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Abstract

Classical techniques for protecting facial image privacy typically fall into two categories: data-poisoning
methods, exemplified by Fawkes, which introduce subtle perturbations to images, or anonymization meth-
ods that generate images resembling the original only in several characteristics, such as gender, ethnicity,
or facial expression.

In this study, we introduce a novel approach, PrivacyGAN, that uses the power of image generation
techniques, such as VQGAN and StyleGAN, to safeguard privacy while maintaining image usability, par-
ticularly for social media applications. Drawing inspiration from Fawkes, our method entails shifting the
original image within the embedding space towards a decoy image.

We evaluate our approach using privacy metrics on traditional and novel facial image datasets. Ad-
ditionally, we propose new criteria for evaluating the robustness of privacy-protection methods against
unknown image recognition techniques, and we demonstrate that our approach is effective even in un-
known embedding transfer scenarios. We also provide a human evaluation that further proves that the
modified image preserves its utility as it remains recognisable as an image of the same person by friends
and family.

1 Introduction
Individuals often share personal photos on various social media platforms, which facilitates communication
and connection with family, friends, colleagues, and customers. Unfortunately, a significant drawback of
this practice is that it can sometimes be possible to identify individuals social media accounts by taking their
picture in public [22] or by comparing their dating app photos to their business-related social media profiles.
This is often made possible by the existence of datasets collected by scraping social media platforms. While
face detection systems can be used by the government for criminal identification purposes, they also present
opportunities for both internal and external misuse [28], including enabling stalkers to track their victims
[8]. Consequently, sharing real facial images publicly over the internet may compromise users privacy.

Multiple initiatives are dedicated to enhancing image and video privacy on the internet. One of the
prominent groups is centred around anonymization methods, which involve altering users pictures to re-
semble those of other individuals. For instance, Kim et al. [17] proposed a privacy-preserving adversarial
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Figure 1: Schema for both data poisoning and generative privacy methods. We take the original image (OI)
and create an image that is recognisable by human observers while being unlikely to be identified by image
recognition methods using
(i) the classic approach by adding pixel noise such that it makes the modified image in the embedding space
closer to the target image than to the original image,
(ii) (our approach, PrivacyGAN): generation of visually similar but distant images in the embedding space.

protector network (PPAPNet) as an image anonymization tool. PPAPNet transforms an image into another
synthetic yet realistic image while remaining immune to model inversion attacks [27]. Anonymization tech-
niques may also preserve key characteristics such as background, emotions, and facial feature movements
[11] [14] [1] [15]. These techniques are valuable when the objective is to maintain realistic appearances
without the need to recognise individuals in photos or videos. Such approaches are particularly useful, for
example, for maintaining anonymity while expressing opinions on video-sharing platforms. For instance,
[7] achieves the objective of decorrelating the identity while retaining the perception (pose, illumination,
and expression). Some of these methods change only parts of the face. As an example, in their work [20],
the authors suggest utilising generative techniques to enhance images that have been intentionally blurred or
have had the subject’s eyes obscured beforehand.

In the overview conducted by Wenger et al. [29], the authors tackle a challenge in the design of Anti-
Facial Recognition (AFR) systems: finding a balance between privacy, utility, and usability . They cat-
egorise AFR systems based on their target components, ranging from data collection and model training
to run-time inference, all with the shared objective of thwarting successful recognition by unauthorised or
unwanted models. Moreover, the authors stress the user preference for privacy tools with minimal over-
head, a concept underscored by studies such as Sharif et al. [25] and Dabouei et al. [4]. These findings
highlight the significance of delivering protection against image recognition systems while mitigating any
adverse effects on the user experience, a goal that many present anonymization methods struggle to attain.
While certain attributes of images, such as gender, ethnicity, and facial expressions, can be retained through
specific anonymization techniques, the resulting modified images frequently lack practicality for users. As a
result, even though these images maintain crucial visual characteristics, the individual’s identity within them
may undergo substantial alterations, ultimately rendering them unidentifiable to acquaintances and family
members.

In an effort to achieve a balance between utility and privacy protection, another area of research focuses
on altering or obscuring facial images to maintain human recognizability while creating difficulties
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for neural networks to decipher. Generally, these methods involve introducing precisely crafted pixel
noise, causing the neural network to misclassify the image. These pixel-level perturbations have effectively
challenged diverse image recognition neural networks. The dilemma of balancing privacy maintenance with
recognition assurance of data-poisoning methods like Fawkes [24] and Lowkey [3] is discussed in detail in
[21].

As an alternative approach to safeguarding images against unauthorised identification while preserving
their utility for the users, one can consider adversarial examples. [20] demonstrated that makeup transfer
can be an effective means of countering various face recognition systems. However, this method has limita-
tions, as the model’s performance may be inconsistent between male and female images due to an imbalance
in the makeup transfer training dataset. This method is also ineffective in cases where the face cannot be
found on an image, as it is not possible to transfer makeup in this case. Additionally, some individuals may
find the use of makeup transfer images unacceptable.

In the present paper, we propose a general approach to the use of generative methods for privacy.
We train our methods to be effective for embedding methods, on which pixel-based methods such as Fawkes
used to fail. Our goal is to create images that resemble original photographs and are suitable for sharing on
social media platforms, while also preventing identification by modern image recognition neural networks
without using anonymization. To achieve this, we explore the effectiveness of two generative methods: a
generative adversarial neural network StyleGAN [16], and the autoencoder VQGAN [6]. These generative
methods are known for their realistic image generation capabilities, which adds an added layer of difficulty
for neural network recognition.

By modifying facial images using generative methods, we aim to preserve their recognizability to hu-
man observers while rendering them unrecognisable to many existing image recognition neural networks.
Inspired by pixel-based methods like Fawkes [24], we propose modifying the generated “private” images
towards a different target image in the embedding space and evaluate the robustness of our approach against
unknown image recognition neural networks. We validate our privacy methods on the Labeled Faces in the
Wild (LFW) dataset [13], as well as introduce a new dataset of face crops extracted from Casual Conversa-
tions [9] to ensure their effectiveness in various environments. In Fig. 1 we present the schema of image
modification using both pixel-based and generative methods.

Our proposed generative tools make subtle modifications to user images without adding pixel noise,
so the resulting photos look natural and protect user privacy. Our algorithms operate within a black-box
framework and demonstrate their efficacy against image recognition techniques they were not specifically
trained on. We offer flexibility in selecting methods and privacy settings and conduct a comparison between
our approach and existing state-of-the-art privacy protection methods, such as Fawkes.

To sum up the claims of the present paper, we

1. propose a novel approach to facial image privacy based on generative methods;

2. create a new privacy evaluation approach based on the percentage of dataset images that are closer in
an embedding space to a modified “private” image than to an original image;

3. propose a new facial image dataset extracted from the Casual Conversations dataset [9] videos;

4. evaluate the privacy of the modified images against various embedding methods (including transfer
to embeddings not used in our privacy method) and provide human evaluation of image quality for
state-of-the-art and novel privacy methods.
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2 Privacy Algorithms

2.1 A well-known pixel-based method: Fawkes.
Fawkes [24] is a data poisoning method that presents subtle image perturbations to the images. One of
its main features is the concept of target image: by suggesting elements from a side target image, Fawkes
ensures that the modified image will be recognised as another person by neural networks, thus ensuring
privacy. Unlike just maximising the distance between the embedding of the original image and the modified
image, this method

1. helps to keep the embedding of modified images within a valid range for a given dataset and

2. ensures that the embedding of the modified image does not stay close to its original version in the
given dataset.

The idea of Fawkes is to pair each original image (OI) with a target image (TI). Then Fawkes associates
to each original image a ‘cloak image’ (CI) which consists of noise obtained by optimising the following
loss:

LFawkes = ||emb(TI)− emb(OI ⊕ CI)||,

where: OI is an original image; ⊕ is capped addition; emb is an embedding method used for cloak optimi-
sation in order to obtain a modified “private” version of an original image; TI is a target image; the private
version of OI should be labelled the same as TI by the chosen image recognition system; ρ is a parameter
that caps the noise strength; CI < ρ is a cloak or a noise that should be added to OI in order for it ensure its’
privacy; OI ⊕CI is the published rendition of OI . In our experiments, by default, we use the “high” mode
of Fawkes (as mentioned in [30] and [24]), since it provides a decent level of protection, and it is possible to
compare this setting of Fawkes with our methods.

2.2 Our proposed generative methods based on VQGAN and StyleGAN
Our proposal involves utilising generative models for privacy protection, with a focus on generating an image
that closely resembles the original in visual appearance while safeguarding users against image recognition
attacks. Our objective is not to anonymize the image. Another generative method that transfers makeup in
order to protect facial privacy (AMT-GAN) is reviewed in the supplementary material. In this paper, we
expand on the idea of target images introduced in Fawkes. We use target images to ensure that the modified
version of an image is closer to the target image than the original image in the chosen embedding space.
To select target images, we choose from images in the dataset that have not been used in experiments. For
each specific image, we select a target image based on its distance from the original image in the chosen
embedding method used for optimization. The chosen target image should be far enough from the original
image to ensure effective privacy protection.

We select the loss function L based on the goal of preserving the identity of the original image (OI) for
humans while ensuring that the generated image (GI) embedding is as close as possible to the distant target
image embedding. For this purpose, we use the Learned Perceptual Image Patch Similarity (LPIPS) distance
for the preservation of OI identity and optimise the embedding distance between the generated image (GI)
and the target image (TI) to achieve the closest possible embedding.

The loss for any generated image always consists of the sum of the following parts:

1. LPIPS distance between generated and original image
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2. For each of the embeddings used for optimisation, coefficient K multiplied by the mean squared
distance between the modified “private” image embedding and target image embedding.

Lgenerative

privacy
= LPIPS(OI,GI)+

+K ×
∑

emb∈ embeddings

|| emb(GI)− emb(TI)||.

The hyperparameters of the loss described are the coefficient K (i.e., weight compared to LPIPS) for the
embedding distance, the learning rate, the batch size, and the number of iterations.

2.3 Generative Privacy Algorithm: PrivacyGAN
Here, we describe PrivacyGAN, an algorithm that we propose for creating private versions of facial images.

Algorithm 1 PrivacyGAN: Private image generation algorithm
Require: OI: Original Image
Ensure: GI: Generated Image
TI ← Target Image . (distant from OI in the embedding space)
z ← random
G← image generation method
K ← optimisation coefficient
chosen embeddings← list of embedding methods for optimisation . (we distance GI from OI in these
embedding spaces)
for i in range(0, num iterations) do

GI ← G(z)
emb dist← 0
for emb in chosen embeddings do

emb dist += ||emb(GI)− emb(TI)||
lpips dist←LPIPS(GI,OI)
loss← lpips dist+K · emb dist
z ← update(z, loss,∇loss)

return GI

As input to the algorithm, we use an original image OI and a target image TI. The algorithm aims to
produce an image GI which would be a “private” version of OI, unrecognisable by many image recognition
neural networks. In order to do that, we are using generative methods such as StyleGAN and VQGAN. TI
is chosen randomly among the images furthest in embedding space from OI.

The algorithm consists of an iterative optimisation process, where num iterations represents the number
of iterations and G is the image generation method. In the latent space of G, we find a latent variable
z and generate an image G(z), which we refer to as GI. For each of the embedding methods in the set
chosen embeddings, in each iteration of the algorithm, we compute the embedding distance between GI
and TI, as well as the LPIPS distance [31] between images GI and OI. We use the computed distances to
calculate the Lgenerative

privacy
that we mention as ’loss’ in the algorithm.
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3 Evaluation Methods

3.1 Metrics for Privacy
In order to evaluate the privacy of generated images, it is important to determine how far the generated
image is from the original in the dataset. After applying an image recognition neural network, attackers may
choose to verify if the person on the image matches the top few possible results. That is why the method
would work better for privacy protection if: i) the modified image would not be recognised as its original
version; and ii) the original image would be far away from the modified one in the embedding space.

We ensure ii) not only by using existing evaluation methods such as Recall@k that help us to make sure
that the modified “private” image is far from the original in absolute values but also by introducing a novel
evaluation method that verifies the original and modified image being far in embedding space relative to the
dataset size.

To measure the distance from the original image to its modified private version, we use the following
privacy metrics: Recall@k and Percentage.

Recall@k for the set of query imagesL (which can either be original or modified images) and test images
M , is defined as

Recall(L,M, k) = 100

∑
q∈L

1Id(q)∈Id(N(q,k,M))

||L||
,

where function Id maps the set of people’s images to the set of (unique) identities of the individuals present
on these images, function N(q, k,M) returns a set of k images from M that have the closest embedding to
the one of the query image q.

We propose the use of a new metric, called the “Percentage”, in addition to the Recall metric, to evaluate
the effectiveness of our privacy methods. The reason for introducing this new metric is to ensure that the
modified image is not only far from the original image in absolute terms, as ensured by Recall@k, but also in
terms of the percentage of dataset size. This provides a common privacy metric that can be used to compare
the effectiveness of our methods across different dataset sizes.

Percentage is the proportion of images for each query image from the dataset L in between the query
image and the closest image with the same identity from the dataset M :

Percentage(L,M, k) = 100
∑
q∈L

Between(q,N(q, 1,M))

||L|| × ||M ||
,

where the function Between(q1, q2) returns the number of images in the dataset M that have a smaller
distance to the embedding of q1 than the distance in-between the embeddings of q1 and q2.

3.2 The problem of transfer
In practical scenarios, it is crucial that privacy methods are effective against various image recognition neural
networks. We optimise our privacy methods to be effective for specific embeddings, and transferring to a
different embedding method can be challenging as new methods are continually emerging. It is impossible to
guarantee that privacy methods will be effective against future attacks, as some methods have been broken
by newer recognition neural networks [21]. To evaluate the effectiveness of our proposed methods, we
conducted two sets of optimisation experiments.

The first experiment involves optimising StyleGAN and VQGAN image generation to be effective
against the FaceNet embedding method. We aim to make the FaceNet embedding of the generated image
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PrivacyGAN Pixel-based
StyleGAN StyleGAN VQGAN VQGAN Fawkes

0.003 500 0.005 128

Percentage 8.110 0.654 14.696 0.861 0.782
Recall@1:m.i. 1.754 22.085 0.047 19.242 20.521
Recall@1:o.i. 2.180 22.133 0.332 22.180 23.886
Recall@3: m.i. 6.114 61.564 0.758 54.597 56.398
Recall@3: o.i. 5.308 60.142 0.900 53.981 58.246
Recall@5: m.i. 8.815 77.678 1.374 70.711 74.502
Recall@5: o.i. 7.109 75.782 1.327 67.820 72.796
Recall@10: m.i. 13.365 86.256 2.986 79.668 83.412
Recall@10: o.i. 11.422 85.355 2.512 77.773 82.938
Recall@50: m.i. 32.417 94.408 11.280 92.227 92.986
Recall@50: o.i. 28.768 94.028 10 92.464 93.981
Recall@100: m.i. 43.697 96.303 19.336 95.166 95.592
Recall@100: o.i. 40.806 96.019 17.062 95.071 96.303

Table 1: Test on the LFW dataset. Evaluation for the same embedding that was used for training (no
transfer): PrivacyGAN (based on VQGAN or StyleGAN) is optimised with FaceNet, tested with FaceNet,
and compared to Fawkes in “high” mode (meaning: high privacy). We see that PrivacyGAN equipped with
standard versions of StyleGAN and VQGAN obtains better privacy results compared to Fawkes.

distant from that of the original image during the optimisation process. We compare our proposed methods
to Fawkes, which uses the same embedding method for optimisation, in Table 1. Additionally, we aim to
test the transferability of our methods to embedding methods introduced after FaceNet, which Fawkes does
not prove to be effective against [21].

The second experiment involves optimising StyleGAN and VQGAN image generation using MagFace
and MobileFaceNet embedding methods, which have been shown to increase the robustness of generated
images. We also compare them to the makeup transfer method AMT-GAN [12]

4 Datasets and embeddings

4.1 The Labelled Faces in the Wild
The dataset [13] contains multiple images for each person, with the number of images per person varying
between 1 and 530. To ensure fairness, we extract a sub-dataset from the original dataset, which includes 5
randomly chosen images per person. We exclude images of people who have less than 5 photos present in
the dataset. This sub-dataset is referred to as LFW in the following sections of this paper.

4.2 The Casual Conversations dataset
The Casual Conversations dataset [9] comprises 45186 videos, each of which features one person. We select
997 videos and extract 5 face crops of size 456 × 456 per person present in the dataset (in case the video
contains face crops of a required size).
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The process of selecting these face crops is as follows:

1. We select all the time frames from the video featuring a specific person.

2. We check if, among these time frames, there are at least 5 non-consecutive (±10) time frames that
satisfy the following conditions:

• they contain a face crop of a size at least 456× 456 with a margin of size 100;

• average brightness of a time frame is at least 70. This condition is required since, among the
videos in the CC dataset, there are many that were recorded in complete darkness, and it is not
realistic to have such face crops as profile pictures.

3. If there are more than 5 time frames selected, we randomly choose 5 of them and add them to the
dataset.

We make sure that we don’t select successive frames of the video since they could contain identical face
crops.

For the confounders set, we randomly choose different people’s face crops that also satisfy conditions 1
and 2 and do not feature a person who was already selected for our primary dataset before.

The key difference between our novel dataset and LFW is that faces in our proposed dataset have similar
backgrounds and are taken within a short timeframe, creating an additional challenge for privacy protection.
That lack of variety makes this particular dataset very interesting for our research. By testing our methods
on it, we are able to ensure that, even if there are many very similar photos of the same person in the dataset,
the proposed privacy tools can still be effective. It is particularly important in cases where people publish
their images from similar locations on different platforms over the internet. Later, we refer to this dataset as
CC.

The complete code for the face crop dataset extraction will be provided at the time of publication.

4.3 Our proposed methods for transfer to unknown embeddings: optimising on
multiple embeddings

The embedding methods that we are using in this paper are the following: FaceNet [23]; ArcFace [5];
SphereFace [18]; MagFace [19]; MobileFaceNet [2] with implementation from the FaceX-Zoo library [26];
and ResNet 152 [10] with implementation from the FaceX-Zoo library [26].

We evaluate the effectiveness of our proposed privacy methods in a black-box setting (i.e., robustness to
unknown image recognition methods not used in the privacy method). We optimise the generated image for
one or two embeddings from the list and then check the generated image against all the other embeddings.
Thus, we make sure that our privacy methods transfer well to unknown embeddings and can be used for the
privacy protection of real photos published online.

5 Experiments and Results
Here we define the settings and notations that we use in our experiments.

We set the hyperparameters of the generative privacy loss (Lgenerative

privacy
) for our experiments in the fol-

lowing way: the learning rate to 0.01 and the batch size to 32. The only parameters that we modify from
experiment to experiment are the coefficient K and the number of iterations.
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We have introduced the notations “o.i” and “m.i” to represent the original image and the modified image
generated by any privacy-preserving algorithm, respectively. For our recall evaluation, we select either the
original image (o.i. context) or the modified image (m.i. context) as the query image, where the dataset used
for recognition includes modified images and confounders for the former and includes the original images
and confounders for the latter.

In all metric calculations, we also use a set of confounders, which are not used as queries in our experi-
ments and are sourced from the same dataset as the original images. The number of confounders is always
less than or equal to 1

5 of the number of original images. To compare privacy protection methods, we use
the average value of the transfer recall (i.e., Recall@10) for all embeddings for which the algorithm was not
optimized. Incorporating confounders in our experiments brings us closer to real-world scenarios, where
datasets may contain unrelated images that can potentially affect the experiment results.

Moreover, in order to compare VQGAN, StyleGAN, and Fawkes to one another, we use different sets
of parameters chosen to match the transfer recall results. Thus, we are able to compare the generated image
quality and see which of the methods generates the best images in terms of image quality for a given privacy
performance (measured by recall).

Later in this section, we use the following notations: By standard version of StyleGAN we mean
PrivacyGAN equipped with StyleGAN optimized with a coefficient K = 0.03 for embedding distance in
the loss and 128 iterations; By standard version of VQGAN we mean PrivacyGAN equipped with VQGAN
optimized a coefficient K = 0.03 for embedding distance in the loss and 1000 iterations; By StyleGAN x y
/ VQGAN x y we mean PrivacyGAN equipped with StyleGAN/VQGAN optimized a coefficient K = x
for embedding distance in the loss and y iterations.

5.1 Experiment 1: Comparing Pixel-Based and Generative Methods Optimised for
One Embedding on the LFW Dataset

In Table 1, we compare standard versions of VQGAN and StyleGAN and their versions StyleGAN 0.003 500
and VQGAN 0.005 128 that we prepare specifically to match the privacy results of Fawkes. With this
parametrization, they have the same transfer recall score, which allows us to compare fairly the image quality
of our proposed generative methods and the state-of-the-art pixel-based method Fawkes. The transfer recall
values (average values of Recall@10 for other methods from the list) are 62.16% for StyleGAN, 89.28% for
StyleGAN 0.003 500, 65.49% for VQGAN, 90.07% for VQGAN 0.005 128, 90.90% for Fawkes. In order
to make sure that image privacy is robust against various facial recognition systems, we study a transfer to
different embedding methods (ArcFace, MagFace, SphereFace, MobileFaceNet, ResNet 152). Some results
are in Table 2 (SphereFace) and in Table 3 (MagFace).

More results can be found in the supplementary material.
Examples of original images from the LFW dataset and their modifications obtained by our methods and

by Fawkes are presented in Fig. 2. More examples are in the supplementary material.
Overall, from Tables 1, 2 and 3, we note that with a standard set of parameters, VQGAN and StyleGAN

are much better for privacy than Fawkes. In order to match Fawkes privacy results, we need to change the
VQGAN and StyleGAN parameters tenfold. While these parameter changes decrease privacy significantly,
generative methods still have a disruptive effect on image quality.

It is worth noting that optimising generative methods using a single embedding method is insufficient for
adequate facial image privacy protection. In the case of transferring images to MagFace (Table 3), the correct
identity for the modified image is often among the top 5 possibilities. Thus, in the next subsection, we use
two different embedding methods in the optimisation process to generate private image versions. Further-
more, we have observed that combining Fawkes poisoning with our proposed methods can be advantageous
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PrivacyGAN Pixel-based
StyleGAN StyleGAN VQGAN VQGAN Fawkes

0.003 500 0.005 128

Percentage 5.181 1.388 5.104 1.271 1.213
Recall@1: m.i. 9.526 21.896 8.768 21.043 21.611
Recall@1: o.i. 9.431 22.891 8.578 23.223 23.791
Recall@3: m.i. 21.422 53.744 20.142 54.929 55.877
Recall@3: o.i. 19.621 53.744 17.678 54.360 56.588
Recall@5: m.i. 27.915 67.109 26.066 68.294 69.668
Recall@5: o.i. 24.834 66.682 23.128 66.777 69.100
Recall@10: m.i. 35.261 74.739 33.175 76.161 77.014
Recall@10: o.i. 32.322 75.308 30.521 74.455 77.393
Recall@50: m.i. 55.592 86.493 53.602 87.867 87.536
Recall@50: o.i. 53.507 87.773 51.422 86.967 88.673
Recall@100: m.i. 65.308 91.232 63.697 91.469 91.754
Recall@100: o.i. 63.744 91.896 61.327 91.611 91.943

Table 2: Evaluation in the case of transfer to another embedding on the LFW dataset: PrivacyGAN (with
VQGAN or StyleGAN) are optimised with FaceNet and tested with SphereFace. Generative methods do
obtain better privacy results than Fawkes, except for the versions specifically created (weakened) to have
privacy results similar to Fawkes (these versions are created for comparing image quality in Table 7 in a
context with equal privacy performance).

for facial image privacy protection. We expand on that in supplementary material.

5.2 Experiment 2: Comparing StyleGAN and VQGAN Optimised with 2 Embed-
ding Methods on the LFW Dataset

We now compare standard versions of VQGAN and StyleGAN together with other specific versions:

1. StyleGAN 0.02 500 and VQGAN 0.04 128;

2. StyleGAN 0.02 1000 and VQGAN 0.03 512.

These versions are proposed so that they have similar transfer recall scores in each pair. Specifically, average
transfer recall scores for different methods are: 20.12% for StyleGAN, 32.33% for StyleGAN 0.02 500,
36.23% for StyleGAN 0.02 1000, 42.41% for VQGAN, 36.99% for VQGAN 0.03 512 and 33.07% for
VQGAN 0.04 128. We create these specific versions of VQGAN and StyleGAN so that we can fairly
compare the quality of the generated private images produced by the generative methods. We want to know
which method produces the best image quality for a given threshold of our privacy metric. An example of
an evaluation result without transfer is presented in Table 4 and for MobileFaceNet in the supplementary
material.

We also study the transfer to different embedding methods. One of the results of this study (for the
embedding method SphereFace) is presented in Table 5. Transfer results for other embedding methods can
be found in the supplementary material.
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PrivacyGAN Pixel-based
StyleGAN StyleGAN VQGAN VQGAN Fawkes

0.003 500 0.005 128

Percentage 0.767 0.361 0.627 0.422 0.408
Recall@1: m.i. 20.758 24.028 24.028 24.265 24.882
Recall@1: o.i. 21.611 25.972 22.701 25.545 25.403
Recall@3: m.i. 60.237 71.848 66.493 73.744 75.403
Recall@3: o.i. 60.142 73.602 65.261 73.507 73.507
Recall@5: m.i. 78.294 96.967 86.209 98.389 98.768
Recall@5: o.i. 76.777 97.156 83.744 98.436 98.863
Recall@10: m.i. 85.687 97.962 91.043 98.863 99.194
Recall@10: o.i. 84.313 98.152 89.431 98.910 99.005
Recall@50: m.i. 93.223 99.005 95.545 99.005 99.194
Recall@50: o.i. 92.512 98.957 95.450 99.052 99.194
Recall@100: m.i. 95.308 99.052 97.062 99.100 99.194
Recall@100: o.i. 94.976 99.052 96.825 99.147 99.194

Table 3: Evaluation on the LFW dataset in the case of transfer to another embedding: PrivacyGAN (with
VQGAN or StyleGAN) is optimised with FaceNet and tested with MagFace. Generative methods do obtain
better privacy results than Fawkes, except for the versions specifically created (weakened) to have privacy
results similar to Fawkes (these versions are created for comparing image quality in Table 7 in a context with
equal privacy performance). However, both Fawkes and generative methods optimised with one embedding
do not transfer well to the novel embedding methods such as MagFace, while they transfer better to some
other embedding methods such as SphereFace, as in Table 2.
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 15.049 7.909 7.264 4.910 7.472 8.307
Recall@1: m.i. 0.095 0.806 0.900 0.521 0.284 0.095
Recall@1: o.i. 3.555 8.768 10.521 11.185 6.588 6.919
Recall@3: m.i. 3.270 10.711 11.327 15.071 9.147 8.057
Recall@3: o.i. 6.493 17.583 20.332 23.981 14.360 14.218
Recall@5: m.i. 5.118 16.919 19.479 26.682 17.583 14.834
Recall@5: o.i. 8.863 21.943 25.071 30.664 19.147 17.867

Recall@10: m.i. 9.242 25.261 28.057 37.488 24.787 22.180
Recall@10: o.i. 12.275 28.626 32.133 40 25.972 24.929
Recall@50: m.i. 23.649 44.550 46.919 57.678 44.692 42.085
Recall@50: o.i. 26.114 48.436 50.521 60.806 46.967 44.028

Recall@100: m.i. 31.706 53.555 57.204 66.730 54.597 51.991
Recall@100: o.i. 33.649 57.393 60.332 69.052 55.450 54.028

Table 4: Evaluation of various PrivacyGAN variants on the LFW dataset, case without transfer: Privacy-
GAN (equipped with VQGAN and StyleGAN, including variants) are optimised with MagFace and Mobile-
FaceNet and tested with MagFace. Lower recall means better privacy. Compared to Fawkes, results in Table
3: generative methods do get better privacy results. However, we did use MagFace in the algorithm, whereas
Fawkes does not, hence the need for further validation (i.e., testing in the case of transfer to embeddings not
used in the privacy algorithm), which is done, for example, in Table 5.

StyleGAN StyleGAN StyleGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512

Percentage 12.273 8.157 7.715 6.211 7.387
Recall@1: m.i. 2.749 5.118 5.735 6.682 4.787
Recall@1: o.i. 5.261 7.536 9.431 10.047 7.204
Recall@3: m.i. 6.256 11.801 12.701 14.408 12.512
Recall@3: o.i. 9.573 14.218 18.199 17.630 14.408
Recall@5: m.i. 8.578 15.924 17.109 19.289 17.536
Recall@5: o.i. 11.848 17.725 22.227 22.464 19.005
Recall@10: m.i. 13.033 20.711 22.891 26.398 24.360
Recall@10: o.i. 15.877 24.218 27.441 29.858 26.303
Recall@50: m.i. 26.209 39.858 41.943 47.441 42.749
Recall@50: o.i. 30.379 43.554 45.403 51.659 46.161
Recall@100: m.i. 35.024 49.336 50.995 57.820 52.749
Recall@100: o.i. 39.716 52.654 55.024 61.754 56.256

Table 5: Evaluation of various PrivacyGAN variants in the case of transfer to another embedding on the LFW
dataset: PrivacyGAN equipped with VQGAN or StyleGAN is optimised with MagFace and MobileFaceNet
and tested with SphereFace. In this case, generative methods optimised with two embeddings obtain better
results than generative methods optimised with only one embedding method in Table 2.
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From the table 5 compared to 2 we can see that, in general, generative methods optimised with two
embeddings transfer better to other embedding methods than generative methods optimised with only one
embedding. For instance, for the unused in an optimisation process embedding SphereFace, the percentage
score for StyleGAN with standard parameters optimised with 2 different embedding methods is more than
15 while it was just around 5 for one embedding method. Examples of images produced by the methods of
experiment 2 are presented in Fig. 3. More of the examples can be found in the supplementary material.

PrivacyGAN Pixel-based PrivacyGAN Adversarial
VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 9.424 13.399 16.379 7.519 17.024 14.067
Recall@1: m.i. 17.854 9.529 5.998 23.952 5.416 9.328
Recall@1: o.i. 18.034 11.214 6.800 24.092 6.841 8.445
Recall@3: m.i. 40.702 21.364 13.561 52.979 12.197 19.980
Recall@3: o.i. 41.765 23.149 14.483 53.420 14.443 17.593
Recall@5: m.i. 48.245 26.439 17.051 61.244 15.727 24.293
Recall@5: o.i. 49.629 27.924 17.994 61.224 18.134 21.344

Recall@10: m.i. 53.220 31.515 21.143 65.055 20.100 29.228
Recall@10: o.i. 54.945 33.621 22.768 65.135 23.531 25.436
Recall@50: m.i. 64.253 44.835 34.343 72.979 32.618 42.086
Recall@50: o.i. 65.537 47.442 36.068 72.738 36.911 36.409

Recall@100: m.i. 68.726 51.675 41.484 76.108 39.478 49.509
Recall@100: o.i. 70.030 54.363 44.152 75.928 45.176 42.467

Table 6: Evaluation in the case of a transfer to another embedding on the CC dataset: VQGAN and Style-
GAN are optimised with MagFace and MobileFaceNet and tested with SphereFace. PrivacyGAN basically
outperforms Fawkes while the comparison with AMT-GAN (which could be used on top of our method)
depends on criteria and parameters.

5.3 Experiment 3: Comparing StyleGAN, VQGAN, and Fawkes on the CC dataset

Here we choose the specific versions of VQGAN, StyleGAN, and Fawkes that have similar transfer recall
scores in each group for the dataset CC:

1. VQGAN 0.003 128 and Fawkes;

2. StyleGAN 0.02 1000 and VQGAN 0.04 4096.

In addition, we have compared our results to those obtained with AMT-GAN. However, it is important to
note that a direct comparison between our proposed methods and AMT-GAN is not possible, as AMT-GAN
is unable to transfer makeup to faces that were not detected. Therefore, in cases where faces were not de-
tected, we had to replace them with the original images, which may affect the comparability of the results.
Transfer recalls for the proposed methods are the following: AMT-GAN: 49.57%, Fawkes: 79.21%, Style-
GAN 0.02 1000: 24.71%, VQGAN 0.003 128: 74.76%, VQGAN 0.04 4096: 26.09%, VQGAN: 40.45%.
We compare how well proposed generative and pixel-based approaches protect privacy against different em-
bedding methods. One of the results of this study (for the embedding method SphereFace) is presented in
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Table 6. Transfer results for other embedding methods can be found in the supplementary material. Exam-
ples of images produced by the methods of experiment 3 are presented in Fig. 4. More examples can be
found in the supplementary material.

Using table 6, we can conclude that, despite using the CC dataset instead of LFW, generative methods
prove to be effective for privacy preservation and tend to outperform both the pixel-based method Fawkes
and the generative makeup transfer method AMT-GAN.

5.4 Human preferences for similar transfer recall
In Figs 4 and 3, we can see that, in some cases, modifying the number of iterations in optimisation and the
coefficient K affects the quality of an image and its privacy protection. Therefore, to evaluate the modified
image quality for different privacy methods with similar transfer recall, we conducted a human preference
study. Three human raters were presented with 40 pairs of images generated by the methods discussed in
section 5.3. Given two images generated by two different methods, the human rater could choose “I prefer
the left one as an avatar,” “I prefer the right one as an avatar,” or “No preference.” To provide context, the
human raters involved in the experiment were not paid and were not authors of the current paper. They
were selected using the snowball principle, and their task was to assess the quality and similarity of the
modified image to its original version. Without this assessment, we could end up with a black square instead
of a privacy-protected image. The human raters did not have a degree in computer science and were not
informed that the experiment related to privacy. However, the instructions provided to them, which included
presenting the original image at the centre and emphasising that all images were reasonably close to it, as
well as providing examples of potential use cases such as social networks, news articles, and dating websites,
made it clear that assessing image similarity was an integral part of the task. The human-assessment results
are presented in Table 7.

Human preference:
Transfer recall Avatar Avatar success rate

method 1 method 2 of 1 vs 2
High privacy (low recall), LFW dataset

32.6% (StyleGAN 0.02 500, (VQGAN 128 0.04, 43.75±5%
MagFace + MobileFaceNet) MagFace + MobileFaceNet)

36.7% (StyleGAN 0.02 1000, (VQGAN 0.03 512, 35.37% ± 5%
MagFace + MobileFaceNet) MagFace + MobileFaceNet)

Low privacy (high recall), LFW dataset
90% (StyleGAN 0.003 500 Fawkes 87.2% ± 2%

FaceNet)
High privacy, (low recall), CC dataset

26.09% - 24.71% (VQGAN 0.04 4096, (StyleGAN 0.02 1000, 55.2 % ± 3.59%
MagFace + MobileFaceNet) MagFace + MobileFaceNet)

Low privacy, (high recall), CC dataset
74.76% - 79.21% (VQGAN 0.003 128) Fawkes 51.5 % ± 3.06%

MagFace + MobileFaceNet)

Table 7: We modify the strength of different privacy-protection-algorithm perturbations until we get to
similar target recall levels. We compare the quality of images, for each recall level. Text in bold font refers
to human preference, for each recall level (see rightmost column).

We compared 5 different pairs of privacy-preserving methods with similar target recall values. In the low
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privacy (high transfer recall) setting for both LFW and CC datasets, we were able to compare, in terms of
quality, the Fawkes method with generative methods specifically modified to match Fawkes transfer recall
values. When we choose FaceNet as an embedding for generative methods (StyleGAN) optimisation, the
quality of the images generated by StyleGAN appears to be worse than that of Fawkes. However, when
we use MagFace and MobileFaceNet as embeddings for generative methods optimisation, we obtain similar
image quality results for VQGAN and Fawkes (51.5%± 3.06%), while VQGAN has a better transfer recall
(74.76% compared to 79.21%). In the high privacy (low transfer recall) setting for both the LFW and
CC datasets, we were able to compare different modifications of the generative methods (VQGAN and
StyleGAN) with similar transfer recall. In every case, it appears that human raters preferred VQGAN-
generated images over StyleGAN-generated images.

5.5 Human Identification of Same-Person Images
In this section, our objective is to evaluate the effectiveness of various privacy preservation methods for their
applicability on social media platforms and to determine the extent to which people can identify the person
after privacy-preservation modifications by different methods, namely: VQGAN 0.005 128, AMT-GAN,
and Fawkes, and the anonymization method Deep Privacy 2 [15].

The experiment is structured as follows: we begin with the original image, referred to as the “original”
in the filename. We then examine privacy-preserved versions of different images of the same individual,
followed by random images of different people. The central question for each image in a given set is, “Is
this the same person as in the original?”.

To execute this experiment, we established a setup illustrated in Figure 5. This schema visually represents
the process, illustrating the different image types involved in the human identification experiment.

We recruited 5 human evaluators, aged from 15 to 43 years, to assess pairs of images, comprising the
original image and constructed using privacy-preserving methods for the same individual, as outlined in the
schema in Figure 5. The results of the human study are presented in Table 8.

Model Accuracy 99% confidence interval
for humans

PrivacyGAN using VQGAN 0.005 128 0.796 ± 0.04
AMT-GAN 0.829 ± 0.038
Fawkes 0.842 ± 0.037
Deep Privacy 2 0.187 ± 0.039

Table 8: Human face identification for various privacy preservation models. The table demonstrates that,
while our method VQGAN 0.005 128, together with AMT-GAN and Fawkes, generate recognisable images,
the anonymization method Deep Privacy 2 often produces images that cannot be recognised as the same
person. The purpose and limitations of this experiment are further discussed in the text.

From the findings presented in Table 8, we deduce that VQGAN 0.005 128, AMT-GAN, and Fawkes
generate images that are similarly identifiable by human evaluators, with approximately 80% of images
generated by these methods being successfully recognised as the same as the original. Conversely, the
anonymization method Deep Privacy 2 frequently produces images that cannot be identified as those of the
same individual. This further substantiates that while anonymization methods such as Deep Privacy 2 pre-
serve certain attributes of images, they may fail to preserve their utility. In contrast, our method, along with
other utility-focused methods, while not providing absolute protection against facial recognition, effectively
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safeguards human facial images against prevalent face recognition techniques and maintains image utility
for social media use.

This experiment was designed specifically to showcase that the recognisability of our method, along with
AMT-GAN and Fawkes, is higher than that of anonymisation methods such as Deep Privacy 2. This explains
our focus on testing just one version of PrivacyGAN. In future experiments, we intend to incorporate multiple
versions of PrivacyGAN, and to involve a larger pool of human raters. This approach aims to determine
which versions of PrivacyGAN perform best in terms of privacy/recall balance.

6 Limitations and Future Work
While generative methods are effective in safeguarding image privacy against various embedding methods,
they cannot be compared to anonymization techniques. As [21] argues, it is always possible for new recog-
nition attacks to be effective against provided data poisoning methods. However, our approach is different
from anonymization, as we do not aim to provide a privacy guarantee against future attacks. Instead, our
objective is to protect users against stalkers and unauthorized identification using current state-of-the-art
recognition methods, while still enabling them to share their photos online, and be recognised by their fam-
ily and friends. In the future, we would also like to use face enhancement as a tool for or against privacy
methods, and check how much PrivacyGAN can be combined with AMT-GAN.

7 Conclusions
Our contributions are

1. A new approach to privacy based on inspirational generation, namely PrivacyGAN, using generative
models for generating faces close to a given target. This method is orthogonal to the principles of
AMT-GAN, so that our method could be used as a first step before AMT-GAN.

2. A comparison between these methods and traditional pixel-based methods, including transfer to un-
known embeddings (a.k.a. robustness to unknown embeddings used for identifying people) and human
raters for validating image quality.

3. A new privacy evaluation method based on the percentage of dataset images that are closer in an
embedding space to a modified “private” image than to an original image.

4. A new dataset extracted from CC (more details are provided in the supplementary material). At the
end, we recommend generative methods (Alg. 1), with several embeddings so that robustness and
transfer to new methods are properly tested.

According to the human ratings study, Fawkes might be better than StyleGAN for generating high-quality
images in the category “low privacy” (recall rate of 90%) on LFW. However, VQGAN and Fawkes have
similar results in a low-privacy (74.76-79.21% as a transfer recall) setting, while VQGAN provides better
privacy protection. Among the proposed generative methods, VQGAN is better than StyleGAN overall in
terms of quality for a given privacy threshold (see Table 7). By the human identification study (section 5.5)
we further show that, in contrast to anonymization methods, our method, along with other utility-focused
methods, effectively safeguards facial image privacy against prevalent face recognition techniques while
maintaining image utility for social media use.
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In comparison to AMT-GAN, our method demonstrates superior privacy outcomes depending on the
parameter settings, although it doesn’t necessarily enhance human recognizability. While AMT-GAN excels
in scenarios where recognizability is high and privacy is low, PrivacyGAN offers a broader spectrum of ap-
plications, particularly in cases where definitive facial detection is challenging, or where makeup contradicts
the user’s personal beliefs.
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Figure 2: Experiment 1: Examples of original images from the LFW dataset and their counterparts modi-
fied by different privacy methods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimization), and Fawkes. Here we can see that, while generative
methods in general add more modification to an image than Fawkes, generative methods produce realistic
images and do not add pixel noise. Study based on human ratings in Table 7.
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Figure 3: Experiment 2: Examples of images from the LFW dataset modified by different privacy methods:
StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN, VQGAN 0.03 512, VQGAN 0.04 128
with embedding methods MagFace and MobileFaceNet. Original and modified Fawkes image versions can
be seen in Fig. 2. These images have different privacy levels and different qualities: the human rating
experiment performs comparisons between images produced by methods with similar recall, i.e., similar
privacy results.

19



Figure 4: Experiment 3: Examples of images of volunteers modified by various privacy methods, including
AMT-GAN, Fawkes and StyleGAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 optimised with
embedding methods MagFace and MobileFaceNet. The different methods and parametrizations lead to
different image quality/privacy results; the human rating experiments will compare the quality for methods
with similar recall.

Figure 5: Schema of the human identification experiment setup. The experiment involves comparing the
original image with privacy-preserved versions of images of the same person and random images of different
people to determine whether privacy-preservation methods could preserve the utility of the images modified
by them: we expect human raters to recognize the original face for privacy-preserving methods, and not for
anonymization methods.
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A Appendix
Facial image privacy protection is a multi-objective problem combining image quality preservation and
privacy robustness against various image recognition systems:

• In Section A.1, we provide the description of generative makeup transfer method AMT-GAN

• In Sections A.2-A.4, we present quantitative results (table of recall/percentage, showing privacy per-
formance).

• Then, in Sections A.5.1-A.5.3, we present images, showing the image quality.

A human evaluation study that combines both privacy and image quality aspects is available in the main
paper (Table 7, Table 8).

A.1 Privacy algorithms: generative makeup transfer method AMT-GAN
In this paper, we compare the results of our method PrivacyGAN based on generative techniques such as
StyleGAN [16] and VQGAN[6] to a method for generative makeup transfer known as AMT-GAN [12].
The objective of AMT-GAN is to produce adversarial images that incorporate the makeup style of reference
images. Although AMT-GAN introduces more alterations to the original image, it confines these modifica-
tions to the makeup application areas, thus resulting in visually natural images, as demonstrated by the FID
results. The authors of the method employ LPIPS [31] loss to retain image similarity to the original, which
we also utilise in our paper.

In the main body of the paper, we mention that while photographs of individuals wearing makeup may
look appropriate and natural to some people, there are certain drawbacks to this approach. Firstly, publishing
photos with makeup may be deemed unsuitable for certain groups of individuals. Secondly, if the face in
the photograph is not clearly discernible, AMT-GAN may not recognise it and may not generate a private
version of the image, unlike Fawkes [24] and our method.

A.2 Experiment 1: additional and extended tables of results
In this subsection, we present transfer results for Experiment 1. All the tables here are similar to the Table 2
except for the different choice of transfer embeddings used in recognition.

To be precise, we evaluate the transfer results of PrivacyGAN equipped with generative methods VQ-
GAN and StyleGAN optimised with FaceNet[23] embedding and compare them to the transfer results of
Fawkes. The criterion is the transfer to other embeddings than FaceNet, namely ArcFace[5], Mobile-
FaceNet[2], and Resnet 152[10].

We also present the results of Fawkes combination with generative methods. We note that combining
Fawkes poisoning with our methods can be beneficial for facial image privacy protection.

Table 9 presents results of the transfer to ArcFace embedding; Table 10 presents results of the transfer to
MobileFaceNet embedding; and Table 11 presents the results of transfer to Resnet 152 embedding method.

From the results of this experiment, we conclude that generative methods optimised with one single
embedding do not provide strong privacy protection, but their results are still better than the results of
Fawkes.
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A.3 Experiment 2 (comparing PrivacyGAN equipped with StyleGAN and Priva-
cyGAN equipped with VQGAN optimised with 2 embedding methods on the
LFW dataset): additional tables of results

In the main part of the article, we presented the results of Experiment 2 without transfer for embedding
method MagFace in Table 4 and with transfer for embedding method SphereFace[18] in Table 5. Here
we present another example without transfer for embedding method MobileFaceNet in Table 15 and with
transfer for embedding methods FaceNet, ArcFace, and ResNet 152 in Tables 12, 13 and 14.

From the results of the experiment 2, we conclude that generative methods optimised with two different
embeddings provide stronger privacy protection than those optimised with a single embedding method (as
in experiment 1).

A.4 Experiment 3 (comparing PrivacyGAN, AMT-GAN, and Fawkes on CC dataset):
additional tables of results

In this section, we present the results of experiment 3. All the tables here are similar to Table 6 of the main
paper, except for the differences in choice of transfer embeddings.

We present results for generative methods with a criterion based on transfer from MobileFaceNet and
MagFace (used in our privacy algorithm) to embeddings FaceNet, ArcFace and ResNet 152 (used in the
recognition) in Tables 16, 18 and 20 as well as results without transfer for embeddings MagFace and Mo-
bileFaceNet in Tables 17 and 19.

Overall, results for the CC dataset are similar to those for LFW , and generative methods remain prefer-
able for privacy protection.

A.5 Image examples for original and modified images using both pixel-based and
generative methods

The examples in this section show that generative methods modify image features more than the pixel-
based methods. Nonetheless, they have less artificial pixel noise, which is common for images protected by
Fawkes. Pixel noise can be more detrimental in terms of visual quality.

A.5.1 Modified image examples: experiment 1

In this section, we present original images and their private versions that were obtained in the course of
experiment 1 (similarly to Fig. 2). In addition, we also provide image examples for combinations of Fawkes
and generative methods, namely Fawkes + StyleGAN (F+S), Fawkes + VQGAN (F+V), StyleGAN + Fawkes
(S+F) and VQGAN + Fawkes (V+F). We see that adding Fawkes on top of generative methods improves
image privacy, as in methods StyleGAN + Fawkes (S+F) and VQGAN + Fawkes (V+F). Tthe mentioned
image examples can be found in Figs 6, 7, 8 and 9.

A.5.2 Modified image examples: experiment 2

In this section, we present the original images and their private versions that were obtained during experiment
2, in addition to the images that were presented in the main paper in Fig 3. These images can be found in
Figs 10, 11, 12 and 13.
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PrivacyGAN Pixel-based Combinations
StyleGAN StyleGAN VQGAN VQGAN Fawkes F + S F + V S + F V + F

0.003 500 0.005 128

Percentage 5.052 0.917 4.931 0.984 0.936 7.612 7.855 12.456 10.397
Recall@1: m.i. 7.962 23.981 8.531 22.464 23.602 5.782 5.118 2.464 3.791
Recall@1: o.i. 8.246 24.976 10.095 24.692 24.313 6.445 7.062 2.749 4.408
Recall@3: m.i. 18.152 56.019 18.720 57.062 59.953 12.749 11.848 7.346 10.095
Recall@3: o.i. 17.536 56.730 19.858 58.578 59.431 11.991 13.175 6.019 8.768
Recall@5: m.i. 24.076 69.905 24.265 72.986 76.209 16.919 16.114 10 13.081
Recall@5: o.i. 22.038 70.379 24.929 72.559 75.877 15.782 16.445 8.199 11.611
Recall@10: m.i. 32.227 79.052 33.365 79.953 83.175 23.649 23.791 13.886 19.194
Recall@10: o.i. 30.190 78.389 33.318 79.905 83.033 21.754 22.607 12.038 16.635
Recall@50: m.i. 53.791 90.379 55.829 90.995 92.464 42.559 43.223 28.436 34.882
Recall@50: o.i. 52.701 91.185 55.924 91.469 92.227 41.706 42.607 26.398 31.848
Recall@100: m.i. 63.934 93.602 64.882 93.697 94.929 51.991 52.938 37.488 44.313
Recall@100: o.i. 63.318 94.076 65.877 94.123 94.692 51.754 53.602 35.782 42.607

Table 9: Evaluation on LFW dataset in the case of transfer to another embedding: VQGAN and StyleGAN
are optimised with FaceNet, and all tests are performed with ArcFace. Lower recall and a higher percentage
mean better privacy. As shown in Table 14 methods that are optimised for two embeddings have a better
transfer recall. We see that adding Fawkes on top of generative methods improves image privacy, as in the
methods StyleGAN + Fawkes (S+F) and VQGAN + Fawkes (V+F).

A.5.3 Modified image examples: experiment 3

Here, we present more image examples obtained by the procedure described in experiment 3. They are
obtained the same way as images in Fig. 4. These examples are presented in Figs 14, 15 and 16.

We would also like to note that all necessary approvals were obtained for the use of images in the present
paper.
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Figure 6: Experiment 1: Examples of original images from the LFW dataset and their counterparts modi-
fied by different privacy methods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combinations of Fawkes with generative
methods. Here we can see that while generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel noise.
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Figure 7: Experiment 1: Examples of original images from the LFW dataset and their counterparts modi-
fied by different privacy methods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combinations of Fawkes with generative
methods. Here we can see that while generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel noise.
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Figure 8: Experiment 1: Examples of original images from the LFW dataset and their counterparts modi-
fied by different privacy methods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combinations of Fawkes with generative
methods. Here we can see that while generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel noise.
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Figure 9: Experiment 1: Examples of original images from the LFW dataset and their counterparts modi-
fied by different privacy methods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combinations of Fawkes with generative
methods. Here we can see that while generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel noise.
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Figure 10: Experiment 2: Examples of images from the LFW dataset: the original image and the image
modified by different privacy methods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN,
VQGAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and MobileFaceNet. Here, we
can see that in some cases, increasing the number of iterations in optimisation and modifying the coefficient
K of the embedding method can affect the quality of an image while improving its privacy protection.
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Figure 11: Experiment 2: Examples of images from the LFW dataset: the original image and the image
modified by different privacy methods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN,
VQGAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and MobileFaceNet. Here, we
can see that in some cases, increasing the number of iterations in optimisation and modifying the coefficient
K of the embedding method can affect the quality of an image while improving its privacy protection.
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Figure 12: Experiment 2: Examples of images from the LFW dataset: the original image and the image
modified by different privacy methods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN,
VQGAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and MobileFaceNet. Here, we
can see that in some cases, increasing the number of iterations in optimisation and modifying the coefficient
K of the embedding method can affect the quality of an image while improving its privacy protection.
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Figure 13: Experiment 2: Examples of images from the LFW dataset: the original image and the image
modified by different privacy methods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN,
VQGAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and MobileFaceNet. Here, we
can see that in some cases, increasing the number of iterations in optimisation and modifying the coefficient
K of the embedding method can affect the quality of an image while improving its privacy protection.
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Figure 14: Experiment 3: Examples of images of volunteers modified by various privacy methods, includ-
ing AMT-GAN, Fawkes, StyleGAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 with embedding
methods MagFace and MobileFaceNet. Here, we can see that in some cases, increasing the number of iter-
ations in optimisation and modifying the coefficient K of the embedding method can affect the quality of
an image while improving its privacy protection. We can also see that some images are modified more than
others after applying privacy-protection methods.
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Figure 15: Experiment 3: Examples of images of volunteers modified by various privacy methods, includ-
ing AMT-GAN, Fawkes, StyleGAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 with embedding
methods MagFace and MobileFaceNet. Here, we can see that in some cases, increasing the number of iter-
ations in optimisation and modifying the coefficient K of the embedding method can affect the quality of
an image while improving its privacy protection. We can also see that some images are modified more than
others after applying privacy-protection methods.
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Figure 16: Experiment 3: Examples of images of volunteers modified by various privacy methods, includ-
ing AMT-GAN, Fawkes, StyleGAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 with embedding
methods MagFace and MobileFaceNet. Here, we can see that in some cases, increasing the number of iter-
ations in optimisation and modifying the coefficient K of the embedding method can affect the quality of
an image while improving its privacy protection. We can also see that some images are modified more than
others after applying privacy-protection methods.
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PrivacyGAN Pixel-based Combinations
StyleGAN StyleGAN VQGAN VQGAN Fawkes F + S F + V S + F V + F

0.003 500 0.005 128

Percentage 1.226 0.446 0.947 0.454 0.454 1.875 4.359 8.645 5.586
Recall@1: m.i. 19.479 26.872 21.991 26.588 25.592 17.773 1.185 7.062 10.332
Recall@1: o.i. 19.100 26.303 21.943 26.493 26.351 19.147 12.938 5.071 8.910
Recall@3: m.i. 55.166 72.275 58.815 73.981 72.986 43.033 18.436 16.825 23.555
Recall@3: o.i. 51.090 74.692 56.682 72.701 73.697 41.517 26.161 11.232 19.005
Recall@5: m.i. 70.616 94.360 74.265 96.209 94.408 55.261 30.853 22.275 30.444
Recall@5: o.i. 64.882 93.934 71.896 95.498 93.934 51.896 31.801 14.929 24.550
Recall@10: m.i. 77.678 96.303 82.227 97.536 96.351 65.118 42.227 29.052 38.341
Recall@10: o.i. 75.024 96.066 80.379 97.156 96.019 61.848 41.185 21.801 33.033
Recall@50: m.i. 88.626 98.436 91.517 98.626 97.962 79.763 62.370 48.483 58.104
Recall@50: o.i. 87.867 98.389 90.284 98.389 97.725 79.242 61.943 41.280 53.460
Recall@100: m.i. 91.659 98.815 94.313 98.815 98.436 84.929 71.090 55.735 66.446
Recall@100: o.i. 91.754 98.673 93.223 98.768 98.152 84.408 69.716 51.043 62.844

Table 10: Evaluation on LFW dataset in the case of transfer to another embedding: VQGAN and StyleGAN
are optimised with FaceNet, and recognition (for all methods) is tested with MobileFaceNet. Lower recall
and a higher percentage mean better privacy. Generative methods do obtain better results than Fawkes. We
can also see that adding Fawkes on top of generative methods improves image privacy, as in the methods
StyleGAN + Fawkes (S+F) and VQGAN + Fawkes (V+F).

PrivacyGAN Pixel-based Combinations
StyleGAN StyleGAN VQGAN VQGAN Fawkes F + S F + V S + F V + F

0.003 500 0.005 128

Percentage 0.670 0.342 0.564 0.395 0.408 1.273 2.573 6.823 3.309
Recall@1: m.i. 20.900 25.071 23.270 26.019 25.403 17.488 8.436 7.536 11.896
Recall@1: o.i. 20.616 26.398 22.607 25.972 27.488 22.938 17.204 8.957 15.071
Recall@3: m.i. 59.526 73.128 65.592 75.545 76.351 49.573 30.000 18.957 34.597
Recall@3: o.i. 58.199 73.886 63.886 72.559 75.498 49.431 38.009 17.251 31.706
Recall@5: m.i. 78.673 97.773 87.583 98.626 98.578 66.303 45.498 27.299 45.924
Recall@5: o.i. 73.791 97.441 83.081 98.531 98.389 62.512 48.720 21.706 40.758
Recall@10: m.i. 85.972 98.483 91.801 98.863 99.005 74.976 58.483 35.545 56.493
Recall@10: o.i. 82.891 98.389 89.668 98.863 98.815 72.370 59.479 30.332 51.754
Recall@50: m.i. 94.028 99.005 97.014 99.052 99.194 87.915 78.152 55.735 74.123
Recall@50: o.i. 93.128 99.147 95.924 99.194 99.147 87.583 77.393 51.469 72.464
Recall@100: m.i. 95.877 99.100 97.867 99.100 99.194 91.659 83.744 63.934 80.095
Recall@100: o.i. 95.308 99.194 97.299 99.194 99.147 91.422 82.938 60.900 78.531

Table 11: Evaluation on LFW dataset in the case of transfer to another embedding: VQGAN and StyleGAN
are optimised with FaceNet and tested with ResNet 152. Lower recall and a higher percentage mean better
privacy. The generative methods with two embeddings (see Table 13) do obtain better results, showing that
using multiple embeddings increases robustness and transfer. We can also see that adding Fawkes on top of
generative methods improves image privacy, as in the methods StyleGAN + Fawkes (S+F) and VQGAN +
Fawkes (V+F).
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 7.849 4.494 4.107 2.626 3.470 3.807
Recall@1: m.i. 2.844 6.066 6.730 8.152 6.919 6.019
Recall@1: o.i. 4.597 8.294 10.047 11.706 9.479 9.431
Recall@3: m.i. 9.242 15.640 18.009 22.701 19.242 17.536
Recall@3: o.i. 9.668 17.156 19.479 25.545 20.995 19.431
Recall@5: m.i. 13.175 22.322 25.166 32.275 27.062 24.787
Recall@5: o.i. 13.081 22.701 25.118 32.749 27.109 25.592
Recall@10: m.i. 18.578 31.564 35.118 43.175 37.725 34.408
Recall@10: o.i. 17.725 30.758 34.360 43.412 36.019 33.460
Recall@50: m.i. 37.441 54.028 57.062 67.725 60.142 57.441
Recall@50: o.i. 35.213 52.464 55.118 66.019 58.910 55.592
Recall@100: m.i. 48.531 64.882 68.436 77.109 71.137 68.104
Recall@100: o.i. 46.351 63.934 65.735 75.640 69.147 67.014

Table 12: Evaluation on LFW dataset in the case of transfer to another embedding: VQGAN and StyleGAN
are optimised with MagFace and MobileFaceNet, and recognition is tested with FaceNet. Lower recall and
a higher percentage mean better privacy. In this case, generative methods optimised with two embeddings
obtain worse results than generative methods optimised with only one embedding method in Table 1: this
is, however, not a fair comparison because we do not use FaceNet for optimisation in this experiment, while
we do in Table 1.

StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage: 5.656 2.671 2.296 1.549 2.097 2.605
Recall@1: m.i. 4.976 8.294 11.422 12.322 9.526 7.630
Recall@1: o.i. 9.289 15.450 18.152 18.957 16.635 15.403
Recall@3: m.i. 15.829 28.578 32.986 37.488 31.043 28.057
Recall@3: o.i. 19.763 34.597 39.100 44.455 38.863 35.545
Recall@5: m.i. 23.507 41.327 46.445 55.687 46.161 41.469
Recall@5: o.i. 26.114 43.175 49.858 56.303 48.246 43.981
Recall@10: m.i. 34.218 52.796 58.957 68.673 59.716 54.929
Recall@10: o.i. 34.313 52.796 60.616 68.531 60.284 55.071
Recall@50: m.i. 56.398 74.123 78.104 84.692 79.763 76.540
Recall@50: o.i. 54.929 73.507 79.005 84.218 79.242 77.109
Recall@100: m.i. 64.882 81.611 84.360 89.242 85.118 82.986
Recall@100: o.i. 63.839 80.853 84.550 88.863 85.118 83.081

Table 13: Evaluation on LFW dataset in the case of transfer to another embedding: VQGAN and StyleGAN
are optimised with MagFace and MobileFaceNet and recognition is tested with ResNet 152. Lower recall
and a higher percentage mean better privacy. In this case, generative methods optimised with two embed-
dings obtain better results than generative methods optimised with only one embedding method, as in Table
10.
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 11.993 8.305 7.534 6.067 7.164 8.181
Recall@1: m.i. 2.038 4.123 4.550 6.967 4.882 4.739
Recall@1: o.i. 3.555 5.687 7.488 7.867 6.540 6.351
Recall@3: m.i. 6.588 11.754 12.370 15.640 13.270 11.232
Recall@3: o.i. 6.919 12.417 14.787 16.398 13.791 12.038
Recall@5: m.i. 9.005 16.209 17.109 20.758 19.052 16.588
Recall@5: o.i. 9.526 16.493 18.673 21.611 18.578 16.066
Recall@10: m.i. 13.081 22.844 24.976 29.384 26.066 22.417
Recall@10: o.i. 14.171 22.938 25.450 29.810 25.450 22.322
Recall@50: m.i. 27.299 41.374 43.270 51.280 44.455 41.611
Recall@50: o.i. 28.863 41.991 45.024 51.754 46.730 42.464
Recall@100: m.i. 36.445 50.806 52.986 61.137 54.360 51.232
Recall@100: o.i. 38.910 53.128 56.161 62.796 57.867 52.796

Table 14: Evaluation on LFW dataset, in the case of transfer to another embedding: VQGAN and StyleGAN
are optimised with MagFace and MobileFaceNet, and recognition is tested with ArcFace. Lower recall and
a higher percentage mean better privacy. In this case, generative methods optimised with two embeddings
obtain better results than generative methods optimised with only one embedding method, as in Table 9.

StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 6.925 3.290 3.079 2.583 3.555 4.461
Recall@1: m.i. 0.569 2.986 2.749 2.227 0.900 0.664
Recall@1: o.i. 6.635 14.739 14.976 15.782 12.654 10.379
Recall@3: m.i. 11.090 22.417 24.408 26.066 20.190 17.062
Recall@3: o.i. 13.365 30.095 32.180 34.834 26.351 22.085
Recall@5: m.i. 18.531 36.635 38.152 42.607 31.517 28.246
Recall@5: o.i. 18.009 38.578 40.379 45.308 34.550 29.289
Recall@10: m.i. 26.682 48.389 49.953 55.735 43.223 39.052
Recall@10: o.i. 24.739 48.720 49.100 54.739 44.645 38.720
Recall@50: m.i. 47.014 69.384 71.611 74.171 65.687 59.668
Recall@50: o.i. 46.872 69.716 71.991 74.597 66.919 60.427
Recall@100: m.i. 56.682 77.583 78.957 80.237 73.981 68.578
Recall@100: o.i. 56.967 76.588 79.336 80.948 75.308 69.431

Table 15: Evaluation on LFW dataset: VQGAN and StyleGAN (and their variants) are optimised with
MagFace and MobileFaceNet, and recognition is tested with MobileFaceNet. Generative methods do obtain
better privacy than Fawkes (Table 10).
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VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 0.697 3.975 8.312 0.715 12.268 1.633
Recall@1: m.i. 23.571 10.712 5.055 23.831 3.450 15.868
Recall@1: o.i. 24.012 15.125 8.064 24.534 6.239 16.429
Recall@3: m.i. 70.271 26.359 12.778 66.680 8.947 45.256
Recall@3: o.i. 71.274 32.177 15.527 66.800 12.237 46.319
Recall@5: m.i. 91.775 36.169 17.934 87.964 13.340 60.522
Recall@5: o.i. 91.555 39.860 20.040 84.875 15.787 60.923

Recall@10: m.i. 94.965 45.537 24.835 91.575 18.495 68.867
Recall@10: o.i. 94.905 48.265 26.239 89.950 20.963 69.829
Recall@50: m.i. 97.733 65.597 42.508 96.309 34.483 83.470
Recall@50: o.i. 97.553 66.941 45.436 95.125 36.349 84.554

Recall@100: m.i. 98.235 72.457 51.775 97.151 42.989 88.465
Recall@100: o.i. 98.195 75.125 55.486 96.670 46.098 89.749

Table 16: Evaluation on CC dataset in the case of a transfer to another embedding: VQGAN and StyleGAN
are optimised with MagFace and MobileFaceNet, and recognition is tested with FaceNet. Lower recall and
a higher percentage mean better privacy. We can see that generative methods’ evaluation results for the CC
dataset are very similar to the ones for the LFW dataset.

VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 2.880 14.337 27.089 2.507 22.651 4.201
Recall@1: m.i. 23.390 2.086 0.562 24.674 0.301 19.097
Recall@1: o.i. 21.926 5.918 1.043 24.995 1.886 17.031
Recall@3: m.i. 62.708 5.998 1.143 67.462 1.484 52.277
Recall@3: o.i. 63.129 10.973 2.187 67.683 3.992 49.107
Recall@5: m.i. 78.335 9.468 1.805 84.393 2.768 64.654
Recall@5: o.i. 78.154 13.561 2.949 83.952 5.296 63.149

Recall@10: m.i. 81.846 14.845 3.230 86.399 4.975 70.351
Recall@10: o.i. 82.046 17.553 4.794 86.219 7.763 68.706
Recall@50: m.i. 87.182 30.211 9.007 89.709 14.624 80.100
Recall@50: o.i. 87.603 31.033 11.013 89.749 16.309 78.495

Recall@100: m.i. 89.087 38.736 14.203 90.853 20.702 84.092
Recall@100: o.i. 89.348 39.238 15.226 90.913 22.287 82.247

Table 17: Evaluation on CC dataset, in the case without transfer to another embedding: VQGAN and
StyleGAN are optimised with MagFace and MobileFaceNet, and recognition is tested with MagFace. We
can see that generative methods’ evaluation results for the CC dataset are very similar to the ones for the
LFW dataset.
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VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 2.339 7.232 12.125 1.739 14.657 4.074
Recall@1: m.i. 21.184 9.188 5.115 24.453 4.173 15.266
Recall@1: o.i. 21.966 12.217 6.640 24.955 7.442 10.532
Recall@3: m.i. 55.426 22.628 11.635 63.71 9.910 37.733
Recall@3: o.i. 57.392 25.436 13.260 64.975 14.002 28.706
Recall@5: m.i. 69.468 28.445 15.165 78.034 12.839 48.004
Recall@5: o.i. 70.973 32.016 16.830 78.656 17.212 37.813

Recall@10: m.i. 75.165 35.426 19.960 81.825 17.854 55.366
Recall@10: o.i. 76.209 39.699 22.487 82.648 23.049 44.433
Recall@50: m.i. 84.072 52.879 35.807 88.104 30.993 70.090
Recall@50: o.i. 85.035 58.295 40.040 88.546 38.716 61.765

Recall@100: m.i. 87.442 61.204 44.714 90.913 38.837 76.670
Recall@100: o.i. 88.185 66.419 48.967 90.973 46.620 69.087

Table 18: Evaluation on CC dataset in the case of a transfer to another embedding: VQGAN and StyleGAN
are optimised with MagFace and MobileFaceNet, and recognition is tested with ArcFace. We can see that
generative methods’ evaluation results for the CC dataset are very similar to the ones for the LFW dataset.

VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 6.513 12.668 20.632 5.200 15.798 7.708
Recall@1: m.i. 20.542 7.763 1.224 24.313 3.972 14.664
Recall@1: o.i. 19.719 12.638 5.155 24.875 8.004 12.919
Recall@3: m.i. 53.440 17.673 3.852 60.100 9.850 36.871
Recall@3: o.i. 53.902 24.433 10.251 59.880 16.108 27.663
Recall@5: m.i. 63.952 22.648 5.436 70.812 13.159 44.835
Recall@5: o.i. 64.614 30.451 12.417 70.933 20.662 32.397

Recall@10: m.i. 67.643 29.027 8.666 74.022 18.415 50.973
Recall@10: o.i. 68.826 37.051 16.510 74.223 27.061 36.429
Recall@50: m.i. 74.564 43.771 19.278 79.539 33.280 64.092
Recall@50: o.i. 75.206 53.039 29.027 79.819 43.290 45.456

Recall@100: m.i. 77.733 51.013 26.820 82.006 41.204 69.649
Recall@100: o.i. 78.134 59.980 37.131 82.247 51.715 50.291

Table 19: Evaluation on CC dataset without transfer to another embedding: VQGAN and StyleGAN are
optimised with MagFace and MobileFaceNet, and recognition is tested with MobileFaceNet. Lower recall
and a higher percentage mean better privacy. We can see that generative methods evaluation results for the
CC dataset are very similar to the ones for the LFW dataset.
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VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 3.025 4.970 6.915 2.652 7.650 4.518
Recall@1: m.i. 20.582 12.758 7.783 24.012 8.345 16.790
Recall@1: o.i. 20.602 14.584 11.033 24.754 10.732 15.908
Recall@3: m.i. 56.951 32.217 20.361 61.685 21.846 39.398
Recall@3: o.i. 56.971 33.079 22.949 62.347 24.092 34.303
Recall@5: m.i. 69.930 40.943 27.021 75.165 28.646 49.328
Recall@5: o.i. 69.629 41.083 28.686 74.905 30.150 41.805

Recall@10: m.i. 74.463 49.328 35.065 78.816 36.489 56.289
Recall@10: o.i. 74.183 49.589 36.189 78.696 37.232 47.141
Recall@50: m.i. 82.608 66.379 53.521 85.496 54.644 71.414
Recall@50: o.i. 82.508 67.041 54.664 85.216 56.851 59.920

Recall@100: m.i. 85.657 73.561 62.628 87.823 62.327 77.553
Recall@100: o.i. 85.537 73.400 63.591 87.803 64.754 65.236

Table 20: Evaluation on CC dataset in the case of a transfer to another embedding: VQGAN and StyleGAN
are optimised with MagFace + MobileFaceNet, and recognition is tested with ResNet 152. Lower recall and
a higher percentage mean better privacy. We can see that generative methods’ evaluation results for the CC
dataset are very similar to the ones for the LFW dataset.
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