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Abstract. In 1970, Furth and Yoshikawa[1] introduced the scalings of adiabatic plasma
compression. Basically, if the shape of the external plasma boundary and the aspect ratio
are preserved during the compression, then the density, kinetic pressure, beta and current scale
respectively as n ∼ C3, p ∼ C5, B ∼ C2, β ∼ C, It ∼ C, where C is the linear compression
ratio, that is, the ratio between initial and final major radii. In this work, we show analytically,
by expanding the Grad-Shafranov equation in terms of C, that the deviation to the Furth-
Yoshikawa scaling is related to the Shafranov shift that arises when beta increases at large
compression ratios. There is an obvious effect of the Shafranov shift because the axis is
moved to a region with larger volume element, and an indirect effect, associated to the
relation between flux and radius. The latter effect adds to the first, and is of the same
order of magnitude. The result is that the pressure increases less than the C5 scaling, which
can have a significant impact on the fusion power achieved at maximum compression. The
analytical results are backed up by equilibrium simulations carried out with the CHEASE
code. Equilibria are obtained for different values of C, with conservation of the total fluxes,
q profile, and entropy of the plasma. The agreement of the theory and simulations is very
good when the boundary of the plasma is circular and the aspect ratio small. When the aspect
ratio is close to 1, and/or the boundary not circular, the analytical result gives the gist of the
reduction of compression. Finally, a pressure anisotropy (p⊥− p‖)/p approximately equal to
the increase in normalized Shafranov shift is predicted.
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1. Introduction

Magnetized target fusion intends to achieve a fusion relevant triple product by compressing
a magnetized plasma using an imploding metal liner. In this paper, we focus on the proposal
of the General Fusion startup, where the liner is a liquid lead-lithium eutectic, and the
magnetized plasma a tokamak plasma [2]. The approach is largely based on the LINUS
concept [3, 4], but in a toroidal configuration. Although the confinement device is very distinct
from a tokamak, the plasma can be called a tokamak plasma, because it is (i) axisymmetric
and (ii) comprises both toroidal and poloidal fields, with a safety factor similar to that of a
tokamak. Although the compression of a tokamak plasma by a conducting liner has never
been attempted outside of General Fusion, the adiabatic compression of tokamak plasmas
has been investigated both theoretically and experimentally in the seventies. The purpose
was to provide an alternative way of bringing the tokamak plasma to fusion conditions, by
rapidly changing the external coil parameters ensuring the equilibrium, in order to produce
an adiabatic compression of the plasma[1, 5, 6, 7, 8]. Consequently, the basic scalings of
pressure, magnetic field, current and plasma β during compression were provided in 1970 by
Furth and Yoshikawa [1]. The scaling is derived as a consequence of particle, entropy and flux
conservation. Several cases were considered regarding a possible difference in compression
of minor radius a and major radius R0. Here, we will restrict ourselves to the case of constant
aspect ratio ε = a/R0, indeed we find a deviation to the scaling even in this simple case. In
that case, by defining C as the ratio between final and initial major radii, the scalings are as
follows, for the pressure, density, magnetic field, toroidal current, total and poloidal beta:

p∼C5

n∼C3

B∼C2

It ∼C
β ∼C
βP ∼C

(1)

The purpose of this paper is to present the deviation with respect to this scaling for
finite β values. Strictly speaking, the equilibrium calculations we perform are a small subset
of the more general theory of circular cross section tokamak equilibrium originating in the
work of Zakharov and Shafranov (see in particular volumes 2 and 11 of the Reviews of
Plasma Physics, refs. [9, 10]). In particular, the case of tokamak compression with constant
total flux and entropy (adiabatic compression) was examined extensively by Green et al. [5],
using analytical developments rooted in the aforementioned pioneering work of Shafranov
and Zakharov. The deviation to the scaling of Furth and Yoshikawa is, in a sense, contained
in reference [5]. However, there is a difficulty with the convention used by the authors, which
prevents one from deriving the final result, as explained in Appendix C. As a matter of
fact, the subsequent works, refs. [11, 12, 13, 14], which simulated the adiabatic compression,
observed and commented a deviation to the scaling, but failed to explain it, and do not even
cite reference [5]. For example, in ref. [14], the deviation is attributed to the change of shape
of the plasma boundary only. Moreover, we have examined the wealth of literature citing
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ref. [5], and found none that discuss the Furth-Yoshikawa scalings directly. The deviation
effect can be large and have a strong impact on fusion power when β reaches several tens of
percent, as is envisioned in the General Fusion proposal [2]. For these reasons, we felt it was
worth revisiting the problem of adiabatic compression of tokamak plasmas. Because of the
issue discussed in Appendix C, it turned out easier, both from a technical point of view and in
order to ease the readability of the paper, to rederive the effect from scratch. In order to make
it analytically tractable, a special case is considered (perfectly conducting wall with constant
aspect ratio and shape, perfectly adiabatic).

In technical terms, the question that is addressed is as follows. Given an initial safety
factor (or current) and pressure distribution for an ideal tokamak plasma limited by a wall
assumed to be perfectly conducting, how do the profiles evolve when the wall is moved
so as to provoke a reduction of the plasma volume at constant shape and aspect ratio? Of
course, in the actual experiments attempted by General Fusion, the assumptions of perfect
conductivity for the liquid metal wall and of adiabaticity for the plasma are unrealistic, and
an actual prediction for the behaviour of the plasma in their experiments would require to
take into account the wall and plasma resistivity, as well as the evolution of the shape of the
boundary. The point, here, is to show that even in the most ideal case, assuming no transport
whatsoever, the situation is worse than the optimistic conclusions based solely on the Furth
and Yoshikawa scaling (1), which neglects plasma profiles. That is, the axis pressure (and, as
a result, the fusion power, which scales as p2) increases significantly less than predicted by
the scaling, as seen, for example, in figure 6. The real plasma, which has losses of magnetic
flux, particles and energy, will perform below this ideal performance.

The result is easily expressed in terms of a single parameter, the Shafranov shift. When
the volume of the plasma is reduced, the adiabaticity law leads to the increase of the pressure,
following the scaling (1) at lowest order. At the same time, the plasma β increases (linearly
with the linear compression ratio). The reason for that increase is that the magnetic pressure,
which is linked to the flux conservation, increases less rapidly than the pressure. The β

increase leads to an increase of the Shafranov shift, which takes the magnetic axis to larger
major radii, with larger specific volume. This larger volume is responsible for one part of
the reduced pressure increase, the other part being due to an effect of the modification of the
relation between poloidal flux and magnetic surface minor radius.

The analytical result obtained with circular flux surfaces is tested with equilibrium
calculations in the case of both circular large aspect ratio and shaped tight aspect ratio
equilibria. It is shown how a simple adaptation of the analytical result to the shaped case
matches the CHEASE results in the range of parameters tested so far.

The paper is organized as follows. In section 2, the adiabaticity laws are written in local
form, and the basic effect of the Shafranov shift is described. In section 3, the full analytical
result in the case of large aspect ratio and circular cross section is derived. In section 4,
comparisons with CHEASE simulations [15] are performed and a discussion follows in
section 5 to conclude.
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2. Physics of the compression

2.1. Adiabatic constraints

The plasma is supposed to undergo compression by the physical motion of a boundary
made of a highly conducting material (eutectic Li-Pb liquid metal in the proposal of General
Fusion [2]). If the compression is fast compared to the time scales of magnetic flux, particle
and energy losses, then the compression is adiabatic. The time scales mentioned here pertain
not only to the global loss time scales, but also to the transport time scales within the
plasma. Assuming the plasma remains axisymmetric, the topology of the magnetic surfaces
is preserved and the position in the plasma can at any time be described with the generalized
coordinates (ψ,θ ,ϕ), where θ and ϕ are the poloidal and toroidal angles, and ψ the poloidal
flux divided by 2π . The density and temperature are assumed to be flux surface quantities.
Any surface ψ = Cte contains at any time the same quantity of particles, entropy and
magnetic flux (poloidal and toroidal). This leads immediately to the fact that the safety factor
q(ψ) = dψT/dψ is preserved, where ψT is the toroidal flux divided by 2π . The total number
of particles contained within a surface bounded by ψ is N(ψ) = 2π

∫
ψ dψ n(ψ)

∮
J dθ ,

where J = [(∇ϕ×∇ψ) ·∇θ ]−1 is the jacobian of the change of variables from cartesian to
(ψ,θ ,ϕ). The volume within a surface bounded by ψ is V (ψ) = 2π

∫
ψ dψ

∮
J dθ . The latter

is often written 2π
∫

ψ dlp/BP, where dlp is the poloidal length element and BP the amplitude
of the poloidal field. By deriving N(ψ) with respect to ψ , we see that the local quantity that
ought to be preserved in the compression is n(dV /dψ). Similar consideration regarding the
conservation of entropy with a ratio of specific heat γ = 5/3 leads to the local preservation of
the quantity p(dV /dψ)5/3.

Note that relaxing the constraint of perfect adiabaticity is of course possible and leads to
transport equations such as (8) and (9) of ref. [11] (see also section 5.2 in ref. [10]). However,
we will keep with perfect adiabaticity in this work.

2.2. Isotropy

It is natural to wonder whether the perpendicular and parallel pressure are compressed
identically, or if an anisotropy is generated during the compression. This would significantly
complicate the analysis. Fortunately, it was demonstrated in [16] that the equivalent of
d/dt (pρ−γ) = 0 when the parallel and perpendicular pressures are considered separately is

d
dt

( p⊥
nB

)
= 0 (2)

d
dt

(
p‖B2

n3

)
= 0 (3)

One checks easily that these relations are compatible with the scaling (1) if p⊥ and p‖ both
scale as C5. Therefore, no anisotropy is generated in the compression when only the lowest
order of the scaling, equation (1), is considered. However, as the scaling is actually modified
due to the effects derived in this paper, this conclusion must be changed. The pressure
anisotropy induced by the modification of the scaling is analyzed in section 5.2.
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2.3. Jacobian and Shafranov shift

The quantity dV /dψ is simply the jacobian integrated over a flux surface. When we are
interested in the magnetic axis, where the plasma is hottest, it is simply the jacobian itself
(up to a 4π2 factor). It is obvious that the jacobian should play an important role, since it
represents the volume element. If the volume element between two adjacent flux surfaces
increases relatively to the FY scaling, then the density shall decrease relatively to that scaling,
in order to conserve the total number of particles. This brings us to a first obvious effect
of the Shafranov shift. During the compression, in first approximation, β increases linearly
with C because the kinetic pressure increases faster than the magnetic pressure. As a result,
the Shafranov shift of the magnetic axis increases, which has the effect of pushing it toward
larger major radii. Since the jacobian of a torus contains a factor proportional to the major
radius, this has the effect of decreasing the impact of the compression at the axis. Relatively to
the FY scaling, the volume element increases, so that the density increases less than predicted
by the scaling, which does not consider the internal adjustment of the equilibrium. The effect
on pressure is similar, but amplified by a factor of 5/3.

There is a second, less obvious effect, that will be demonstrated in the following section.
Assuming perfectly concentric flux surfaces and parameterizing the flux surface with their
minor radius r and geometrical angle θ , the Jacobian is J = Rr (dψ/dr)−1. We see that in
addition to the contribution of the magnetic axis expanding to larger major radii, there might
be, during the compression, a relative modification of the ψ(r) relation, so that r (dψ/dr)−1

is also changed relative to the FY scaling. The interpretation of this effect can be understood
as follows. We expect ψ ∼ r2, hence r(dψ/dr)−1 independent of r. However If ψ increases
less rapidly with r, this means that a given ψ =Cte surface has a larger volume, reducing the
increase in density. Again, the effect on pressure is the same, but amplified by a factor of 5/3.
In the case of this second effect, it is not obvious before doing the analysis that the effect is
related to the Shafranov shift. However, we will prove that the dominant effect can indeed
also be interpreted in terms of the Shafranov shift, and that it doubles the contribution of the
first effect.

The analytical results are presented in details in the next section.

3. Analytical results

3.1. Geometry, normalization and ansatz for the fields

Before tackling the problem, we normalize the quantities so that we extract all the spatial
dependence of the scaling equilibrium. We assume we start from a large radius, low magnetic
field and negligible (but not vanishing) pressure equilibrium, called “standard” equilibrium.
We note B◦0 the magnetic field amplitude at the magnetic axis for the standard equilibrium,
and R◦0 ≡ (max(R)+min(R))/2, that is, R◦0 is the center of the circle defining the boundary,
and may differ from the major radius at the magnetic axis even for the standard equilibrium,
because of a possible non-vanishing Shafranov shift. During the compression, the external
boundary is reduced homothetically, and each equilibrium is parameterized with R0 = R◦0/C,
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where C > 1 is the linear compression factor. The inverse aspect ratio ε = a/R0� 1, where a
is the minor radius of the boundary, is kept constant. In principle, even for a circular boundary,
at high pressure we should consider an elliptical deformation of the inner surfaces [5].
However, the effect is small and found not to affect our results, so it will be neglected. Thus,
we assume the inner surfaces to remain perfectly circular, with a well defined radius r. We
define a normalized minor radius r̃ such that r = ε r̃R◦0/C. This ensures that for all equilibria,
r̃ varies from 0 at the axis to 1 at the boundary. Allowing for the Shafranov shift, ordered as
∆(r) = ε2R0∆̃(r̃), we can write the major radius R and vertical position Z in terms of r̃ and a
geometrical angle θ as

R =
R◦0
C

(
1+ ε r̃ cosθ + ε

2
∆̃(r̃)

)
(4)

Z =
R◦0
C

ε r̃ sinθ (5)

Note that our convention for the Shafranov shift is the same as in the Wesson book,
Tokamaks [17]. The displacement of the axis is ∆(0), while the displacement of the last flux
surface in r = a vanishes, and we also have ∆′(0) = 0. As explained in appendix C, the use of
a different convention where ∆(0) = 0 does not prevent from doing calculations, but prevents
one from reaching the relevant conclusion. That is because the position of the magnetic axis
then takes the role of an input parameter, while it is actually the result of an adjustment of the
internal profiles to the external boundary conditions imposed by the wall.

To avoid any ambiguity, we will not remove the tildes on the normalized quantities. The
absence of tilde indicates a quantity in MKS units, or without dimension. The jacobian is then
given by

J =
R

dψ/dr
(∂rR∂θ Z−∂θ R∂rZ)

=
ε2R◦0
C3B◦0

r̃
ψ̃ ′
(
1+ ε r̃ cosθ + ε

2
∆̃
)(

1+ ε∆̃
′) , (6)

where a prime denotes derivation with respect to r̃. The factor 1+ ε∆̃′ comes from the non-
orthogonality of ∇r and ∇θ when the Shafranov shift depends on r (if it did not depend on r,
the Shafranov shift would only be a relabelling of the surfaces).

In the following, we will carry out a small parameter expansion of Grad-Shafranov’s
equation,

∆
?
ψ =−µ0R2 dp

dψ
−T

dT
dψ

, (7)

where ∆?ψ ≡ R2∇ ·
(
R−2∇ψ

)
and T = R2B ·∇ϕ . In the small parameter expansion, the small

parameter is related to β . The idea is that when the compression starts, β is very small, so
that the influence of the pressure term in the Grad Shafranov equation is negligible compared
to the current term −T dT/dψ . As the compression goes on, β increases roughly linearly
with C (our goal is actually to study the correction with respect to that scaling), so that the
influence of the pressure in the Grad Shafranov equation increases. However, β is not an
externally fixed parameter. Externally, the operator can only fix the position of the liquid wall
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surface, and the profiles will adjust in accordance with the Grad Shafranov equation. In our
framework where the aspect ratio and shape of the boundary is fixed, this corresponds to using
C as the externally imposed parameter. As C increases, the influence of the pressure becomes
stronger in the Grad Shafranov equation. Therefore, it is natural to expand the pressure as
p = p0C5+ p1C6, that is, the pressure scaling has a correction term that becomes increasingly
significant when C increases. Note that C = 1 corresponds to our standard equilibrium (with
negligible but non-zero pressure), while C = 0 corresponds to zero pressure, which comes
with infinite radius and vanishing magnetic field; the compressed case has C � 1. In the
numerical case used to compare with the analytical results, the maximum compression has
C = 10000. This is only a matter of convention. Since the C = 0 case cannot be reached in the
simulations, we simply go to large radius for a given thermal energy content, which effectively
decreases the pressure influence. We set the large radius case as C = 1 by convention. The
deviation to the scaling starts to be important when β reaches a few percents. This happens
at a value of C which can be large if our initial state has a very large radius. This is only
because we want to compare the analytical results with the code in the case of a circular
boundary. In an actual experiment, the compression ratio would not exceed about 10 [2].
Since, at lowest order, β ∝ C, the maximum value reached by C reflects the ratio between
the final and initial β . The fact that C = 1 has negligible pressure means that for C = 1, we
have p◦ = p0 + p1 ' p0, which means that we can confuse C = 0 and C = 1. We will use
this several times in the following analysis. Finally, also note that mathematically, there is no
requirement on the expansion parameter of a series to be small. The only thing that matters is
the convergence radius of a series, and there is no reason for this radius to be smaller than 1.
We now give the ordering of all the quantities used in the derivation.

The poloidal flux is normalized with R◦2
0 B◦0, so we write it as

ψ(r) = R◦2
0 B◦0

(
ψ̃0(r̃)+Cψ̃1(r̃)+O(C2)

)
. (8)

Note the presence of r in meters in the left hand side, and of the normalized radius r̃ in
the right hand side. Our convention is to evaluate dimensioned quantities on dimensioned
variables, and normalized quantities on normalized variables. Now, it is important to realize
that the invariance of ψ does not imply the invariance of ψ(r). Indeed, the flux surfaces can be
deformed. However, the conservation of flux does impose boundary conditions to ψ̃1, namely
that ψ̃1(0) = ψ̃1(1) = 0. Here, our convention that r is the radius of a flux surface, and not the
distance to a specific point defining the coordinate system, is essential.

The toroidal magnetic function, T =R2B ·∇ϕ is roughly proportional to C, since R ∝C−1

while Bt ∝C2, with Bt the toroidal field amplitude. Thus, in the limit of C→ 0, T tends to zero,
but T dT/dψ remains commensurable with ∆?ψ (while the pressure term becomes negligible).
For T , we take

T (r) = R◦0B◦0C
(
T̃0(r̃)+CT̃1(r̃)+O(C2)

)
. (9)

The basic pressure scaling comes from the local invariance of p(dV /dψ)5/3. Since
(dV /dψ) ∝ C−3, we have that p ∝ C5. So it is natural to normalize and scale the pressure as

p(r) =
B◦2

0
µ0

C5 (p̃0(r̃)+Cp̃1(r̃)+O(C2)
)
. (10)
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The term p̃1 will not enter in the calculation but be computed a posteriori, in terms of ψ̃1 and
other perturbed quantities. This will be our final result, allowing to estimate the modification
of axial pressure with respect to FY scaling, measured by the amplitude of p̃1(0).

Finally, the invariance of q(ψ) while ψ(r) changes means that q(r) is also not invariant.
It is given by

q(r) = q0(r̃)+C
q′0
ψ̃ ′0

ψ̃1(r̃)+O(C2). (11)

In the following, we will use the well-known relation between T and q:

T =
2πq∮

dθJ R−2 (12)

The Shafranov shift is also expanded in terms of C, since there is a part related to the current,
and a part related to the pressure, that will be negligible when C→ 0:

∆̃ = ∆̃0 +C∆̃1 +O(C2). (13)

Pressure, poloidal flux and T are related through the Grad-Shafranov equation. In our
framework, we are only interested in the radial dependence of ψ , and note that r is not the
radial distance to the magnetic axis (which would change on a flux surface), but the radius of
the flux surfaces. So we only need to consider the lowest order Grad-Shafranov equation in
terms of an expansion in powers of ε , combined with the Shafranov shift equation [10, 17],
that is:

1
r

d
dr

(
r

dψ

dr

)
=−µ0R2

0
dp
dψ
−T

dT
dψ

(14)

d
dr

(
r

R2
0

(
dψ

dr

)2 d∆

dr

)
=

r
R0

(
2µ0r

dp
dr
− 1

R2
0

(
dψ

dr

)2
)
. (15)

3.2. Pressure deviation with respect to FY scaling

We can now expand equations (12), (14) and (15) by plugging in equations (4), (8), (9),
(10), (11), and (13) and equalizing order by order in terms of the expansion parameter C.
Our normalization allows to cancel out all possible B◦0 and R◦0 factors. Transforming flux
derivatives d/dψ into (dψ/dr)−1d/dr, the Grad-Shafranov equation expands, at the two
lowest orders, into:

ψ̃
′
0

(
ψ̃
′′
0 +

ψ̃ ′0
r̃

)
=−ε

2T̃0T̃ ′0 (16)

ψ̃
′
0

(
ψ̃
′′
1 +

ψ̃ ′1
r̃

)
+ ψ̃

′
1

(
ψ̃
′′
0 +

ψ̃ ′0
r̃

)
=−ε

2
((

T̃0T̃1
)′
+ p̃′0

)
(17)

As expected, the lowest order does not depend on pressure, and the next order gives ψ̃1 as a
function of the unperturbed pressure profile p̃0 and T̃1. p̃0 can be considered to be given, since
it represents the shape of the pressure profile at the beginning of the compression. However,
we need a relation between ψ̃1 and T̃1. It is provided by equation (12). We first need to analyze∮

dθJ R−2. It is given by (see Appendix A)(∮
J

R2 dθ

)−1

=
1
r̃

ψ̃
′CB◦0R◦0

2πε2

[
1− ε

2
(

r̃2

2
− ∆̃− 1

2
r̃∆̃
′
)
+O(ε4)

]
. (18)
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We rename the last square bracketed factor f . Owing to the expansion of ∆̃ in terms of C, we
also have f = f0 +C f1 +O(C2), with

f0 = 1− ε
2
(

r̃2

2
− ∆̃0−

1
2

r̃∆̃
′
0

)
(19)

f1 = ε
2
(

∆̃1 +
1
2

r̃∆̃
′
1

)
. (20)

Replacing (18) in (12), we obtain
(
T̃0 +CT̃1

)
= 1

ε2r̃

(
ψ̃ ′0 +Cψ̃ ′1

)
( f0 +C f1)(q0 +Cq1), that is,

at the two lowest orders:

T̃0 = f0
q0

ε2r̃
dψ̃0

dr̃
(21)

T̃1 = f0
1

ε2r̃
d
dr̃

[q0ψ̃1]+ T̃0
f1

f0
, (22)

where q1 = (q′0/ψ̃ ′0)ψ̃1 has been used. We now replace this expression for T̃1 in (17), also
using (16) and (21) to eliminate ψ̃ ′0 and ψ̃ ′′0 . After multiplying by r̃3(q0 f0T̃0)

−1, we obtain

r̃2
ψ̃
′′
1

[
1+ ε

2 r̃2

q2
0 f 2

0

]
− r̃ψ̃

′
1

[
1−2s̄− ε

2 r̃2

q2
0 f 2

0
− r̃

f ′0
f0

]
+ ψ̃1

[
s̄
(

r̃
T̃ ′0
T̃0

+ r̃
f ′0
f0
−1
)
+ r̃2 q′′0

q0

]
=− ε2r̃3

q0 f0T̃0

d
dr̃

(
p̃0 +

T̃ 2
0
f0

f1

)
. (23)

with s̄ ≡ r̃q′/q the magnetic shear. Since both T̃0 and f0 are equal to one plus a term of
order ε2, the above differential equation can be considerably simplified by neglecting all ε2

corrections. This yields the model equation

r̃2
ψ̃
′′
1 − r̃ψ̃

′
1 (1−2s̄)− ψ̃1

[
s̄−

r̃2q′′0
q0

]
=−ε2r̃3

q0

d
dr̃

(p̃0 + f1) . (24)

This equation, solved with the boundary conditions ψ̃0(0) = ψ̃0(1) = 0, yields the
sought-after correction to the flux-radius relation. We only need to express the f1 term, which
comes from the Shafranov shift equation (15). At the two lowest orders, it yields

d
dr̃

[
r̃
(
ψ̃
′
0
)2 d∆̃0

dr̃

]
=−r̃

(
ψ̃
′
0
)2 (25)

d
dr̃

[
r̃
(
ψ̃
′
0
)2 d∆̃1

dr̃

]
= 2ε

2r̃2 p̃′0−2
d
dr̃

[
r̃ψ̃
′
0ψ̃
′
1

d∆̃0

dr̃

]
−2r̃ψ̃

′
0ψ̃
′
1. (26)

It can be proven that the terms containing ψ̃ ′1 lead only to ε2 contributions (see Appendix B),
which we neglect. By replacing ψ̃ ′0 using expression (21) and replacing T̃ 2

0 / f 2
0 with 1 yields

the model equation for ∆̃1:

d
dr̃

(
ε

2 r̃3

q2
0

d∆̃1

dr̃

)
= 2r̃2 p̃′0. (27)

Since it is a Shafranov shift equation, it ought to be solved with boundary conditions
∆̃1(1) = 0 and ∆̃′1(0) = 0. Since f1 ∼ ε2∆̃1, equation (27) shows that both p̃0 and f1 terms in
equation (24) are of the same order of magnitude.

This clarifies the interpretation of the phenomenon. When the compression ramps up,
the pressure term kicks in the Grad Shafranov equation (14), yielding a contribution to the
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modification of the flux-radius relation. However, it also leads to an increase of the Shafranov
shift, which gives an additional contribution to the Grad Shafranov equation through the f1

term. In fact, we find that the latter dominates the former contribution (the p̃0 term in the right
hand side of equation (24)) by a factor of roughly q2 (see section 3.3).

In order to derive the pressure perturbation, there is one last preliminary quantity, which
is dV /dψ . Poloidal integration of (6) yields

dV

dψ
=

4π2ε2R◦0
C3B◦0

r̃
ψ̃ ′

[
1+ ε

2
(

∆̃+
1
2

r̃∆̃
′
)]

(28)

The bracketed factor can be written e0 +C f1 + O(C2), with e0 = 1 + ε2 (∆̃0 +
1
2 r̃∆̃′0

)
=

f0 + ε2r̃2/2.
The invariance of p(dV /dψ)5/3 means that the pressure at a given compression ratio C

is given by

p(ψ) = p◦(ψ)

(
dV ◦/dψ

dV /dψ

)5/3

, (29)

where ◦ stands for the standard equilibrium, where C = 1. Recalling the standard equilibrium
is defined as one for which the effect of the pressure is negligible, we must have all quantities
with index 1 much smaller than one. With this approximation (which amounts to confuse
C = 0 and C = 1), we can expand equation (29) into

(p̃0(r̃)+Cp̃1(r̃)) =
(

p̃0 +C
p̃′0
ψ̃ ′0

ψ̃1

)
(1+C f1)

−5/3
(

1+C
ψ̃ ′1
ψ̃ ′0

)5/3

, (30)

which yields the perturbation of the pressure profile with respect to the FY scaling, δ p/p =

Cp̃1/p̃0, measured by the following quantity:

p̃1

p̃0
=−5

3

(
f1−

ψ̃ ′1
ψ̃ ′0

)
+

p̃′0
ψ̃ ′0

ψ̃1

p̃0
. (31)

At the axis, since ψ̃1(0) = 0, the last term vanishes, and we see the pressure deviation is
indeed the sum of two terms. At the axis, f1 = ε2∆̃1, and the −5/3 f1 term accounts for the
reduction due to the magnetic axis being displaced to larger major radius regions with larger
volume element, the first effect described in section 2.3. Note that ∆̃1 is the contribution to the
Shafranov shift of the pressure. Since β increases with C, so does ∆̃, so that ∆̃1 is a positive
quantity. The second effect is accounted for by the 5/3ψ̃ ′1/ψ̃ ′0 term. As shown in section 3.3,
this term is almost equal to and adds to the first one. It is also an indirect effect of the shift
because ψ̃ ′1 is mainly driven by f1 in equation (24).

As noted in the introduction, Greene, Johnson and Weimer have already derived a
correction to the Furth-Yoshikawa scaling. [5]. However, although the result we find bears
similarities with theirs, their expression cannot be directly exploited. The main reason lies
in a convention chosen for the compression parameter, which amounts to assuming that the
position of the magnetic axis itself is controlled, while only the external boundary conditions
are experimentally controlled. More details are presented in Appendix C.
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3.3. The case of vanishing shear

We can gain a lot of insight by computing exactly the effect in the case of vanishing shear. The
existence of a sheared safety factor profile will affect the numbers and prevent the derivation
of a closed form, but does not change the nature of the effect. In this section, we simply
assume that the safety factor is constant and we denote it simply by q. Then, we are solving

r̃2
ψ̃
′′
1 − r̃ψ̃

′
1 =−

ε2r̃3

q
(p̃0 + f1)

′ (32)(
ε

2r̃3
∆̃
′
1
)′
= 2r̃2q2 p̃′0 (33)

f1 = ε
2
(

∆̃1 +
1
2

r̃∆̃
′
1

)
. (34)

We shall be interested in the effect at the magnetic axis only, because it can be related
to global quantities, and because it is where the plasma is hottest. We introduce β ◦ ≡
2µ0 p◦/B◦2

0 and β ◦P = 2µ0 p◦/B◦2
θ

, respectively the axis and global poloidal beta of the standard
equilibrium, with B◦

θ
taken at the last flux surface and p◦ the volume averaged pressure. In

our normalization, using B◦
θ
(a◦)/B◦0 = ε/q, valid for small aspect ratio, this is:

β
◦ = 2p̃0(0) (35)

β
◦
P =

4q2

ε2

∫ 1

0
p̃0(r̃)r̃dr̃ (36)

First, we compute the f1 contribution at the axis, which is simply ε2∆̃1(0). This yields
(see Appendix D):

f1(0) =
q2

2

(
β
◦− ε2

q2 β
◦
P

)
. (37)

Note that ε2q−2β ◦P is smaller than β ◦, making the Shafranov shift a positive quantity, as is
well known. For instance for a parabolic pressure profile, f1(0) = ε2∆̃1 = q2β ◦/4.

To compute the contribution of ψ̃ ′1/ψ̃ ′0, we note that since typically, the poloidal flux
varies as r̃2 close to the axis, we need to look at the ratio (ψ̃ ′1/r̃)/(ψ̃ ′0/r̃). Equation (32) is an
Euler-Cauchy equation with solution

ψ̃1(r̃) = K
r̃2

2
− ε2

q

∫ r̃

0
ds s(p̃(0)− p̃(s)+ f1(0)− f1(s)) , (38)

where K = (ψ̃ ′1/r̃)|r̃=0 is an integration constant such that ψ̃1(0) = 0. Therefore, eliminating
ψ̃ ′0 using equation (21) with T̃0/ f0 replaced with 1 (valid up to order ε2 terms), we find

ψ̃ ′1/r̃
ψ̃ ′0/r̃

=
qK
ε2

=−2
∫ 1

0
dr̃ r̃ (p̃(0)− p̃(r̃)+ f1(0)− f1(r̃))

=−1
2

(
β
◦− ε2

q2 β
◦
P

)(
1+q2) , (39)
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where we have used equation (37) as well as the fact that
∫ 1

0 r̃ f1(r̃)dr̃ = 0 by integration by
parts of (34).

We can combine (39) and (37) into (31) at the axis to find the pressure perturbation. By
noting that at lowest order in C, the FY scaling applies, β 'Cβ ◦, βP 'Cβ ◦P , we finally find:

δ p
p

∣∣∣∣
r=0

=−5
6

(
β − ε2

q2 βP

)(
1+2q2) . (40)

The δ here is to be interpreted as “with respect to the FY scaling”. The first important
conclusion that can be drawn from this result is that the deviation is always negative, meanign
that the pressure increases less than predicted by the FY scaling. Furthermore, the analytical
result can be seen as being made of two contributions, with relative amplitudes respectively
1 and 2q2, where the latter can be clearly decomposed into two q2 contributions. Since
in a tokamak a large part of the plasma has q > 1, the 2q2 contribution is dominant. The
first contribution (with amplitude 1) comes from the p̃0 term on the right hand side of (24).
The remaining two q2 contributions come respectively from the two effects advertized in
section 2.3: (i) the Shafranov shift takes the axis to larger major radii, and (ii) it also modifies
the flux vs radius relation by opening the flux surfaces, through the f1 term in equation (24).
As one can immediately see, the effect is not small if β reaches several tens of percents, as is
planned in General Fusion concepts [2].

4. Comparison with CHEASE simulations

4.1. Setting a predefined safety factor profile in CHEASE and enforcing entropy conservation

The CHEASE code [15] solves Grad Shafranov equation,

R2
∇ ·
(

1
R2 ∇ψ

)
=−µ0R2 dp

dψ
−T

dT
dψ

(41)

with a prescribed boundary, and several options to implement the p(ψ) and T (ψ) profiles.
Although p′ is reasonably constrained from the experimental knowledge of the radial pressure
profile, T is more difficult to get right, and arbitrary choices will often lead to unrealistic
current or safety factor profiles. It is, therefore, more usual to choose the current profile, and
to use the relation between this current and T to define the profile of the latter. Namely, a
common choice is to define the surface averaged current density as

I?(ψ) =

∮
(j ·∇ϕ)J dθ∮

R−1J dθ

=

〈
jϕ/R

〉
〈1/R〉

, (42)

where the flux surface average is defined by

〈A〉 =
(∮

J dθ

)−1 ∮
AJ dθ . (43)

This current is related to dp/dψ and T dT/dψ via the following relation [15]:

I? =−C1

C0

dp
dψ
−C2

C0
T

dT
dψ

, (44)
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where

{C0,C1,C2}=
∮ { 1

R
,1,

1
R2

}
J dθ . (45)

Since the integrals (45), carried at ψ = Cte, obviously depend on the ψ solution, the
relation (44) is iterated over, every time a new solution is computed, until convergence is
achieved.

In some cases, and for obvious reasons in the present case, it is desirable to define T not
through the current, but directly by inputting the safety factor profile q(ψ). The procedure,
which is non trivial, was implemented in CHEASE in 2016 and is described in reference [18].
The procedure is now outlined.

In principle, fixing the safety profile could be done by using equation (12), which is
simply T = 2πq/C2 with the newly introduced notation. Unfortunately, this does not work as
well as for the current. If one attempts to input I? in the form

I? =−C1

C0

dp
dψ
− 4π2

C0
q

d
dψ

(
q

C2

)
, (46)

the safety profile rapidly develops spurious oscillations instead of converging to the desired
value. If one allows for a gradual iterative procedure

I?input,n = αI?target +(1−α)I?n−1 (47)

with I?k the current at step k and I?target given by equation (46), the oscillations do not disappear
even for α � 1. A similar problem was already mentioned in past works [19, 11] where it
was also found that direct use of equation (12) was not adequate. Instead, alternative relations
between q, dp/dψ and T dT/dψ had to be put to use.

The solution developed for CHEASE relies on the same idea of using a more
sophisticated relation beween these quantities. The total current Ip contained within a constant
ψ surface can be obtained either as a surface integral of the current, or through Ampère’s law:

Ip(ψ) =
∫

ψ

dψ

∮
(j ·∇ϕ)J dθ

= µ
−1
0

∮
BPdl

= (2πµ0)
−1 dV

dψ

〈
B2

P
〉
. (48)

In (48), B−1
P dl = J dθ was used. We see by taking the ψ derivative of Ip that an alternative

definition of I? is

I? =
1

µ0 〈1/R〉
d

dV

(〈
B2

P
〉 dV

dψ

)
. (49)

We can manipulate this expression by defining an effective radius ρT such that the toroidal
flux is ψT = ρ2

T/2, with q = dψT/dψ . This means that dψ/dρT = q−1ρT . Then, by also using
BP = |∇ψ|/R, we can reexpress the term in the brackets of I? to obtain

I? =
1

µ0 〈1/R〉
d

dV

(
dV

dρT

〈
|∇ρT |2

R2

〉
ρT

q

)
. (50)



Shafranov shift correction to FY scaling 14

The apparition of q at the denominator suggests the following procedure. Denoting by
qtarget the safety factor one wishes to obtain in the final equilibrium, and q the safety factor
corresponding to the currently available ψ solution (or first guess), one replaces equation (49)
with

I? =
1

µ0 〈1/R〉
d

dV

(〈
B2

P
〉 dV

dψ

q
qtarget

)
. (51)

This leads to the disappearance of the oscillations and to very good convergence properties.
Note that equation (47) is also used. A value of α = 0.2 has given good results in our case.
The iterative procedure of inputting I? through (51) leads to an equilibrium with the desired
safety factor. More details regarding the implementation can be found in reference [18].

The question that remains is how to ensure the invariance of p(dV /dψ)5/3. Fortunately,
there is no difficulty here. Starting from an initial equilibrium (say, our standard equilibrium),
we first update the pressure profile according to the FY scaling to obtain an initial guess, used
to compute an equilibrium. At the next iteration, the pressure profile is defined simply as

p =

[
p(dV /dψ)5/3

]
target

(dV /dψ)5/3 , (52)

where at the numerator the quantity is fixed once and for all, and the denominator is computed
from the last equilibrium. The operation is repeated as many times as necessary. An L 2

convergence to a tolerance of 10−6 can be obtained usually in roughly half a dozen iterations.
The simplified CHEASE workflow adapted to the generation of flux and entropy conserving
equilibria is represented in figure 4.1

Solve with current
p’ and T’

Compute new I*

q conserved?

Compute new p’ 
and T’

p(d𝒱/d𝜓)5/3

conserved?

p = pold𝒱old’5/3/ 𝒱’5/3

Compute new p’ 
and T’

Initial equilibrium
Scale boundary up or down

Rescale p and T with FY scaling

No
Yes

No
Yes

Figure 1. CHEASE workflow for the generation of flux and entropy conserving equilibria.

4.2. Results with a circular boundary

In this section, the analytical results of section 3 are tested against CHEASE computations. In
order to be as close as possible to the theory, we impose a circular boundary, and use a very
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equation (24)
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equation (31)

Figure 2. Comparison between the analytical and numerical profiles of (a) ψ̃1 and (b) p̃1.

large aspect ratio ε−1 = 10. In order to make the pressure of the standard equilibrium (C = 1)
as negligible as possible, we choose R◦0 = 1200m and B◦0 = 7×10−7T. At C = 1000, we obtain
a plasma with the starting parameters of General Fusion [2], R0 = 1.2m and B0 = 0.7T. The
safety factor profile is monotonous, with qr=0 = 0.8, qr=a = 5 and q = 1 roughly at mid-
radius. The pressure profile is also monotonous and peaked in the center. We have generated
30 equilibria between C = 1 and C = 10000. For each equilibrium, the radius of the flux
surfaces can be measured to infer the ψ(r) dependence. This allows to compute ψ̃1 point by
point: for every flux surface with radius r̃, ψ̃(r̃) is computed as the linear coefficient of a
polynomial fit of ψ̃− ψ̃0, where ψ̃0 is simply the normalized flux of the standard equilibrium.
Note that only a small error is introduced by confusing the standard equilibrium with C = 0,
because |ψ̃1| � |ψ̃0|. The numerical result is compared with the solution of equation (24),
with f1 computed from (27). Similarly, once f1 and ψ̃1 are computed, the pressure deviation
p̃1 can be computed and compared with its numerical counterpart, obtained with the same
procedure as for ψ̃1. The results can be seen in figure 2. The agreement is excellent for ψ̃1

with an L 2 norm difference of only 1.5%, that is, of order ε2 as could be expected. The
agreement is also very good for p̃1, with a difference lower than 5%.

Next, we show in figure 3 how well the analytical result captures the reduction of the
axis pressure with respect to the FY scaling when C is increased. Figures 3 a), b) and c)
respectively show the axis beta, the poloidal beta and the toroidal current. We see clear
deviations with respect to the FY scaling for all these quantities. Figure 3 d) shows the
axial pressure divided by C5. The FY scaling in this case is merely a horizontal straight
line. We show in the red dashed-dotted curve that our analytical result indeed captures the
deviation with respect to the scaling for modest values of C. For C > 3000, the plain and red
dashed-dotted curves separate, meaning the next order in the C expansion, which we have not
calculated, kicks in. In principle, the next order can be computed with this theory, the algebra
being quite similar. However, we have found that the Shafranov shift equation, (15), cannot
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equation (53)

Figure 3. Comparison between the numerical result and either the FY scaling or the corrected
FY scaling in the case of circular cross section, for (a) the axis beta, (b) the poloidal beta, (c)
the toroidal current, (d) the axis pressure scaled down by C5.

adequately reproduce the next order of the shift, ∆̃2. This might be because the ellipticity
of the surfaces starts to play an important role, indeed the derivation of the Shafranov shift
equation explicitly assumes circularity of the flux surfaces.

We can, in fact, obtain an even better agreement if instead of using the Shafranov shift
equation (15) to obtain the shift, we use the one measured in the CHEASE simulation. Then,
δ p/p at the axis contains a first contribution −5/3ε2(∆̃− ∆̃◦), the intuitive geometric effect,
and the other contribution of the shift coming through ψ̃ ′1 at the axis. We have seen that
the latter is almost exactly equal to the former in the case of zero shear, up to a term that is
subdominant unless q' 1, which is never the case over the whole volume in tokamak plasmas.
This suggests that even for non-vanishing shear, it may suffice to double the geometric effect
of the shift to get the whole effect. Thus, we conjecture that the following formula can be
used with a good approximation:

δ p
p

=−10
3

(
∆

R0
− ∆◦

R◦0

)
, (53)

where we have removed the normalization to make it a more readily usable quantity. The
disadvantage is that it assumes that the Shafranov shift is known. However, since it is an
important MHD quantity, it is reasonable to assume that it may be known to operators with
reasonable precision even in the absence of a complete equilibrium solution. The green dashed
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curve in figure 3 d) shows that indeed, (53) provides a satisfactory approximation to describe
the deviation with respect to the FY scaling over the whole C range.

4.3. Results with shaping and a tight aspect ratio

0.0 0.5 1.0 1.5 2.0
R (m)

1.0

0.5

0.0

0.5

1.0

Z
 
(
m
)

C= 1

C= 2

C= 5

C= 10

Figure 4. Visualization of the flux surfaces in the case of tight aspect ratio and with shaping.
The equilibria are also plotted for compression ratios C = 2, C = 5 and C = 10.

The previous section served to confirm the theory by using large aspect ratio and a
circular boundary. If we now add ellipticity, triangularity and use a tight aspect ratio, it is clear
that the analytical theory of section 3 is out of its domain of validity. However, the geometric
effect of the shift will necessarily remain the same, owing to the major radius dependence of
the volume element in a torus. We can also expect that there will be an opening of the inner
flux surfaces due to the compression, even if we cannot compute the effect precisely. Hence,
it is tempting to test formula (53) in the case of a shaped equilibrium.

We have generated 20 equilibria with aspect ratio ε = 0.7, elongation κ = 1.3 and
triangularity δ = 0.4. This looks similar to a spherical tokamak. The safety factor profile
is the same as in the previous subsection. The standard equilibrium in this case (C = 1) is
defined as having R◦0 = 1.2m and B◦0 = 0.7T, and the maximum compression has C = 10. The
results are seen in figure 5 and 6. Figures 5 a), b) and c) illustrate the large deviation of β and
βP with respect to FY, and a modest deviation for the current. Thus, the deviation of βP is
mostly due to the pressure deviation, which is seen in 5 d). We see that, again, equation (53)
captures surprisingly well the deviation, with a precision roughly similar to that observed in
the case of a circular boundary.

Figure 6 a) is the same as 6 d) except that the pressure is not divided by C5. This
makes the deviation much more apparent. The final pressure is less than 5× 108 Pa instead
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Figure 5. Comparison between the numerical result and either the FY scaling or equation (53)
in the case of D-shaped cross section with tight aspect ratio (κ = 1.3, δ = 0.4 and ε = 0.7),
for (a) the axis beta, (b) the poloidal beta, (c) the toroidal current, (d) the axis pressure scaled
down by C5.
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Figure 6. Comparison between the numerical result and either the FY scaling or equation (53)
in the case of D-shaped cross section with tight aspect ratio (κ = 1.3, δ = 0.4 and ε = 0.7) for
(a) the axis pressure and (b) the fusion power.
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of almost 8×108 Pa predicted by the scaling. This has a strong impact on the fusion power,
which, as is well known, scales roughly as p2 when T ∼ 10 keV. As seen in 6 b), where
p2 is represented, the effect on the fusion power is very important. The final reduction in
peak fusion power is of more than 2.5, which considerably impacts the optimistic conclusions
drawn in reference [2]. Note that we assume perfect adiabaticity, an assumption which will
hold only if the compression time is significantly shorter than the energy and flux confinement
times.

At this point, the reader may consider that this does not matter, because if the pressure
increases less rapidly than anticipated, then it means that the thermal energy stored in the
plasma also increases less rapidly. So the mechanical pistons performing work −

∫
pdV will

simply compress the plasma to a larger compression ratio C, thus cancelling the effect of
the shift described in this manuscript. Unfortunately, this does not happen, and there are
two reasons for that. The first reason is that in a tokamak plasma, the magnetic energy
dominates, so that the thermal energy not increasing rapidly enough would have little effect
on the pistons during most of the compression, except maybe at the end when β reaches
several tens of percents. The second reason is that actually, the thermal energy increases
slightly more rapidly than the scaling. This is counterintuitive, but possible because, as seen
in figure 2 b), the pressure perturbation is positive for larger radii, which have a much larger
volume element. In any case, the resulting effect is small and the total energy computed
numerically by volume integration of the CHEASE result is virtually indistinguishable from
the scaling Etot = E◦thC2 + E◦magC, where = E◦th and E◦mag are respectively the thermal and
magnetic energies of the standard equilibrium.

5. Discussion

5.1. Summary

We have shown that the central pressure increases much slower than predicted by the Furth-
Yoshikawa scaling when the plasma is compressed adiabatically while keeping the aspect
ratio constant. The reduction with respect to the scaling is of order β and can clearly be
interpreted in terms of the Shafranov shift. An effect of including the shift is to take the
axis to larger major radii, where the larger volume element leads to a relative decrease of the
plasma pressure. This effect is doubled by the modification of the flux vs radius relation: the
inner surfaces expand relatively to the plasma boundary during the compression. Both effects
are related to the Shafranov shift, as has been clearly demonstrated in section 3. The theory
works surprisingly well out of its domain of validity, as seen in section 4.3. We conjecture
that this would be the case also if we removed the constraint of constant aspect ratio. When
the aspect ratio is not kept constant, a and R0 are allowed to vary independently, and the
recipe to obtain the scaling is as follows. The volume scales as V ∼ a2R0, the density as
n∼ V −1, the pressure as p∼ V −5/3, and the toroidal and poloidal fields BT and BP also scale
differently because the conserved toroidal and poloidal fluxes are ψT ∼ a2BT and ψ ∼ aR0BP.
Nonetheless, whatever the scaling becomes, the Shafranov shift will increase if β increases,
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and this will affect the central pressure with a contribution δ p/p = −5/3ε2(∆̃− ∆̃◦). Thus,
our conjecture is that the second effect related to the flux vs radius dependence will again
be present and be roughly equal to the first one, with equation (53) remaining valid. The
verification is left for future work.

It this is indeed verified, then we can conclude that it is highly desirable to limit the
increase in Shafranov shift in General Fusion plasmas. This can be achieved by changing the
aspect ratio during the compression. The discussion is then profile dependent. Depending on
the current and pressure profile, the Shafranov shift will be dominated by effects associated
to β or βP (as highlighted by equation (37)). When the aspect ratio is changed, β and βP vary
as [1]:

β ∼ ε
2/3 1

R0
(54)

βP ∼ ε
−1/3 1

a
, (55)

as can be easily verified by using the above rules. Therefore, depending on the profiles, it
might be necessary to limit the Shafranov shift by trying to force the plasma to increase or
decrease its aspect ratio.

Another avenue to be studied is using triangularity as an actuator. Indeed negative
triangularity plasma can have a larger Shafranov shift at zero beta than positive triangularity
shapes at finite beta, as discussed in ref. [20]. Therefore one could start with low or slightly
negative triangularity and move towards positive triangularity at maximum compression,
which would also move towards better MHD stability when reaching high beta plasmas.

5.2. Apparition of pressure anisotropy

In section 2.2, we have shown that the FY scaling is compatible with the hypothesis of
isotropy. However, since there is a deviation with respect to that scaling, we must reevaluate
this conclusion. Combining and developing equations (2) and (3), we obtain

d
dt

(
p⊥− p‖

)
=

(
ṅ
n
+

Ḃ
B

)(
p⊥− p‖

)
+

(
3

Ḃ
B
−2

ṅ
n

)
p‖, (56)

where the dot represents the time derivative. At lowest order, ṅ/n+ Ḃ/B = 5Ċ/C. So the first
term in the right hand side of equation (56) tells us that the pressure anisotropy increases, like
the pressure, as C5. However, there has to be an anisotropy seed in the first place. The term
responsible for this is the second one. At lowest order (assuming the FY scaling), we find that
3Ḃ/B− 2ṅ/n = 0, in accordance with our previous conclusion that there is no anisotropy if
the FY scaling is correct. If we now consider the next order of the calculation, we can express
the anisotropy generating term in terms of the Shafranov shift, as follows. To remove the
cosθ dependence of the magnetic field, let us just consider the axis. By writing B = T/R, we
obtain, at lowest order in ε2 (T̃0 ' 1,1+ ε2∆̃0 ' 1):

B = B◦0C2 (1+ (T̃1− ε
2
∆̃1
)

C
)
. (57)
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The density is evaluated using the formulæ for the pressure, e.g. (C.7), evaluated at the axis,
and with the factor of 5/3 replaced with 1. This gives

n = n◦C3 (1+ (T̃1−2ε
2
∆̃1
)

C
)
. (58)

Using the latter two expressions, we find that

3
Ḃ
B
−2

ṅ
n
=
(
T̃1 + ε

2
∆̃1
)

C
Ċ
C
. (59)

The numerical results of section 4 suggest that the T̃1 term is subdominant compared to the
Shafranov shift term. In that case, we can conclude that a pressure anisotropy will appear, such
that p⊥ > p‖. By integrating equation (56) for short times (and neglecting T̃1), we predict an
anisotropy increasing with the Shafranov shift as

p⊥− p‖
p

∼
(

∆

R0
− ∆◦

R◦0

)
. (60)

This is small, but reaches about 10% in the case examined in section 4.3. Unfortunately, since
anisotropy is not taken into account in the CHEASE code, we cannot compare this prediction
with the numerical simulations. Also, note that if the anisotropy becomes too large, our
analytical model breaks down because the assumption of an isotropic pressure is no longer
valid.

5.3. Correction of other global quantities

In this paper, we have limited the discussion of the deviation with respect to the FY scaling
to the pressure, and concentrated our efforts on the central pressure. In principle, we should
be able to derive the first order corrections to other quantities such as β , βP and the toroidal
currents. The deviations are observed in the plots a), b) and c) of figures 3 and 5. However,
even if possible in principle, the computation of the total current, which requires radial
integration of the derived expressions, does not bring much insight. Instead, for the central
pressure, we have found that we can easily obtain a satisfactory ballpark estimation, with
significant practical consequences. Nonetheless, we insist that the deviations of β , βP and It
with respect to the FY scaling do not have anything to do with the aspect ratio not being large
or the plasma boundary changing shape. It is simply a result of the internal adjustment of the
profiles following the Grad Shafranov equation.

5.4. The flux conserving tokamak

In the decade that followed the work of Furth and Yoshikawa on the scaling of tokamak
adiabatic compression, the concept of flux conservation in the study of Grad-Shafranov
equation remained important, albeit with a different point of view, that of the so-called flux
conserving tokamak. The idea was to compute the modification of a magnetic equilibrium
when an initial equilibrium is heated via neutral beam injection or wave resonant heating,
which contribute only to the increase of the thermal energy of the plasma. Then, the
equilibrium is modified at constant toroidal and poloidal fluxes (which implies constant safety
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factor for each constant ψ flux surface). At the time, when the numerical resolution of Grad-
Shafranov equation was still in its infancy, the poloidal beta limitations in pure equilibrium
terms were not known, for instance, it was debated whether βP was limited to not exceed the
inverse aspect ratio A = ε−1 [11]. The flux conserving tokamak was seen as an approach
allowing high beta operation of a tokamak, and even led to reactor designs [21]. The main
result of this research was the scaling of the toroidal current when the pressure is increased
while conserving the magnetic flux, namely It ∝ p1/3 [22]. Note that this scaling cannot be
directly compared to our results, because in the case of the flux conserving tokamak, the
volume of the plasma does not change, or only marginally, for instance in order to reduce
the skin currents that may appear [19]. Consequently, the FY paper is barely cited in the
theoretical research of the flux conserving tokamak, but to underline the differences [23].

5.5. Connection with past numerical works

In references [11, 12, 13], numerical computations of adiabatic compression with varying
aspect ratio were performed and compared with the scalings of Furth and Yoshikawa.
Significant differences were found, but the reason for these differences was not well
established. For instance, reference [12] attributes the difference observed during the
compression toward tight aspect ratio to the fact that FY scaling is valid only for large
aspect ratio. Reference [24] criticizes these conclusions by proposing another interpretation.
The author considers that the compressed flux is not only the plasma flux, but also the flux
trapped between the plasma boundary and the wall. His discussion then includes the surface
currents arising during the compression, and attributes the difference with the scaling to these.
Although the analysis is physically sound, it is not relevant to references [12, 11, 13], nor to
the present manuscript, because here and in the latter references, the plasma is assumed to
be in contact with the wall. Indeed, the boundary condition is that of a perfectly conducting
shell, setting the shape of the external boundary of the plasma. Also, note that reference [5] is
not cited in these works, despite the direct relevance of the adiabatic compression calculations
performed there.

5.6. Surface currents

We have dismissed the explanation of reference [24] in terms of the vacuum flux between
the plasma and the wall being compressed and leading to surface currents, not because it
is not relevant to these plasmas, but because in our view, this does not constitute the main
cause of the deviation with respect to the scaling. Indeed, we do not have to consider surface
currents or an additional zone between plasma and wall to derive the result. However, we
do not wish to convey the idea that the question of these surface currents is not important.
One must realize the essential difference between an actual tokamak plasma and the General
Fusion plasmas. The former are held in place, prevented from expanding radially under
the effect of pressure and hoop forces, by an externally generated vacuum field. On the
contrary, when the plasma of General Fusion expands radially, it meets the wall, where it
generates image currents, eventually emulating the role of the vacuum field. This is an
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essential difference of a magnetized low β plasma compared to a hot gas in a container,
which simply balances its pressure against the physical wall. When the plasma is compressed,
the motion of the wall against the flux conserving plasma will generate surface currents (the
inward compression motion of the plasma can be largely seen as the result of the Laplace
force arising from the interaction between these currents at the wall surface and the plasma
current). The dissipation time for these currents and the associated Joule dissipated energy
should be properly accounted for to understand the energy balance of the plasma. It is not
trivial because the resistivity of the conducting wall (liquid metal) is different from that of
the plasma, the latter being subject to large changes as the temperature increases during the
compression. This discussion is well beyond the scope of the present paper.

Data availability

The data that support the findings of this study are available from the corresponding author
upon reasonable request.
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Appendix A. Computation of
∮

dθ R−2J

∮
J

R2 dθ =
r̃

dψ̃/dr̃
ε2

CB◦0R◦0

∮ 1+ ε∆̃′ cosθ

1+ ε r̃ cosθ + ε2∆̃
dθ

=
r̃

dψ̃/dr̃
ε2

CB◦0R◦0

(
1+ ε

2
∆̃
)−1

∮ 1+α1 cosθ

1+α2 cosθ
, (A.1)

with α1 = ε∆̃′ and α2 = ε r̃/(1+ ε2∆̃). The poloidal integral can be carried out using the
residue theorem with the change of variable z = eiθ . This yields

∮ 1+α1 cosθ

1+α2 cosθ
dθ =− 2i

α2

∮ z+α1/2
(
z2 +1

)
z(z− z+)(z− z−)

dz (A.2)

with

z± =− 1
α2

(
1±
√

1−α2
2

)
(A.3)

Note that z+z− = 1 and z−− z+ = 2
√

1−α2
2 . The poles that are within the unit circle are

z = z− and z = 0. By the residue theorem, the integral is∮ 1+α1 cosθ

1+α2 cosθ
dθ = 2π

[
α1

α2
+2

z−+α1/2
(
z2
−+1

)
α2z− (z−− z+)

]
(A.4)

The result can be plugged in any computer algebra software to yield a small aspect ratio
expansion of the result. Using sympy, we find
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(
1+ ε

2
∆̃
)[∮ 1+α1 cosθ

1+α2 cosθ

]−1

=
1

2π

[
1− ε

2
(

r̃2

2
− ∆̃− 1

2
r̃∆̃
′
)
+O(ε4)

]
(A.5)

Appendix B. Neglect of ψ1 term in the Shafranov shift equation

The reader who wants to check that the ψ̃1 terms of (26) indeed lead to only ε2 corrections
ot the flux solution of (24) can examine the right hand side of equation (27), had we kept
them. For instance, the −2r̃ψ̃ ′0ψ̃ ′1 would yield, after replacing ψ̃ ′0 with T̃0, to the term
−2
[
r̃2T̃0/( f0q0)

]
ψ̃ ′1 on the right hand side of (27). The additional factor of ε2 in the right

hand side of equation (24) means that this would contribute to the coefficient of the ψ̃ ′1 term
to order ε2, which we neglect. The term −2

[
rψ̃ ′0ψ̃ ′1∆̃′0

]′ is of the same order, so that the use
of equation (27) is justified.

Appendix C. Comparison with Greene et al

The correction to the Furth-Yoshikawa scaling derived by Greene, Johnson and Weimer in
reference [5] could, in principle, have been used to comment the results of refs. [11, 12, 13,
14], but it was not the case. Let us examine the equation proposed by ref. [5]. The pressure
is expanded to second order in ε and is written as p = p(2)+ ε2 p(4). They use two distinct
variables σ ≥ 1 and τ ≥ 1 for the reduction of major radius and increase of the flux function
T , respectively. To compare with our case, it is sufficient to use the prescription σ = τ =

√
C.

The comparison is made delicate because they have a different convention for the Shafranov
shift. Instead of being a positive quantity which vanishes at the edge, it is a negative quantity
which vanishes at the center. Also, the shift appearing in their expressions has been explicitly
ordered with ε2, so below we replace their symbol ∆ with ∆/ε2. Then, their equation (113)
for the pressure during the flux conserving compression reads.

p(2) =C5 p◦(2) (C.1)

p(4) =C5
{

p◦(4)+
5
3

p◦(2)
[

2
(C∆−∆◦)

ε2R◦0
+ r◦

d∆/dr−d∆◦/dr
ε2R◦0

+g(2)−g◦(2)
]}

, (C.2)

where as usual the symbol ◦ indicates quantities at the beginning of compression, C = 1, and
the quantity we call T̃ is equal to 1+ε2g(2) in their notation. Therefore, above, we can replace
g(2)− g◦(2) with CT̃1/ε2 (confusing C = 1 with C = 0 as usual). Other substitutions are as
follows:

C∆−∆◦

ε2R◦0
= ∆̃1 (C.3)

r◦
d∆/dr−d∆◦/dr

ε2R◦0
= r̃∆̃

′
1. (C.4)

The deviation with respect to the FY scaling comes from the square bracketed term in
equation (C.2). We recognize the combination of Shafranov shift leading to the f1 term in
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our calculations. Let us denote it by f GJW
1 to remember the difference in the convention taken

for the Shafranov shift. This leads to the following expression, to be compared with (31):
δ p
Cp

∣∣∣∣
GJW

=
5
3
(
2 f GJW

1 + T̃1
)
. (C.5)

Actually, this expression can hardly be compared to ours. The problem is not with the sign
difference so much as with the convention that ∆(r = 0) = 0. This leads to no effect of the
shift whatsoever on the magnetic axis, and one hardly gets physical insight from the T̃1 term.
This problem is due to the fact that if one writes the major radius, as Green et al. are doing:

RGJW = RGJW
0 − εr cosθ − ε

2
∆

GJW (C.6)

with ∆GJW(r = 0) = 0, then it means that R0 no longer represents the radius of the outermost
flux surface, but the major radius of the magnetic axis. We don’t have control over the latter
quantity, since the profiles readjust according to Grad-Shafranov equation. Therefore, scaling
the radius as RGJW = R◦GJW/C (see equation (106) in reference [5]) does not really make
sense from an operational point of view. This explains the difference between our results and
theirs.

Nonetheless, their expression suggests an alternative expression to equation (31). If we
use equations (21)-(22) to express ψ ′1/ψ ′0, we get (at zero order in ε):

p̃1

p̃0
=

5
3
(
−2 f1 + T̃1

)
+

(
p̃′0
p̃0
−

q′0
q0

)
ψ̃1

ψ̃ ′0
(C.7)

Up to the last term, proportional to ψ̃1, this expression looks much like equation (C.5). Since
ψ̃1(r = 0) = 0, if we can neglect T̃1, the result is that the net effect of the shift is twice that
of the intuitive geometric effect described in the first paragraph of section 2.3. Examination
of the zero shear case in section 3.3 and of the numerical results in sections 4.2 and 4.3 both
support this interpretation.

Appendix D. Axis shift

We can integrate (33) as follows:

f1(0) = ε
2
∆̃1(0)

=−
∫ 1

0
ε

2
∆̃
′
1

=−
∫ 1

0
dr̃

2q2

r̃3

∫ r̃

0
s2 p̃′0(s)ds

= q2
∫ 1

0
dr̃

d
dr̃

(
1
r̃2

)∫ r̃

0
s2 p̃′0(s)ds

= q2
[∫ 1

0
r̃2 p̃′0(r̃)dr̃+ p̃0(0)

]
= q2

[
p̃0(0)−2

∫ 1

0
r̃ p̃0(r̃)dr̃

]
=

q2

2

(
β
◦− ε2

q2 β
◦
P

)
, (D.1)
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where several integration by parts are carried out, and p̃′0(0) = 0 is used to cancel one of the
terms:

lim
r̃→0

1
r̃2

∫ r̃

0
s2 p̃′0(s)ds = 0. (D.2)
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