vi, Vj) together. □
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