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Introduction

In Section 2 there are considered twistor formulations of the bosonic string and N = 1, 2 superstrings in flat D = 4 (super)space [START_REF] Uvarov | Super)twistors and (super)strings, Classical and Quantum Gravity[END_REF], [START_REF] Uvarov | Gauge symmetries of strings in supertwistor space[END_REF]. They will be derived from the classically equivalent representations [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF], [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF] of the Polyakov Lagrangian for bosonic string [START_REF] Deser | A complete action for the spinning string[END_REF], [START_REF] Brink | A locally supersymmetric and reparametrization invariant action for the spinning string[END_REF], [START_REF] Polyakov | Quantum geometry of bosonic strings[END_REF] and the Green-Schwarz Lagrangian for superstrings [START_REF] Green | Covariant description of superstrings[END_REF] and involve spinor Lorentz-harmonic variables [START_REF] Delduc | Lorentz-harmonic (super)fields and (super)particles[END_REF], [START_REF] Galperin | The superparticle and the Lorentz group[END_REF], [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF]. In the (super)twistor formulation Lagrangians of the (super)strings are expressed in terms of the components of two Penrose-Ferber (super)twistors. Unlike the supertwistor formulations of the massless superparticle [START_REF] Shirafuji | Lagrangian mechanics of massless particles with spin[END_REF] and tensionless superstring [START_REF] Bandos | Superspace formulations of the (super)twistor string[END_REF] models, tensile superstring action in the supertwistor formulation is invariant under the κ-symmetry. This is the evidence that there remain pure gauge degrees of freedom in the fermionic sector of superstrings after transition to the supertwistor formulation.

Also in this Section introduced will be reduced supertwistor models as the generalization to the case of tensile superstrings of the twistor formulations for massless superparticle and tensionless superstring. Lagrangians of the reduced supertwistor models are quadratic in the components of (super)twistors. Lagrangian of the reduced model corresponding to the N = 1 superstring can be obtained by substituting world-sheet embedding equations [START_REF] Omnes | A new geometric approach to the relativistic string[END_REF], [START_REF] Zheltukhin | Classical relativistic string as an exactly solvable sector of the SO(1, 1) × SO(2) gauge model[END_REF] into the Wess-Zumino Lagrangian of the N = 1 superstring in the supertwistor formulation. Fixing the κ-symmetry gauge in the N = 2 superstring model gives another reduced supertwistor model that represents extention of the reduced model for the N = 1 superstring and the twistor formulation of the bosonic string. So in the final paragraph 2.3 reduced model corresponding to the N = 2 superstring will be analyzed as a constrained

Hamiltonian system in accordance with the Dirac prescription [START_REF] Dirac | Lectures on quantum mechanics[END_REF]. Identified will be all the primary and secondary constraints and their division on the first-and second-class ones will be carried out.

In Section 3 there are presented formulations [START_REF] Uvarov | Supertwistor formulation for higher dimensional superstrings[END_REF] of N = 1 superstrings in flat D = 6 and D = 10 superspaces in terms of the supertwistor variables that generalize Penrose-Ferber supertwistors. Derived will be the constraints on the components of these supertwistors from the requirement of their correspondence to the coordinates of D = 6, 10 N = 1 Minkowski superspaces. Similarly to the case of D = 4 superstrings introduced will be the reduced models with Lagrangians quadratic in the supertwistor components.

In the next Section 4 D = 10 N = 1 superstring model in the supertwistor formulation will be studied in the framework of canonical approach as a dynamical system with constraints [START_REF] Uvarov | Canonical description of D = 10 superstring formulated in supertwistor space[END_REF]. Expressions for all the primary and secondary constraints in terms of the supertwistor components will be obtained and divided into the Lorentz-covariant and irreducible sets of the first-and second-class constraints. Then introduced will be the Dirac brackets that take into account the second-class constraints and will be examined the deformation of the first-class constraint algebra upon transition from the Poisson brackets to the Dirac brackets. The role of the deformation parameter is played by the inverse string tension.

It is of interest to compare supertwistor formulation of superstrings considered in preceding Sections with known Berkovits twistor string model [START_REF] Berkovits | Alternative string theory in twistor space for N = 4 super-Yang-Mills theory[END_REF] and its symmetries. Therefore in the final Section 5 examined will be the global symmetries of the Lagrangians describing dynamics of the left-and right-moving supertwistor variables in the Berkovits twistor string model and its generalization to the case of unconstrained supertwistors [START_REF] Uvarov | Conformal higher-spin symmetries in twistor string theory[END_REF]. It will be shown that on the classical level these symmetries are infinite-dimensional generalizations of the D = 4 N = 4 superconformal symmetry. It will be revealed that expansions of the products of the components of operator of the energy-momentum tensor, corresponding to invariance of these Lagrangians under world-sheet conformal symmetry, and quantum generators of found higher-spin symmetries include anomalous terms. Therefore on the quantum level these infinite-dimensional symmetries break down to the finite-dimensional (P )SL(4|4, R) symmetry.

2 Twistor formulations of the bosonic string and superstring models in D = 4 Minkowski (super)space in Lagrangian and Hamiltonian approaches Since the initial period of development of the twistor theory [START_REF] Penrose | Twistor algebra[END_REF], [START_REF] Penrose | Twistor theory: an approach to the quantisation of fields and space-time[END_REF], [START_REF] Penrose | Spinor and twistor methods in space-time geometry[END_REF] formulations of the models of relativistic point particles in terms of twistors and supertwistors attract attention due to the interplay between the twistor geometry and realizations of the spin degrees of freedom (see [START_REF] Newman | A curiosity concerning angular momentum[END_REF], [START_REF] Ferber | Supertwistors and conformal supersymmetry[END_REF], [START_REF] Shirafuji | Lagrangian mechanics of massless particles with spin[END_REF], [START_REF] Bengtsson | Particles, superparticles and twistors[END_REF], [START_REF] Eisenberg | The twistor geometry of the covariantly quantized Brink-Schwarz superparticle[END_REF], [START_REF] Plyushchay | Covariant quantization of massless superparticle in four-dimensional space-time: twistor approach[END_REF], [START_REF] Gumenchuk | Relativistic superparticle dynamics and twistor correspondence[END_REF], [START_REF] Bandos | Tensorial central charges and new superparticle model with fundamental spinor coordinates[END_REF], [START_REF] Fedoruk | Bitwistor formulation of massive spinning particle[END_REF], [START_REF] Bette | Massive relativistic particle model with spin and electric charge from two twistor dynamics[END_REF], [START_REF] Bars | Single twistor description of massless, massive, AdS, and other interacting particles[END_REF], [START_REF] De Azcarraga | Supertwistors, massive superparticles and κ-symmetry[END_REF], [START_REF] Mezincescu | Supertwistors and massive particles[END_REF], [START_REF] Fedoruk | Massive twistor particle with spin generated by Souriau-Wess-Zumino term and its quantization[END_REF]). One of the most appealing features of the twistor formulations of supersymmetric particle models, first revealed in Ref. [START_REF] Shirafuji | Lagrangian mechanics of massless particles with spin[END_REF], is independence of the Lagrangian on the part of superspace Grassmann coordinates. It is these coordinates that transform as pure gauge quantities under the κ-symmetry. Transition to the supertwistor variables allows to exclude them without breaking the Lorentz symmetry in contrast to, e.g. the light-cone gauge.

Twistor formulations of the models of extended objects with zero tension in D = 4 (super)spaces were considered in [START_REF] Ilyenko | Twistor variational principle for null strings[END_REF], [START_REF] Zheltukhin | An inverse Penrose limit and supersymmetry enhancement in the presence of tensor central charges[END_REF], [START_REF] Bandos | BPS preons and tensionless super-p-branes in generalized superspace[END_REF], [START_REF] Bengtsson | Wess-Zumino action and Dirichlet boundary conitions for super p-brane with exotic fractions of supersymmetry[END_REF], [START_REF] Bandos | Superspace formulations of the (super)twistor string[END_REF]. The first attempts to reformulate in terms of twistors equations and constraints of the tensionful bosonic string were undertaken in [START_REF] Shaw | Twistor, minimal surfaces and strings[END_REF], [START_REF] Bengtsson | The fermionic gauge symmetry in the Green-Schwarz action[END_REF] and [START_REF] Cederwall | An extension of the twistor concept to string theory[END_REF].

In our work [START_REF] Uvarov | Super)twistors and (super)strings, Classical and Quantum Gravity[END_REF] proposed were Lagrangian formulations in terms of Penrose-Ferber (super)twistors of the tensionful bosonic string and superstring models with N = 1 and N = 2 supersymmetries in the four-dimensional space. Their construction is based on the classically-equivalent Lorentz-harmonic formulations [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF], [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF] of the Lagrangians of bosonic string and superstrings and uses the fact that in four-dimensional space spinor Lorentz harmonics coincide with the normalized Newman-Penrose dyad [START_REF] Penrose | Spinors and space-time. Vol.I. Two-spinor calculus and relativitsic fields[END_REF]. Let us note that there were considered other twistor formulations of the bosonic string [START_REF] Fedoruk | Twistorial versus space-time formulations: unification of various string models[END_REF] and superstrings [START_REF] Bandos | D = 11 superstring model with 30 κ-symmetries and 30 32 BPS states in an extended superspace[END_REF] with non-zero tension in four-dimensional space.

Because the models of massive (super)particles and tensile (super)strings contain dimensionful parameters, characteristic feature of the (super)twistor formulations of their Lagrangians is the presence of the twistor realization of metric tensors in the spaces of twocomponent SL(2, C) spinors. They break manifestly space-time (super)conformal symmetry and are called infinity twistors [START_REF] Penrose | Twistor theory: an approach to the quantisation of fields and space-time[END_REF], [START_REF] Penrose | Spinor and twistor methods in space-time geometry[END_REF].

Another class of supersymmetric string models in twistor space constitute twistor string models. For the first time such models were proposed in Refs. [START_REF] Witten | Perturbative gauge theory as a string theory in twistor space[END_REF], [START_REF] Berkovits | Alternative string theory in twistor space for N = 4 super-Yang-Mills theory[END_REF], [START_REF] Siegel | Untwisting the twistor superstring[END_REF]. Twistor strings are ab initio formulated in the supertwistor space, do not contain dimensionless parameters and hence are invariant under the superconformal symmetry by definition. Their relation of the twistor strings to the twistor formulations of tensionless superstrings was examined in [START_REF] Bandos | Superspace formulations of the (super)twistor string[END_REF].

In the next subsection considered is the twistor formulation of the bosonic string Lagrangian that in what follows is generalized to the case of the D = 4 N = 1 superstring.

Superstring Lagrangian in the supertwistor formulation inherits non-linearities of the superspace formulation and contains pure gauge Grassmann variables unlike supertwistor formulations of the models of massless superparticles and tensionless superstrings. As their generalization proposed will be reduced supertwistor models, Lagrangians of which are quadratic in the (super)twistor components. Also there will be established the relation between reduced models and superstrings in the supertwistor formulation. It will be shown that reduced supertwistor models corresponding to the N = 1 superstring and bosonic string model in the twistor formulation are particular cases of reduced model for the N = 2 superstring.

In the last subsection this model will be examined as the constrained Hamiltonian system. Following the Dirac method [START_REF] Dirac | Lectures on quantum mechanics[END_REF] identified are all the constraints of the model and divided into the Lorentz-covariant and irreducible first-class ones, that generate gauge symmetries of the action, and the second-class constraints.

Twistor formulation of bosonic string

In the twistor formulation of the bosonic string action that we proposed, basic dynamical variables are a pair of the Penrose twistors Z α = (µ α , ū α), W α = (ν α , v α), α = 1, ..., 4; α, α = 0, 1.

(2.1) µ α and ν α represent their primary spinor parts but ū α and v α are projection parts. Dual twistors have the following constituents Zα = (u α , μ α), Wα = (v α , ν α).

Each twistor and its dual have complex components and by definition realize (anti)fundamental representation of the SU (2, 2) group locally isomorphic to conformal group of the four-dimensional Minkowski space-time. It is assumed that projection parts of twistors form normalized Newman-Penrose dyad

u α v α = 1, ū α v α = 1. (2.2) Conditions (2.2) imply that 2 × 2 matrices v α (α) = (u α , v α ), v α ( α) = (ū α, v α) (2.3) 
have six real independent components and take value in the SL(2, C) group. So the pair of twistors (2.1) has 14 independent components. In the twistor form normalization conditions (2.2)

W α I αβ Z β = 1, Wα I αβ Zβ = 1 (2.4)
include infinity twistors

I αβ = 0 0 0 ε α β , I αβ = ε αβ 0 0 0
that are degenerate matrices and manifestly break conformal symmetry.

In order to associate with the twistor components coordinates of the points of the D = 4

Minkowski space-time one should impose on them two real zero-norm conditions

Zα Z α = u α µ α + μ α ū α = 0, Wα W α = v α ν α + ν α v α = 0 (2.5)
and two real orthogonality conditions

Wα Z α = v α µ α + ν α ū α = 0, ( Wα Z α ) † = Zα W α = 0. (2.6)
Conditions (2.5) and (2.6) reduce the number of independent components of twistors (2.1) to 10. The same overall number of independent components have the space-time coordinates

x αα = x m σ αα m and the normalized dyad (2.3). The solution of conditions (2.5) and (2.6) is

given by expressions for the primary spinor parts of twistors and their duals as the products of the space-time coordinates and the projection parts

µ α = iū αx αα , ν α = iv αx αα , (2.7) 
μ α = -ix αα u α , ν α = -ix αα v α . (2.8)
Expressions (2.7) and (2.8) represent instances of the relations that connect twistor components with the space-time coordinates and in the twistor theory are called incidence relations.

Twistor formulation of the D = 4 bosonic string proposed in our work [START_REF] Uvarov | Super)twistors and (super)strings, Classical and Quantum Gravity[END_REF] is based on the string action [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF], [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF] that includes tangent to the world sheet components of the local orthonormal Cartan frame [START_REF] Cartan | Riemannian geometry in an orthogonal frame: from lectures delivered by Élie Cartan at the Sorbonne in 1926-27[END_REF]. They represent columns of the matrix of vector Lorentz harmonics [START_REF] Sokatchev | Light-cone harmonic superspace and its applications[END_REF] and can be realized as the products of the Newman-Penrose dyad components [START_REF] Penrose | Spinors and space-time. Vol.I. Two-spinor calculus and relativitsic fields[END_REF]. In Ref. [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF] there was introduced the following D = 4 string action

S D=4 string = Σ L(ξ), L D=4 string (ξ) = 1 2(α ) 1/2 e [+2] ∧(ū -dxu -)-e [-2] ∧(v + dxv + ) + c 2 e [-2] ∧e [+2] .
(2.9)

It transfers to the Polyakov action [START_REF] Deser | A complete action for the spinning string[END_REF], [START_REF] Brink | A locally supersymmetric and reparametrization invariant action for the spinning string[END_REF], [START_REF] Polyakov | Quantum geometry of bosonic strings[END_REF] upon exclusion of the dyad components

S D=4 Pstring = -1 2cα Σ d 2 ξ √ -gg µν ∂ µ x m ∂ ν x m . (2.10) 
Lagrangian (2.9) contains components of the zweibein one-form e ±2 = dξ µ e

[±2]
µ , where ξ µ = (τ, σ) are local world-sheet coordinates, and the zweibein determinant e = 1 2 e [-2] ∧ e [+2] . Weights of the zweibein and dyad components under the SO(1, 1) group of local symmetry, acting in the tangent space to the world sheet, are given in the form of their superscripts.

Dyad components and local frame components orthogonal to the world sheet transform under the local SO(2) = U (1) group action, however their weights are not shown explicitly.

α is the Regge slope parameter, c is the dimensionless constant so the string tension equals T = 1 2cα . To transfer to the twistor formulation let us express in terms of twistors projections of the differentials of the space-time coordinate fields onto the local frame components tangent to the string world sheet

-ū -dxu -= i 2 ω [-2] Z (d) = i 2 ( Z-dZ --d Z-Z -), -v + dxv + = i 2 ω [+2] W (d) = i 2 ( W + dW + -d W + W + ).
(2.11)

Then the string action acquires the form

S D=4 string, tw = Σ L(ξ), L D=4 string, tw (ξ) = -i 4(α ) 1/2 e [+2] ∧ω [-2] Z (d)-e [-2] ∧ω [+2] W (d) + c 2 e [-2] ∧e [+2] .
(2.12)

Observe that it is invariant under global SU (2, 2) symmetry that is, however, broken by the constraints (2.4).

To derive equations of motion that follow from the action (2.12) it is necessary to take into account the constraints for twistors (2.5), (2.6) and (2.4). They can either be added to the action (2.12) with Lagrange multipliers or one can apply the method of admissible variations. Its detailed discussion on example of the Lorentz-harmonic formulations of the bosonic string and superstring models is given in Ref. [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF]. Admissible variations of twistors were found in our work [START_REF] Uvarov | Super)twistors and (super)strings, Classical and Quantum Gravity[END_REF] δZ

α-= ω(δ)Z α-+ ω[-2] (δ)W α+ + 1 2 ω W Z (δ)I αβ Z- β -1 2 ω [-2] Z (δ)I αβ W + β , δW α+ = Ω [+2] (δ)Z α--ω(δ)W α+ + 1 2 ω [+2] W (δ)I αβ Z- β -1 2 ω ZW (δ)I αβ W + β , δ Z- α = ω(δ) Z- α + ω[-2] (δ) W + α -1 2 ω ZW (δ)I αβ Z β-+ 1 2 ω [-2] Z (δ)I αβ W β+ , δ W + α = Ω[+2] (δ) Z- α -ω(δ) W + α -1 2 ω [+2] W (δ)I αβ Z β-+ 1 2 ω W Z (δ)I αβ W β+ .
(2.13)

The first two terms in each line contain the spin coefficients [START_REF] Penrose | Spinors and space-time. Vol.I. Two-spinor calculus and relativitsic fields[END_REF] in which variations have been substituted for differentials

ω(δ) = -1 2 (δZ -IW + + δW + IZ -) = 1 2 (δū α-v+ α + δv α+ ū- α ), (2.14) ω 
[-2] (δ) = δZ -IZ -= ū α-δū - α , Ω [+2] (δ) = -δW + IW + = δv α+ v+ α . (2.15) 
These terms in (2.13) originate from variation of the dyad components and enter both variations of the projection parts of twistors and of the primary spinor parts via the incidence relations (2.7) and (2.8). In the orthonormal frame method [START_REF] Cartan | Riemannian geometry in an orthogonal frame: from lectures delivered by Élie Cartan at the Sorbonne in 1926-27[END_REF] spin coefficients are interpreted as derivation coefficients of the local frame and equal the Cartan one-forms associated with the generators of the so(1, 3) algebra and constructed out of the frame vectors and their differentials [START_REF] Omnes | A new geometric approach to the relativistic string[END_REF], [START_REF] Zheltukhin | Classical relativistic string as an exactly solvable sector of the SO(1, 1) × SO(2) gauge model[END_REF]. Two last terms in each line in (2.13) originate from variations of the space-time coordinates in the primary spinor parts of twistors. They contain variation parameters ω

[-2] Z (δ) = ( Z-δZ --δ Z-Z -) = 2iū -δxu -, (2.16 
)

ω [+2] W (δ) = ( W + δW + -δ W + W + ) = 2iv + δxv + , (2.17 
)

ω W Z (δ) = ( W + δZ --δ W + Z -) = 2iū -δxv + , ω ZW (δ) = -(ω W Z (δ)) † , (2.18) 
expressions for which can be obtained using the completeness relations for the normalized dyad (2.2)

u α-v + β -u - β v α+ = δ α β , ū α-v+ β -ū- β v α+ = δ α β . (2.19)
Variation parameters (2.14)-(2.18) are associated, as was shown in [START_REF] Uvarov | Super)twistors and (super)strings, Classical and Quantum Gravity[END_REF], with 10 first-order differential operators that obey commutation relations of the D = 4 Poincaré algebra iso(1, 3).

Presence of only 10 independent variation parameters is related to the fact that twistor constraints (2.4) are invariant only under the Poincaré subgroup of the SU (2, 2) symmetry.

The substitution of obtained variations of twistors (2.13) to variation of the action (2.12) yields the set of 10 string equations

δS D=4 string, tw δω = e [+2] ∧ ω [-2] Z (d) + e [-2] ∧ ω [+2] W (d) = 0, (2.20) δS D=4 string, tw δ ω[-2] = e [+2] ∧ ω ZW (d) = 0, (2.21) δS D=4
string, tw 

δΩ [+2] = e [-2] ∧ ω W Z (d) = 0, (2.22) δS D=4 string, tw δω [-2] Z = de [+2] + e [+2] ∧ (ω + ω)(d) = 0, (2.23) δS D=4 string, tw δω [+2] W = de [-2] -e [-2] ∧ (ω + ω)(d) = 0, (2.24) δS D=4 string, tw δω ZW = e [+2] ∧ ω[-2] (d) -e [-2] ∧ Ω[+2] (d) = 0. ( 2 
e [-2] = -i 2c(α ) 1/2 ω [-2] Z (d), e [+2] = -i 2c(α ) 1/2 ω [+2] W (d). (2.26) 
Now let us find which of the above equations are independent. From Eqs. (2.26) it follows that Eq. (2.20) turns into identity in agreement with the SO(1, 1) × SO(2) gauge invariance of the action (2.12) (see also [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF], [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF]). Eqs. (2.21) and (2.22) and their c.c. yield that 

ω W Z (d) = ω ZW (d) = 0. ( 2 
e +2 ∧ ω-2 (d) + e -2 ∧ Ω+2 (d) = 0 (2.28) yield that e +2 ∧ ω-2 (d) = e -2 ∧ Ω+2 (d) = 0 (2.29)
and the c.c. equations. These equations are conditions of the minimal embedding of the string world sheet, another equivalent representation for which was obtained in [START_REF] Zheltukhin | Classical relativistic string as an exactly solvable sector of the SO(1, 1) × SO(2) gauge model[END_REF].

So we have shown that in the twistor formulation one reproduces equations that determine minimal embedding of the string world sheet in the orthonormal frame method.

Supertwistor formulations of D = 4 superstrings

Let us turn to consideration of the twistor formulation for the D = 4 N = 1 superstring.

Basic dynamical variables are SU (2, 2|1) supertwistors and their duals

Z A = (µ α , ū α, η), ZA = (u α , μ α, η); W A = (ν α , v α, ζ), WA = (v α , ν α, ζ)
that obey supersymmetric generalizations of the zero norm and orthogonality conditions

ZA Z A = u α µ α + μ α ū α + η η = 0, WA W A = v α ν α + ν α v α + ζ ζ = 0, WA Z A = v α µ α + ν α ū α + ζ η = 0, ZA W A = u α ν α + μ α v α + η ζ = 0. (2.30)
These conditions ensure that the number of independent components two supertwistors equals the sum of the number of D = 4 N = 1 Minkowski superspace coordinates (x α α, θ α , θ α) and the number of components of the normalized Newman-Penrose dyad (2.3). Indeed, each supertwistor has four complex bosonic components subject to four real bosonic conditions (2.30) and two real dyad normalization conditions (2.2). So the number of independent bosonic components of two supertwistors equals the sum of the number of the space-time coordinates and the number of components of the normalized Newman-Penrose dyad. Also each supertwistor has one complex Grassmann-odd component so that pair of supertwistors has the same number of Grassmann-odd degrees of freedom as there are anticommuting coordinates of the D = 4 N = 1 superspace. Conditions (2.30) can be solved explicitly and one can express primary spinor parts and Grassmann-odd components of supertwistors in terms of the superspace coordinates. The solution

µ α = iū αx αα + θ α η, μ α = -ix αα u α + η θ α, η = 2ū α θ α, η = 2u α θ α ; ν α = iv αx αα + θ α ζ, ν α = -ix αα v α + ζ θ α, ζ = 2v α θ α, ζ = 2v α θ α (2.31)
represents supersymmetric generalization of the incidence relations (2.7) and (2.8). D = 4 N = 1 superstring action in the Lorentz-harmonic formulation [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF] is given by the sum of kinetic and Wess-Zumino terms

S D=4,N =1 sstring = S D=4,N =1 kin + S D=4,N =1 WZ . (2.32) 
Kinetic term represents supersymmetric generalization of the bosonic string action in the Lorentz-harmonic formulation (2.9) and includes supersymmetric Cartan one-forms

ω α α(d) = dx α α + 2idθ α θ α -2iθ α d θ α S D=4,N =1 kin = Σ 1 2(α ) 1/2 e [+2] ∧(ū -ω(d)u -)-e [-2] ∧(v + ω(d)v + ) + c 2 e [-2] ∧e [+2] .
In the Wess-Zumino action

S D=4,N =1 WZ = is cα Σ ω αα (d) ∧ (dθ α θ α -θ α d θ α) (2.33)
there has been introduced the sign factor s = ±1 that reflects arbitrariness in its definition compatible with the κ-invariance of the complete action (2.32). Upon exclusion of the Lorentz-harmonic variables action (2.32) turns into the

D = 4 N = 1 Green-Schwarz superstring action [8] S D=4,N =1 GSsstring = S D=4,N =1 GSkin + S D=4,N =1 WZ .
Its kinetic term

S D=4,N =1 GSkin = -1 2cα Σ d 2 ξ √ -gg µν ω m µ ω νm
is the supersymmetric generalization of the Polyakov action (2.10) and Wess-Zumino term is the same as in (2.33).

To transfer to the supertwistor formulation of the kinetic term used are relations

-ū -ω(d)u -= i 2 ω [-2] Z (d) = i 2 ( Z-dZ --d Z-Z -), -v + ω(d)v + = i 2 ω [+2] W (d) = i 2 ( W+ dW + -d W+ W + ), (2.34) 
that generalize (2.11). As a result we obtain the following action 

S D=4,N =1 kin, stw = Σ -i 4(α ) 1/2 e [+2] ∧ω [-2] Z (d)-e [-2] ∧ω [+2] W (d) + c 2 e [-2] ∧e [+2] . ( 2 
= -s 8cα Σ ω [-2] Z (d) ∧ ω [+2] ζ (d) + ω [+2] W (d) ∧ ω [-2] η (d) -ω ZW (d) ∧ ω ζ η(d) -ω WZ (d) ∧ ω η ζ (d) (2.36)
via the one-forms (2.34) and

ω WZ (d) = W+ dZ --d W+ Z -, ω ZW (d) = -(ω WZ ) † , (2.37 
)

ω [-2] η (d) = η -Dη --Dη -η-, ω [+2] ζ (d) = ζ + D ζ+ -Dζ + ζ+ , (2.38 
)

ω ζ η(d) = ζ + Dη --Dζ + η-, ω η ζ (d) = -(ω ζ η) † . (2.39)
One-forms (2.38) and (2.39) include projections of the differentials of the Grassmann-odd superspace coordinates expressed in terms of the Grassmann-odd supertwistor components and spin coefficients To derive D = 4 N = 1 superstring equations in the supertwistor formulation in our work [START_REF] Uvarov | Super)twistors and (super)strings, Classical and Quantum Gravity[END_REF] used was the method of admissible variations similarly to the bosonic string case. It was shown that variations of supertwistors compatible with the constraints (2.30) and (2.4) have the form

Dη -= 2ū α-d θ α = dη --ω(d)η --ω[-2] (d) ζ+ , Dη -= (Dη -) * , D ζ+ = 2v α+ d θ α = d ζ+ + ω(d) ζ+ -Ω [+2] (d)η -, Dζ + = (D ζ+ ) * . ( 2 
δZ A-= ω(δ)Z A-+ ω[-2] (δ)W A+ + ( 1 2 ω WZ (δ) -ζ + D(δ)η -)I AB Z- B +(-1 2 ω [-2] Z (δ) + η -D(δ)η -)I AB W+ B + J A B δZ B-, δW A+ = Ω [+2] (δ)Z A--ω(δ)W A+ + ( 1 2 ω [+2] W (δ) -ζ + D(δ) ζ+ )I AB Z- B +(-1 2 ω ZW (δ) + η -D(δ) ζ+ )I AB W+ B + J A B δW B+ (2.42)
and c.c. The supermatrices

I AB = I αβ 0 0 0 , J A B =    0 0 0 0 0 0 0 0 1   
are supersymmetric generalizations of infinity twistors. In variations (2.42) there are 10 bosonic and four fermionic independent parameters in agreement with the fact that the constraints (2.4) 

e [-2] = -i 2c(α ) 1/2 ω [-2] Z (d), e [+2] = -i 2c(α ) 1/2 ω [+2] W (d). ( 2 
δω = e [+2] ∧ ω [-2] Z (d) + e [-2] ∧ ω [+2] W (d) = 0
turns it into identity, as for the bosonic string. This is the consequence of the SO( 

= de [+2] + e [+2] ∧ (ω + ω)(d) + is c(α ) 1/2 Dζ + ∧ D ζ+ = 0, δS D=4,N =1 sstring, stw δω [+2] W = de [-2] -e [-2] ∧ (ω + ω)(d) -is c(α ) 1/2 Dη -∧ Dη -= 0, δS D=4,N =1 sstring, stw δω ZW = e [-2] ∧ Ω[+2] (d) -e [+2] ∧ ω[-2] (d) + is c(α ) 1/2 Dζ + ∧ Dη -= 0.
The last equation should be complemented by the c.c. The first two of these equations express induced world-sheet torsion T [±2] ≡ de [±2] ± e [±2] ∧ (ω + ω)(d) through the wedge product of the differentials of the Grassmann-odd components of supertwistors (2.40). The third equation together with the nontrivial relation that arises from the integrability conditions for admissible supertwistor differentials (2.42) produce the following equations

e [+2] ∧ ω[-2] (d) -i(s+1) 2c(α ) 1/2 Dη -∧ Dζ + = 0, e [-2] ∧ Ω [+2] (d) + i(s-1) 2c(α ) 1/2
Dη -∧ Dζ + = 0. From the action (2.41) also follow fermionic equations of motion

δS D=4,N =1 sstring, stw δD η- = e [+2] ∧ Dη --is 2c(α ) 1/2 ω [-2] W (d) ∧ Dη --ω ZW (d) ∧ Dζ + = 0, δS D=4,N =1 sstring, stw δD ζ+ = e [-2] ∧ Dζ + + is 2c(α ) 1/2 ω [-2]
Z (d) ∧ Dζ + -ω WZ (d) ∧ Dη -= 0 and c.c. equations. The substitution of (2.43) and (2.44) allows to bring them to the form (s + 1)e [+2] ∧ Dη -= 0, (s -1)e [-2] ∧ Dζ + = 0.

(2.45)

For each admissible value of the numerical coefficient s half of the above equations turns into identity. According to the second Noether theorem this is related to the κ-invariance of the superstring action in the supertwistor formulation (2.41). Thus after transition to the supertwistor formulation in the fermionic sector of the D = 4 N = 1 superstring there remain pure gauge degrees of freedom. This distinguishes tensile superstring model from the massless superparticle [START_REF] Shirafuji | Lagrangian mechanics of massless particles with spin[END_REF] and tensionless super p-brane [START_REF] Zheltukhin | An inverse Penrose limit and supersymmetry enhancement in the presence of tensor central charges[END_REF], [START_REF] Bandos | BPS preons and tensionless super-p-branes in generalized superspace[END_REF], [START_REF] Bandos | Superspace formulations of the (super)twistor string[END_REF] models. In these models pure gauge components of the superspace Grassmann coordinates drop out from the Lagrangian upon transition from the superspace to supertwistor formulation that amounts to implicit κ-symmetry gauge fixing.

Explicit form of variations of the components of supertwistors and zweibein under the κ-symmetry depends on the value of s. When s = -1 variations are given by the following expressions

δ κ Z A-= ω[-2] (δ κ )W A+ -ζ + κ -I AB Z- B + η -κ -I AB W+ B + J A B K B-, δ κ W A+ = Ω [+2] (δ κ )Z A-, ω[-2] (δ κ ) = i 2c(α ) 1/2 e µ[-2] D µ ζ + κ -, Ω[+2] (δ κ ) = -i 2c(α ) 1/2 e µ[+2] D µ ζ + κ -, δ κ e [+2] µ = 0, δ κ e [-2] µ = -i c(α ) 1/2 (κ -D µ η --D µ η-κ-)
and c.c. ones. Complex Grassmann-odd parameter κ -(ξ µ ) can be written in the supertwistor form as K A-= (0, 0, κ -). Accordingly for s = 1 variations equal

δ κ Z A-= ω[-2] (δ κ )W A+ , δ κ W A+ = Ω [+2] (δ κ )Z A--ζ + κ + I AB Z- B + η -κ + I AB W+ B + J A B K B+ , ω[-2] (δ κ ) = -i 2c(α ) 1/2 e µ[-2] D µ η-κ+ , Ω[+2] (δ κ ) = i 2c(α ) 1/2 e µ[+2] D µ η-κ+ , δ κ e [+2] µ = -i c(α ) 1/2 (κ + D µ ζ + -D µ ζ+ κ+ ), δ κ e [-2] µ = 0.
The N = 1 superstring Lagrangian in the supertwistor formulation remains non-linear similarly to the original Green-Schwarz Lagrangian and that in the Lorentz-harmonic formulation. Fixing the κ-symmetry gauge does not exclude does not remove non-linearities. So define reduced models that generalize to the case of tensile strings the twistor formulations of massless superparticle [START_REF] Shirafuji | Lagrangian mechanics of massless particles with spin[END_REF] and tensionless string [START_REF] Bandos | Superspace formulations of the (super)twistor string[END_REF] models invariant under the D = 4 N = 1 superconformal symmetry. Lagrangians of the reduced models are quadratic in the components of (super)twistors.

Consider the action 

S D=4, N =1/2 sstring, stw = Σ -i 4(α ) 1/2 e [+2] ∧ ( Z- A d ZA--d Z- A ZA-) -e [-2] ∧ ( W + α dW α+ -d W + α W α+ ) + c 2 e [-2] ∧ e [+2] . (2.46) 
ZA-= (μ α-, ū- α , η-) : μα-= iū - α x αα + √ 2θ α η-, η-= 2 √ 2ū α- θ α, Z- A = (u - α , μ α-, η-) : μ α-= -ix αα u - α - √ 2 θ α η-, η-= 2 √ 2u α-θ α (2.47)
and obey the zero-norm condition Z-

A ZA-= u - α μα-+ μ α-ū- α + η-η-= 0.
Incidence relations (2.47) differ from (2.31) therefore the supertwistor itself, its primary spinor and Grassmann-odd components are endowed with tilde. W α+ and W + α are bosonic twistors, components of which satisfy the incidence relations (2.7) and (2.8). Action of the reduced model that corresponds to the s = -1 case is obtained from (2.46) by replacing modified supertwistors Z-, Zand twistors W + , W + by bosonic twistors Z -, Zand by supertwistors W+ , W+ defined analogously to Z-, Z-

WA+ = (ν α+ , v+ α , ζ+ ) : να+ = iv + α x αα + √ 2θ α ζ+ , ζ+ = 2 √ 2v α+ θ α, W+ A = (v + α , ν α+ , ζ+ ) : ν α+ = -ix αα v + α - √ 2 θ α ζ+ , ζ+ = 2 √ 2v α+ θ α , W+ A WA+ = v + α να+ + ν α+ v+ α + ζ+ ζ+ = 0. (2.48)
Let us conclude this subsection by considering the D = 4 N = 2 superstring model. It is known that its action in the Lorentz-harmonic formulation has the form

S D=4,N =2 sstring = S D=4,N =2 kin + S D=4,N =2 WZ , where S D=4,N =2 kin = Σ 1 2(α ) 1/2 e [+2] ∧ (ū -ω(d)u -) -e [-2] ∧ (v + ω(d)v + ) + c 2 e [-2] ∧ e [+2] , (2.49 
)

ω α α(d) = dx α α + 2idθ I α θI α -2iθ I α d θI α, I = 1, 2,
and

S D=4,N =2 WZ = is cα Σ ω αα (d) ∧ (dθ 1 α θ1 α -θ 1 α d θ1 α -dθ 2 α θ2 α + θ 2 α d θ2 α) + 2s cα Σ (dθ α1 θ α1 -θ α1 d θ α1 ) ∧ (dθ 2 α θ2 α -θ 2 α d θ2 α), s = ±1.
(2.50)

Its Lagrangian can be expressed in terms of the components of supertwistors analogously to the N = 1 superstring. Extention of the reduced model (2.46) is obtained by the Lorentzcovariant κ-symmetry gauge fixing θ 1 α = θ 2 α . Then the Wess-Zumino term turns to zero and kinetic term (2.49) is brought to the form

S D=4,N =1/2+1/2 sstring, stw = Σ -i 4(α ) 1/2 e [+2] ∧ ( Z- A d ZA--d Z- A ZA-) -e [-2] ∧ ( W+ A d WA+ -d W+ A WA+ ) + c 2 e [-2] ∧ e [+2] . (2.51) 
Incidence relations for the components of supertwistors are the same as given in (2.47) and

(2.48). Supertwistors also obey zero-norm and orthogonality conditions W+ A ZA-= 0 and Z+ A WA+ = 0. Actions of the reduced model (2.46), its counterpart for the s = -1 case and that of the bosonic string in the twistor formulation (2.12) follow from (2.51) by setting to zero half or all of the anticommuting components of supertwistors. In the next subsection using the Dirac method [START_REF] Dirac | Lectures on quantum mechanics[END_REF] the model (2.51) will be analyzed as a Hamiltonian system with constraints.

Hamiltonian mechanics of reduced supertwistor model of N = 2 superstring

For transition to the Hamiltonian description of the most general reduced model (2.51) it is convenient to introduce in the action (2.51) inverse zweibein with the components e µ[±2] .

In the light-cone basis for the metric in the tangent space to the world sheet they satisfy the relations e µ[±2] e [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF]). After introduction of the inverse zweibein the action (2.51) acquires the form

[±2] µ = 0, e µ[±2] e [∓2] µ = 2 (see Ref.
S D=4,N =1/2+1/2 sstring, stw = Σ d 2 ξ ie 4(α ) 1/2 e µ[+2] ( Z- A ∂ µ ZA--∂ µ Z- A ZA-) + e µ[-2] ( W+ A ∂ µ WA+ -∂ µ W+ A WA+ ) + ce .
Further to simplify the analysis we use the unnormalized Newman-Penrose dyad that allows to exclude the pair of the second-class constraints (2.2). In this case the last term in (2.51) is substituted by

ce(ξ) → ce(ξ)n(ξ)n(ξ),
where n(ξ) = u α-v + α is complex scalar field and n(ξ) = ū α-v+ α is its conjugate. The number of physical degrees of freedom is retained upon this change because the action becomes invariant under the local rescaling of the zweibein and dyad components. Finally define dimensionless zweibein density with the components ρ µ

[+2] = c(α ) 1/2 ee µ[+2] , ρ µ[-2] = c(α ) 1/2 ee µ[-2] (cf.
Ref. [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF]). So the action of the reduced supertwistor model of N = 2 superstring will acquire the form

S D=4,N =1/2+1/2 sstring, stw = Σ d 2 ξL D=4,N =1/2+1/2 sstring, stw (ξ) (2.52) with the Lagrangian 1 L D=4,N =1/2+1/2 sstring, stw (ξ) = i 4cα ρ µ[+2] ( Z- A ∂ µ Z A--∂ µ Z- A Z A-) +ρ µ[-2] ( W+ A ∂ µ W A+ -∂ µ W+ A W A+ ) + 1 2cα ε µν ρ µ[-2] ρ ν[+2] nn.
(

2.53)

To this Lagrangian one should add with Lagrange multipliers four constraints on the super-

twistor components χ [-2] Z = Z- A Z A-≈ 0, χ [+2] W = W- A W A-≈ 0, (2.54) 
χ WZ = W+ A Z A-≈ 0, χ ZW = Z- A W A+ ≈ 0. (2.55)
Introduce general notation for the coordinate fields

Q N (τ, σ) = µ β-, μ β-, u - β , ū- β , ν β+ , ν β+ , v + β , v+ β , η -, η-, ζ + , ζ+ , ρ ν[±2]
and conjugate momentum densities

P M (τ, σ) = δL δ∂τ Q M = p + (µ)α , p+ (µ) α, p α+ (u) , p α+ (u) , p - (ν)α , p- (ν) α, p α- (v) , p α- (v) , p + (η) , p+ (η) , p - (ζ) , p- (ζ) , P [∓2] µ
that satisfy the Poisson bracket relations

{P M (σ), Q N (σ )} P.B. = δ N M δ(σ -σ ).
From the definitions of the momenta conjugate to the components of supertwistors Z -and W + there follow the primary constraints

T + (µ)α = p + (µ)α -i 4cα ρ τ [+2] u - α ≈ 0, T + (µ) α = p+ (µ) α + i 4cα ρ τ [+2] ū- α ≈ 0, T α+ (u) = p α+ (u) + i 4cα ρ τ [+2] µ α-≈ 0, T α+ (u) = p α+ (u) -i 4cα ρ τ [+2] μ α-≈ 0, T + (η) = p + (η) + i 4cα ρ τ [+2] η-≈ 0, T + (η) = p+ (η) + i 4cα ρ τ [+2] η -≈ 0 (2.56)
1 In what follows to simplify the notation tildes over the supertwistors and their components will be omitted.

and

T - (ν)α = p - (ν)α -i 4cα ρ τ [-2] v + α ≈ 0, T - (ν) α = p- (ν) α + i 4cα ρ τ [-2] v+ α ≈ 0, T α- (v) = p α- (v) + i 4cα ρ τ [-2] ν α+ ≈ 0, T α- (v) = p α- (v) -i 4cα ρ τ [-2] ν α+ ≈ 0, T - (ζ) = p - (ζ) + i 4cα ρ τ [-2] ζ+ ≈ 0, T - (ζ) = p- (ζ) + i 4cα ρ τ [-2] ζ + ≈ 0.
(

2.57)

There are also present four primary constraints that arise because of the absence in the Lagrangian (2.53) of derivatives of the zweibein densities

P [∓2] µ ≈ 0. (2.58)
The total Hamiltonian density H T (τ, σ) is by definition given by the sum of the canonical

Hamiltonian density

H 0 (τ, σ) = -i 4cα ρ σ[+2] Z- A ∂ σ Z A--∂ σ Z- A Z A-+ 2innρ τ [-2] +ρ σ[-2] W+ A ∂ σ W A+ -∂ σ W+ A W A+ -2innρ τ [+2]
and the primary constraints (2.54)-(2.58) with arbitrary Lagrange multipliers.

According to the Dirac approach [START_REF] Dirac | Lectures on quantum mechanics[END_REF] primary constraints (2.54)-(2.58) should be conserved in time. This condition implies that their Poisson brackets with the total Hamiltonian have to vanish in the weak sense. As a result we find bosonic secondary constraints

T [-2] Z σ = -i 4 Z- A ∂ σ Z A--∂ σ Z- A Z A-+ 2innρ τ [-2] ≈ 0, T [+2] W σ = -i 4 W+ A ∂ σ W A+ -∂ σ W+ A W A+ -2innρ τ [+2] ≈ 0 (2.59)
and

ω WZ σ = W+ A ∂ σ Z A--∂ σ W+ A Z A-≈ 0, ω ZW σ = Z- A ∂ σ W A+ -∂ σ Z- A W A+ ≈ 0 (2.60)
and also equations for the Lagrange multipliers. These equations allow to express Lagrange multipliers for the primary constraints in terms of the smaller set of independent Lagrange multipliers that correspond to the first-class constraints. So the total Hamiltonian density is expressed as the sum of the first-class constraints with arbitrary Lagrange multipliers

H T (τ, σ) = ρ σ[+2] cα T [-2] Z σ + ρ σ[-2] cα T [+2] W σ + s [+2] Z χ [-2] Z + s [-2] W χ [+2] W +β Z ∆ Z + β W ∆ W + β [+2] P [-2] σ + β [-2] P [+2] σ ≈ 0.
(2.61)

Note that components ρ σ[+2] and ρ σ[-2] of the introduced above zweibein density play the role of the Lagrange multipliers for the first-class constraints T

[-2]
Z σ ≈ 0 and T

[+2]

Z σ ≈ 0 respectively. Additionally note that vanishing in the weak sense of the total Hamiltonian density is the characteristic feature of the models invariant under coordinate diffeomorphisms (see, e.g. discussion in [START_REF] Brink | Principles of string theory[END_REF]). The first-class constraints that enter the expression for the total Hamiltonian (2.61) have the form

T [-2] Z σ = T [-2] Z σ + cα ∂ σ P [-2] τ -cα ρ τ [+2] ((∂ σ µ α--iρ τ [-2] nv α+ )T + (µ)α +(∂ σ μ α-+ iρ τ [-2] nv α+ ) T + (µ) α + ∂ σ u - α T α+ (u) + ∂ σ ū- α T α+ (u) + ∂ σ η -T + (η) +∂ σ η-T + (η) ) + icα (nū α-T - (ν) α -nu α-T - (ν)α ) -F ρ τ [+2] (χ WZ + 2icα ρ τ [+2] (ν α+ T + (µ) α + v + α T α+ (u) + ζ + T + (η) ) -2icα ρ τ [-2] (µ α-T - (ν)α + ū- α T α- (v) +η -T - (ζ) )) -F ρ τ [+2] (χ ZW -2icα ρ τ [+2] (ν α+ T + (µ)α + v+ α T α+ (u) + ζ+ T + (η) ) + 2icα ρ τ [-2] (μ α-T - (ν) α + u - α T α- (v) + η -T - (ζ) )) ≈ 0, T [+2] W σ = T [+2] W σ + cα ∂ σ P [+2] τ -cα ρ τ [-2] ((∂ σ ν α+ -iρ τ [+2] nu α-)T - (ν)α +(∂ σ ν α+ + iρ τ [+2] nū α-) T - (ν) α + ∂ σ v + α T α- (v) + ∂ σ v+ α T α- (v) + ∂ σ ζ + T - (ζ) +∂ σ ζ+ T - (ζ) ) + icα (nv α+ T + (µ) α -nv α+ T + (µ)α ) + F ρ τ [-2] (χ WZ + 2icα ρ τ [+2] (ν α+ T + (µ) α + v + α T α+ (u) + ζ + T + (η) ) -2icα ρ τ [-2] (µ α-T - (ν)α + ū- α T α- (v) +η -T - (ζ) )) + F ρ τ [-2] (χ ZW -2icα ρ τ [+2] (ν α+ T + (µ)α + v+ α T α+ (u) + ζ+ T + (η) ) + 2icα ρ τ [-2] (μ α-T - (ν) α + u - α T α- (v) + η -T - (ζ) )) ≈ 0, χ[-2] Z = χ [-2] Z -2icα ρ τ [+2] (µ α-T + (µ)α -μ α-T + (µ) α-u - α T α+ (u) + ū- α T α+ (u) -η -T + (η) + η-T + (η) ) ≈ 0, χ[+2] W = χ [+2] W -2icα ρ τ [-2] (ν α+ T - (ν)α -ν α+ T - (ν) α-v + α T α- (v) +v + α T α- (v) -ζ + T - (ζ) + ζ+ T - (ζ) ) ≈ 0, ∆ Z = µ α-T + (µ)α + μ α-T + (µ) α +u - α T α+ (u) + ū- α T α+ (u) +η -T + (η) + η-T + (η) -2ρ µ[+2] P [-2] µ ≈ 0, ∆ W = ν α+ T - να + ν α+ T - (ν) α +v + α T α- (v) +v + α T α- (v) +ζ + T - (ζ) + ζ+ T - (ζ) -2ρ µ[-2] P [+2] µ ≈ 0,
where

F = 1 4 1 nn ∂ σ Z- A ∂ σ W A+ -i n ρ τ [+2] ω[-2] σ -i n ρ τ [-2] Ω [+2] σ .
The first-class constraints of the reduced supertwistor model associated with the N = 1 superstring are obtained from the above given expressions by setting to zero either ζ + , ζ+ or η -, η-and their conjugate momenta depending on the value of s. To get the first-class constraints of the bosonic string model in the twistor formulation it is necessary to put to zero both η -, η-and ζ + , ζ+ and the conjugate momenta.

On the Poisson brackets obtained first-class constraints generate gauge symmetries of the action (2.52). They were examined in our work [START_REF] Uvarov | Gauge symmetries of strings in supertwistor space[END_REF]. Constraints T

[-2] Z σ ≈ 0 and T [+2]
W σ ≈ 0 are generators of the world-sheet reparametrizations. Constraints ∆ Z ≈ 0 and ∆ W ≈ 0 generate dilatations of the supertwistor components and zweibein density

δ d Z Z A-= d Z Z A-, δ d Z Z- A = d Z Z- A , δ d Z ρ µ[+2] = -2d Z ρ µ[+2] , δ d W W A+ = d W W A+ , δ d W W+ A = d W W+ A , δ d W ρ µ[-2] = -2d W ρ µ[-2] .
These dilatations are independent due to introduction of the unnormalized dyad. They represent combination of the local Weyl and SO(1, 1) transformations in the tangent space to the world sheet as is seen upon transition to the parameters

d Z = ς -, d W = ς + . Constraints χ[-2] Z ≈ 0 and χ[+2] W ≈ 0 generate local U (1) rotations of the supertwistor components δ ϕ Z Z A-= iϕ Z Z A-, δ ϕ Z Z- A = -iϕ Z Z- A , δ ϕ W W A+ = iϕ W W A+ , δ ϕ W W+ A = -iϕ W W+ A .
These symmetries are also independent for unnormalized dyad. Their parameters ϕ Z = υ -φ and ϕ W = υ + φ can be expressed through the novel ones υ and φ that correspond to the (2.57) supertwistor components satisfy the relations

{Z A-(σ), Z- B (σ )} D.B. = 2icα ρ τ [+2] δ A B δ(σ -σ ), {W A+ (σ), W+ B (σ )} D.B. = 2icα ρ τ [-2] δ A B δ(σ -σ ).
These relations are stringy generalization of the Dirac brackets arising in the superparticle models in the supertwistor formulation [START_REF] Shirafuji | Lagrangian mechanics of massless particles with spin[END_REF] (see also [START_REF] De Azcarraga | Massive relativistic particle model with spin from free two-twistor dynamics and its quantization[END_REF]). Presence of the τ -components of the zweibein density (ρ

µ[+2] , ρ µ[-2]
) in the second-class constraints (2.56) and (2.57) leads to the nonzero Dirac brackets for the conjugate momenta P

[∓2] τ and supertwistors 

{Z A-(σ), P [-2] τ (σ )} D.B. = 1 2ρ τ [+2] Z A-δ(σ -σ ), {W A+ (σ), P [+2] τ (σ )} D.B. = 1 2ρ τ [-2] W A+ δ(σ -
[-2] Z σ = T [-2] Zσ -F ρ τ [+2] χ WZ -F ρ τ [+2] χ ZW ≈ 0, T [+2] W σ = T [+2] Wσ + F ρ τ [-2] χ WZ + F ρ τ [-2]
χ ZW ≈ 0. The Dirac bracket relations of these first-class constraints between themselves and with the second-class constraints (2.55) and (2.60) are given in [START_REF] Uvarov | Gauge symmetries of strings in supertwistor space[END_REF]. In the preceding Section Lagrangians of the D = 4 bosonic string and N = 1, 2 superstrings in the Lorentz-harmonic formulation [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF], [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF] were presented in terms of the Penrose-Ferber (super)twistors. As is known κ-invariant action functionals of the classical Green-Schwarz superstrings exist also in D = 6 and D = 10 dimensions. In D = 10 dimensions due to cancelation of anomalies the Green-Schwarz superstring theories are consistent quantum theories. So in this Section there will be considered supertwistor formulations of the D = 6 and D = 10 N = 1 superstrings that were proposed in our work [START_REF] Uvarov | Supertwistor formulation for higher dimensional superstrings[END_REF].

Construction of such formulations necessitates generalization of the Ferber supertwistors to dimensions D > 4 that is not unique as previous studies indicate [START_REF] Bengtsson | Particles, twistors and the division algebras[END_REF], [START_REF] Eisenberg | The twistor geometry of the covariantly quantized Brink-Schwarz superparticle[END_REF], [START_REF] Berkovits | A supertwistor description of the massless superparticle in tendimensional superspace[END_REF], [START_REF] Howe | The conformal group, point particles and twistors[END_REF], [START_REF] Bandos | Tensorial central charges and new superparticle model with fundamental spinor coordinates[END_REF], [START_REF] Berkovits | Higher-dimensional twistor transforms using pure spinors[END_REF], [START_REF] Bars | Single twistor description of massless, massive, AdS, and other interacting particles[END_REF]. To define supertwistors in higher dimensions impose the same two conditions that were used to construct supertwistor formulations of D = 4 superstrings. Firstly, they should carry fundamental representation of respective higher-dimensional superconformal algebra and, secondly, include the spinor Lorentz harmonics.

It should be noted, however, that superconformal algebras, non-compact bosonic subalgebras of which are isomorphic to conformal algebras so(2, D), exist only in dimensions D ≤ 6 (see, e.g. review [START_REF] Van Proeyen | Tools for supersymmetry[END_REF] and references therein). The point is that generators of such noncompact bosonic subalgebras are given by matrices with spinor indices. In general spinor representation has complex dimension 2 [D/2] and for sufficiently high values of the spacetime dimension it becomes greater than D even after imposition of the Majorana and/or Weyl conditions. That is why in D = 10 dimensions minimal supersymmetric extension of the so(2, 10) conformal algebra includes extra bosonic generators and is isomorphic to the osp(32|1) superalgebra [START_REF] Van Holten | N = 1 supersymmetry algebras in d = 2, 3, 4mod8[END_REF]. This generalized superconformal algebra includes generators of the sp(32) bosonic symplectic subalgebra and 32 supersymmetry generators that decompose on 16 generators of the Poincaré supersymmetry and 16 special conformal supersymmetry generators given by the D = 10 Majorana-Weyl spinors of different chiralities. 528 generators of the sp(32) algebra include generators of the D = 10 conformal algebra together with the generators A m [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF] , Z m [START_REF] Deser | A complete action for the spinning string[END_REF] and Z m [START_REF] Deser | A complete action for the spinning string[END_REF] that are antisymmetric so(1, 9) tensors [START_REF] Van Holten | N = 1 supersymmetry algebras in d = 2, 3, 4mod8[END_REF]. 2 Note that according to the conjecture of Ref. [START_REF] Townsend | Four lectures on M-theory[END_REF] the contraction of the osp(32|1) superalgebra is associated with the symmetry underlying the M-theory.

In this Section considered in detail will be the case of the D = 10 superstring with the action invariant under minimal N = 1 Poincaré supersymmetry. It represents part of the heterotic string action without taking into account degrees of freedom that realize generators of the gauge symmetry in the Yang-Mills theory. 3 Associated Lagrangian will be expressed in terms of the OSp(32|1) supertwistors [START_REF] Bandos | BPS preons and tensionless super-p-branes in generalized superspace[END_REF]. In order to match the number of the physical degrees of freedom in the supertwistor formulation with those in the original Green-Schwarz and Lorentz-harmonic formulations it is necessary to impose the constraints on supertwistors the form of which was identified in our work [START_REF] Uvarov | Supertwistor formulation for higher dimensional superstrings[END_REF]. They manifestly break (generalized) superconformal symmetry down to D = 10 N = 1 Poincaré supersymmetry that is the global symmetry of the Green-Schwarz superstrings. These constraints remove from the incidence relations the contributions of the extra coordinates so that remain only 2 According to adopted notation a number in square brackets following an index denotes the set of antisymmetrized indices equal to that number. 3 Recall that the Yang-Mills supermultiplet enters the spectrum of the massless excitations of the heterotic string.

the Minkowski space coordinates that represent the parameters for momentum generators.

Subsections 3.1 and 3.2 are devoted to the twistor formulation of the D = 6 superstring.

After defining respective supertwistors obtained will be the formulation of the superstring Lagrangian, given are the equations of motion and κ-symmetry transformations in terms of their components. In analogy with the D = 4 superstring case also introduced will be reduced supertwistor model for the D = 6 N = 1 superstring with quadratic Lagrangian.

Generalization of the above formulations to the case of the D = 10 superstring will be considered in subsections 3.3 and 3.4.

D = 6 supertwistors and Lorentz harmonics

As is known OSp(8 * |2) orthosymplectic supergroup is the minimal superconformal group in D = 1 + 5 dimensions [START_REF] Claus | M5-brane and superconformal (0,2) tensor multiplet in six dimensions[END_REF]. Note that the structure of its osp(8 * |2) superalgebra differs from that of the osp(32|1) superalgebra. There symplectic subalgebra is non-compact, whereas the osp(8 * |2) superalgebra includes unitary-symplectic subalgebra usp(2) = su(2) that is compact and non-compact orthogonal subalgebra so(8 * ) = so(2, 6) isomorphic to the conformal algebra and also 16 supersymmetry generators. It belongs to the different family of real forms of complex osp(M |N, C) (M = 2m) superalgebras (see the review [START_REF] Van Proeyen | Tools for supersymmetry[END_REF]).

Define that D = 6 supertwistor transforms under the OSp(8 * |2) fundamental representation

Z Λa = (µ αa , v a α , η ia ). (3.1) 
We will use for the components of D = 6 supertwistors the same nomenclature as for the Penrose twistors. So µ αa is the primary spinor part of supertwistor and v a α its projection part. They transform as D = 6 SU (2)-symplectic Majorana-Weyl spinors of different chiralities 

(µ αa ) * = C αβ ε ab µ βb , (v a α ) * = C -1T β α ε ab v b β . ( 3 
v (α) α = (v +a α , v - ȧ α ) ∈ Spin(1, 5)/(SO(1, 1) × SU (2) × SU (2)), (3.5 
Z Λ+a = (µ α+a , v +a α , η i+a ), Z Λ-ȧ = (µ α-ȧ, v - ȧ α , η i-ȧ). (3.6) 
On the primary spinor parts of supertwistors impose the incidence relations 

µ αa = v a β (x βα -2iθ β i θ αi ), η ia = 2v a α θ αi , (3.7 
Z Λ+a G ΛΣ Z Σ+b = Z Λ-ȧG ΛΣ Z Σ-ḃ = Z Λ+a G ΛΣ Z Σ-ȧ = 0. (3.9)
They eliminate contribution of the antisymmetric tensor coordinates y lmn that in the spinor form are given by symmetric 4 × 4 matrix y αβ = y lmn γαβ lmn . In (3.9) and below OSp(8 * |2)invariant scalar product of supertwistors is taken using the graded symmetric metric Its kinetic term

G ΛΣ =      0 δ β α 0 δ α β 0 0 0 0 -iε ij      . ( 3 
S D=6,N =1 kin = 1 2(α ) 1/2 Σ e [+2] n [-2] m -e [-2] n [+2] m ∧ ω m (d) + c 2 Σ e [-2] ∧ e [+2]
contains two tangent to the world sheet light-like vectors n

[±2] m (ξ) from the local orthonormal frame n (n) m (ξ) = n [+2] m , n [-2] m , n (i) m
and one-form ω m (d) = dx m -idθ α i γ mαβ θ βi invariant under transformations of the D = 6 N = 1 Poincaré supersymmetry. Wess-Zumino term in (3.11) is given by the expression

S D=6,N =1 WZ = is cα Σ ω m (d) ∧ dθ α i γ mαβ θ βi .
Vectors of the orthonormal frame have the following realization in terms of the introduced spinor Lorentz-harmonics (3.5)

n [+2] m = 1 2 v +a α γαβ m v +b β ε ab , n [-2] m = -1 2 v - ȧ α γαβ m v - ḃ β ε ȧḃ , n (i) m = -1 2 v +a α γαβ m v - ḃ β σ (i) a ḃ ,
where n 

ω [+2] (d) = n [+2] m ω m (d) = 1 2 ε ab dZ Λ+a G ΛΣ Z Σ+b = 1 2 ε ab (dµ α+a v +b α + dv +a α µ α+b -iε ij dη i+a η j+b ), ω [-2] (d) = n [-2] m ω m (d) = -1 2 ε ȧḃ dZ Λ-ȧG ΛΣ Z Σ- ḃ = -1 2 ε ȧḃ (dµ α-ȧv - ḃ α + dv - ȧ α µ α-ḃ -iε ij dη i-ȧη j-ḃ).
(3.12)

Analogously one can present projections of ω m (d) onto the orthogonal to the world-sheet components of the local frame

ω (i) (d) = n (i) m ω m (d) = 1 4 (Z Λ+a G ΛΣ dZ Σ-ȧ -dZ Λ+a G ΛΣ Z Σ-ȧ)σ (i) a ȧ . (3.13) 
So that the D = 6 N = 1 superstring action (3.11) in twistor formulation acquires the form

S D=6,N =1 string, stw = 1 2(α ) 1/2 Σ e [+2] ∧ω [-2] (d)-e [-2] ∧ω [+2] (d) + c 2 Σ e [-2] ∧e [+2] + is cα Σ 1 2 ω [-2] (d)∧ϕ [+2] (d)+ 1 2 ω [+2] (d)∧ϕ [-2] (d)-ω (i) (d)∧ϕ (i) (d) .
(3.14)

The Wess-Zumino term also includes one-forms quadratic in the Grassmann-odd supertwistor

components ϕ [+2] (d) = -1 2 ε ab Dη +a i η i+b , ϕ [-2] (d) = 1 2 ε ȧḃ Dη - ȧ i η i-ḃ, ϕ (i) (d) = 1 4 (Dη +a i η i-ȧ -Dη - ȧ i η i+a )σ (i)
a ȧ , that break OSp(8 * |2) superconformal symmetry down to the D = 6 N = 1 super-Poincaré one. Such breaking is explained by the presence of the dimensionful tension parameter in superstring action. Extended differentials of the Grassmann-odd supertwistor components are defined as

Dη +a i = 2v +a α dθ α i = dη +a i + 1 4 Ω [+2][-2] (d)η +a i -1 2 Ω [+2](i) (d)σ (i) ȧa η - i ȧ -1 2 Ω (i)(j) (d)σ (i)(j) b a η +b i , Dη - ȧ i = 2v - ȧ α dθ α i = dη - ȧ i -1 4 Ω [+2][-2] (d)η - ȧ i -1 2 Ω [-2](i) (d)σ (i) ȧa η + ia + 1 2 Ω (i)(j) (d)σ (i)(j) ȧ ḃη - ḃ i , (3.15) 
where σ(i)(j

) ȧ ḃ = 1 4 (σ (i) ȧa σ (j) a ḃ -σ(j)ȧa σ (i) a ḃ ), σ (i)(j) b a = 1 4 (σ (i) b ȧ σ(j)ȧa -σ (j) 
b ȧ σ(i)ȧa ). They include decomposed on the so(1, 1) ⊕ so(4)-covariant constituents (Ω 

[+2][-2] (d), Ω [±2](i) (d), Ω (i)(j) (d)
ω [±2] (d) = c(α ) 1/2 e [±2] , ω (i) (d) = 0, (3.16) 
where one-forms on the l.h.s. are defined in (3.12) and (3.13). Eqs. (3.16) represent supertwistor form of the equations that fix orientation of the local frame with respect to the superstring world sheet. As other independent bosonic variation parameters let us choose those related to one-forms (3.12) and (3.13). Respective equations read

de [+2] + 1 2 e [+2] ∧ Ω [+2][-2] (d) + is 2c(α ) 1/2 Dη +a i ∧ Dη i+ a = 0, de [-2] -1 2 e [-2] ∧ Ω [+2][-2] (d) + is 2c(α ) 1/2 Dη - ȧ i ∧ Dη i- ȧ = 0, e [+2] ∧ Ω [-2](i) (d) -e [-2] ∧ Ω [+2](i) (d) -is c(α ) 1/2 Dη +a i ∧ Dη i-ȧσ (i) a ȧ = 0.
As the consequence of the reparametrization invariance of the superstring action the first two of them are satisfied identically when other equations are taken into account. Fermionic equations of the superstring that correspond to variation parameters D(δ)η +a i , D(δ)η - 

ȧ i equal (1 + s)e [-2] ∧ Dη i+ a = (1 -s)e [+2] ∧ Dη i- ȧ = 0. ( 3 
δ κ Z Λ+a = 1 2 Ω [+2](i) (δ κ )σ (i) ȧa Z Λ- ȧ , δ κ Z Λ-ȧ = 1 2 Ω [-2](i) (δ κ )σ (i) ȧa Z Λ+ a -(K Σ-ȧZ - ḃ Σ )V Λ+ ḃ -(K Σ-ȧZ +b Σ )V Λ- b + K Λ-ȧ, δ κ e [+2] = 0, δ κ e [-2] = 1 c(α ) 1/2 K Λ-ȧDZ - Λ ȧ,
where

Ω ±2i (δ κ ) = ± 1 c(α ) 1/2 K Λ-ḃe ν[±2] D ν Z +a Λ σ (i) a ḃ ,
and local parameter κ i-ȧ(ξ) was presented as the Grassmann-odd component of the supertwistor K Λ-ȧ = (0, 0, κ i-ȧ). For s = -1 κ-variations equal

δ κ Z Λ+a = 1 2 Ω [+2](i) (δ κ )σ i ȧa Z Λ- ȧ -(K Σ+a Z +b Σ )V Λ- b -(K Σ+a Z - ḃ Σ )V Λ+ ḃ + K Λ+a , δ κ Z Λ-ȧ = 1 2 Ω [-2](i) (δ κ )σ (i) ȧa Z Λ+ a , δ κ e [+2] = 1 c(α ) 1/2 K Λ+ a DZ +a Λ , δ κ e [-2] = 0,
where

Ω [±2](i) (δ κ ) = ± 1 c(α ) 1/2 K Λ+a e ν[±2] D ν Z - ḃ Λ σ (i) a ḃ
and K Λ+a = (0, 0, κ i+a ). 

(α ) 1/2 Σ e [+2] ∧ dz α- ȧ z - ȧ α + e [-2] ∧ d ZΛ+ a Z+a Λ + c 2 Σ e [-2] ∧ e [+2] . (3.18) 
Accordingly when s = -1 it equals

S D=6,N =1/2 sstring,stw,s=-1 = 1 4(α ) 1/2 Σ e [+2] ∧ d ZΛ- ȧ Z-ȧ Λ + e [-2] ∧ dz α+ a z +a α + c 2 Σ e [-2] ∧ e [+2] . (3.19)
In the action functionals (3.18) and (3.19) z α+a and z α-ȧ are bosonic D = 6 twistors that obey SU (2)-symplectic Majorana-Weyl condition for the Spin(2, 6) spinors

(z α+a ) * = B α β ε ab z β+b , (z α-ȧ) * = B α β ε ȧḃ z β-ḃ. (3.20) 
Z+a Λ and Z-ȧ Λ are redefined supertwistors, whose incidence relations with the superspace coordinates differ from (3.7) and have the form ZΛ+a = (μ α+a , v +a α , ηi+a ) :

μα+a = v +a β (x βα -4iθ β i θ αi ), ηi+a = 2 √ 2v +a α θ αi , ZΛ-ȧ = (μ α-ȧ, v - ȧ α , ηi-ȧ ) : μα-ȧ = v - ȧ β (x βα -4iθ β i θ αi ), ηi-ȧ = 2 √ 2v - ȧ α θ αi . (3.21)
One can also define reduced supertwistor model corresponding to the D = 6 N = (2, 0)

superstring. Its action 

S D=6,N =(1/2+1/2,0) sstring, stw = 1 4(α ) 1/2 Σ e [+2] ∧ d ZΛ- ȧ Z-ȧ Λ + e [-2] ∧ d ZΛ+ a Z+a Λ + c 2 Σ e [-2] ∧ e [+2]
Z Λ = (µ α, v α, η) (3.23)
is required to realize fundamental representation of the OSp(32|1) as it is the minimal supergroup containing conformal group in D = 10 dimensions. The supertwistor is composed of the pair of the Majorana-Weyl Spin(1, 9) spinors of opposite chiralities and the Grassmann-odd scalar. Its projection part is required to be given by the matrix of spinor Lorentz-harmonics so we are led to consider 16-plet of OSp(32|1) supertwistors

Z Λ(α) = (µ α(α) , v (α) 
α , η (α) ). 

Z Λ+ A = (µ α+ A , v + αA , η + A ), Z Λ- Ȧ = (µ α- Ȧ , v - α Ȧ, η - Ȧ ). (3.25)
Further requirement to primary spinor parts and Grassmann-odd components of supertwistors is the incidence to the D = 10 N = 1 Minkowski superspace coordinates (x m, θ α) 

µ α(α) = (x αβ -8iθ αθ β )v (α) β , η (α) = 4v (α) α θ α, (3.26 
N +2 AB = Z Λ+ A G ΛΣ Z Σ+ B = 0, N -2 Ȧ Ḃ = Z Λ- Ȧ G ΛΣ Z Σ- Ḃ = 0, N A Ȧ = Z Λ+ A G ΛΣ Z Σ- Ȧ = 0, (3.27) 
where

G ΛΣ =      0 δ β α 0 -δ α β 0 0 0 0 -i     
is the orthosymplectic metric, exclude contribution of 120 coordinates described by antisymmetric tensor y mn k. In the spinor form these coordinates are presented by antisymmetric matrix y αβ = y mn k σα β mn k. Incidence relations (3.26) in general also include contribution of 126 coordinates described by (anti-)self-dual antisymmetric tensor z m [5] . These coordinates are associated with tensor generators Z m [START_REF] Deser | A complete action for the spinning string[END_REF] of the osp(32|1) superalgebra. In spinor form these coordinates are described by symmetric σ-traceless matrix z αβ = z m [5] σ m [START_REF] Deser | A complete action for the spinning string[END_REF] αβ . To remove their contribution to the incidence relations on the supertwistor components let us impose additional constraints 

N m 1 ••• m 5 = (µ γ+ A v δ- A + µ γ- Ȧ v δ+ Ȧ )σ m 1 ••• m 5 γδ = 0. ( 3 
v α (α) = (v α- A , v α+ Ȧ ) : v α (α) v ( β) α = δ ( β) (α) . (3.29)
These relations can be considered as defining inverse spinor Lorentz harmonics. In that case they have to be added to the set of harmonicity conditions in order not to introduce extra degrees of freedom (see discussion in [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF]). 

S D=10,N =1 kin = 1 2(α ) 1/2 Σ e [+2] n [-2] m -e [-2] n [+2] m ∧ ω m(d) + c 2 Σ e [-2] ∧ e [+2]
(n) m (ξ) = n [+2] m , n [-2] m , n (I)
m . These vectors have the following representation in terms of the spinor harmonics

n [+2] m = 1 8 v + αA σα β m v + βA , n [-2] m = 1 8 v - α Ȧ σα β m v - β Ȧ, n (I) m = 1 8 v + αA σα β m v - β Ȧγ (I) A Ȧ, (3.31) 
where (I) = 1, ..., 8 is the SO(8) vector index and γ 

ω [+2] (d) = ω m(d)n [+2] m = 1 8 dZ Λ+ A G ΛΣ Z Σ+ A , ω [-2] (d) = ω m(d)n [-2] m = 1 8 dZ Λ- Ȧ G ΛΣ Z Σ- Ȧ (3.32)
and

ω (I) (d) = ω m(d)n (I) m = 1 16 γ (I) A Ȧ(dZ Λ+ A G ΛΣ Z Σ- Ȧ + dZ Λ- Ȧ G ΛΣ Z Σ+ A ). (3.33)
As a result we obtain the supertwistor formulation of the D = 10 N = 1 superstring action

S D=10,N =1 sstring,stw = 1 2(α ) 1/2 Σ e [+2] ∧ ω [-2] (d) -e [-2] ∧ ω [+2] (d) + c 2 Σ e [-2] ∧ e [+2] + is cα Σ 1 2 ω -2 (d) ∧ ϕ +2 (d)+ 1 2 ω +2 (d) ∧ ϕ -2 (d)-ω I (d) ∧ ϕ I (d) .
(3.34)

To the last line in (3.34) there contribute the one-forms quadratic in the Grassmann-odd supertwistor components 

ϕ [+2] (d) = 1 8 Dη + A η + A , ϕ [-2] (d) = 1 8 Dη - Ȧ η - Ȧ , ϕ (I) (d) = 1 16 γ (I) A Ȧ(Dη + A η - Ȧ + Dη - Ȧ η + A ).
Dη + A = dη + A + 1 4 Ω [+2][-2] (d)η + A -1 2 Ω [+2](I) (d)γ I A Ȧη - Ȧ -1 4 Ω (I)(J) (d)γ (I)(J) AB η + B , Dη - Ȧ = dη - Ȧ -1 4 Ω [+2][-2] (d)η - Ȧ -1 2 Ω [-2](I) (d)γ (I) ȦA η + A -1 4 Ω (I)(J) (d)γ (I)(J) Ȧ Ḃ η - Ḃ (3.36)
include antisymmetric matrices γ

(I)(J) AB = 1 2 (γ (I) A Ȧ γ(J) ȦB -γ (J) A Ȧ γ(I) ȦB ) and γ(I)(J) Ȧ Ḃ = 1 2 (γ (I) ȦA γ (J) A Ḃ - γ(J) ȦA γ (I) A 
Ḃ ) are the spin(8) algebra generators in the s and c representations and the derivation coefficients of the D = 10 orthonormal frame equal to the left-invariant Cartan forms in the so(1, 1) ⊕ so(8) basis. These Cartan forms as well as one-forms (3.32), (3.33) and (3.36), in which differentials are replaced by variations, will be taken as independent parameters in admissible variations of the supertwistors (3.25). The form of variations of the supertwistors compatible with the constraints (3.27) and (3.28) was found in our work [START_REF] Uvarov | Supertwistor formulation for higher dimensional superstrings[END_REF]. They are applied to derive superstring equations of motion.

The set of independent bosonic equations of the D = 10 N = 1 superstring in the supertwistor formulation includes equations that fix orientation of the local frame with respect to the world sheet

ω [±2] (d) = c(α ) 1/2 e [±2] , ω (I) (d) = 0. (3.37)
They are analogs of the equations (2.43) and (3.16) for superstrings in lower dimensions.

Other independent bosonic equations can be written in the form Explicit form of the κ-variations of the components of supertwistors and zweibein in the case of s = 1 is

e [-2] ∧ Ω [+2](I) (d) -e [+2] ∧ Ω [-2](I) (d) -is 4c(α ) 1/2 Dη + A γ (I) A Ȧ ∧ Dη - Ȧ = 0. ( 3 
δ κ Z Λ+ A = 1 2 Ω [+2](I) (δ κ )γ (I) A ȦZ Λ- Ȧ , δ κ Z Λ- Ȧ = 1 2 Ω [-2](I) (δ κ )γ (I) ȦA Z Λ+ A -(K Σ- Ȧ Z - Σ Ḃ )V Λ+ Ḃ -(K Σ- Ȧ Z + ΣB )V Λ- B + K Λ- Ȧ , δ κ e [+2] = 0, δ κ e [-2] = 1 4c(α ) 1/2 DZ Λ- Ȧ K - Λ Ȧ,
where

Ω [±2](I) (δ κ ) = ± 1 8c(α ) 1/2 e µ[±2] D µ Z Λ+ A K - Λ Ȧγ (I) A Ȧ and K Λ- Ȧ = (0, 0, κ - Ȧ)
is the supertwistor form of the gauge parameter κ - Ȧ(ξ). Accordingly, when s = -1, variations take the form

δ κ Z Λ+ A = 1 2 Ω [+2](I) (δ κ )γ (I) A ȦZ Λ- Ȧ -(K Σ+ A Z + ΣB )V Λ- B -(K Σ+ A Z - Σ Ḃ )V Λ+ Ḃ + K Λ+ A , δ κ Z Λ- Ȧ = 1 2 Ω [-2](I) (δ κ )γ (I) ȦA Z Λ+ A , δ κ e [+2] = 1 4c(α ) 1/2 DZ Λ+ A K + ΛA , δ κ e [-2] = 0,
where 

Ω [±2](I) (δ κ ) = ± 1 8c(α ) 1/2 e µ[±2] K Λ+ A D µ Z - Λ Ȧγ (I) A Ȧ with K Λ+ A = (0, 0, κ + A ). Quite
S D=10,N =1 sstring, stw, s=1 = 1 16(α ) 1/2 Σ e [+2] ∧ dz α- Ȧ z - α Ȧ -e [-2] ∧ d ZΛ+ A Z+ ΛA + c 2 Σ e [-2] ∧ e [+2] (3.40) 
or S D=10,N =1 sstring, stw, s=-1 =

1 16(α ) 1/2 Σ e [+2] ∧ d ZΛ- Ȧ Z- Λ Ȧ -e [-2] ∧ dz α+ A z + αA + c 2 Σ e [-2] ∧ e [+2] . (3.41) 
Above action functionals can be obtained by substituting equations (3.37) into the action 

ZΛ+ A = (μ α+ A , v + αA , η+ A ) : μα+ A = (x αβ -16iθ αθ β )v + βA , η+ A = 4 √ 2v + αA θ α, ZΛ- Ȧ = (μ α- Ȧ , v - α Ȧ, η- Ȧ ) : μα- Ȧ = (x αβ -16iθ αθ β )v - β Ȧ, η- Ȧ = 4 √ 2v - α Ȧθ α. (3.42) 
Action functionals (3.40) and (3.41) also include 32-component Sp(32) twistors z α+ A , z α- Ȧ . Note that on these (super)twistors there have to be imposed constraints analogous to (3.27) and (3.28) in order to exclude from the incidence relations the coordinates corresponding to tensor generators of the sp(32) algebra.

Along the lines of the above consideration it is possible to get the supertwistor representation for the Type II superstrings in the Lorentz-harmonic formulation [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF], [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF] and define respective reduced supertwistor model. For instance, action of the reduced supertwistor model for the Type IIB superstring is obtained from its action by fixing the κ-symmetry gauge by the conditions

η 1+ A = η 2+ A , η 1- Ȧ = η 2- Ȧ S D=10,IIB sstring, stw, gf = 1 16(α) 1/2 Σ e [+2] ∧d ZΛ- Ȧ G ΛΣ ZΣ- Ȧ -e [-2] ∧d ZΛ+ A G ΛΣ ZΣ+ A + c 2 Σ e [-2] ∧ e [+2] . (3.43) 
Note that it includes both octets of the N = 1 supertwistors (3.42). with the Lagrangian density

L D=10,N =1 sstring,stw (ξ) = -1 2cα ρ µ[+2] ω [-2] µ + ρ µ[-2] ω [+2] µ + ε µν ρ µ[-2] ρ ν[+2] + is cα ε µν 1 2 ω [+2] µ ϕ [-2] ν + 1 2 ω [-2] µ ϕ [+2] ν -ω (I) µ ϕ (I) ν . (4.2) 
In subsection 4.1 we identify the constraints that follow from the definition of momenta for the dynamical variables in the Lagrangian (4.2) and classify them on the first-and secondclass ones. Then in subsection 4.2 there will be described the basis for the second-class constraints, in which the Dirac matrix acquires the form of a sum of the block-diagonal supermatrix proportional to (α ) -1 and one linear in the constraints, defined the Dirac brackets and evaluated the deformation of the algebra of the first-class constraints to leading order in α .

Total Hamiltonian and the first-class constraints

Let us define momentum densities

P M (τ, σ) = δS D=10,N =1 sstring,stw δ∂τ Q M (τ,σ) = p - (µ)αA , p + (µ)α Ȧ, p α- (v)A , p α+ (v) Ȧ, π - A , π + Ȧ , p + (v)αA , p - (v)α 
Ȧ, P ±2 µ conjugate to the supertwistor components and world-sheet vector density

Q M (τ, σ) = µ α+ A , µ α- Ȧ , v + αA , v - α Ȧ, η + A , η - Ȧ , v α- A , v α+ Ȧ , ρ µ±2
on the Poisson brackets

{P M (σ), Q N (σ )} = δ N M δ(σ -σ ).
Note that the matrix of inverse spinor harmonics (3.29) was added to the set of coordinates and to the set of momenta p + (v)αA and p -

Ȧ. Then relations defining the matrix of inverse spinor harmonics

v (α) α v α ( β) -δ (α) ( β) ≈ 0 (4.3)
should be added to the set of the primary constraints of the superstring.

Definition of the momenta densities leads to the primary constraints. Among them there are the constraints that follow from the definitions of momentum densities conjugate to the main spinor parts of supertwistors (3.25)

Φ - αA (σ) = p - (µ)αA + 1 16α ρ τ [-2] -isϕ [-2] σ v + αA + is 16α ϕ (I) σ γ (I) A Ȧv - α Ȧ ≈ 0, Φ + α Ȧ(σ) = p + (µ)α Ȧ + 1 16α ρ τ [+2] -isϕ [+2] σ v - α Ȧ + is 16α ϕ (I) σ γ(I) ȦA v + αA ≈ 0 (4.4)
and the Grassmann-odd components of supertwistors

D - A (σ) = π - A + 1 16α isω [-2] σ -sϕ [-2] σ -iρ τ [-2] η + A + s 16α ϕ (I) σ -iω (I) σ γ (I) A Ȧη - Ȧ + i 2 η + B (v α- B p - (µ)αA -v α- A p - (µ)αB ) + i 2 η - Ḃ (v α+ Ḃ p - (µ)αA -v α- A p + (µ)α Ḃ ) ≈ 0, D + Ȧ (σ) = π + Ȧ + 1 16α isω [+2] σ -sϕ [+2] σ -iρ τ [+2] η - Ȧ + s 16α ϕ (I) σ -iω (I) σ γ(I) ȦA η + A + i 2 η + B (v α- B p + (µ)α Ȧ -v α+ Ȧ p - (µ)αB ) + i 2 η - Ḃ (v α+ Ḃ p + (µ)α Ȧ -v α+ Ȧ p + (µ)α Ḃ ) ≈ 0. (4.5)
The set of the primary constraints also includes constraints that determine momentum densities for spinor harmonics

T α- A (σ) = p α- (v)A + 1 16α isϕ [-2] σ -ρ τ [-2] µ α+ A -is 16α ϕ (I) σ γ (I) A Ȧµ α- Ȧ + is 256α 1 2 ω [-2] σ η + γ (I)(J) η + + 1 2 ω [+2] σ η -γ(I)(J) η - -ω (K) σ η + γ (I)(J)(K) η -γ (I)(J) AB v α- B + is 128α ω (I) σ η + γ (I) η -v α- A + is 128α ω [-2] σ η + γ (I) η -+ ω (J) σ η -γ(I)(J) η -γ (I) A Ȧv α+ Ȧ ≈ 0, (4.6) 
T α+ Ȧ (σ) = p α+ (v) Ȧ + 1 16α isϕ [+2] σ -ρ τ [+2] µ α- Ȧ -is 16α ϕ (I) σ γ(I) ȦA µ α+ A + is 256α 1 2 ω [-2] σ η + γ (I)(J) η + + 1 2 ω [+2] σ η -γ(I)(J )η - -ω (K) σ η + γ (I)(J)(K) η -γ(I)(J) Ȧ Ḃ v α+ Ḃ -is 128α ω (I) σ η + γ (I) η -v α+ Ȧ -is 128α ω [+2] σ η + γ (I) η --ω (J) σ η + γ (I)(J) η + γ(I) ȦA v α- A ≈ 0 (4.7)
and inverse spinor harmonics

p + (v)αA (σ) ≈ 0, p - (v)α Ȧ(σ) ≈ 0. (4.8) 
Besides there turn to zero momenta for the components of the world-sheet vector density

ρ µ[±2] P [±2] τ (σ) ≈ 0, (4.9) 
P [±2] σ (σ) ≈ 0. (4.10)
The set of the primary constraints (4.4)-(4.10) should be extended by adding the constraints on the Lorentz harmonics. 16 × 16 matrix of the spinor harmonics v (α) α satisfies 211 relations [START_REF] Delduc | Lorentz-harmonic (super)fields and (super)particles[END_REF], [START_REF] Galperin | The superparticle and the Lorentz group[END_REF], [START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF] reducing the number of its independent components to the dimension of the Spin(1, 9) group equal 45

n ( k) m v (α) α σ m m1 ... m4 αβ v ( β) β σ ( k)(α)( β) ≈ 0, n [+2] m n m[-2] -2 = 1 64 (v + αA σα β m v + βA )(v - γ Ȧ σ mγ δ v - δ Ȧ) -2 ≈ 0. (4.11) 
Defining relations (4.3) of the matrix of inverse spinor harmonics, as discussed above, also have to be treated as the primary constraints. Finally 120 + 126 constraints on the components of supertwistors (3.27) and (3.28) should be included in the set of the primary constraints.

As was shown in [START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF] canonical analysis of the (super)string models in the Lorentzharmonic formulation simplifies considerably if one treats as strong equalities the constraints defining inverse spinor harmonics (4.3) and the harmonicity conditions (4.11). To this end there were found projections of the constraints that follow from the definitions of momenta for the Lorentz harmonics and that form conjugate pairs of the second-class constraints with the constraints (4.3) and (4.11). Also introduced were respective Dirac brackets. Appealing feature of such Dirac brackets is that they coincide with the Poisson brackets on the subspace of the phase-space defined by other constraints of the model. In the supertwistor formulation this subspace includes primary constraints (3.27), (3.28), (4.4), (4.5), (4.9), (4.10) and the generators of so(1, 9) R algebra in the so(1, 1) ⊕ so(8) basis

M +2-2 (σ) = v + αA T α- A -v - α ȦT α+ Ȧ -v α- A p + (v)αA + v α+ Ȧ p - (v)α Ȧ +µ α+ A Φ - αA -µ α- Ȧ Φ + α Ȧ + η + A D - A -η - Ȧ D + Ȧ ≈ 0, M +2I (σ) = -γ I A Ȧ(v + αA T α+ Ȧ -v α+ Ȧ p + (v)αA + µ α+ A Φ + α Ȧ + η + A D + Ȧ ) ≈ 0, M -2I (σ) = -γ I A Ȧ(v - α ȦT α- A -v α- A p - (v)α Ȧ + µ α- Ȧ Φ - αA + η - Ȧ D - A ) ≈ 0, M IJ (σ) = -1 2 γ IJ AB (v + αA T α- B + v α- A p + (v)αB + µ α+ A Φ - αB + η + A D - B ) -1 2 γIJ Ȧ Ḃ (v - α ȦT α+ Ḃ + v α+ Ȧ p - (v)α Ḃ + µ α- Ȧ Φ + α Ḃ + η - Ȧ D + Ḃ ) ≈ 0. (4.12) 
Constraints (4.12) complement those on the momentum components for the Lorentz harmonics that were used to construct Dirac brackets. Using the constraints (3.27) and (3.28) they can be brought to the form

M [+2][-2] (σ) = v + αA p α- (v)A -v - α Ȧp α+ (v) Ȧ -v α- A p + (v)αA + v α+ Ȧ p - (v)α Ȧ +µ α+ A p - (µ)αA -µ α- Ȧ p + (µ)α Ȧ + η + A π - A -η - Ȧ π + Ȧ ≈ 0, (4.13 
) 

M [+2](I) (σ) = -γ (I) A Ȧ(v + αA p α+ (v) Ȧ -v α+ Ȧ p + (v)αA + µ α+ A p + (µ)α Ȧ + η + A π + Ȧ ) ≈ 0, (4.14) 
M [-2](I) (σ) = -γ (I) A Ȧ(v - α Ȧp α- (v)A -v α- A p - (v)α Ȧ -µ α- Ȧ p - (µ)αA + η - Ȧ π - A ) ≈ 0, (4.15) 
M (I)(J) (σ) = -1 2 γ (I)(J) AB (v + αA p α- (v)B + v α- A p + (v)αB + µ α+ A p - (µ)αB + η + A π - B ) -1 2 γ(I)(J) Ȧ Ḃ (v - α Ȧp α+ (v) Ḃ + v α+ Ȧ p - (v)α Ḃ + µ α- Ȧ p + (µ)α Ḃ + η - Ȧ π + Ḃ ) ≈ 0.
Φ +2 Ȧ Ḃ (σ) = v α+ Ȧ Φ + α Ḃ -v α+ Ḃ Φ + α Ȧ ≈ 0, Φ -2 AB (σ) = v α- A Φ - αB -v α- B Φ - αA ≈ 0, Φ A Ḃ (σ) = v α- A Φ + α Ḃ -v α+ Ḃ Φ - αA ≈ 0, Φ m[5] (σ) = v + αA σ m[5]α β Φ - βA + v - α Ȧ σ m[5]α β Φ + α Ȧ ≈ 0 (4.17)
that form conjugate pairs of the second-class constraints with the constraints (3.27) and

(3.28)

{Φ +2 Ȧ Ḃ (σ), N -2 Ċ Ḋ(σ )} = 2(δ Ȧ Ḋδ Ḃ Ċ -δ Ȧ Ċ δ Ḃ Ḋ)δ(σ -σ ), {Φ -2 AB (σ), N +2 CD (σ )} = 2(δ AD δ BC -δ AC δ BD )δ(σ -σ ), {Φ A Ḃ (σ), N C Ḋ(σ )} = -2δ AC δ Ḃ Ḋδ(σ -σ ),
{Φ m [5] (σ), N n [5] (σ )} = 2(σ m [5] σ n [5] )δ(σ -σ ).

All other Poisson bracket relations between these constraints vanish in the strong sense. For the subspace of the phase-space that is determined by remaining constraints (4.4)

Φ [+2] (σ) = 2v α+ Ȧ p + (µ)α Ȧ + 1 α ρ τ [+2] -isϕ [+2] σ ≈ 0, Φ [-2] (σ) = 2v α- A p - (µ)αA + 1 α ρ τ [-2] -isϕ [-2] σ ≈ 0, Φ (I) (σ) = -γ (I) A Ȧ(v α- A p + (µ)α Ȧ + v α+ Ȧ p - (µ)αA ) -is α ϕ (I) σ ≈ 0, (4.18) 
together with the so(1, 9) generators (4.13)-(4.16) and primary constraints (4.5), (4.9), (4.10)

these Dirac brackets coincide with the Poisson brackets.

As a result the total Hamiltonian density

H T (τ, σ) = 1 2α ρ σ[+2] ω [-2] σ + ρ τ [-2] + 1 2α ρ σ[-2] ω [+2] σ -ρ τ [+2] +a [+2] Φ [-2] + a [-2] Φ [+2] + a (I) Φ (I) + b µ[+2] P [-2] µ + b µ[-2] P [+2] µ +l [+2][-2] M [+2][-2] + l [+2](I) M [-2](I) + l [-2](I) M [+2](I) + l (I)(J) M (I)(J) +λ + A D - A + λ - ȦD + Ȧ (4.19)
is determined by the linear combination of the primary constraints (4.18), (4.9), (4.10), 

ω [±2] σ ∓ ρ τ [±2] ≈ 0, (4.20 
)

ω (I) σ ≈ 0, (4.21) 
and determines part of the Lagrange multipliers.

Resulting upon consistency analysis of the primary and secondary constraints expression for the total Hamiltonian density includes the first-class constraints with the Lagrange multipliers that remained arbitrary

H T, s=1 (τ, σ) = ρ σ[+2] ∆ [-2] (-) + ρ σ[-2] ∆ [+2] (+) + b σ[+2] P [-2] σ + b σ[-2] P [+2] σ +l [+2][-2] M [+2][-2] + l (I)(J) M (I)(J) + ξ - Ȧ D + Ȧ ≈ 0.
Total Hamiltonian weakly vanishes that, as remarked above, is distinctive feature of the reparametrization-invariant models. Above expression for the total Hamiltonian corresponds to the sign parameter's value s = 1 in the Lagrangian (4.2). In this case generators of the world-sheet reparametrizations have the form

∆ [-2] (-) (σ) = 1 2α ω [-2] σ + ρ τ [-2] -1 2 Φ [-2] + ∂ σ P [-2] τ -1 2 Ω [+2][-2] σ P [-2] τ + 1 2ρ τ [+2] Ω [-2](I) σ M [+2](I) ≈ 0, (4.22) ∆ [+2] (+) (σ) = ∆ [+2] (+) -1 ρ τ [-2] D σ η + A D - A ≈ 0, (4.23) 
where ∆

[+2] (+) (σ) = 1 2α ω [+2] σ -ρ τ [+2] + 1 2 Φ [+2] + ∂ σ P [+2] τ + 1 2 Ω [+2][-2] σ P [+2] τ + 1 2ρ τ [-2] Ω [+2](I) σ M [-2](I) ≈ 0 and D - A (σ) = D - A + i 16 η + A Φ [-2] -i 16 γ (I) A Ȧη - Ȧ Φ (I) -i 8ρ τ [-2] γ (I) A ȦD σ η - Ȧ M [-2](I) ≈ 0. (4.24)
Lower indices in brackets of ∆

[+2]

(+) ≈ 0 and ∆

[-2]
(-) ≈ 0 indicate the sign of the contribution of the constraints Φ [±2] ≈ 0 and should not be confused with their weights under the SO(1, 1) group given by the upper indices. For future use it is convenient to introduce more general linear combinations of the constraints

∆ [+2] k (σ) = 1 2α ω [+2] σ -ρ τ [+2] + k 2 Φ [+2] + ∂ σ P [+2] τ + 1 2 Ω [+2][-2] σ P [+2] τ + 1 2ρ τ [-2] Ω [+2](I) σ M [-2](I) ≈ 0, (4.25) ∆ [-2] k (σ) = 1 2α ω [-2] σ + ρ τ [-2] + k 2 Φ [-2] + ∂ σ P [-2] τ -1 2 Ω [+2][-2] σ P [-2] τ + 1 2ρ τ [+2] Ω [-2](I) σ M [+2](I) ≈ 0. (4.26) 
Constraints 

M [+2][-2] (σ) = M [+2][-2] + 2ρ τ [+2] P [-2] τ -2ρ τ [-2] P [+2]
D + Ȧ (σ) = D + Ȧ + i 16 η - Ȧ Φ [+2] -i 16 γ(I) ȦA η + A Φ (I) -i 8ρ τ [-2] γ(I) ȦA D σ η + A M [-2](I) -i 4 D σ η - Ȧ P [+2] τ ≈ 0 (4.28)
are the κ-symmetry generators. When s = -1 expression for the total Hamiltonian density has the form

H T, s=-1 (τ, σ) = ρ σ[+2] ∆ [-2] (-) + ρ σ[-2] ∆ [+2] (+) + b σ[+2] P [-2] σ + b σ[-2] P [+2] σ +l [+2][-2] M [+2][-2] + l (I)(J) M (I)(J) + ξ + A D - A ≈ 0, where ∆ [-2] (-) (σ) = ∆ [-2] (-) -1 ρ τ [+2] D σ η - Ȧ D + Ȧ ≈ 0 (4.29)
and

D + Ȧ (σ) = D + Ȧ + i 16 η - Ȧ Φ [+2] -i 16 γ(I) ȦA η + A Φ (I) + i 8ρ τ [+2]
γ(I) ȦA D σ η + A M [+2](I) ≈ 0, whereas the κ-symmetry generators equal 

D - A (σ) = D - A + i 16 η + A Φ [-2] -i 16 γ (I) A Ȧη - Ȧ Φ (I) + i 8ρ τ [+2] γ (I) A ȦD σ η - Ȧ M [+2](I) + i 4 D σ η + A P [-2] τ ≈ 0.
k (σ) = 1 α ω (I) σ + kΦ (I) -Ω [+2](I) σ P [-2] τ -Ω [-2](I) σ P [+2] τ -1 2 D (I)(J) σ M [+2](J) ρ τ [+2] -1 2 D (I)(J) σ M [-2](J) ρ τ [-2]
≈ 0 (4.30)

with k = ±1. In (4.30)

D (I)(J) σ = δ (I)(J) ∂ σ -Ω (I)(J) σ
is the world-sheet pullback of the SO(8)covariant differential. Four scalar constraints can be taken to be (4.9) and ∆

[±2] (∓) ≈ 0 defined in (4.25) and (4.26). Finally as the basis elements in the space of fermionic second-class constraints choose eight constraints (4.24).

To take into account these second-class constraints define the Dirac brackets

{f (σ), g(σ )} D.B. = {f (σ), g(σ )} -{f (σ), χ m }C -1mn {χ n , g(σ )}, (4.31) 
where χ m denotes the set of the second-class constraints and C -1mn is inverse to the Dirac supermatrix

C mn (σ, σ ) = {χ m (σ), χ n (σ )}.
For the set of the second-class constraints described in the previous subsection the Dirac supermatrix can be presented as a sum

C mn = J mn + Λ mn , (4.32) 
where J mn is the block-diagonal graded-antisymmetric supermatrix

α J = M [+2](J) ∆ (J) (-) M [-2](J) ∆ (J) (+) ∆ [+2] (-) P [-2] τ ∆ [-2] (+) P [+2] τ D - B M [+2](I) 0 -2ρ τ [+2] δ (I)(J) ∆ (I) (-) 2ρ τ [+2] δ (I)(J) 0 M [-2](I) 0 2ρ τ [-2] δ (I)(J) ∆ (I) (+) -2ρ τ [-2] δ (I)(J) 0 0 ∆ [+2] (-) 0 1 P [-2] τ -1 0 ∆ [-2] (+) 0 0 - 1 
P [+2] τ 1 0 D - A iρ τ [-2] 4 δ AB ×δ(σ -σ ),
and Λ mn depends linearly on the constraints. 4 Taking into account (4.32) the inverse Dirac supermatrix can be presented as

C -1 = (I + J -1 Λ) -1 J -1
or in the form of the series expansion

C -1 = J -1 -J -1 Λ J -1 + J -1 Λ J -1 Λ J -1 -J -1 Λ J -1 Λ J -1 ΛJ -1 + . . . (4.33) 
Since supermatrix J is proportional to (α ) -1 and its inverse depends on α , then inverse of the Dirac supermatrix can be presented as a series in α . 5 Substituting expansion (4.33) in the definition of the Dirac brackets (4.31) it is possible to calculate them order by order in 

J -1 . The leading in α contribution is of the form {f (σ), g(σ )} D.B. = {f (σ), g(σ )} -4iα dσ ρ τ [-2] (σ ) {f (σ), D - A (σ )} ×{ D - A (σ ), g(σ )}-α 2 dσ ρ τ [+2] (σ ) ({f (σ), M [+2](I) (σ )}{∆ (I) (-) (σ ), g(σ )} -M [+2](I) ↔ ∆ (I) (-) ) + α 2 dσ ρ τ [-2] (σ ) ({f (σ),M [-2](I) (σ )}{∆ (I) (+) (σ ),g(σ )} -M [-2](I) ↔ ∆ (I) (+) ) + α dσ ({f (σ), ∆ [+2] (-) (σ )}{P [-2] τ (σ ), g(σ )} -∆ [+2] (-) ↔ P [-2] τ ) -α dσ ({f (σ), ∆ [-2] (+) (σ )}{P [+2] τ (σ ), g(σ )} -∆ [-2] (+) ↔ P [+2] τ ) + O(J -2 ).
{Z Λ+ A (σ), Z Σ+ B (σ )} D.B. = 4iα ρ τ [-2] D Λ AC D Σ BC δ(σ -σ ) + α 2ρ τ [-2] γ (I) A Ȧγ (I) B Ḃ (V Λ+ Ȧ Z Σ- Ḃ -Z Λ- Ȧ V Σ+ Ḃ )δ(σ -σ ) + α 2ρ τ [-2] γ (I) A ȦZ Λ- Ȧ (σ)γ (J) B Ḃ D (I)(J) σ 1 ρ τ [-2] Z Σ- Ḃ (σ)δ(σ -σ ) + O(α 2 ), {Z Λ- Ȧ (σ), Z Σ- Ḃ (σ )} D.B. = 4iα ρ τ [-2] D Λ[-2] ȦC D Σ[-2] ḂC δ(σ -σ ) + α 2ρ τ [+2] γ(I) ȦA γ(I) ḂB (V Λ- A Z Σ+ B -Z Λ+ A V Σ- B )δ(σ -σ ) -α 2ρ τ [+2] γ(I) ȦA Z Λ+ A (σ)γ (J) ḂB D (I)(J) σ 1 ρ τ [+2] Z Σ+ B (σ)δ(σ -σ ) + O(α 2 ) and {Z Λ+ A (σ), Z Σ- Ḃ (σ )} D.B. = 4iα ρ τ [-2] D Λ AC D Σ[-2] ḂC δ(σ -σ ) + α 2 γ (I) A Ȧ γ(I) ḂB 1 ρ τ [+2] V Λ+ Ȧ Z Σ+ B -1 ρ τ [-2] Z Λ- Ȧ V Σ- B δ(σ -σ ) + O(α 2 ), 4 
Expressions for the Poisson brackets of the second-class constraints that determine the form of the supermatrixΛ mn are given in Appendix B of [START_REF] Uvarov | Canonical description of D = 10 superstring formulated in supertwistor space[END_REF]. 5 Note, however, that some entries of Λ have implicit dependence on (α ) -1 through the constraints (4.25), (4.26) and (4.30).

where 16 × 8 blocks of the inverse spinor harmonic matrix have been written in the supertwistor form as V Λ- A = (v α- A , 0, 0), V Λ+ Ȧ = (v α+ Ȧ , 0, 0) and also the following quantities have been introduced 

{ D- A (σ), Z Λ+ B (σ )} = D Λ AB δ(σ -σ ), D Λ AB = -D Λ BA = i 8ρ τ [-2] γ (I) A ȦD σ η - Ȧ γ (I) B Ḃ Z Λ- Ḃ + i 2 δ AB η - Ḃ + 1 8 γ (I) A Ȧη - Ȧ γ (I) B Ḃ V Λ+ Ḃ + i 2 δ AB η + C -δ AC η + B + 1 8 δ BC η + A V Λ- C + δ AB J Λ , J Λ = (0, 0, 1), { D- A (σ), Z Λ- Ḃ (σ )} = D Λ-2 A Ḃ δ(σ -σ ), D Λ-2 A Ḃ = -D Λ-2 ḂA = -i 2 δ AB η - Ḃ -1 8 γ (I) A Ȧη - Ȧ γ(I) ḂB V Λ- B .
{ D + Ȧ (σ), D + Ḃ (σ )} D.B. = i 4 δ Ȧ Ḃ ∆ [+2] (+) δ(σ -σ ) - α 16ρ τ [+2] (ρ τ [-2] ) 2 γ(I) ȦA D σ η + A γ(J) ḂB D σ η + B M (I)(J) ∆ [-2] (-) δ(σ -σ ) + α 2 Γ +(I) Ȧ (σ)D (I)(J) σ Γ +(J) Ḃ (σ)δ(σ -σ ) + O(J -2 ),
where Γ

+(I) Ȧ = - 1 4ρ τ [+2] ρ τ [-2] γ(J) ȦA D σ η + A ( 1 2 δ (J)(I) M +2-2 + M (J)(I)
). The first term on the r.h.s. is the contribution of the Poisson brackets, while other terms containing products of the so(1, 1), so(8) generators and the reparametrization symmetry generator (4.22) correspond to the leading order deformation. The Dirac brackets of the κ-symmetry and reparametrization generators have the form

{ ∆ [+2] (+) (σ), D + Ȧ (σ )} D.B. = iα 4ρ τ [-2] γ(I) ȦA D σ η + A A [+2](I) -1 2 D σ η + γ (I) D + ×∆ [-2] (-) δ(σ -σ ) + iα 2 A [+2](I) (σ)D (I)(J) σ Γ +(J) Ȧ (σ)δ(σ -σ ) + O(J -2 ), (4.35) {∆ [-2] (-) (σ), D + Ȧ (σ )} D.B. = -i 8 γ(I) ȦA D σ η + A B [-2](I) δ(σ -σ ) + O(J -2 ), (4.36) 
where

ρ τ [+2] ρ τ [-2] A [+2](I) = (D σ η + γ (I) D + )+ -1 2 δ (I)(J) M [+2][-2] + M (I)(J) × Ω [+2](J) σ + i 4ρ τ [-2] (D σ η + γ (J) D σ η -) , ρ τ [+2] ρ τ [-2] B [-2](I) = 1 2 δ (I)(J) M [+2][-2] + M (I)(J) Ω [-2](J) σ .
Observe that in (4. with the Lagrangian L = L tw + L matter , that is the sum of the Lagrangians for the supertwistor fields

L tw = 1 2 Y Aµ V µν + ∂ ν Z A + 1 2 ȲA µ V µν -∂ ν ZA , (5.2) 
and other matter fields L matter . To the Lagrangian (5.2) there enter the world-sheet pro- that is the sum of Lagrangians for left-and right-moving fields. In particular, for the supertwistor fields it takes the form L tw, c.g. = L L-tw, c.g. + L R-tw, c.g. :

jectors V µν ± = 1 2 ( √ -γγ µν ± ε µν
L tw = eY A[+2] e µ [-2] ∂ µ Z A + e ȲA [-2] e µ [+2] ∂ µ ZA , where Y A[+2] = Y Aν e ν [+2] , ȲA [-2] = ȲA ν e ν [- 2 
(5.4)

L L-tw, c.g. = -2Y A ∂ -Z A , (5.5) L R-tw, c.g. = -2 ȲA ∂ + ZA , (5.6) 
where σ ± = τ ± σ and ,c). Such fields may be constituents of the world-sheet currents that realize generators of some Lie algebra (see, e.g. [START_REF] Berkovits | Conformal supergravity in twistor string theory[END_REF]).

∂ ± = 1 2 (∂ τ ± ∂ σ )
From the reality condition of the action (5.3) it follows that left-and right-moving supertwistors and dual supertwistors have to be considered as independent variables with real components. Such supertwistors are associated with the space-time of signature (+, +, -, -) and respective superspaces. 7 Of the primary interest is the case of N = 4 supertwistors that are dynamical fields in the twistor string models [START_REF] Witten | Perturbative gauge theory as a string theory in twistor space[END_REF], [START_REF] Berkovits | Alternative string theory in twistor space for N = 4 super-Yang-Mills theory[END_REF] This implies that bosonic and fermionic components of left-moving supertwistor belong to the fundamental representations of two SL(4, R) L groups, whereas bosonic and fermionic components of the dual supertwistor belong to their antifundamental representations. Accordingly components of ZA and ȲA supertwistors transform in the (anti)fundamental representations of two SL(4, R) R groups. 7 Detailed discussion of the reality conditions of the Berkovits twistor-string Lagrangian on the Lorentzian and Euclidean world sheets as well as real structures in the complex twistor space associated with D = 4 space-times of various signatures can be found, e.g. in [START_REF] Abou-Zeid | Einstein supergravity and new twistor string theories[END_REF].

5.2 Quantum higher-spin superconformal symmetries of twistor strings It was shown in [START_REF] Corn | Yangian in the twistor string[END_REF] that SL(4|4, R) symmetry is preserved in the twistor-string model at the quantum level, whereas the generator of the 'twisted' GL t (1, R) symmetry U has anomalous operator-product expansion with the world-sheet stress-energy tensor. This implies breaking of the corresponding symmetry. Thus infinite-dimensional symmetry that could exist in the quantum theory has to include sl(4|4, R) as finite-dimensional subalgebra.

Analysis of the symmetries on the level of superalgebra

Identification of the possible set of generators for such sl-type superalgebra it is convenient to start from consideration of those generators of the twistor-string algebra that are irreducible sl(4, R) tensors composed of the bosonic components of supertwistors. Among the level-one generators (5.17 Application of this procedure to level-two generators T γ δ(2) (σ)

{Q A β (σ), T γ δ(2) (σ )} D.B. = δ β γ Q A δ(2) -1 5 δ (δ 1 γ Q A δ 2 )β (σ)δ(σ -σ ), (5.20) 
{Q α B (σ), T γ δ(2) (σ )} D.B. = -δ (δ 1 α Q γ δ 2 )B -1 5 δ (δ 1 γ Q α δ 2 )B (σ)δ(σ -σ ) (5.21)
allows to define level-two supersymmetry generators To apply the technique of the two-dimensional conformal field theory Lagrangian (5.4) should be defined on the Euclidian signature world-sheet. To this end Wick rotation needs to be performed

Q A δ(2) = ξ A Z δ(2) , Q γ δA = T γ δ η A . ( 5 
τ → iσ 2 , σ → σ 1 ⇒ σ + → z = σ 1 + iσ 2 , σ -→ -z = -(σ 1 -iσ 2 ).
This results in the following changes of the world-sheet derivatives (5.38) Two-dimensional conformal field theory defined by the action on the Euclidean worldsheet (5.38) consists of the conformal theory for bosonic components of supertwistors that belongs to the family of βγ conformal field theories and conformal theory for fermionic components of supertwistors from the family of bc conformal field theories (see, e.g. [START_REF] Polchinski | String theory. V.I. An introduction to the bosonic string[END_REF]).

∂ + → ∂ z = 1 2 (∂ 1 -i∂ 2 ) ≡ ∂, ∂ -→ -∂ z = -
From the expression for the action (5.38) one can determine the form of the singular terms in the expansion of the operator-product of supertwistors. In the left-moving (holomorphic)

sector, on which we focus, they equal

Z A (z)Y B (w) ∼ δ A B z -w , Y B (z)Z A (w) ∼ - (-) a δ A B z -w .
For the product of the supertwistor components singular terms have the form

Z α (z)Y β (w) ∼ δ α β z -w , η A (z)ξ B (w) ∼ δ A B z -w .
By definition (see, e.g. [START_REF] Polchinski | String theory. V.I. An introduction to the bosonic string[END_REF]) primary field O(z) is characterized by the following general form of the operator-product expansion with the world-sheet stress-energy tensor L(z)

L(z)O(w) ∼ h (z -w) 2 O(w) + 1 z -w ∂O(w), (5.39) 
where h is its conformal weight. 9 The holomorphic stress-energy tensor in the theory for two free supertwistors (5.38) has the form

L tw (z) = -Y A ∂Z A ,
where Y B and Z A are primary fields of conformal weight unity and zero respectively.

From the perspective of the world-sheet conformal field theory the requirement of consistency on the quantum level for the considered in the previous subparagraphs global symmetries is the correspondence of the primary fields to their generators, i.e. their operatorproduct expansions with the stress-energy tensor need to be anomaly free (see, e.g. [START_REF] Polchinski | String theory. V.I. An introduction to the bosonic string[END_REF]).

In other words, on the r.h.s. of the products like (5.39) there should not appear terms with poles of the order higher than two. As will be shown the generators containing the factors of T or U do not satisfy this requirement.

Calculating singular terms in the operator expansion of the product of the stress-energy tensor with the densities of gl(4, R) currents

Y γ ∂Z γ (z)Y β Z α (w) ∼ δ α β (z -w) 3 - 1 (z -w) 2 Y β Z α (w) - 1 (z -w) ∂(Y β Z α )(w)
and

ξ C ∂η C (z)ξ B η A (w) ∼ - δ A B (z -w) 3 - 1 (z -w) 2 ξ B η A (w) - 1 z -w ∂(ξ B η A )(w),
one infers that quantum sl(4|4, R) generators T α β , T A B , Q α B , Q A β and T are indeed the primary fields of unit weight, while operator U is not a primary field [START_REF] Corn | Yangian in the twistor string[END_REF] L tw (z)U (w) ∼ -8 (z -w) 3 + 1 (z -w) 2 U (w) + 1 z -w ∂U (w).

To the higher-level generators (5.34) and (5.35) there also correspond primary fields of unit weight. At the same time the operator-products of the generators (5.37) with the stress-energy tensor include anomalous contributions L tw (z)T Z α(p) η A[q] (w) ∼ -p+q (z-w) 3 Z α(p) η A[q] (w) + O((z -w) -2 ), L tw (z)U Z α(p) η A[q] (w) ∼ -8+p-q (z-w) 3 Z α(p) η A[q] (w) + O((z -w) -2 ).

When p = q = 0 these operator-product expansions coincide with the operator-products of the gl(1, R) and gl t (1, R) generators with the stress-energy tensor. For p = 0, q = 0 both anomalous terms do not vanish so that associated symmetries are broken. Since generators consistent on the quantum level global symmetry is isomorphic to SL(4|4, R).

Conclusion

Present paper reviewed the following results obtained by the author:

-construction of (super)twistor formulations of the Lagrangians of bosonic string and N = 1 superstring in D = 4 dimensions. It was shown that Lagrangians of tensile superstrings in the supertwistor formulation are non-linear and include pure gauge fermionic degrees of freedom unlike the supertwistor formulations of massless superparticle and tensionless superstring models;

. 25 )

 25 Note that Eqs. (2.20)-(2.22) and (2.25) are complex and should be complemented by their conjugates. To the above set of equations one has to add those defining induced zweibein one-form

. 40 )

 40 Formulation of the Wess-Zumino term in terms of the supertwistor components exhibits the fact that the superstring action is invariant only under the super-Poincaré subgroup that enters SU (2, 2|1) superconformal symmetry. This is explained by presence of the dimensionful tension T = 1 2cα . So in the supertwistor formulation the N = 1 superstring action has the form S D=4,N =1 sstring, stw = S D=4,N =1 kin, stw + S D=4,N =1 WZ, stw .(2.41)

  It contains only half of the Grassmann-odd variables compared to the superstring action in the supertwistor formulation (2.41) that is reflected by the superscript N = 1/2. This model can be obtained from the action (2.41) by substituting equations (2.43) and (2.44) into the Wess-Zumino Lagrangian (2.36) for s = +1 and summing up the result with the Lagrangian for the kinetic term(2.35). Then the components of supertwistor Z and its dual have the following incidence relations with the superspace coordinates

U ( 1 )

 1 subgroup of the GL(1, C) = GL(2, C)/SL(2, C) group acting on the components of unnormalized dyad and the SO(2) = U (1) ⊂ SL(2, C) rotation group of the orthogonal to the string world sheet components of the local frame.Other constraints (2.55), (2.56), (2.57) and (2.60) are of the second-class. Upon transition to the Dirac brackets they need to be considered as strong equalities i.e. as the usual equalities. On the Dirac brackets that take into account primary constraints (2.56) and

3

  Twistor formulations of superstrings in D = 6 and D = 10 Minkowski superspaces

. 2 )

 2 Together these spinors make up SU (2)-symplectic Majorana-Weyl spinor of Spin[START_REF] Uvarov | Gauge symmetries of strings in supertwistor space[END_REF][START_REF] Brink | A locally supersymmetric and reparametrization invariant action for the spinning string[END_REF].Note that D = 6 charge conjugation matrix C αβ and its inverse C -1β α satisfy the relation (C αβ ) * = -C -1α β . Roman-font indices from the beginning of the Latin alphabet denote fundamental representation indices of the SU (2) group under which unit antisymmetric tensors ε ab and ε ab : ε ab ε bc = δ c a are invariant. Projection part of supertwistor v a α will be identified with one of the 4 × 2 rectangular blocks of the matrix of D = 6 spinor Lorentz harmonics. Then mentioned SU (2) group represents one of the factors of the Spin(4) = SU (2) × SU (2) group. The latter is the spin covering of the SO(4) group of rotations of the local frame vectors in the orthogonal space to the string world-sheet. Anticommuting components of supertwistor η ia also carry index i of the fundamental representation of another SU (2) group. It is the R-symmetry subgroup of OSp(8 * |2) supergroup under which transform Grassmann coordinates of the D = 6 N = 1 superspace. Respective invariant metric tensor ε ij is used in the definition of the SU (2)-symplectic Majorana-Weyl condition (3.8) that these coordinates obey. D = 6 spinor Lorentz harmonics [9], [10] satisfy the reality (v (α) α ) * = -C ( α) (β) v the number of their independent components to dimension of the Spin(1, 5) group equal 15. The Lorentz harmonics used for description of (super)strings in the orthonormal frame method take value in the coset SO(1, D -1)/(SO(1, 1) × SO(D -2)). Accordingly 4 × 4 matrix of D = 6 spinor Lorentz harmonics decomposes on the 4 × 2 rectangular blocks

  ) where italic Latin letters correspond to the indices of the fundamental representations of two SU (2) factors in denominator. Each of these blocks is considered as projection part of OSp(8 * |2) supertwistor (3.1). So the Lagrangian of the D = 6 superstrings in the supertwistor formulation will contain two OSp(8 * |2) supertwistors

) where D = 6

 6 Minkowski-space coordinates are realized as antisymmetric 4 × 4 matrices x αβ = x m γαβ m and θ αi are the N = 1 superspace Grassmann coordinates. Analogously to bosonic components of supertwistors they obey the SU (2)-symplectic Majorana-Weyl condition (θ αi ) * = -C αβ ε ij θ βj . (3.8) So the spinor θ αi has eight real independent components. As a consequence from (3.8) and (3.2) it follows that Grassmann-odd components of supertwistors obey the condition (η ia ) * = -ε ab ε ij η bj and thus have four real independent components. In order for the incidence relations (3.7) to hold on the supertwistors (3.6) there have to be imposed 10 constraints

. 10 )

 10 Let us show that after imposition of the constraints (3.9) supertwistors(3.6) have the same number of independent components as there are D = 6 N = 1 superspace coordinates. As was shown above each supertwistor has four real Grassmann-odd components so their sum equals number of real Grassmann coordinates of the superspace. Also each supertwistor has 16 real bosonic components so that pair of supertwistors constrained by (3.9) and (3.4) has 21 components. Their number equals the sum of the number of D = 6 space-time coordinates and independent components of the Lorentz-harmonics. 3.2 Supertwistor formulation of D = 6 N = 1 superstring Consider first the action of the D = 6 N = 1 superstring in the Lorentz-harmonic formulation

  i) = 1, ..., 4) are frame vectors orthogonal to the world sheet and matrices σ(i) a ḃare SO(4)-invariant.In the twistor formulation projections of the supersymmetric one-form ω m (d) onto the tangent to the world-sheet frame components n [±2] m are expressed in terms of the introduced supertwistors (3.6)

  left-invariant Cartan forms that generalize spin coefficients (2.14) and (2.15). In the method of admissible variations these one-form with differentials replaced by variations are independent variation parameters for the Lorentz harmonics. Obtained supertwistor formulation of the D = 6 N = 1 superstring (3.14) belongs to results submitted to defence. Let us derive twistor form of the superstring equations. Due to the SO(1, 1) × SO(4) gauge symmetry of its action in the Lorentz-harmonic (3.11) and supertwistor formulations (3.14) equations corresponding to variation parameters Ω [+2][-2] (δ) and Ω (i)(j) (δ) are satisfied identically. Equations associated with the parameters Ω [±2](i) (δ) related to the SO(1, 5)/(SO(1, 1) × SO(4)) Cartan forms and variations of the zweibein components can be brought to the form

. 17 )

 17 Similarly to fermionic equations of the D = 4 N = 1 superstring (cf. (2.45)) for any value of the parameter s = ±1 one of the above equations turns into identity that according to the second Noether theorem is the consequence of the κ-invariance of the action(3.14). So also in the case of the D = 6 N = 1 superstring after transition from the superspace to the supertwistor formulation there remain pure gauge fermionic degrees of freedom in the Lagrangian.Explicit form of the κ-variations of the components of OSp(8 * |2) supertwistors and zweibein depends on the value of the parameter s. When s = 1, we have

Like in the case of the D = 4 N

 4 = 1 superstring one can introduce reduced supertwistor model corresponding to the D = 6 N = 1 superstring. Its action can be obtained by substituting Eq. (3.16) into the Wess-Zumino Lagrangian. When s = 1 action of the reduced model takes the form S D=6,N =1/2 sstring,stw,s=1 = 1 4

(3. 22 )

 22 can be obtained by fixing the κ-symmetry gauge by the conditions η 1i+a = η 2i+a and η 1i-ȧ = η 2i-ȧ in supertwistor formulation of the D = 6 N = (2, 0) superstring action. This superstring model is formulated in the D = 6 superspace with two Grassmann coordinates θ αi1 and θ αi2 that are SU (2)-symplectic Majorana-Weyl Spin(1, 5) spinors of the same chirality. Its action in the supertwistor formulation is the generalization of the action (3.14). Action of the reduced model (3.22) includes N = 1 supertwistors defined in (3.21). It should be noted that (super)twistors, which enter action functionals (3.18), (3.19) and (3.22), satisfy algebraic constraints analogous to (3.9). They represent mixture of the first-class constraints generating SU (2) × SU (2) gauge symmetry and the second-class ones.

3. 3 D

 3 = 10 supertwistors and Lorentz harmonics Consideration of the supertwistor formulation of D = 6 N = 1 superstring in the preceding subsection served as a preparatory step to the study of supertwistor formulation of the D = 10 N = 1 superstring to which this subsection is devoted. As discussed in the introduction to this Section D = 10 supertwistor

(3. 24 )

 24 As is known[START_REF] Bandos | Spinor Cartan moving n-hedron, Lorentz-harmonic formulations of superstrings, and κ-symmetry[END_REF] adapted to description of superstrings 16 × 16 matrix of the D = 10 spinor Lorentz-harmonics v (α) α = (v + αA , v - α Ȧ) takes value in the Spin(1, 9)/(SO(1, 1) × SO(8)) coset. It is decomposed on two 16 × 8 blocks in accordance with the decomposition of the Majorana-Weyl spinor representation of the right symmetry group Spin(1, 9) R on the 8 c and 8 s Majorana-Weyl spinor representations of the covering of SO(8) group of the local frame rotations in the orthogonal space to the world sheet. Accordingly introduced 16-plet of supertwistors decomposes on two octets of supertwistors

) where x αβ = x m σα β m

 β ( m = 0, 1, ..., 9) and symmetric 16×16 matrices σα β m , σ mα β are analogues of the relativistic Pauli matrices in D = 10 dimensions. For the incidence relations (3.26) to hold supertwistor components have to be constrained. The OSp(32|1)-invariant constraints

. 28 )

 28 These constraints break OSp(32|1) symmetry down to D = 10 N = 1 super-Poincaré symmetry that is the symmetry of tensile superstrings in D = 10 dimensions and contain 16 × 8 blocks of the matrix of inverse spinor Lorentz harmonics

3. 4

 4 Supertwistor formulation of D = 10 N = 1 superstring Consider now the representation for D = 10 N = 1 superstring action in terms of the OSp(32|1) supertwistors (3.25). As in the course of discussion of the supertwistor formulations of lower-dimensional superstrings let us start from recalling Lorentz-harmonic formulation of the D = 10 N = 1 superstring action [3], [4] S D=10,N =1 sstring = S D=10,N =1 kin + S D=10,N =1 WZ , where kinetic

  d) ∧ dθ ασ mα β θ β terms include one-forms ω m(d) = dx m -idθ ασ m αβ θ β invariant under D = 10 N = 1 Poincaré supersymmetry. Kinetic term (3.30) includes also two tangent to the world sheet light-like vectors n [±2] m (ξ) from the local D = 10 orthonormal frame n

Ȧ are 8 ×

 8 8 chiral γ-matrices in D = 8 dimensions. Generalizing the discussion of subsection (3.2) to D = 10 dimensions, projections of the one-form ω m(d) on the local frame vectors can be expressed in terms of the OSp(32|1) supertwistors (3.25) using the representation (3.31)

(3. 35 )

 35 They are invariant only under the D = 10 N = 1 super-Poincaré subgroup of the OSp(32|1) generalized superconformal symmetry. Extended differentials of odd supertwistor components η + A and η - Ȧ

. 38 )

 38 Note that equations associated with the parameters Ω+2-2 (δ) and ΩIJ (δ) are satisfied identically as a consequence of the SO(1, 1) × SO(8) gauge invariance of the action(3.34).Analogously equations associated with the parameters ω ±2 (δ) turn into identities because of the reparametrization symmetry of the action. Using Eqs. (3.37) and (3.38) fermionic equations of the superstring are brought to the following form(1 + s)e [-2] ∧ Dη + A = 0, (1 -s)e [+2] ∧ Dη - Ȧ = 0. (3.39)Such form of these equations is analogous to that for the D = 4 and D = 6 superstrings (cf. Eqs. (2.45) and (3.17)) and reflects action invariance under the irreducible κ-symmetry transformations.

  analogously to the cases of superstrings in D = 4 and D = 6 dimensions let us introduce reduced supertwistor model with the Lagrangian quadratic in supertwistors that corresponds to the D = 10 N = 1 superstring. Let us define its action by the integral

( 3 .

 3 [START_REF] Mezincescu | Supertwistors and massive particles[END_REF]. Action(3.40) corresponds to the s = 1 value of the sign parameter in (3.34), whereas action (3.41) to the s = -1 value. Incidence relations for the components of supertwistors that enter (3.40) and (3.41) have the form

Proposed reduced supertwistor models ( 3 .

 3 40), (3.41) and (3.43) are submitted to defence. 4 Hamiltonian description of D = 10 N = 1 superstring in supertwistor formulation This Section is devoted to study of the D = 10 N = 1 superstring in the supertwistor formulation (3.34) as a constrained Hamiltonian system. In analogy to consideration in subsection 2.3 of the Hamiltonian mechanics of D = 4 reduced supertwistor model we will use world-sheet vector density in place of the zweibein components, on which the superstring Lagrangian depends non-linearly. Then we come to the superstring action S D=10,N =1 sstring,stw = Σ d 2 ξL D=10,N =1 sstring,stw (ξ) (4.1)

(4. 16 )In [ 4 ]

 164 analogous constraints were named covariant momentum densities. In the supertwistor formulation covariant momentum densities generate infinitesimal SO(1, 9) R transformations of the supertwistor components. Note that their SO(1, 1) × SO(8) ⊂ SO(1, 9) R subgroup is the gauge symmetry of the action (4.1) so that the constraint (4.13) after adding contributions of the world-sheet vector density and conjugate momenta and the constraints(4.16) belong to the first class, whereas (4.14) and (4.15) are the second-class constraints.Analogously constraints on the components of supertwistors (3.27) and (3.28) can also be treated as strong equalities after introduction of the Dirac brackets. To this end define projections of the constraints(4.4) 

( 4 .

 4 [START_REF] Omnes | A new geometric approach to the relativistic string[END_REF])-(4.[START_REF] Uvarov | Supertwistor formulation for higher dimensional superstrings[END_REF]) and (4.5) with bosonic a(τ, σ), b(τ, σ), l(τ, σ) and fermionic λ(τ, σ) Lagrange multipliers. On the primary constraints imposed is the consistency requirement according to which they should have weakly vanishing Poisson bracket relations with the total Hamiltonian density. This requirement may lead to the secondary constraints or to the equations that determine Lagrange multipliers. Calculation of the Poisson brackets of the primary constraints with the total Hamiltonian yields 10 bosonic secondary constraints

  [START_REF] Uvarov | Supertwistor formulation for higher dimensional superstrings[END_REF]) generate the SO(1, 1) × SO(8) gauge symmetry of the superstring action (4.1), while eight constraints

4. 2

 2 Dirac bracket algebra of the first-class constraints In the previous subsection there were obtained expressions for 33 bosonic and 8 fermionic first-class constraints of the D = 10 N = 1 superstring model in the supertwistor formulation. Remaining primary and secondary constraints are of the second class. They can be arranged according to their Grassmann parity and the SO(8) representations. SO(8) vector constraints are presented by (4.14), (4.15) and ∆ (I)

(4. 34 )

 34 With the aid of (4.34) one can calculate the Dirac brackets for the superstring phasespace variables. For instance, for two octets of supertwistors (3.25) the Dirac brackets to leading order in α equal

  Taking into account the Dirac bracket relations for the phase-space variables it is possible to calculate Dirac bracket algebra of the first-class constraints. The Dirac brackets of the generators of so(1, 1) and so(8) gauge symmetries (4.27) and (4.16) with other first-class constraints coincide with respective Poisson brackets because Poisson brackets of the so(1, 1) and so(8) generators with the second-class constraints are determined by the SO(1, 1) × SO(8) representations of the latter. The Dirac brackets of other first-class constraints in general differ from their Poisson brackets. So for the κ-symmetry generators (4.28) one obtains

  [START_REF] Fedoruk | Massive twistor particle with spin generated by Souriau-Wess-Zumino term and its quantization[END_REF]) contribution of the Poisson brackets vanishes and leading in α terms are quadratic in the first-class constraints. At the same time the Dirac brackets (4.36) to the lowest order in the supermatrix J -1 coincide with the Poisson brackets. Finally all the First there will be examined global symmetry of the Lagrangian for left(right)-moving free supertwistor variables. It has more simple structure and its generators are given by the set of all monomials constructed from the products of an arbitrary number L ≥ 0 of P SL(4|4, R) supertwistors with one dual supertwistor. Its finite-dimensional subalgebra is spanned by generators of the gl(4|4, R) superalgebra and single dual supertwistor. These are L = 1 and L = 0 monomials respectively. In the Berkovits model the Lagrangians for left(right)moving supertwistor variables include generators of the gl(1, R) ⊂ gl(4|4, R) symmetry with arbitrary multiplier (see Eq. (5.9)). So these symmetries are the gauge ones. Therefore the relations of the global symmetry algebra of each of these Lagrangians are obtained from the relations of the infinite-dimensional algebra of these monomials if one sets to zero the generator of respective gl(1, R) symmetry. Finite-dimensional subalgebra of this global symmetry is spanned by the generators of the psl(4|4, R) superalgebra and the generator of 'twisted' gl t (1, R) symmetry as well as the dual supertwistor. It will be shown that in the quantum theory these classical infinite-dimensional symmetries break down to the (P )SL(4|4, R) one.5.1 Classical higher-spin superconformal symmetries of twistor stringsConsider the action functional of a model with two pairs of unconstrained supertwistors on the world sheet of Lorentzian signature

  ). Using the representation for inverse world-sheet metric and the Levi-Civita tensor density via the inverse zweibein components in the light-cone basis e µ f = e µ [+2] , e µ [-2] (see, e.g.[START_REF] Bandos | Twistor-like approach in the Green-Schwarz D = 10 superstring theory[END_REF]) these projectors factorizeV µν ± = 2ee µ [±2] e ν [∓2]. So the Lagrangian (5.2) can be written in the form

  ] . Similar form have the Lagrangians for the fermionic fields and ghosts in the model of the Ramond-Neveu-Schwarz string. Therefore to quantize twistor strings and calculate correlation functions of operators of their physical states one can apply known methods of the two-dimensional conformal field theory.In the conformal gauge for the zweibein e f µ = e ϕ 2 δ f µ and world-sheet metric γ µν = e ϕ η µν the action (5.1) translates to S c.g. = Σ dτ dσL c.g.(5.3) with the Lagrangian L c.g. = L tw, c.g. + L matter, c.g.

  are world sheet coordinates and derivatives in the light-cone basis. Supertwistors Z A = (Z α , η A ) and ZA = ( Zα , ηA ) parameterize the product of two supertwistor spaces T × T and transform as scalars under world-sheet conformal symmetry. Dual supertwistors Y B = (Y β , ξ B ) and ȲB = ( Ȳβ , ξB ) transform as (anti-)self-dual world-sheet vectors and in the world-sheet conformal field theory to them there correspond primary fields of conformal weight unity. For brevity world-sheet indices of dual supertwistors will be omitted. Left-and right-moving non-twistor matter fields with the Lagrangian L matter, c.g. should give contribution to anomaly of the world-sheet conformal symmetry equal c = c = 26 to cancel those of the ghost fields for this symmetry (b, c) and ( b

  . Penrose transform for homogeneous functions of one supertwistor gives D = 4 N = 4 massless supermultiplets including those of the supersymmetric Yang-Mills theory and Einstein supergravity. Conformal group of D = 4 space-time of such signature is SO(3, 3) = SL(4, R) and its minimal N = 4 supersymmetric extension is P SL(4|4, R) with the bosonic subgroup SL(4, R) × SL(4, R).

  ) these are T α β . Respective level-L (L > 1) generators have the formT α β(L) = Y α Z β(L) -1 L+3 (Y Z)δ β(1) α Z β(L-1) . (5.19)From the relations (5.14) one infers that the Dirac brackets of the generators of level L and M of the twistor-string superalgebra close on the generators of the level L + M -1. In particular, the Dirac brackets of the level-one generators (5.17) and level-L generators yield level-L generators. These Dirac brackets determine transformation properties of the higherlevel generators under two sl(4, R) symmetries and 32 supersymmetries from the psl(4|4, R) superalgebra. This feature of the level-one generators can be used to obtain expressions for irreducible level-L generators by successive calculation of the Dirac brackets of the bosonic generators (5.19) with the supersymmetry generators Q A β and Q α B .
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 229402 From the expressions for non-zero Dirac brackets of these generators with Q α B and Q A β one can determine other bosonic level-two generators{Q α B (σ), Q C δ(2) (σ )} D.B. = δ B C T α δ(2) (σ)δ(σ -σ ) +δ (δ 1 α T C δ 2 )B + δ B C (σ)δ(σ -σ ),(5.23){Q A β (σ), Q γ δD (σ )} D.B. = δ β γ T A δD -1 4 δ δ γ T A βD (σ)δ(σ -σ ) +δ D A T γ βδ + 9 40 T -1 40 U δ β γ Z δ -1 4 δ δ γ Z β (σ)δ(σ -σ ),(5.24)

1 2 (∂ 1 +

 21 i∂ 2 ) ≡ -∂, the world-sheet area elementdτ dσ → idσ 1 dσ 2 = i 2 d 2 z and supertwistors Y A (τ, σ) → Y A (z, z), ȲA (τ, σ) → -ȲA (z, z).So that the Euclidean action for supertwistor fields takes the formS E = Σ E d 2 z(Y A ∂Z A + ȲA ∂ ZA ).

( 5 .

 5 [START_REF] Mezincescu | Supertwistors and massive particles[END_REF]) and(5.35) are linked with other level-L generators by level-one supersymmetries (cf. Eqs. (5.28)-(5.32)) higher-spin symmetries are broken for all values of L > 1. For L = 1

  are invariant only under the super-Poincaré subgroup of SU (2, 2|1) symmetry.

	The first two terms on the r.h.s. include six parameters (2.14) and (2.15) associated with
	the spin coefficients. They come from variations of the dyad components taking into account
	the incidence relations (2.31). The third and fourth terms correspond to variations of the
	superspace coordinates in the primary spinor parts of supertwistors and include one-forms
	(2.34), (2.37) and (2.40) in which variations were substituted for differentials. The last terms
	on the r.h.s. of (2.42) represent variations of the Grassmann-odd supertwistor components
	singled out by the projection supermatrix J A B .
	From equations for the zweibein components it follows that they are expressed in terms
	of the one-forms (2.34)

Note that infinite-dimensional conformal symmetries in the massless N = 1 superparticle models in the supertwistor formulation were revealed in[START_REF] Townsend | Higher-spin symmetries of the massless (super)particle[END_REF].

It is assumed that local composite operators are normal-ordered but normal ordering signs : : will be omitted.

Dirac brackets of the reparametrization generators include contributions proportional to the products of the first-class constraints

(-) δ(σ-σ )

×B [-2](I) δ(σ -σ ) + O(J -2 ).

5 Infinite-dimensional extensions of superconformal symmetry in twistor-string models

As is known, appearance of the first twistor-string models [START_REF] Witten | Perturbative gauge theory as a string theory in twistor space[END_REF], [START_REF] Berkovits | Alternative string theory in twistor space for N = 4 super-Yang-Mills theory[END_REF] stimulated active study of the spinor and twistor representations of the scattering amplitudes in gauge theories and allowed to unveil their rich symmetry structure (see, e.g. monograph [START_REF] Elvang | Scattering Amplitudes in Gauge Theory and Gravity[END_REF]). Unlike the Neveu-Schwarz-Ramond and Green-Schwarz superstrings the spectrum of twistor string models contains finitely many states. In particular, in the Berkovits model [START_REF] Berkovits | Alternative string theory in twistor space for N = 4 super-Yang-Mills theory[END_REF] the states of open-string sector (the only one explored to date) are described by the multiplets of the D = 4 N = 4 supersymmetric Yang-Mills theory and conformal supergravity that is non-unitary theory [START_REF] Berkovits | Conformal supergravity in twistor string theory[END_REF]. In Ref. [START_REF] Dolan | Complete equivalence between gluon tree amplitudes in twistor string theory and in gauge theory[END_REF] it was proved the equivalence of the correlation functions of operators corresponding to particles of the super-Yang-Mills multiplet and treelevel amplitudes in this theory. However, in the loop diagrams it appears impossible to separate contributions of particles of the conformal supergravity multiplet from those of particles of the super-Yang-Mills multiplet that is the drawback of the Berkovits model.

Note that later there were proposed other twistor-string models, physical states of which include multiplets of Einstein supergravities [START_REF] Skinner | Twistor strings for N = 8 supergravity[END_REF], [START_REF] Mason | Ambitwistor strings and the scattering equations[END_REF].

To gain further insights into the properties of twistor strings it is important to identify their classical and quantum symmetries. Since in the N = 4 super-Yang-Mills theory it is observed extension of the superconformal symmetry to the infinite-dimensional one in the limit of zero coupling [START_REF] Sundborg | Stringy gravity, interacting tensionless strings and massless higher spins[END_REF], [START_REF] Witten | Space-time reconstruction[END_REF], one could expect appearance of the infinite-dimensional symmetries also in the twistor-string models. In [START_REF] Corn | Yangian in the twistor string[END_REF] it was found an extention of the obvious global P SL(4|4, R) symmetry of the Berkovits twistor string to non-local infinite-dimensional Yangian symmetry. This extention is similar to corresponding symmetry of the N = 4

supersymmetric Yang-Mills theory related to its integrability [START_REF] Minahan | The Bethe-Ansatz for N = 4 super Yang-Mills[END_REF], [START_REF] Dolan | A relation between approaches to integrability in superconformal Yang-Mills theory[END_REF].

In this Section we analyze classical global symmetries of the Berkovits twistor string model and its extension to the case of unconstrained supertwistors and show that these symmetries represent infinite-dimensional generalizations of the superconformal symmetry. 6 Lagrangian (5.4) is invariant under global GL(4|4, R) L × GL(4|4, R) R symmetry. Besides transformations from four SL(4, R) subgroups and supersymmetry transformations it includes independent GL(1, R) rescalings of the left-and right-moving supertwistor fields

So supertwistors actually parameterize two projective supertwistor spaces RP 3|4 . Two other scaling symmetries we name 'twisted'

since bosonic and fermionic components of supertwistors and dual supertwistors transform with opposite signs.

In the Berkovits model Let us focus on the sector of left-movers with the Lagrangian (5.5). Definition of momenta conjugate to supertwistors yields the second-class constraints. So introducing the Dirac brackets we obtain the following non-zero relations between the components of supertwistor and the dual supertwistor

that are graded-antisymmetric

In the component form they read

Analogous relations also hold for the right-movers described by the Lagrangian (5.6).

In our work [START_REF] Uvarov | Conformal higher-spin symmetries in twistor string theory[END_REF] it was shown that global symmetry of the Lagrangian (5.5) is infinitedimensional. Variations of the supertwistors follow from their Dirac brackets relations (5.10)

with the generating functional

where the parameters Λ B A L ...A 1 are graded-symmetric in the lower indices. Grassmann parity of their components is determined by the sum of parities of the indices assuming that indices of bosonic components of supertwistors have parity zero and indices of the fermionic components have parity unity. So that the global symmetry includes both bosonic higherspin symmetries and higher-spin supersymmetries. For fixed value of L transformation rules for supertwistors are the following

(5.12)

Associated Noether current densities up to a numerical factor are given by the monomials

In (5.12) and (5.13) introduced was a concise notation for the product of supertwistors

It is in general assumed graded symmetry of the sets of P SL(4|4, R) indices denoted by the same letters. 8 Similar concise notation is used for the products of bosonic and fermionic components of supertwistors

) that are (anti)symmetric. On the Dirac brackets Noether current densities (5.13) generate infinite-dimensional superalgebra that in Ref. [START_REF] Uvarov | Conformal higher-spin symmetries in twistor string theory[END_REF] was named the twistor-string superalgebra

= (δ

(5.14)

Finite-dimensional subalgebra of the twistor-string algebra is spanned, apart from the order-zero generator Y A (σ), that generates constant shifts of the supertwistor components, by the quadratic monomial

(5.15)

Dirac brackets of monomials (5.15) generate the gl(4|4, R) superalgebra relations

(5.16)

8 Subscript L in the notation of the symmetry groups and algebras will be omitted in what follows as the discussion is concentrated on the sector of left-movers only.

gl(4|4, R) current density (5.15) decomposes on the following irreducible components

where tilde over the current densities denotes their tracelessness. The densities of two sl(4, R) 

Current densities Q α B (σ) and Q A β (σ) are generators of the supersymmetry transformations realized on the supertwistor components

where ε α A and A α are independent Grassmann-odd parameters with 16 real components each. Current densities T (σ) and U (σ) generate GL(1, R) and GL t (1, R) transformations of components of the supertwistors given in (5.7) and (5.8).

gl(4|4, R) superalgebra relations (5.16) can be presented in the component form

Note that T (σ) commutes on the Dirac brackets with all other gl(4|4, R) current densities thus forming an Abelian ideal. The density of the 'twisted' gl t (1, R) current U (σ) does not enter the r.h.s. of the relations (5.18). So the gl(4|4, R) superalgebra has the structure of the semidirect sum of sl(4|4, R) and gl t (1, R).

where

(5.25)

Proceeding further one finds the complete set of irreducible level-two generators 2] ;

(5.26)

and

(5.27)

The operators associated with the generators (5.27), as will be shown below, are not the primary fields in the world-sheet conformal field theory and hence corresponding symmetries are broken on the quantum level. Since these generators appear on the r.h.s. of relations (5.23) and (5.24) this implies breaking of the level-two supersymmetries generated by

and Q α βB . Accordingly from the relations (5.20) and (5.21) it follows that bosonic symmetry generated by T γ δ(2) also gets broken. So that classical level-two symmetries break in the quantum theory.

Analogous calculation of the Dirac bracket relations of the level-L (L > 2) bosonic generators (5.19) and level-one supersymmetry generators

yields level-L supersymmetry generators

(5.30)

In its turn expressions for other bosonic generators are determined by the Dirac bracket relations of the generators (5.30) with the level-one supersymmetry generators

where

and so on. Resulting complete set of irreducible level-L generators includes the following bosonic

and fermionic generators p) , q = 0, 2, 4, p + q = L.

(

Relevant (traceless) products of the bosonic components of supertwistors are defined in (5.19) and the definition of the (traceless) products of fermionic components is given in (5.17), (5.26) and by the expressions

In this set there are also the generators

to which, as will be demonstrated in the next paragraph, do not correspond primary operators in the world-sheet conformal field theory. They arise on the r.h.s. of the relations (5.31) and (5.32) and cause breaking of the level-L symmetries in analogy with those of level-two symmetries.

In the Berkovits twistor string model GL(1, R) symmetry is the gauge one so that generators carrying the factor of T need to be set to zero. To exclude other generators, to which do not correspond primary fields, it would be necessary to also consider 'twisted' GL t (1, R)

symmetry as a gauge one. However, to the generator of this symmetry U also does not correspond a primary field and therefore generators having the factor of U cannot be set to zero.

So we conclude that on any level L > 1 it is not possible to find a set of the generators with