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Abstract

In search problems, a mobile searcher seeks to locate a target that
hides in some unknown position of the environment. Such problems
are typically considered to be of an on-line nature, in that the tar-
get’s position is unknown to the searcher, and the performance of a
search strategy is usually analyzed by means of the standard frame-
work of the competitive ratio, which compares the cost incurred
by the searcher to an optimal strategy that knows the location
of the target. However, one can argue that even for simple search
problems, competitive analysis fails to distinguish between strate-
gies which, intuitively, should have different performance in practice.
Motivated by the above observation, in this work we introduce and
study measures supplementary to competitive analysis in the context
of search problems. In particular, we focus on the well-known prob-
lem of linear search, informally known as the cow-path problem, for
which there is an infinite number of strategies that achieve an opti-
mal competitive ratio equal to 9. We propose a measure that reflects
the rate at which the line is being explored by the searcher, and which
can be seen as an extension of the bijective ratio over an uncountable
set of requests. Using this measure we show that a natural strategy
that explores the line aggressively is optimal among all 9-competitive
strategies. This provides, in particular, a strict separation from the
competitively optimal doubling strategy, which is much more conser-
vative in terms of exploration. We also provide evidence that this
aggressiveness is requisite for optimality, by showing that any optimal
strategy must mimic the aggressive strategy in its first few explorations.
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1 Introduction

Searching for a hidden target is an important paradigm in computer science
and operations research, with numerous applications. A typical search problem
involves a search environment, a mobile searcher (who may, or may not, have
knowledge of the environment) and a hider (sometimes also called target) who
hides at some position within the environment that is unknown to the searcher.
The objective is to define a search strategy, i.e., a traversal of the environment,
that optimizes a certain efficiency criterion. A standard approach to the latter
is by means of competitive analysis, in which we seek to minimize the worst-case
cost for locating the target, divided by some concept of “optimal” solution; e.g.,
the minimum cost to locate the target once its position is known. Even prior
to the advent of online computation and competitive analysis, search games
had already been studied under such normalized measures within Operations
Research [12]. Explicit studies of the competitive ratio and the closely related
search ratio were given in [10] and [32], respectively, and led to the development
of online searching [14, 27] as a subfield of online computation. See also [1] for
an in-depth treatment of search games, including the role of payoff functions
that capture the competitive ratio.

In this work we revisit one of the simplest, yet fundamental search prob-
lems, namely the linear search problem, informally also known as the cow-path
problem. The setting involves an infinite (i.e., unbounded) line, with a point O
designated as its origin, a searcher which is initially placed at the origin, and
an immobile target which is at some position on the line that is unknown to
the searcher. More specifically, the searcher does not know whether the hider
is at the left branch or at the right branch of the line. The searcher’s strategy
S defines its exploration of the line, whereas the hider’s strategy H is deter-
mined by its placement on the line. Given strategies S,H, the cost of locating
the hider, denoted by c(S,H) is the total distance traversed by the searcher
at the first time it passes over H. Let H denote the distance of the hider from
the origin. The competitive ratio of S, denoted by cr(S), is the worst-case
normalized cost of S, among all possible hider strategies. Formally,

cr(S) = sup
H

c(S,H)

H
. (1)

It has long been known [11, 23] that the competitive ratio of linear search
is 9, and is achieved by a simple doubling strategy: in iteration i, the searcher
starts from O, explores branch i mod 2 at a length equal to 2i, and then returns
to O. However, this strategy is not uniquely optimal; in fact, there is an infinite
number of competitively optimal strategies for linear search (see Lemma 2
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in Section 3). In particular, consider an “aggressive” strategy, which in each
iteration searches a branch to the maximum possible extent, while maintaining
a competitive ratio equal to 9. This can be achieved by searching, in iteration
i, branch i mod 2 to a length equal to (i+ 2)2i+1 (see Corollary 3).

While both doubling and aggressive are optimal in terms of the compet-
itive ratio, there exist realistic situations in which the latter may be preferable
to the former. Consider, for example, a search-and-rescue mission for a miss-
ing backpacker who has disappeared in one of two (very long) concurrent,
hiking paths. Assuming that we select our search strategy from the space of
9-competitive strategies, it makes sense to choose one that is tuned to discov-
ering new territory, rather than a conservative strategy that tends to often
revisit already explored lengths of the area. Another illustrative example is
demining. Suppose that a demining team must locate and defuse a mine that
is hidden along a very long line. Being competitive in this case should not be
the only efficiency criterion, but rather one would like also to demine as large
a length as possible, within a certain amount of time.

With the above observation in mind, we first need to quantify what consti-
tutes efficiency in exploration. To this end, given a strategy S and ` ∈ R+, we
define D(S, `) as the cost incurred by S the first time the searcher has explored
an aggregate length equal to `, combined in both branches. Formally, given
a time t, and assuming a unit-speed searcher, let L(S, t) and R(S, t) denote
the lengths that have been explored by the searcher at time t, to the left and
to the right of the origin, respectively. Then D(S, `) is the earliest time t for
which L(S, t) + R(S, t) = `. An efficient strategy should be such that D(S, `)
is small, for all `. Unfortunately, this criterion by itself is insufficient: Consider
a strategy that first searches one branch to a length equal to L, where L is
very large. Then D(S, `) is as small as possible for all ` < L; however, this is
hardly a good strategy, since it all but ignores one of the branches (and thus
its competitive ratio becomes unbounded as L→∞).

To remedy this situation, we will instead use the above definition in a way
that will allow us a pairwise comparison of strategies, which also considers all
possible explored lengths. More formally, we define the following measure.

Definition 1 Let S1, S2 denote two search strategies, we define the discovery ratio
of S1 against S2, denoted by dr(S1, S2), as

dr(S1, S2) = sup
`∈R+

D(S1, `)

D(S2, `)
.

Moreover, given a class A of search strategies, the discovery ratio of S against the
class A is defined as

dr(S,A) = sup
S′∈A

dr(S, S′).

In the case A is the set of all possible strategies, we simply call dr(S,A) the discovery
ratio of S, and we denote it by dr(A).

Intuitively, the discovery ratio preserves the worst-case nature of competi-
tive analysis, and at the same time bypasses the need for an “offline optimum”
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solution. Note that if a strategy S has competitive ratio c then it also has dis-
covery ratio c; this follows easily from the fact that for every hider position H,
c(S,H) ≥ D(S,H). However, the opposite is not necessarily true.

It is worth pointing out that one could have defined the discovery ratio
over a discrete, countable space (i.e., the target hides at some integer distance
from the origin), which turns out to be identical to the bijective ratio. This
performance measure was introduced in [8] as an extension of (exact) bijective
analysis of online algorithms [7], and which in turn is based on the pairwise
comparison of the costs induced by two online algorithms over all request
sequences of a certain size. Bijective analysis has been applied in fundamental
online problems (with a discrete, finite set of requests) such as paging and list
update [9], k-server [8, 17], and online search1 [18].

In what concerns linear search, in this work we choose to present the analy-
sis over a “continuous” space of requests for two reasons. First, we demonstrate
that this is indeed possible, which can be useful for other online problems which
are defined over a continuous setting of requests (e.g., k-server problems defined
over a metric space rather than over a finite graph). Second, the discretization
introduces certain unnecessary and undesirable technical issues (e.g., in the
choice of the “right” value t for strategy Rt, see Lemma 4). While the analy-
sis is still tractable for our problem, for more complex search domains such as
star search, the discrete analysis may be too complicated to yield results. We
further discuss the connections between the discovery and the bijective ratios
in Section 4.

The above observation implies that the discovery ratio inherits the appeal-
ing properties of bijective analysis, which further motivates its choice. In
particular, note that bijective analysis has helped to identify theoretically
efficient algorithms which also tend to perform well in practice (such as Least-
Recently-Used for paging [9], and greedy-like k-server policies for certain types
of metrics [8]). Furthermore, if an algorithm has bijective ratio c, then its aver-
age cost, assuming a uniform distribution over all request sequences of the
same length, is within a factor c of the average cost of any other algorithm.
Thus, bijective analysis can be used to establish “best of both worlds” types
of performance comparisons. In fact, assuming again uniform distributions,
much stronger conclusions can be obtained, in that bijective analysis implies
a stochastic dominance relation between the costs of the two algorithms [8].
However, since the search domain is infinite, one must be careful in defining
a uniform distribution of requests. More specifically, one could fix L ≥ 1 and
consider the uniform density function on the space [−L,−1] ∪ [1, L] (where
the origin is assumed to be at 0). Thus, the probability that a request is at
distance at most x from the origin is (x − 1)/(L − 1). Our results then cor-
respond to the setting in which L is unknown to the algorithm, and thus can
be arbitrarily large. For known, and thus bounded L, the situation is much
more complicated, since the optimal competitive ratio now depends on L and

1In [18], online search refers to the problem of selling a specific item at the highest possible
price, and is not related to the problem of searching for a target.
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does not have a closed formula [16]. Our overall techniques still apply but the
results unavoidably will be much more technical, and probably not tight.

It should be noted that the central question we study in this work is related
to a phenomenon that is not unusual in online computation. Namely, for cer-
tain online problems, competitive analysis results in a very coarse performance
classification of algorithms. This is due to the pessimistic, worst-case nature
of the competitive ratio. The definitive example of an online problem in which
this undesired situation occurs is the (standard) paging problem in a virtual
memory system, which motivated the introduction of several analysis tech-
niques alternative to the competitive ratio (see the surveys [30] and [22]). In
our work we demonstrate that a similar situation arises in online search (which,
perhaps surprisingly, has eluded attention so far) and we propose a remedy
by means of the discovery ratio. We emphasize, however, that in our main
results, we apply the discovery ratio as supplementary to the competitive ratio,
instead of using it antagonistically as a measure that replaces the competi-
tive ratio altogether. Thus, our analysis gives establishes best-of-both-worlds
performance guarantees.

1.1 Contribution

We begin, in Section 2, by identifying the optimal tradeoff between the compet-
itive ratio of a strategy and its discovery ratio (against all possible strategies).
The result implies that there are strategies of discovery ratio 2+ε, for arbitrar-
ily small ε > 0, which is tight. As corollary, we obtain that strategy doubling

has discovery ratio equal to 3. These results allow us to set up the framework
and provide some intuition for our main results, but also demonstrate that the
discovery ratio, on itself, does not lead to a useful classification of strategies,
when one considers the entire space of strategies.

Our main technical results are obtained in Section 3. Here, we apply syn-
thetically both the competitive and the discovery ratios. More precisely, we
restrict our interest to the set of competitively optimal strategies, which we fur-
ther analyze using the discovery ratio as a supplementary measure. We prove
that the strategy aggressive, which explores the branches to the furthest
possible extent while satisfying the competitiveness constraint, has discovery
ratio 8

5 = 1.6; moreover, we show that this is the optimal discovery ratio in this
setting. In contrast, we show that the strategy doubling has discovery ratio
7
3 = 2.3. In addition, we provide evidence that such “aggressiveness” is req-
uisite. More precisely, we show that any competitively optimal strategy that
is also optimal with respect to the discovery ratio must have the exact same
behavior as the aggressive strategy in the first five iterations. Last, we show
that the optimal strategy according to the discovery ratio is not unique.

In terms of techniques, the main technical difficulty in establishing the
discovery ratios stems from answering the following question: given a length
` ∈ R+, what is the strategy S that minimizes D(S, `), and how can one
express this minimum discovery cost? This is a type of a “dual” problem that
can be of independent interest in the context of search problems, in the spirit
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of a concept such as the reach of a strategy [26], also called extent in [27] (and
which is useful in the competitive analysis of search strategies). We model this
problem as a linear program for whose objective value we first give a lower
bound; then we show this bound is tight by providing an explicit 9-competitive
strategy which minimizes D(S, `).

1.2 Related work

The linear search problem was first introduced and studied in works by Bell-
man [13] and Beck [11]. The generalization of linear search to m concurrent,
semi-infinite branches is known as star search or ray search; thus linear search
is equivalent to star search for m = 2. Optimal strategies for linear search
under the (deterministic) competitive ratio were first given by [12]. More-
over [24] gave optimal strategies for the generalized problem of star search, a
result that was rediscovered later [10]. Some of the related work includes the
study of randomization [29]; multi-searcher strategies [34]; multi-target search-
ing [31, 35]; searching with turn cost [2, 5, 21]; searching with an upper bound
on the target distance [16, 26]; fault-tolerant search [20, 33] and searching with
unreliable hints [4]; and the variant in which some probabilistic information on
target placement is known [27, 28]. This list is not exclusive; see also Chapter
8 in the book [1].

Linear search and its generalization can model settings in which we seek an
intelligent allocation of resources to tasks under uncertainty. For this reason,
the problem and its solution often arises in the context of diverse fields such as
AI (e.g., in the design of interruptible algorithms [3, 15]) and databases (e.g.,
pipeline filter ordering [19]).

Strategy aggressive has been studied in [26, 27] in the special case of
maximizing the reach of a strategy (which informally is the maximum possible
extent to which the branches can be searched without violating competitive-
ness) when we do not know the distance of the target from the origin. Although
this gives some intuition that aggressive is indeed a good strategy, to the best
of our knowledge, our work is the first that quantifies this intuition, in terms
of comparing to other competitively optimal strategies using a well-defined,
alternative performance measure.

1.3 Preliminaries

In the context of linear search, the searcher’s strategy can be described as an
(infinite) sequence of lengths at which the two branches (numbered 0,1, respec-
tively) are searched. Formally, a search strategy is determined by a sequence
of search segments (x0, x1, . . .) such that xi ∈ R+ for all i ∈ N, in the sense
that in iteration i, the searcher starts from the origin, searches branch i mod 2
to distance xi from the origin, and then returns back to O; see Figure 1 for an
illustration. We require that the search segments induce a complete exploration
of both branches of the line, in that for every d ∈ R+, there exist i, j ∈ N such
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that x2i ≥ d, and x2j+1 ≥ d. Without loss of generality, we restrict ourselves
to strategies which satisfy xi+2 > xi for every i ∈ N.

x0x1 x2x3

HO

Fig. 1 An illustration of a search strategy determined by the sequence {x0, x1, . . .}.

For convenience, we will define xi to be equal to 0, for all i < 0 and
introduce the following notation.

Definition 2 (prefix-sum Tn(X)) Given a strategy X, we define Tn(X) (or simply
Tn, when X is clear from context) to be equal to

∑n
i=0 xi. For n < 0, we define

Tn := 0.

We say that the searcher turns in iteration i at the moment it switches
directions during iteration i, namely when it completes the exploration of
length xi and returns back to the origin. Moreover, assuming a searcher of unit
speed, we can define at any point in time t the number of turns incurred by
the searcher accordingly.

We will denote by S the set of all search strategies, and by S∗ the set of com-
petitively optimal strategies, namely strategies of competitive ratio equal to
9. When evaluating the competitive ratio, we will make the standard assump-
tion that the target must be at distance at least 1 from O, since no strategy
can have bounded competitive ratio if this distance can be arbitrarily small.

2 Strategies of optimal discovery ratio in S
We begin by establishing the optimal tradeoff between the competitive ratio
and the discovery ratio against all possible strategies. This will allow us to
obtain strategies of optimal discovery ratio, and also setup some properties
of the measure that will be useful in the context of competitively optimal
strategies (Section 3).

Let X,Y denote two strategies in S, with X = (x0, x1, . . .). From the
definition of the discovery ratio we have that

dr(X,Y ) = sup
i∈N

sup
δ∈(0,xi−xi−2]

D(X,xi−1 + xi−2 + δ)

D(Y, xi−1 + xi−2 + δ)
.
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Note that for i = 0, we have

D(X,xi−1 + xi−2 + δ)

D(Y, xi−1 + xi−2 + δ)
=
D(X, δ)

D(Y, δ)
≤ δ

δ
= 1.

This is because for all δ ≤ x0, D(X, δ) = δ, and for all δ > 0, D(Y, δ) ≥ δ.
Therefore,

dr(X,Y ) = sup
i∈N+

sup
δ∈(0,xi−xi−2]

D(X,xi−1 + xi−2 + δ)

D(Y, xi−1 + xi−2 + δ)
. (2)

The following theorem provides an expression of the discovery ratio in terms
of the search segments of the strategy.

Theorem 1 (discovery ratio) Let X = (x0, x1, . . .). Then

dr(X,S) = sup
i∈N+

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
.

Proof Fix Y ∈ S. From the definition of search segments in X, we have that

D(X,xi−1 + xi−2 + δ) = 2

i−1∑
j=0

xj + xi−2 + δ, for δ ∈ (0, xi − xi−2]. (3)

Moreover, for every Y , we have

D(Y, xi−1 + xi−2 + δ) ≥ xi−1 + xi−2 + δ. (4)

Substituting (3) and (4) in (2) we obtain

dr(X,Y ) ≤ sup
i∈N+

sup
δ∈(0,xi−xi−2]

2
∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ
≤ sup
i∈N+

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
.

(5)
For the lower bound, consider a strategy Yi = (yi0, y

i
1, . . .), for which yi0 = xi−1 +

xi−2 + δ (the values of yij for j 6= 0 are not significant, as long as Yi is a valid
strategy). Clearly, D(Yi, xi−1 + xi−2 + δ) = xi−1 + xi−2 + δ. Therefore, (2) implies

dr(X,Yi) ≥ sup
δ∈(0,xi−xi−2]

2
∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ
=

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
. (6)

The lower bound on dr(X,S) follows from dr(X,S) ≥ supi∈N+ dr(X,Yi). �

In particular, note that for i = 2, Theorem 1 shows that for any strategy X,

dr(X,S) ≥ 3x0 + 2x1

x0 + x1
≥ 2.

We will show that there exist strategies with discovery ratio arbitrarily close
to 2, thus being optimal for S. To this end, we will consider the geometric
search strategy defined as Gα = (1, α, α2, . . .), with α > 1.
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Lemma 1 (discovery ratio of geometric sequences) For Gα defined as above, we

have dr(Gα,S) = 2α2+α−1
α2−1

.

Proof From Theorem 1 we have

dr(Gα,S) = sup
i∈N+

2
∑i−1
j=0 α

j + αi−2

αi−1 + αi−2

= sup
i∈N+

2(α
i−1
α−1 ) + αi−2

αi−1 + αi−2

= sup
i∈N+

2(αi − 1) + αi−1 − αi−2

αi − αi−2
.

The derivative of the function f(i) :=
2(αi−1)+αi−1−αi−2

αi−αi−2 in i is

f ′(i) =
2α2−i logα

α2 − 1
,

which is positive. Thus, supi∈N+ f(i) = limi→∞ f(i), which gives

dr(Gα,S) = lim
i→+∞

f(i) = lim
i→+∞

2(αi − 1) + αi−1 − αi−2

αi − αi−2
=

2α2 + α− 1

α2 − 1
.

�

Lemma 1 shows that the discovery ratio of Gα tends to 2, as α→∞, hence
Gα has an asymptotically optimal discovery ratio. However, we can show a
stronger result, namely that Gα achieves the optimal trade-off between the
discovery ratio and the competitive ratio. This is established in the following

theorem. Note that the competitive ratio of Gα is easily verified to be 1+2 α2

α−1
(and is minimized for α = 2).

Theorem 2 (dominance of geometric sequences) For every strategy X ∈ S, there
exists α > 1 such that dr(X,S) ≥ dr(Gα,S) and cr(X) ≥ cr(Gα).

In order to prove Theorem 2, we will use of a result by Gal [25] and
Schuierer [36] which, informally, lower-bounds the supremum of an infinite
sequence of functionals by the supremum of simple functionals of a certain
geometric sequence, and which we state here in a simplified form. Given an
infinite sequence X = (x0, x1, . . .), define X+i = (xi, xi+1, . . .) as the suffix of
the sequence X starting at xi.

Theorem 3 ([25, 36]) Let X = (x0, x1, . . .) be a sequence of positive numbers, r an

integer, and α = lim supn→∞(xn)1/n, for α ∈ R∪{+∞}. Let Fi, i ≥ 0 be a sequence
of functionals which satisfy the following properties:

1. Fi(X) only depends on x0, x1, . . . , xi+r,
2. Fi(X) is continuous for all xk > 0, with 0 ≤ k ≤ i+ r,
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3. Fi(λX) = Fi(X), for all λ > 0,
4. Fi(X + Y ) ≤ max(Fi(X), Fi(Y )), and
5. Fi+k(X) ≥ Fi(X+k), for all k ≥ 1,

then
sup

0≤i<∞
Fi(X) ≥ sup

0≤i<∞
Fi(Gα).

We do not reproduce the proof of the above theorem, but show how we can
deduce Theorem 2 from it.

Proof of Theorem 2 Let X = (x0, x1, . . .) denote a strategy in S. From (6) we know
that

dr(X,S) ≥ sup
i
Fi(X),

where Fi(X) is defined as the functional
2
∑i−1

j=0 xj+xi−2

xi−1+xi−2
. Moreover, the competitive

ratio of X can be lower-bounded by

cr(X) ≥ sup
i
F ′i (X), where F ′i (X) = 1 + 2

∑i+1
j=0 xj

xi
.

This follows easily by considering a hider placed at distance xi + ε, with ε → 0, at
the branch that is searched by X in iteration i.

It is easy to see that both Fi(X) and F ′i (X) satisfy the conditions of Theorem 3
(this also follows from Example 7.3 in [1]). Thus, there exists α defined as in the
statement of Theorem 3 such that

dr(X,S) ≥ sup
i
Fi(Gα) =

2
∑i−1
j=0 α

j + αi−2

αi−1 + αi−2
, and (7)

cr(X,S) ≥ sup
i
F ′i (Gα) = 1 + 2

∑i+1
j=0 α

j

αi
. (8)

It is easy to verify that if α = 1, then dr(X,S), cr(X,S) = ∞. We can thus assume
that α > 1, and thus obtain from (7), (8), after some manipulations, that

dr(X,S) ≥ sup
i

2(α2 − 1
αi−2 ) + α− 1

α2 − 1
=

2α2 + α− 1

α2 − 1
, and

cr(X,S) ≥ 1 + sup
i

2
∑i+1
j=0 α

j

αi
= sup

i
1 + 2

α2 − 1
αi

α− 1
= 1 + 2

α2

α− 1
,

which concludes the proof. �

Figure 2 depicts the optimal tradeoff between the competitive and discovery
ratios as attained by the search strategy Gα.

Note that although Gα with α→∞ has optimal discovery ratio, its com-
petitive ratio is unbounded. Furthermore, strategy doubling ≡ G2 has optimal
competitive ratio equal to 9, whereas its discovery ratio is equal to 3. This
motivates the topic of the next section.
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Fig. 2 Every strategy X corresponds to a point with coordinates dr(X) and cr(X), which
belongs to the region depicted in gray. Its Pareto boundary is constituted by the geometric
strategies Gα for α > 1.

3 The discovery ratio of competitively optimal
strategies

In this section we focus on competitively optimal strategies, namely strategies
in S∗. It is known that there is a characterization of such strategies in terms
of an infinite set of linear inequalities that relate its search segments, as shown
in the following lemma.

Lemma 2 (characterization of competitive optimal strategies [26]) The strategy
X = (x0, x1, x2, . . .) is in S∗ if and only if its segments satisfy the following
inequalities

1 ≤ x0 ≤ 4 and xn ≤ 3xn−1 −
n−2∑
i=0

xi, for all n ≥ 1.

There is an interesting corollary of this characterization, shown in [27].
Namely, the strategy aggressive, which maximizes the search segments in
each iteration, has the property that its segment lengths satisfy all linear
inequalities of Lemma 2 with equality, which provides a closed-form expression
of its lengths:

Lemma 3 (closed expression for aggressive [27]) Strategy aggressive satisfies for
every n ≥ 0

x̄n = (4 + 2n)2n

and Tn = (n+ 1)2n+2.

For the purpose of our analysis, we will define a class of strategies in S∗
that generalize the aggressive strategy. For given t ∈ [1, 4], let Rt denote the
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strategy whose search segments are determined by the linear recurrence

x0 = t, and xn = 3xn−1 −
n−2∑
i=0

xi, for all n ≥ 1.

This class generalizes aggressive in the sense that R4 equals aggressive, and
the values xn in Rt and R4 differ exactly by the factor t/4. As a consequence,
previously shown properties of aggressive hold for Rt as well, after applying
the scaling factor t/4.

Corollary 1 (closed expression for Rt) The strategy Rt satisfies for every n ≥ 0

xn = t(1 + n/2)2n

and Tn = t(n+ 1)2n.

In addition, we define the minimum number of turns that a strategy
requires to discover a certain length.

Definition 3 (minimal number of turns m∗) Given strategy X and length ` ∈ R+,
define m(X, `) as the number of turns that X has performed by the time it discovers
a total length equal to `. Also define

m∗(`) = inf
X∈S∗

m(X, `),

that is, m∗(`) is the minimum number of turns that a competitively optimal strategy
is required to perform in order to discover length equal to `.

From the constraint x0 ≤ 4, it follows that clearly m∗(`) = 0, for ` ≤ 4.
The following corollary gives an expression for m∗(`), for general values of l.

Corollary 2 (turns of aggressive) For given ` > 4,

m∗(`) = m(aggressive, `) = min{n ∈ N+ : (3n+ 5)2n ≥ `}.

Proof The total length discovered by any X ∈ S∗ at the turning point of the n-th
iteration cannot exceed x̄n+ x̄n−1 for n ≥ 1, where xi is the i-th step of aggressive.
This implies that m∗(`) = n, if ` ∈ (x̄n−1 + x̄n−2, x̄n + x̄n−1] for n ≥ 1. In other
words,

m∗(`) = min{n ∈ N+ : x̄n + x̄n−1 ≥ `}.
From Lemma 3, we have x̄n = (n+ 2)2n+1, for n ≥ 0. Hence,

m∗(`) = min{n ∈ N+ : (3n+ 5)2n ≥ `}.
�

We also define the minimum cost at which a competitively optimal strategy
can discover a length equal to `, namely:
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Definition 4 (optimal cost for discovering length ` in S∗) For a given ` ∈ R+, define

d∗(`) = inf
X∈S∗

D(X, `),

and note that, if ` ≤ 4, then trivially d∗(`) = `.

The following lemma is a central technical result that is instrumental in
establishing the bounds on the discovery ratio. Specifically, Lemma 4 gives an
expression of d∗(`) for ` > 4 in terms of m∗(`); it also shows that there exists
t ∈ (1, 4] such that the strategy Rt attains this minimum cost.

We first give some motivation behind the purpose of the lemma. When
considering general strategies in S, we used a lower bound on the cost for dis-
covering a length ` as given by (4), and which corresponds to a strategy that
never turns. However, this lower bound is very weak when one considers strate-
gies in S∗. This is because a competitive strategy needs to turn sufficiently
often, which affects considerably the discovery costs.

We also give some intuition about the proof. We show how to model the
question by means of a linear program. Using the constraints of the LP, we
first obtain a lower bound on its objective in terms of the parameters ` and
m∗(`). In this process, we also obtain a lower bound on the first segment of
the strategy (x0); this is denoted by t in the proof. In the next step, we show
that the strategy Rt has a discovery cost that matches the lower bound on the
objective, which suffices to prove the result.

Lemma 4 (discovery cost is optimized by some Rt) For any given ` > 4, it holds

d∗(`) = D(Rt, `) = ` · 6m∗(`) + 4

3m∗(`) + 5
, where t = ` · 22−m∗(`)

3m∗(`) + 5
∈ (1, 4].

Proof Let X = (x0, x1, . . .) ∈ S∗ denote the strategy which minimizes the quantity
D(X, `). Then there must exist a smallest n ≥ m∗(`) such that the searcher discovers
a total length ` during the n-th iteration. More precisely, suppose that this happens
when the searcher is at branch n mod 2, and at some position p (i.e., distance from
O), with p ∈ (xn−2, xn]. Then we have xn−1 + p = `, and

d∗(`) = D(X, `) = 2

n−1∑
i=0

xi + p = 2

n−1∑
i=0

xi + (`− xn−1) = 2

n−2∑
i=0

xi + xn−1 + `.

Therefore, d∗(`) is the objective of the following linear program.

min 2

n−2∑
i=0

xi + xn−1 + `

subject to xn + xn−1 ≥ `,
1 ≤ x0 ≤ 4,

xi−2 ≤ xi, i ∈ [2, n]
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1 ≤ xi ≤ 3xi−1 −
i−2∑
j=0

xj , i ∈ [1, n].

Recall that n ≥ m∗(`) is a fixed integer. Let Obj denote the objective value of the
linear program. We claim that, for 1 ≤ i ≤ n,

xn−i ≥
22−i

3i+ 5
`+

3i− 1

3i+ 5
Tn−i−1 and Obj ≥ 6i+ 4

3i+ 5
`+

9 · 2i

3i+ 5
Tn−i−1.

The claim provides a lower bound of the objective, since for i = n it implies that

x0 ≥
22−n

3n+ 5
` and Obj ≥ 6n+ 4

3n+ 5
` ≥ 6m∗(`) + 4

3m∗(`) + 5
`,

where the last inequality follows from the fact n ≥ m∗(`), and by monotonicity on
n. We will argue later that this lower bound is tight.

First, we prove the claim, by induction on i, for all i ≤ n. We first show the base
case, namely i = 1. Since xn ≤ 3xn−1 − Tn−2 and xn + xn−1 ≥ `, it follows that

xn−1 ≥ `− xn ≥ `− (3xn−1 − Tn−2)⇒ xn−1 ≥
`

4
+
Tn−2

4
, hence

Obj = `+ 2Tn−2 + xn−1 ≥ `+ 2Tn−2 +
`

4
+
Tn−2

4
=

5

4
`+

9

4
Tn−2,

thus the base case holds. For the induction step, suppose that

xn−i ≥
22−i

3i+ 5
`+

3i− 1

3i+ 5
Tn−i−1 and Obj ≥ 6i+ 4

3i+ 5
`+

9 · 2i

3i+ 5
Tn−i−1.

Then,

3xn−i−1 − Tn−i−2 ≥ xn−i (by LP constraint)

≥ 22−i

3i+ 5
`+

3i− 1

3i+ 5
Tn−i−1 (ind. hyp.)

=
22−i

3i+ 5
`+

3i− 1

3i+ 5
(Tn−i−2 + xn−i−1) (def. Tn−i−1)

By rearranging terms in the above inequality we obtain(
3− 3i− 1

3i+ 5

)
xn−i−1 ≥

22−i

3i+ 5
`+

(
1 +

3i− 1

3i+ 5

)
Tn−i−2 ⇒

6i+ 16

3i+ 5
xn−i−1 ≥

22−i

3i+ 5
`+

6i+ 4

3i+ 5
Tn−i−2 ⇒

xn−i−1 ≥
21−i

3i+ 8
`+

3i+ 2

3i+ 8
Tn−i−2,

and

Obj ≥ 6i+ 4

3i+ 5
`+

9 · 2i

3i+ 5
Tn−i−1 (ind. hyp.)

=
6i+ 4

3i+ 5
`+

9 · 2i

3i+ 5
(Tn−i−2 + xn−i−1) (def. Tn−i−1)

≥ 6i+ 4

3i+ 5
`+

9 · 2i

3i+ 5
Tn−i−2 +

9 · 2i

3i+ 5

(
21−i

3i+ 8
`+

3i+ 2

3i+ 8
Tn−i−2

)
(ind. hyp.)

=
6i+ 10

3i+ 8
`+

9 · 2i+1

3i+ 8
Tn−i−2.
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This concludes the proof of the claim, which settles the lower bound on d∗(`).
It remains to show that this bound is tight. Consider the strategy Rt, with t =
22−m∗(`)

3m∗(`)+5
`. In what follows we will show that Rt is a feasible solution of the LP, and

that D(Rt, `) =
6m∗(`)+4
3m∗(`)+5

`.

First, we show that t ∈ (1, 4]. For the upper bound, from Corollary 2, we have

(3m∗(`) + 5)2m
∗(`) ≥ `, which implies that

1 ≥ ` · 2−m
∗(`)

3m∗(`) + 5
⇒ 4 ≥ ` · 22−m∗(`)

3m∗(`) + 5
⇒ 4 ≥ t.

In order to show that t > 1, consider first the case ` ∈ (4, 5]. Then m∗(`) = 1, which
implies that

t =
22−m∗(`)

3m∗(`) + 5
` =

`

4
≥ 1.

Moreover, if ` > 5, by Corollary 2, m∗(`) is the smallest integer solution of the

inequality (3n+ 5)2n ≥ l, then (3m∗(`) + 2)2m
∗(`)−1 < l, hence

t =
22−m∗(`)

3m∗(`) + 5
` =

4`

(3m∗(`) + 5)2m
∗(`)

=
2`

(3m∗(`) + 2)2m
∗(`)−1 · 3m∗(`)+5

3m∗(`)+2

>
2`

` · 3m∗(`)+5
3m∗(`)+2

=
6m∗(`) + 4

3m∗(`) + 5
> 1.

The last inequality holds since we have m∗(`) ≥ 1, for ` > 5. This concludes that
t ∈ (1, 4], and Rt is a feasible solution of the LP since Rt satisfies all other constraints
by its definition.

It remains thus to show that D(Rt, `) =
6m∗(`)+4
3m∗(`)+5

`. By Lemma 1, we have

xm∗(`) + xm∗(`)−1 = t

(
1 +

m∗(`)
2

)
2m
∗(`) + t

(
1 +

m∗(`)− 1

2

)
2m
∗(`)−1

= t · 2m
∗(`) · 3m∗(`) + 5

4
=

22−m∗(`)

3m∗(`) + 5
` · 2m

∗(`) · 3m∗(`) + 5

4
= `.

Then Rt has exactly discovered a total length ` right before the m∗(`)-th turn. Hence,

D(Rt, `) = 2Tm∗(`)−2 + xm∗(`)−1 + `

= t ·
(
m∗(`)− 1

)
2m
∗(`)−1 + t ·

(
1 +

m∗(`)− 1

2

)
2m
∗(`)−1 + `

(by Lemma 1)

= t · (3m∗(`)− 1)2m
∗(`)

4
+ ` (arranging terms)

=
22−m∗(`)

3m∗(`) + 5
` · (3m∗(`)− 1)2m

∗(`)

4
+ ` (substituting t)

=

(
3m∗(`)− 1

3m∗(`) + 5
+ 1

)
· ` =

6m∗(`) + 4

3m∗(`) + 5
· `. (arranging terms)

This concludes the proof of the lemma. �

We are now ready to prove the main results of this section. Recall that
for any two strategies X,Y , dr(X,Y ) is given by (2). Combining with (3), as
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well as with the fact that for Y ∈ S∗, we have that D(Y, `) ≥ d∗(`), (from the
definition of d∗), we obtain that

dr(X,S∗) = sup
i∈N+

sup
δ∈(0,xi−xi−2]

Fi(X, δ), where Fi(X, δ) =
2
∑i−1

j=0 xj + xi−2 + δ

d∗(xi−1 + xi−2 + δ)
.

(9)

3.1 Discovery ratio of strategies in S∗

We first show that the discovery ratio of aggressive is equal to 8/5.

Theorem 4 (discovery ratio of aggressive) For the strategy aggressive it holds
that

dr(aggressive,S∗) = 8/5.

Proof We will express the discovery ratio using (9). For i = 1, and δ ∈ (0, x̄1], we
have that

F1(aggressive, δ) =
2x̄0 + δ

d∗(x̄0 + δ)
=

8 + δ

d∗(4 + δ)
.

From Lemma 4, d∗(4 + δ) = (4 + δ) · 6·1+4
3·1+5 =

5(4+δ)
4 ; this is because 1 ≤ m∗(4 + δ) ≤

m∗(16) = 1. Then,

F1(aggressive, δ) =
8 + δ
5(4+δ)

4

=
32 + 4δ

20 + 5δ
, hence sup

δ∈(0,x̄1]
F1(aggressive, δ) =

8

5
.

(10)
For given i ≥ 2, and δ ∈ (0, x̄i − x̄i−2], we have

Fi(aggressive, δ) =
2Ti−1 + x̄i−2 + δ

d∗(x̄i−1 + x̄i−2 + δ)
,

where Ti−1 is given by Lemma 3. Moreover, from Lemma 4 we have that

d∗(x̄i−1 + x̄i−2 + δ) = (x̄i−1 + x̄i−2 + δ) · 6m∗(x̄i−1 + x̄i−2 + δ) + 4

3m∗(x̄i−1 + x̄i−2 + δ) + 5

= (x̄i−1 + x̄i−2 + δ) · 6i+ 4

3i+ 5
,

where the last equality follows from the fact that m∗(x̄i−1 + x̄i−2 + δ) = i. This is
because

i ≤ m∗(x̄i−1 + x̄i−2 + δ) ≤ m∗(x̄i−1 + x̄i−2 + x̄i − x̄i−2) = m∗(x̄i + x̄i−1) = i.

Substituting with the values of the search segments as well as Ti−1, we obtain that

Fi(aggressive, δ) =
i · 2i+2 + i · 2i−1 + δ

((i+ 1)2i + i · 2i−1 + δ) · 6i+4
3i+5

=
9i · 2i−1 + δ

((3i+ 2)2i−1 + δ) · 6i+4
3i+5

.

Since
∂Fi(aggressive, δ)

∂δ
= − 2i+1(3i− 1)(3i+ 5)

(3i+ 2)(2n(3i+ 2) + 2δ)2
≤ 0,
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then Fi(aggressive, δ) is monotone decreasing in δ. Thus

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) =
9i · 2i−1

((3i+ 2)2i−1) · 6i+4
3i+5

=
9i(3i+ 5)

(3i+ 2)(6i+ 4)
,

and

sup
i≥2

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) =
(9 · 2)(3 · 2 + 5)

(3 · 2 + 2)(6 · 2 + 4)
=

99

64
<

8

5
. (11)

Combining (9), (10) and (11) yields the proof of the theorem. �

The following theorem shows that aggressive has optimal discovery ratio
among all competitively optimal strategies.

Theorem 5 (lower bound on discovery ratio) For every strategy X ∈ S∗, we have
dr(X,S∗) ≥ 8

5 .

Proof Let X = (x0, . . .). We will consider two cases, depending on whether x0 < 4
or x0 = 4. Suppose, first, that x0 < 4. In this case, for sufficiently small ε, we have
m∗(x0 + ε) = 0, which implies that d∗(x0 + ε) = x0 + ε, and therefore.

F1(X, ε) =
2x0 + ε

d∗(x0 + ε)
=

2x0 + ε

x0 + ε
,

from which we obtain that

sup
δ∈(0,x1]

F1(X, δ) ≥ F1(X, ε) ≥ 2x0 + ε

x0 + ε
→ 2, as ε→ 0+.

Next, suppose that x0 = 4. In this case, for δ ∈ (0, x1], it readily follows that
F1(X, δ) = F1(aggressive, δ). Therefore, from (10), we have that

sup
δ∈(0,x1]

F1(X, δ) = sup
δ∈(0,x1]

32 + 4δ

20 + 5δ
=

8

5
.

The lower bound follows directly from (9). �

Recall that doubling ≡ G2 = (20, 21, 22, . . .). The following theorem shows
that within S∗, doubling has a worse discovery ratio than aggressive. The
proof follows along the lines of the proof of Theorem 4, where instead of using
the search segments x̄i of aggressive, we use the search segment xi = 2i of
doubling.

Theorem 6 (discovery ratio of doubling) We have dr(doubling,S∗) = 7
3 .

Proof We will express the discovery ratio using (9). For i = 1, and δ ∈ (0, x1], we
have that

F1(G2, δ) =
2x0 + δ

d∗(x0 + δ)
=

2 + δ

d∗(1 + δ)
.
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From the definition, d∗(1 + δ) = 1 + δ; this is because 0 ≤ m∗(1 + δ) ≤ m∗(3) = 0.
Then,

F1(G2, δ) =
2 + δ

1 + δ
, hence sup

δ∈(0,x̄1]
F1(G2, δ) = 2. (12)

For i = 2 and δ ∈ (0, x2 − x0], we have that

F2(G2, δ) =
3x0 + 2x1 + δ

d∗(x0 + x1 + δ)
=

7 + δ

d∗(3 + δ)
.

From Lemma 4, d∗(3+δ) either equals to 3+δ if δ ∈ (0, 1], or equals to (3+δ)· 6·1+4
3·1+5 =

5(3+δ)
4 if δ ∈ (1, x2 − x0]. This is because 0 ≤ m∗(3 + δ) ≤ m∗(6) = 1. Then, for

δ ∈ (0, 1],

F2(G2, δ) =
7 + δ

3 + δ
, hence sup

δ∈(0,1]
F2(G2, δ) =

7

3
. (13)

For δ ∈ (1, x2 − x0],

F2(G2, δ) =
7 + δ
5(3+δ)

4

=
28 + 4δ

15 + 5δ
, hence sup

δ∈(1,x2−x0]
F2(G2, δ) =

28

15
. (14)

Combining (13) and (14) yields

sup
δ∈(0,x2−x0]

F2(G2, δ) =
7

3
. (15)

For given i ≥ 3, and δ ∈ (0, xi − xi−2], we have

Fi(G2, δ) =
2Ti−1 + xi−2 + δ

d∗(xi−1 + xi−2 + δ)
=

2i+1 − 2 + 2i−2 + δ

d∗(2i−1 + 2i−2 + δ)
=

9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
.

Moreover, from Lemma 4 we have that

d∗(2i−1 + 2i−2 + δ) = (2i−1 + 2i−2 + δ) · 6m∗(2i−1 + 2i−2 + δ) + 4

3m∗(2i−1 + 2i−2 + δ) + 5
.

and
m∗(xi−1 + xi−2 + δ) ≥ m∗(xi−1 + xi−2) = m∗(3 · 2i−2).

For i ∈ {3, 4} and δ ∈ (0, xi − xi−2], m∗(xi−1 + xi−2 + δ) ≥ m∗(3 · 2i−2) ≥ 1, then

d∗(2i−1 + 2i−2 + δ) ≥ (2i−1 + 2i−2 + δ) · 6 · 1 + 4

3 · 1 + 5
=

15 · 2i−2 + 5δ

4
,

hence, for i = 3,

F3(G2, δ) =
9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
≤ 16 + δ

30+5δ
4

=
64 + 4δ

30 + 5δ
.

We obtain that

sup
δ∈(0,x3−x1]

F3(G2, δ) ≤
64

30
. (16)

For i = 4,

F4(G2, δ) =
9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
≤ 32 + δ

60+5δ 4
=

128 + 4δ

60 + 5δ
.

We obtain that

sup
δ∈(0,x4−x2]

F4(G2, δ) ≤
128

60
. (17)
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For i ≥ 5 and δ ∈ (0, xi − xi−2], m∗(xi−1 + xi−2 + δ) ≥ m∗(3 · 2i−2) ≥ 2, then

d∗(2i−1 + 2i−2 + δ) ≥ (2i−1 + 2i−2 + δ) · 6 · 2 + 4

3 · 2 + 5
=

48 · 2i−2 + 16δ

11
,

and

Fi(G2, δ) =
9 · 2i−2 − 2 + δ

d∗(2i−1 + 2i−2 + δ)
≤ 9 · 2i−2 − 2 + δ

48·2i−2+16δ
11

=
99 · 2i−2 − 22

48 · 2i−2
≤ 99

48
,

hence, for i ≥ 5,

sup
δ∈(0,xi−xi−2]

Fi(G2, δ) ≤
99

48
. (18)

Combining (12), (15), (16), (17) and (18) yields the proof of the theorem. �

We conclude this section with the discussion of a strategy that is conceptu-
ally opposite to the aggressive strategy. We define the strategy conservative

as the strategy X = (xi)
∞
i=0 in S∗ for which xi is as small as possible, for

all i ∈ N. As shown in Proposition 17 in [6] this strategy is defined by the
sequence of the search lengths

1, 1, 2, 4, 8, 16 . . . .

Note that conservative differs from doubling only in the additional cost
of 2 in the discovery time for any length strictly greater than 1. Adapting
the proof of Theorem 6 for this additional cost, we observe that the ratio is
maximized for a length arbitrary close to 3 from above, which leads to the
following corollary.

Corollary 3 The discovery ratio of conservative is 3.

Figure 3 illustrates the discovery ratios shown for the various strategies in
this section. Note that the discovery ratio indeed orders the strategies in terms
of the “aggressiveness” at which they tend to explore new ground over the line.

discovery ratio with respect to S∗
conservative

3

aggressive

8/5

doubling

7/3

Fig. 3 Illustration of the discovery ratios discussed in this section.

3.2 On the uniqueness of strategies with optimal
discovery ratio

The results of the previous section lead to a natural question. Is aggressive

the unique strategy of optimal discovery ratio in S∗? We first provide evidence
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that optimal strategies cannot be radically different from aggressive, in that
they must mimic it in the first few iterations.

Theorem 7 (optimal strategies coincide with aggressive on the first 5 steps) Strat-
egy X = (xi)

∞
i=0 ∈ S

∗ has optimal discovery ratio in S∗ only if xi = x̄i, for 0 ≤ i ≤ 4.

Proof We will prove the theorem by induction on i. Recall that the discovery ratio
of X is given by Equation (9).

We first show the base case, namely i = 0. The base case holds by the argument
used in the proof of Theorem 5 which shows that if x0 < 4, then dr(X,S∗) ≥ 2.
For the induction step, suppose that X has optimal discovery ratio, and that for all
j ∈ [0, i], xj = x̄j , with i < 4. We will show xi+1 = x̄i+1 by way of contradiction,
hence suppose that xi+1 < x̄i+1. For sufficiently small ε > 0, we have

m∗(xi+1 + xi + ε) = m∗(xi+1 + x̄i + ε) (by induction hypothesis)

≤ m∗(x̄i+1 + x̄i)
(by monotonicity of m∗ and the definition of aggressive)

= i+ 1, (by definition of m∗)

which implies by Lemma 4, that

d∗(xi + xi−1 + ε) = (xi + xi−1 + ε) · 6 ·m∗(xi+1 + xi + ε) + 4

3 ·m∗(xi+1 + xi + ε) + 5

≤ (xi + xi−1 + ε) · 6 · (i+ 1) + 4

3 · (i+ 1) + 5
. (19)

Therefore

Fi+2(X, ε) =
2 ·
∑i+1
j=0 xj + xi + ε

d∗(xi+1 + xi + ε)

=
2Ti(aggressive) + 2xi+1 + x̄i + ε

d∗(xi+1 + x̄i + ε)
(by ind. hyp.)

≥ 2Ti(aggressive) + 2xi+1 + x̄i + ε

(xi+1 + x̄i + ε) · 6·(i+1)+4
3·(i+1)+5

(by (19))

=
(i+ 1)2i+3 + (i+ 2)2i+1 + 2xi+1 + ε

(xi+1 + (i+ 2)2i+1 + ε) · 6·(i+1)+4
3·(i+1)+5

(by Lemma 3)

≥ (i+ 1)2i+3 + (i+ 2)2i+1 + (i+ 3)2i+3 + ε

(i+ 3)2i+2 + (i+ 2)2i+1 + ε
· 3i+ 8

6i+ 10
.

(monoton. on xi+1)

Hence

sup
δ∈(0,xi+2−xi]

Fi+2(X, δ) ≥ (i+ 1)2i+3 + (i+ 2)2i+1 + (i+ 3)2i+3

(i+ 3)2i+2 + (i+ 2)2i+1
· 3i+ 8

6i+ 10
=

9i+ 18

6i+ 10
,

which is greater than 8
5 if i ≤ 3. We conclude, from (9), that dr(X,S∗) > 8/5, which

is a contradiction. �
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Theorem 7 leaves open the possibility that there exists some strategy X ∈
S∗ with optimal discovery ratio, and for which x5 differs from x̄5. In particular,
one may ask whether by slightly decreasing the value of x5, and remaining
aggressive for xi with i ≥ 6, whether we may obtain a strategy that is in S∗
and has optimal discovery ratio? We will answer this question affirmatively.
Formally, we define for an arbitrarily fixed constant 0 < ε ≤ 1 the strategy
Y = (y0, y1, . . .), in which yi = x̄i, for 0 ≤ i ≤ 4, y5 = x̄5 − 4ε and yi =
3yi−1 − Ti−2(Y ), for i ≥ 6.

Lemma 5 (closed expression of Y ) The strategy Y satisfies yi = x̄i − εx̄i−5, where
we denote for convenience x̄i = 0 for all i < 0. It follows, Tn(Y ) = Tn(X̄)−εTn−5(X̄).

Proof We show this by induction on i. The base case holds for 0 ≤ i ≤ 5 by definition
of Y . We have for i ≥ 6

yi = 3yi−1 − Ti−2(Y ) (by definition of yi)

= 3x̄i−1 − 3εx̄i−6 − Ti−2(X̄) + εTi−7(X̄) (by induction hypothesis)

= 3x̄i − εx̄i−5. (by definition of x̄)

�

Strategy Y is competitively optimal, since it satisfies by construction the
conditions of Lemma 2. We will show that it also has the best-possible discovery
ratio. This proves that there is an infinite number of strategies with optimal
discovery ratio in S∗.

Theorem 8 (optimal discovery ratio of Y ) dr(Y,S∗) = 8
5 .

Proof We rely on (9) to express the discovery ratio. Since Y mimics aggressive in
the first five iterations, for n ∈ [0, 4] we have that

sup
n∈[0,4]

sup
δ∈(0,yn−yn−2]

Fn(Y, δ) =
8

5
.

For n = 5 and δ ∈ (0, y5− y3], we have y4 + y3 + δ ∈ (y4 + y3, y4 + y5], which implies
that m∗(y4 + y3 + δ) = 5. We obtain that

F5(Y, δ) =
2T4(Y ) + y3 + δ

d∗(y4 + y3 + δ)
(by Equation (9))

=
2T4(Y ) + y3 + δ

(y4 + y3 + δ)
6m∗(y4+y3+δ)+4
3m∗(y4+y3+δ)+5

(by Lemma 4)

=
2T4(Y ) + y3 + δ

(y4 + y3 + δ)
· 20

34
(Subst. of m∗(x′4 + x′3 + δ))

=
2 · (4 + 1)24+2 + (3 + 2)23+1 + δ

(4 + 2)24+1 + (3 + 2)23+1 + δ
· 20

34
(by Lemma 5)
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=
720 + δ

272 + δ
· 20

34
(arranging terms)

≤ 720 · 20

272 · 34
(monotonicity on δ)

=
450

289
<

8

5
.

For n = 6 and δ ∈ (0, y6 − y4], we have y5 + y4 + δ ∈ (y5 + y4, y6 + y5], which
implies that m∗(y5 + y4 + δ) ∈ [5, 6]. Then

F6(Y, δ) =
2T5(Y ) + y4 + δ

d∗(y5 + y4 + δ)
(by Equation (9))

=
2T5(Y ) + y4 + δ

(y5 + y4 + δ)
6m∗(y5+y4+δ)+4
3m∗(y5+y4+δ)+5

(by Lemma 4)

≤ 2T5(Y ) + y4 + δ

(y5 + y4 + δ)
· 3 · 5 + 5

6 · 5 + 4
(by m∗(x′n−1 + x′n−2 + δ) ≥ 5)

=
2 · (5 + 1)25+2 − 8ε+ (4 + 2)24+1 + δ

(5 + 2)25+1 − 4ε+ (4 + 2)24+1 + δ
· 20

34
(by Lemma 5)

=
1728− 8ε+ δ

640− 4ε+ δ
· 20

34
(arranging terms)

≤ 1720 · 20

636 · 34
(monotonicity on δ and ε)

=
34400

21624
<

8

5
.

For n ≥ 7 and δ ∈ (0, yn − yn−2], we have

yn−1 + yn−2 + δ > yn−1 + yn−2 (by δ > 0)

= x̄n−1 − εx̄n−6 + x̄n−2 − εx̄n−7

= (4 + (2n− 1))2n−1 + (4 + 2(n− 2))2n−2

− ε(4 + 2(n− 6))2n−6 − ε(4 + 2(n− 7))2n−7

= (2n+ 2)2n−1 + 2n2n−2 − ε(2n− 8)2n−6 − ε(2n− 10)2n−7

= (192n− 128− ε(6n+ 7))2n−7

= (n+ 1)2n + n2n−1 − ε(n− 4)2n−5 − ε(n− 5)2n−6

= (96n+ 64− ε(3n− 13))2n−6

≥ (93n+ 77)2n−6 (by ε ≤ 1)

≥ (48n− 11)2n−6 (by n ≥ 7)

= (3(n− 2) + 5)2n−2.

It follows that m∗(yn−1 + yn−2 + δ) ≥ n− 1. Therefore

Fn(Y, δ) =
2Tn−1(Y ) + yn−2 + δ

d∗(yn−1 + yn−2 + δ)
(by Equation (9))

=
2Tn−1(Y ) + yn−2 + δ

(yn−1 + yn−2 + δ)
6m∗(yn−1+yn−2+δ)+4
3m∗(yn−1+yn−2+δ)+5

(by Lemma 4)
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≤ 2Tn−1(Y ) + yn−2 + δ

(yn−1 + yn−2 + δ)
· 3(n− 1) + 5

6(n− 1) + 4
(by m∗(yn−1 + yn−2 + δ) ≥ n− 1)

=
2n2n+1 − ε2(n− 4)2n−3 + n2n−1 − ε(2n− 5)2n−6 + δ

(96n+ 64− ε(3n− 13))2n−6 + δ
· 3(n− 1) + 5

6(n− 1) + 4
(by Lemma 5)

=
(256n+ 32n− ε(16n− 32 + 2n− 5))2n−6 + δ

(96n+ 64− ε(3n− 13))2n−6 + δ
· 3(n− 1) + 5

6(n− 1) + 4

=
288n− ε(18n− 37) + δ

96n+ 64− ε(3n− 13) + δ
· 3(n− 1) + 5

6(n− 1) + 4

≤ 288n

96n+ 64
· 3(n− 1) + 5

6(n− 1) + 4
(by monotonicity in δ and ε)

<
8

5
. (by n ≥ 7)

�

4 Connections between the discovery and the
bijective ratios

In this last section we establish a connection between the discovery and the
bijective ratios. Bijective analysis was introduced in [7] in the context of online
computation, assuming that each request is drawn from a discrete, finite set.
For instance, in the paging problem (discussed in Section 1), each request
belongs to the set of all pages. Let In denote the set of all requests of size n. For
a cost minimization problem Π with discrete, finite requests, let π : In → In
denote a bijection over In. Given two online algorithms A and B for Π, the
bijective ratio of A against B is defined as

br(A,B) = min
π:In→In

sup
S∈In

A(S)

B(π(S))
, for all n ≥ n0,

where A(S) denotes the cost of A on request sequence S.
Assuming In is finite, an equivalent definition of br(A,B) is as follows.

Let A(i, n) denote the i-th least costly request sequence for A among request
sequences in In. Then

br(A,B) = sup
n

max
i

A(i, n)

B(i, n)
.

Consider, in contrast, the linear search problem. Here, there is only one request:
the unknown position of the hider (i.e., n = 1). However, the set of all requests
is not only infinite, but uncountable. Thus, the above definitions do not carry
over to our setting, and we need to seek alternative definitions. One possibility
is to discretize the set of all requests (as in [8]). Namely, we may assume that
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the hider can hide only at integral distances from the origin. Then given strate-

gies S1, S2, one could define the bijective ratio of S1 against S2 as supi
S1(i)
S2(i) ,

where S(i) denotes the i-th least costly request (hider position) in strategy S.
While the latter definition may indeed be valid, it is still not a faithful

representation of the continuous setting. For instance, for hiding positions
“close” to the origin, the discretization adds overheads that should not be
present, and skews the expressions of the ratios. For this reason, we need to
adapt the definition so as to reflect the continuous nature of the problem.
Specifically, note that while the concept “the cost of the i-th least costly request
in S” is not well-defined in the continuous setting, the related concept of “the
cost for discovering a total length equal to ` in S” is, in fact, well defined,
and is precisely the value D(S, `). We can thus define the bijective ratio of S1

against S2 as

br(S1, S2) = sup
`

D(S1, `)

D(S2, `)
,

which is the same as the definition of the discovery ratio (Definition 1).

5 Conclusion

In this work we addressed the issue of separating strategies for a well-studied
search optimization problem, namely searching on the line. The starting point
was the observation that there is an infinite number of strategies of optimal
competitive ratio, and in particular a strategy that explores the line aggres-
sively has the same optimal competitive ratio as the more conservative strategy
that is based on doubling. We introduced a new measure called discovery ratio,
which informally captures the eagerness of the strategy to explore new ground.
We then applied synthetically both the discovery and the competitive ratio in
the analysis of search strategies for linear search. Our main result established
the strict separation of the two strategies, which, to our knowledge, is the first
result of this type in the context of search problems. Future work should con-
sider similar issues in more complex search environments, such as the m-ray
search problem [10, 25], in which the environment consists of m ≥ 2 infinite
rays with a common origin.
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Mathématique Hadamard. This research also benefited from the support of
the FMJH Program PGMO and from the support of EDF-Thales-Orange.

The authors do not have any conflicts of interest.

References

[1] S. Alpern and S. Gal. The theory of search games and rendezvous. Kluwer
Academic Publishers, 2003.



Springer Nature 2021 LATEX template

Best-of-both-Worlds Analysis of Online Search 25

[2] S. Angelopoulos, , D. Arsénio, C. Dürr, and A. López-Ortiz. Multi-
processor search and scheduling problems with setup cost. Theory of
Computing Systems, pages 1–34, 2016.

[3] S. Angelopoulos. Further connections between contract-scheduling and
ray-searching problems. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1516–1522, 2015.

[4] S. Angelopoulos. Online search with a hint. In Proceedings of the 12th
Innovations in Theoretical Computer Science Conference (ITCS), pages
51:1–51:16, 2021.

[5] S. Angelopoulos, D. Arsénio, and C. Dürr. Infinite linear program-
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and equivalence of paging strategies. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 229–237,
2007.

[8] S. Angelopoulos, M. P. Renault, and P. Schweitzer. Stochastic dominance
and the bijective ratio of online algorithms. Algorithmica, 82(5):1101–
1135, 2020.

[9] S. Angelopoulos and P. Schweitzer. Paging and list update under bijective
analysis. Journal of the ACM, 60(2):7:1–7:18, 2013.

[10] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane.
Information and Computation, 106:234–244, 1993.

[11] A. Beck. On the linear search problem. Naval Research Logistics, 2:221–
228, 1964.

[12] A. Beck and D.J. Newman. Yet more on the linear search problem. Israel
Journal of Mathematics, 8(4):419–429, 1970.

[13] R. Bellman. An optimal search problem. SIAM Review, 5:274, 1963.

[14] P. Berman. Online Algorithms: The State of the Art, chapter Online
searching and navigation, pages 232–241. Springer, 1998.

[15] D.S. Bernstein, L. Finkelstein, and S. Zilberstein. Contract algorithms
and robots on rays: unifying two scheduling problems. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI),



Springer Nature 2021 LATEX template

26 Best-of-both-Worlds Analysis of Online Search

pages 1211–1217, 2003.

[16] P. Bose, J. De Carufel, and S. Durocher. Searching on a line: A complete
characterization of the optimal solution. Theoretical Computer Science,
569:24–42, 2015.

[17] J. Boyar, S. Irani, and K. S. Larsen. A comparison of performance
measures for online algorithms. Algorithmica, 72(4):969–994, 2015.

[18] J. Boyar, K.S. Larsen, and A. Maiti. A comparison of performance
measures via online search. Theoretical Computer Science, 532:2–13, 2014.

[19] A. Condon, A. Deshpande, L. Hellerstein, and N. Wu. Algorithms for
distributional and adversarial pipelined filter ordering problems. ACM
Transactions on Algorithms, 5(2):24:1–24:34, 2009.

[20] J. Czyzowicz, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan,
J. Opatrny, and S. Shende. Search on a Line by Byzantine Robots.
In Proceedings of the 27th International Symposium on Algorithms and
Computation (ISAAC 2016), pages 27:1–27:12, 2016.

[21] E.D. Demaine, S.P. Fekete, and S. Gal. Online searching with turn cost.
Theoretical Computer Science, 361:342–355, 2006.
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