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Online Search With a HintI,II

Spyros Angelopoulos
CNRS and LIP6–Sorbonne University
4 place Jussieu 75252, Paris, France

Abstract

We introduce the study of search problems, in a setting in which the searcher has some
information, or hint concerning the hiding target. In particular, we focus on one of the
fundamental problems in search theory, namely the linear search problem. Here, an immobile
target is hidden at some unknown position on an unbounded line, and a mobile searcher,
initially positioned at some specific point of the line called the root, must traverse the line
so as to locate the target. The objective is to minimize the worst-case ratio of the distance
traversed by the searcher to the distance of the target from the root, which is known as the
competitive ratio of the search.

We consider three settings in regards to the nature of the hint: i) the hint suggests the
exact position of the target on the line; ii) the hint suggests the direction of the optimal search
(i.e., to the left or the right of the root); and iii) the hint is a general k-bit string that encodes
some information concerning the target. Our objective is to study the Pareto-efficiency of
strategies in this model, with respect to the tradeoff between consistency and robustness.
Namely, we seek optimal, or near-optimal tradeoffs between the searcher’s performance if
the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided
by an adversary).

We prove several results in each of these three settings. For positional hints, we show
that the optimal consistency of r-robust strategies is (br + 1)/(br − 1), where br is defined

to be equal to ρr+
√
ρ2r−4ρr
2

, and ρr = (r − 1)/2, for all r ≥ 9. For directional hints, we
show that for every b ≥ 1 and δ ∈ (0, 1], there exists a strategy with consistency equal to
c = 1 + 2( b2

b2−1 + δ b3

b2−1) and robustness equal to 1 + 2( b2

b2−1 +
1
δ

b3

b2−1); furthermore, we show
again that this upper bound is tight. Last, for general k-bit hints, we show upper bounds
for general k-bit hints, as well as lower bounds: specifically, we show that the consistency of
any 9-robust strategy must be at least 5, and that the consistency of r-robust strategies is
at least 1 + 2br/(br − 1), in the case of a natural class of asymptotic strategies.
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1. Introduction

Searching for a hidden target is a common task in everyday life, and an important com-
putational problem with numerous applications. Problems involving search arise in diverse
areas such as drilling for oil in multiple sites, the forest service looking for missing back-
packers, search-and-rescue operations in the open seas, and navigating a robot between two
points on a terrain [1]. All these problems involve a mobile searcher which must locate an
immobile target, often also called hider, that lies in some unknown point in the search do-
main, i.e, the environment in which the search takes place. The searcher starts from some
initial placement within the domain, denoted by O, which we call the root. There is, also,
some underlying concept of quality of search, in the sense that we wish, in informal terms,
for the searcher to be able to locate the target as efficiently as possible.

One of the simplest, yet fundamental search problems is searching on an infinite line that
is unbounded both to the left and to the right of the root. In this problem, which goes back
to Bellman [17] and Beck and Newman [10], the objective is to find a search strategy that
minimizes the competitive ratio of search. More precisely, let S denote the search strategy,
i.e., the sequence of moves that the searcher performs on the line. Given a target t, let d(S, t)
denote the total distance that the searcher has traveled up to the time it locates the target,
and d(t) the distance of t from O. We define the competitive ratio of S as

cr(S) = sup
t

d(S, t)

d(t)
.

A strategy of minimum competitive ratio is called optimal. The problem of optimizing the
competitive ratio of search on the line is known as the linear search problem (mostly within
Mathematics and Operations Research), but is also known in Computer Science as the cow
path problem.

It has long been known that the optimal (deterministic) competitive ratio of linear search
is 9 [15], and is derived by a simple doubling strategy. Specifically, let the two semi-infinite
branches of the line be labeled with 0, 1 respectively. Then in iteration i, with i ∈ N, the
searcher starts from O, traverses branch i mod 2 to distance 2i, and returns to the root.

Linear search, and its generalization, the m-ray search problem, in which the search
domain consists ofm semi-infinite branches have been studied in several settings. Substantial
work on linear search was done in the ’70s and ’80s predominantly by Beck and Beck, see
e.g., [11, 16, 12, 13, 14]. Gal showed that a variant of the doubling strategy is optimal for
m-ray search [29, 30]. These results were later rediscovered and extended in [9].

Other related work includes the study of randomization [52] and [35]; multi-searcher
strategies [44]; searching with turn cost [23, 3]; the variant in which some probabilistic
information on the target is known [32, 33]; the related problem of designing hybrid algo-
rithms [34]; searching with an upper bound on the distance of the target from the root [43]
and [20]; fault tolerant search [22, 39]; and performance measures beyond the competitive
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ratio [36, 47, 4]. Competitive analysis has been applied beyond the linear and star search,
for example in searching within a graph [38, 26, 6].

1.1. Searching with a hint
Previous work on competitive analysis of deterministic search strategies has mostly as-

sumed that the searcher has no information about the target, whose position is adversarial
to the search. In practice, however, we expect that the searcher may indeed have some in-
formation concerning the target. For instance, in a search-and-rescue mission, there may be
some information on the last sighting of the missing person, or the direction the person had
taken when last seen. The question then is: how can the searcher leverage such information,
and to what possible extent?

If the hint comes from a source that is trustworthy, that is, if the hint is guaranteed
to be correct, then the performance of search can improve dramatically. For example, in
our problem, if the hint is the branch on which the target lies, then the optimal search is
to explore that branch until the target is found, and the competitive ratio is 1. There is,
however, an obvious downside: if the hint is incorrect, the search may be woefully inefficient
since the searcher will walk eternally on the wrong branch, and the competitive ratio in this
case is unbounded.

We are thus interested in analyzing the efficiency of search strategies in a setting in which
the hint may be compromised. To this end, we first need to define formally the concept of
the hint, as well as an appropriate performance measure for the search strategy. In general,
the hint h is a binary string of size k, for a given k ∈ N+, where the i-th bit is a response to
a query Qi. For example, one can define a single query Q as “Is the target within distance
at most 100 from O?” and a one-bit hint, so that the hint answers the corresponding query.
For another example, if Q=“Is the target to the left or to the right of O?”, then a 1-bit
hint informs the searcher about the direction it should pursue. From the point of view of
upper bounds (positive results), we are interested in settings in which the queries and the
associated hints have some natural interpretation, such as the ones given above. From the
point of view of lower bounds (impossibility results), we are interested on the limitations of
general k-bit hint strings which may be associated with any query, as we will discuss in more
detail later.

Concerning the second issue, namely evaluating the performance of a search strategy S
with a hint h, note first that S is a function of h. We will analyze the competitiveness of
S(h) in a model in which the competitive ratio is not defined by a single value, but rather
by a pair (cS,h, rS,h). The value cS,h describes the competitive ratio of S(h) assuming that h
is trusted, and thus guaranteed to be correct. The value rS,h describes the competitive ratio
of S(h) when the hint is given by an adversarial source. More formally, we define

cS = inf
h
sup
t

d(S(h), t, h)

d(t)
, and rS = sup

t
sup
h

d(S(h), t, h)

d(t)
, (1)

where d(S(h), t, h) denotes the distance traversed in S(h) for locating a target t with a hint
h. We will call cS,h the consistency of S(h), and rS,h the robustness of S(h). To simplify
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notation, we will often write S instead of S(h) when it is clear from context that we refer to
a strategy with a hint h.

For example, if the hint h is the branch on which the target lies, then the strategy
that always trusts the hint is (1,∞) competitive, whereas the strategy that ignores the
hint entirely is (9, 9)-competitive. Our objective is then to find strategies that are provably
Pareto-optimal or Pareto-efficient [28] in this model, and thus identify the strategies with
the best tradeoff between robustness and consistency. Specifically, we say that a strategy
with robustness r and consistency f(r), for some function f , is Pareto-optimal if any other
strategy with robustness at most r, has consistency at least f(r), for all r ≥ 9. Identifying
the function f reveals the Pareto frontier of the bi-objective optimization problem (where
the two objectives are the consistency and the robustness). When it is not obvious how to
identify the function f , we rely to approximations, i.e., one aims to provide upper and lower
bound on f(r). In our results, we assume that the robustness of the strategy is bounded
by some given r ≥ 9, and our goal is to minimize the consistency. This is because an
upper bound on the robustness provides us with significant information about the worst-
case behavior of the strategy, which we can leverage both in terms of the upper and the
lower bound analysis of the consistency (see e.g, Lemma 4, in which we obtain lower bounds
on the search lengths of the strategy).

Our model is an adaptation, to search problems, of the untrusted advice framework for on-
line algorithms proposed in [45] (which introduced the concepts of consistency and robustness
in the context of paging), [50] (which applied the framework to other online problems) and [5]
(which studied an extension of the advice complexity model to include erroneous advice);
see also the survey [48]. Since then, studies of trade-offs between consistency and robustness
have become prominent in the context of online optimization problems with machine-learned
predictions, see e.g., [53, 54, 42, 40, 41].

1.2. Contribution
In this work we study the power of limitations of linear search with hints. Let r ≥ 9 be

a parameter that in general will denote the robustness of a search strategy, and let br be
defined as

br =
ρr +

√
ρ2r − 4ρr
2

, where ρr = (r − 1)/2. (2)

Here, br is the largest value for which a geometric strategy with base br is r-competitive (see
Section 2 for details).

We consider the following classes of hints:

• The hint is the position of the target. Here, the hint describes the exact location of the
target on the line: its distance from O, along with the branch (0 or 1) on which it lies. We
present a strategy that is ( br−1

br+1
, r)-competitive, and we prove it is Pareto-optimal.

• The hint is the branch on which the target lies. Here, the hint is information on whether
the searcher is to the left or to the right of the root. We present a strategy that, given
parameters b > 1 and δ ∈ (0, 1), has consistency c = 1 + 2 · ( b2

b2−1 + δ b3

b2−1), and robustness
r = 1 + 2 · ( b2

b2−1 +
1
δ

b3

b2−1). Again, we prove that this strategy is Pareto-optimal.
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• The hint is a general k-bit string. In the previous settings, the hint is a single bit, which
answers the corresponding query. Here we address the question: how powerful can be a
single-bit hint, or more generally a k-bit hint? In other words, how powerful can k binary
queries be for linear search? We give several upper and lower bounds on the competitiveness
of strategies in this setting. First, we look at the case of a single-bit hint. Here, we give a
9-robust strategy that has consistency at most 1 + 4

√
2, whereas we show that no 9-robust

strategy can have consistency less than 5, for any associated query. For general robustness
r, we give upper and lower bounds that apply to some specific, but broadly used class of
strategies, including geometric strategies (see Section 2 for a definition and Theorem 12 for
the statement of the result). For general k, and for a given r ≥ 9, we give an r-robust
strategy whose consistency decreases rapidly as function of k (Proposition 13).

The above setting focuses on the trade-off between the consistency and the robustness of
the search strategies. In Section 6, we expand our study so as to consider the effect of the
error in hints. We discuss the challenges one has to face, and how to extend the strategies
so as to make them more robust to errors.

In terms of techniques, for the first setting described above (in which the hint is the
position of the target), the main idea is to analyze a geometric strategy with “large” base,
namely br, for r ≥ 9. The technical difficulty here is the lower bound; to this end, we prove
a lemma that shows, intuitively, that for any r-robust strategy, the search length of the
i-th iteration cannot be too big compared to the previous search lengths (Lemma 4). This
technical result may be helpful in more broad settings (e.g., we also apply it in the setting
in which the advice is a general k-bit string).

Concerning the second setting, in which the hint describes the branch, we rely on tools
developed by Schuierer [51] for lower-bounding the performance of search strategies; more
precisely on a theorem for lower-bounding the supremum of a sequence of functionals. But
unlike [51], we use the theorem in a parameterized manner, that allows us to express the
tradeoffs between the consistency and the robustness of a strategy, instead of their average.

Concerning the third, and most general setting, our upper bounds (i.e., the positive
results) come from a strategy that has a natural interpretation: it determines a partition
of the infinite line into 2k subsets, and the hint describes the partition in which the target
lies. The lower bounds (negative results) come from information-theoretic arguments, as is
typical in the field of advice complexity of online algorithms (see, e.g., the survey [21]).

The broader objective of this work is to initiate the study of search games with some
limited, but potentially untrusted information concerning the target. As we will show, the
problem becomes challenging even in a simple search domain such as the infinite line. The
framework should be readily applicable to other search games, and the analysis need not
be confined to the competitive ratio, or to worst-case analysis. For example, search games
in bounded domains are often studied assuming a probability distribution on the target,
with the objective to minimize the expected search time (for several such examples see the
book [1]). However, very little work has addressed the setting in which the searcher may
have access to hints, such as the High-Low search games described in Section 5.2 of [1], in
which a searcher wants to locate a hider on the unit interval by a sequence of guesses. Again,
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our model is applicable, in that one would like to find the best tradeoff on the expected time
to locate the target assuming a trusted or untrusted hint.

1.3. Further related work
There are several works related to exploring a known or unknown environment in the

standard advice complexity model. Here, the explorer is enhanced with an additional infor-
mation called advice, which is guaranteed to be error-free. The objective is to quantify the
number of bits required to achieve a desired competitive ratio (relative to an offline optimal
algorithm). Examples include graph exploration [25], in which the explorer must visit all
vertices in an unknown graph and return to its origin; tree exploration [27] in which the
environment is a tree graph; exploration under different classes of advice oracles [31], in
which the advice may encode aspects of the environment such as a port-numbered map of
the graph or the starting point of the explorer, and treasure hunt [37, 49], in which a mobile
searcher must locate a hider in an unknown environment. These works provided powerful
information-theoretic lower bounds on the interplay between the size of advice and the com-
petitive ratio, as well as explicit upper bounds via algorithms that leverage the corresponding
advice.

Our work differs from the above studies in two important ways. First, unlike all previous
works related to advice-complexity aspects of searching, we do not assume that the advice is
perfect and error-free. Instead, we allow the possibility of worst-case manipulation of advice
by an adversary, and provide results that explicitly quantify the effect of such manipulation,
both from the upper and the lower bound point of view. Second, beyond the performance
of the search strategies at the two extreme situations (precise versus adversarial advice), we
provide a more nuanced analysis that expresses the competitive ratio as a function of the
advice error, which is likewise novel in the analysis of search-related algorithms.

Furthermore, this work puts emphasis on the semantic information of hints. For posi-
tional and directional hints, this semantic information is straightforward: the hint provides
the location or the direction of the target. But even for the setting of k-bit hints, our upper
bounds interpret each bit as information with intuitive meaning. As we discuss in Section 5,
each bit can be interpreted as a response to a binary query, which asks whether the target
lies in some partition of the infinite line. Coupled with the error-based analysis, the upper
bounds express the power of using k imperfect binary experts towards locating a hidden
target.

Last, there is related work in which the searcher relies on advice in the form of noisy
queries [19]. Specifically, the response to each query is correct with some known probability.
In our setting, in contrast, we do not rely on any probabilistic assumptions in regards to the
quality of the advice.

2. Preliminaries

In the context of searching on the line, a search strategy X can be defined as an infinite
set of pairs (xi, si), with i ∈ N, xi ∈ R≥1 and si ∈ {0, 1}. We call i an iteration and xi
the length of the i-th search segment. More precisely, in the i-th iteration, the searcher
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starts from the root O, traverses branch si mod 2 up to distance xi from O, then returns to
O. It suffices to focus on strategies for which xi+2 ≥ xi, i.e., in any iteration the searcher
always searches a new part of the line. We will sometimes omit the si’s from the definition
of the strategy, if the direction is not important, i.e., the searcher can start by moving
either to the left or to the right of O. In this case, there is the implicit assumption that si
and si+1 have complementary parities, since any strategy that revisits the same branch in
consecutive iterations can be transformed to another strategy that is no worse, and upholds
the assumption. We make the standing assumption that the target lies within distance at
least a fixed value, otherwise every strategy has unbounded competitive ratio. In particular,
we will assume that t is such that d(t) ≥ 1.

Given a strategy X = (x0, x1, . . .) (which we will denote by X = (xi), for brevity). It is
known that its competitive ratio is maximized for targets hiding immediately after the turn
point of each segment (see e.g., [51]). Consider a target hiding at the end of segment i− 1,
i.e., at distance infinitesimally larger than xi−1. In this case, the strategy locates the target
t at cost xi−1 + 2

∑i
j=1 xj, whereas d(t) = xi−1. Hence,

cr(X) = 1 + 2 sup
i≥0

∑i
j=1 xj

xi−1
, (3)

where x−1 is defined to be equal to 1.
Geometric sequences are important in search problems, since they often lead to efficient,

or optimal strategies (see, e.g., Chapters 7 and 9 in [1]). We call the search strategy Gb = (bi)
geometric with base b. From (3), we obtain that

cr(Gb) = 1 + 2
b2

b− 1
. (4)

For example, for the standard doubling strategy in which xi = 2i, hence b = 2, the above
expression implies a competitive ratio of 9.

For any r ≥ 9 define ρr to be such that r = 1 + 2ρr, thus ρr = (r − 1)/2. From (4), it
follows that for the geometric strategy Gb to be r-competitive, it suffices that 1 + 2 b2

b−1 ≤ r,
or equivalently, b2

b−1 ≤ ρr. Note that the function x2/(x− 1)− ρr has two roots, the largest
of which is given by (2), and will be denoted by br. This expression will be prominent in the
analysis of our strategies, and we will use the following fact:

Remark 1. For the geometric strategy G(br) with base br, it holds that cr(Gbr) = r.

In the context of searching with a hint, we will say that a strategy is (c, r)-competitive if
it has consistency at most c and robustness at most r; equivalently we say that the strategy
is c-consistent and r-robust. Clearly, an r-robust strategy gives rise to a strategy with no
hints, and with competitive ratio at most r.

We conclude with some definitions that will be useful in Section 4. Let X = (x0, x1, . . .)
denote a sequence of positive numbers. We define αX as

αX = limn→∞x
1/n
n .
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We also define as X+i the subsequence of X starting at i, i.e, X+i = (xi, xi+1, . . .). Last, we
define the sequence Gb(γ0, . . . γn−1) as

Gb(γ0, . . . γn−1) = (γ0, γ1a, γ2a
2, . . . γn−1a

n−1, γ0a
n, γ1a

n+1, . . .).

3. Hint is the position of the target

In this section we study the setting in which the hint is related to the exact position
of the target. Namely, the hint h describes the distance d(t) of the target t from the root,
as well as the branch on which it hides. For any r ≥ 9, we will give a strategy that is
( br+1
br−1 , r))-competitive. Moreover, we will show that this is Pareto-optimal. We begin with
the upper bound.

Theorem 2. For any r ≥ 9 there exists a ( br+1
br−1 , r)-competitive strategy for linear search in

which the hint is the position of the target.

Proof. From the hint h, we have as information the distance d(t) as well as the branch on
which the target t lies; without loss of generality, suppose that this branch is the branch 0.
Recall that this information may or may not be correct, and the searcher is oblivious to this.

Consider the geometric strategy Gbr = (bir), with i ∈ N, and recall that Gbr is r-robust
(Remark 2). There must exist an index jt such that bjt−2r < d(t) ≤ bjtr . Define λ = bjtr /d(t) ≥
1, and let G′ denote the strategy G′ = ({ 1

λ
bir, si}), where the si’s are defined such that that

si+1 6= si, for all i, and sjt = 0.
In words, G′ is obtained by “shrinking” the search lengths of Gbr by a factor equal to λ,

and by choosing the right parity of branch for starting the search, in a way that, if the hint
is trusted, then in G′ the searcher will locate the target right as it is about to turn back to
O at the end of the jt-th iteration.

Since Gbr is r-robust, so is the scaled-down strategy G′. This follows immediately from
the expression of the worst-case competitive ratio, namely (3). It remains then to bound the
consistency cG′ of G′. Suppose that the hint is trusted. We have that

d(G′, t) =
1

λ
(2

jt−1∑
i=0

bir + bjtr ),

and since d(t) = bjtr /λ we can bound cG′ from above by

d(G′, t)

d(t)
= 1 + 2

bjtr − 1

bjtr (br − 1)
≤ 1 +

2

br − 1
=
br + 1

br − 1
.

We conclude that G′ is ( br+1
br−1 , r)-competitive.

Example 3. For r = 9, Theorem 2 shows a 9-robust strategy that has consistency 3. In this
strategy, a third of the search cost is dedicated to reaching the target in the last iteration,
and two thirds of the cost are dedicated towards the exploration of the line in both directions,
prior to finding the target.
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Next, we will show that the strategy of Theorem 2 is Pareto-optimal. To this end, we
will need a technical lemma concerning the segment lengths of any r-robust strategy.

Lemma 4. For any r-robust strategy X = (xi), it holds that

xi ≤ (br +
br
i+ 1

)xi−1,

for all i ≥ 1, where x−1 is defined to be equal to 1.

Proof. The proof is by induction on i. We first show the claim for i = 0. There exists a
branch such that if a target t hides on it, and at distance d(t) = 1+ ε, with ε infinitesimally
small, then X locates t at cost 1 + 2x0 + ε (namely, t hides on the opposite branch explored
by X in iteration 0). For ε→ 0, and since X is r-robust, it must be that

1 + 2x0 ≤ r = 1 + 2
b2r

br − 1
⇒ x0 ≤

b2r
br − 1

≤ 2br,

where the last inequality follows from the fact that br ≥ 2. Thus, the base case holds.
For the induction hypothesis, suppose that the claim holds for all j ≤ i, that is xj ≤

(br +
br
j+1

)xj−1, for all j ≤ i. This implies that

xi−j ≥
1∏j−1

k=0(br +
br

i+1−k )
xi. (5)

We will show that the claim holds for i+1. Consider a target t hiding at distance d(t) = xi+ε,
with ε→ 0, and at the same branch as the one explored by X in iteration i. Then X finds
t at cost d(t) + 2

∑i
j=0 xj, and since X is r-robust, from the definition of ρr in (2), it follows

that ∑i+1
j=0 xj

xi
≤ ρr ⇒ xi+1 +

i−1∑
j=0

xj ≤ (ρr − 1)xi,

and substituting x0, . . . , xi−1 using (5), we obtain that

xi+1 ≤ (ρr − 1− Pi)xi, where Pi =
i−1∑
j=0

1∏j−1
k=0(br +

br
i+1−k )

.

It then suffices to show that

ρr − 1− Pi ≤ br +
br
i+ 2

or equivalently Pi ≥ ρr − 1− br
i+ 3

i+ 2
. (6)

We will prove (6) by induction on i. For i = −1, (6) is equivalent to

2br ≥
b2r

br − 1
− 1,
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which can be readily verified from the fact that br ≥ 2. Assuming then that (6) holds for i,
we will show that it holds for i+ 1. We have

Pi+1 =
1

br +
br
i+2

(1 + Pi) (From the definition of Pi)

≥ 1

br +
br
i+2

(1 + ρr − 1− br
i+ 3

i+ 2
) (From induction hypothesis)

=
i+ 2

br(i+ 3)
(

b2r
br − 1

− br
i+ 3

i+ 2
) (Since b2r

br−1 = ρr)

>
i+ 2

i+ 3

br
br − 1

− 1.

To complete the proof of this lemma, it remains to show that

i+ 2

i+ 3

br
br − 1

− 1 ≥ ρr − 1− br
i+ 3

i+ 2
,

or equivalently, by substituting ρr with the expression b2r
br−1 , that

i+ 2

i+ 3

1

br − 1
+
i+ 3

i+ 2
≥ br
br − 1

.

The lhs of the above expression is decreasing in i, for every br ≥ 2, thus the lhs is at least

lim
i→∞

(
i+ 2

i+ 3

1

br − 1
+
i+ 3

i+ 2
) =

br
br − 1

,

which concludes the proof.

We obtain a useful corollary concerning the sum of the first i − 1 search lengths of an
r-robust strategy.

Corollary 5. For any r-robust strategy X = (xi), it holds that

i−1∑
j=0

xj ≥
xi

1 + 1
i+1

(
br

br − 1
− i+ 2

i+ 1
),

and for every ε ∈ (0, 1], there exists i0 such that for all i > i0,
∑i−1

j=0 xj ≥ ( 1
br−1 − ε)xi.

Proof. We have
i−1∑
j=0

xj = xi−1 +
i−2∑
j=0

xj ≥ xi−1(1 +
i−2∑
j=0

1∏j−1
k=0(br +

br
i+1−k )

)

= xi−1(1 + Pi−1) ≥ xi−1(ρr − br
i+ 2

i+ 1
)

≥ xi

br +
br
i+1

(
b2r

br − 1
− br

i+ 2

i+ 1
),

10



where the first inequality follows from Lemma 4, the second inequality holds from the prop-
erty on Pi that was shown in the proof of Lemma 4, and the last inequality follows again
from Lemma 4.

We now observe that for sufficiently large i, the rhs of the inequality is arbitrarily close
to 1

br−1xi, which concludes the proof.

We can now show a lower bound on the competitiveness of every strategy that matches
the upper bound of Theorem 2.

Theorem 6. For every (c, r)-competitive strategy for linear search in which the hint is the
position of the target, it holds that c ≥ br+1

br−1 − ε, for any ε > 0.

Proof. Let X = (xi) denote an r-robust strategy, with a hint that specifies the position of a
target t. Suppose that X locates the target at the jt-th iteration. We have that

c =
d(X, t)

d(t)
=

2
∑jt−1

i=0 xi + d(t)

d(t)
≥ 2

∑jt−1
i=0 xi + xjt
xjt

= 1 + 2

∑jt−1
i=0 xi
xjt

.

Note that the target t can be chosen to be arbitrarily far from O, which means that
jt can be unbounded (otherwise the strategy would not have bounded robustness). From
Corollary 5 this implies that

∑jt−1
i=0 xi can be arbitrarily close to xjt 1

br−1 , and therefore c is
arbitrarily close to 1 + 2 1

br−1 = br+1
br−1 , which concludes the proof.

4. Hint is the direction of search

In this section we study the setting in which the hint is related to the direction of the
search. More precisely, the hint is a single bit that dictates whether the target is to the left
or to the right of the root O. Again, we are interested in Pareto-optimal strategies with
respect to competitiveness: namely, for any fixed r ≥ 9, what is the smallest c such that
there exist (c, r)-competitive strategies?

A related problem was studied by Schuierer [51], which is called biased search. One
defines the left and right competitive ratios, as the competitive ratio of a search, assuming
that the target hides to the left of the root, or to the right of the root, respectively. However,
the searcher does not know the target’s branch. Of course we know that the maximum of
the left and the right competitive ratios is at least 9 (and for the doubling strategy, this is
tight). [51] shows that for any search strategy on the line (not necessarily 9-robust), the
average of the left and the right competitive ratios is at least 9. At first glance, one may
think that this could be an unsurprising, and perhaps even trivial result; however this is not
the case. The proof in [51] is not straightforward, and relies in a generalization of a theorem
of [29] which lower bounds the supremum of a sequence of functionals by the supremum of
much simpler, geometric functionals. We will discuss this theorem shortly.

The problem studied in [51] is related to our setting: the left and right competitive ratios
correspond to the consistency c and the robustness r of the strategy. Hence from [51] we
know that c + r ≥ 18. However, there is a lot of room for improvement. In this section

11



we will show a much stronger tradeoff between c and r, and we will further prove that it
is tight. For example, we will show that for any (c, r)-competitive strategy, if c approaches
5 from above, then r approaches infinity (in contrast, in this case, the lower bound of [51]
yields r ≥ 13). In fact, we will show that c + r is minimized when c = r = 9. To this end,
we will apply a parameterized analysis based on Schuierer’s approach. We begin with the
upper bound, by analyzing a specific strategy.

Theorem 7. For every b ≥ 1, and δ ∈ (0, 1], there is a (c, r)-competitive strategy for linear
search with the hint being the direction of search, in which

c = 1 + 2 · ( b2

b2 − 1
+ δ

b3

b2 − 1
) and r = 1 + 2 · ( b2

b2 − 1
+

1

δ

b3

b2 − 1
).

Proof. Suppose, without loss of generality, that the hint points to branch 0. Consider a
strategy X = ({xi, i mod 2}), which starts with branch 0, and alternates between the two
branches. This strategy has consistency and robustness given by the following expressions,
as a consequence of (3):

c = 1 + 2 · sup
k≥0
{
∑2k+1

i=0 xi
x2k

} and r = 1 + 2 · sup
k≥0
{
∑2k

i=0 xi
x2k−1

}, (7)

where x−1 is defined to be equal to 1.
In addition, the search lengths of X are defined by

xi = bi, if i even and xi = δbi, if i is odd,

where we require that b > 1, and δ ∈ (0, 1]. Note that X is “biased” with respect to branch
0, which makes sense since the hint points to that branch.

Substituting these values into (7), we obtain that

c = 1 + 2 · sup
k≥0
{
∑k

i=0 b
2i

b2k
+ δ

∑k
i=0 b

2i+1

b2k
} = 1 + 2 · sup

k≥0
{ b

2(k+1) − 1

(b2 − 1)b2k
+ δ

b2k+3 − 1

(b2 − 1)b2k
}

≤ 1 + 2 · ( b2

b2 − 1
+ δ

b3

b2 − 1
).

Similarly, we have that

r = 1 + 2 · sup
k≥0
{1
δ

∑k
i=0 b

2i

b2k−1
+

∑k−1
i=0 b

2i+1

b2k−1
} = 1 + 2 · sup

k≥0
{1
δ

b2(k+1) − 1

(b2 − 1)b2k−1
+

b2k+1 − 1

(b2 − 1)b2k−1
}

≤ 1 + 2 · (1
δ

b3

b2 − 1
+

b2

b2 − 1
).

12



For example, if δ = 1, and b = 2, then Theorem 7 shows that there exists a (9, 9)-
competitive strategy. Interestingly, the theorem shows that as the consistency c approaches
5 from above, the robustness r of the strategy must approach infinity. This is because the
function b2

b−1 is minimized for b = 2, and hence for c to approach 5 from above, it must be
that b approaches 2, and δ approaches 0. But then 1

δ
must approach infinity, and so must r.

We will show that the strategy of Theorem 7 is Pareto-optimal. To this end, we will use
the following theorem of [51]. Recall the definitions of αX , X+i and Ga(γ0, . . . γn−1) given in
Section 2.

Theorem 8 (Theorem 1 in [51]). Let p, q be two positive integers, and X = (x0, x1, . . .) a
sequence of positive numbers with supn≥0 xn+1/xn < ∞ and αX > 0. Suppose that Fk is a
sequence of functionals that satisfy the following properties:

(1) Fk(X) depends only on x0, x1, . . . xpk+q,

(2) Fk(X) is continuous in every variable, for all positive sequences X,

(3) Fk(aX) = Fk(X), for all a > 0,

(4) Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), for all positive sequences X, Y , and

(5) Fk+i(X) ≥ Fk(X
+ip), for all i ≥ 1.

Then there exist p positive numbers γ0, γ1, γp−1 such that

sup
0≤k<∞

Fk(X) ≥ sup
0≤k<∞

Fk(GαX
(γ0, . . . , γp−1)).

We will use Theorem 8 to prove a tight lower bound on the competitiveness of any
strategy X.

Theorem 9. For every (c, r)-competitive strategy, there exists α > 1, and δ ∈ (0, 1] such
that c = 1 + 2 · ( α2

α2−1 + δ α3

α2−1), and r = 1 + 2 · ( α2

α2−1 +
1
δ

α3

α2−1).

Proof. Let X = (x0, x1, . . .) denote a (c, r)-competitive strategy, and suppose, without loss
of generality, that the hint specifies that the target is in the branch labeled 0. There are two
cases concerning X: either the first exploration is on the branch labeled 0, or on the branch
labeled 1. Let us assume the first case; at the end, we will argue that the second case follows
from a symmetrical argument. As we argued in the proof of Theorem 7, in this case the
competitiveness of X is described by (7). Let us define the functionals

Ck =

∑2k+1
i=0 xi
x2k

and Rk =

∑2k
i=0 xi
x2k−1

.

Then we have that
c = 1 + 2 · sup

k≥0
Ck and r = 1 + 2 · sup

k≥0
Rk. (8)

13



The functional Ck satisfies the conditions of Theorem 8 with p = 2, as shown in [51] therefore
there exist γ0, γ1 > 0 such that

sup
k≥0

Ck ≥ sup
k≥0

Ck(GαX
(γ0, γ1)) = sup

k≥0

γ0 + γ1αX + γ0α
2
X + . . .+ γ0α

2
Xk + γ1α

2k+1
X

γ0α2k
X

= sup
k≥0
{
∑k

i=0 α
2i
X

α2k
X

+
γ1
γ0

∑k
i=0 α

2i+1
X

α2k
X

}.

If αX ≤ 1, then the above implies that supk≥0Ck =∞ (another way of dismissing this case
is that if αX ≤ 1, then X is bounded and the two branches are not explored to infinity, as
required by any strategy of bounded consistency). We can thus assume that αX > 1, and
we obtain that

sup
k≥0

Ck ≥ sup
k≥0
{ α2k+2

X − 1

(α2
X − 1)α2k

X

+
γ1
γ0

α2k+3
x − 1

(α2
X − 1)α2k

X

} = α2
X

α2
X − 1

+
γ1
γ0

α3
X

α2
X − 1

. (9)

We can lower-bound r using a similar argument. Namely, the functional Rk satisfies the
conditions of Theorem 8, again as shown in [51] therefore

sup
k≥0

Rk ≥ sup
k≥0

Rk(GαX
(γ0, γ1)) = sup

k≥0

γ0 + γ1αX + γ0α
2
X + . . .+ γ0α

2k
X

γ1α
2k−1
X

= sup
k≥0
{γ0
γ1

∑k
i=0 α

2i
X

α2k−1
X

+

∑k
i=0 α

2i−1
X

α2k−1
X

}.

Using the same argument as earlier, it suffices to consider only the case αX > 1, in which
case we further obtain that

sup
k≥0

Rk ≥ sup
k≥0
{γ0
γ1

α2k+2
X − 1

(α2
X − 1)α2k−1

X

+
α2k+1
x − 1

(α2
X − 1)α2k−1

X

} = γ0
γ1

α3
X

α2
X − 1

+
α2
X

α2
X − 1

.

We thus obtain that

sup
k≥0

Rk ≥ sup
k≥0
{γ0
γ1

α2k+2
X − 1

(α2
X − 1)α2k−1

X

+
α2k+1
x − 1

(α2
X − 1)α2k−1

X

} = γ0
γ1

α3
X

α2
X − 1

+
α2
X

α2
X − 1

. (10)

Let us define δ = γ1
γ0
> 0. The result follows then by combining (8), (9) and (10). Note

that if we require that c ≤ r, it must be that δ ≤ 1, since αX > 1.
It remains to consider the symmetric case, in which in X, the first explored branch is

branch 1. In this case the analysis is essentially identical: in (8) we substitute Ck with Rk

and vice versa, in the expressions of c and r, and in the resulting lower bounds we require
that δ > 1.

It is important to note that in the proof of Theorem 9 we used the fact that the values
γ0 and γ1 depend only on X and not on any functionals defined over X, as follows from the
proof of Theorem 8 in [51].
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Theorem 9 implies that any (c, r)-competitive strategy X is such that

c+ r ≥ 2 + 4
α2
X

α2
X − 1

+ 2(δ +
1

δ
)

α3
X

α2
X − 1

,

which is minimized at δ = 1, hence c + r is minimized only if c = r = 1 + 2
α2
X

αX−1
≥ 9. We

conclude that the average of a strategy’s consistency and robustness (or the average of the
left and right competitive ratio, in the terminology of [51]) is minimized only by strategies
that are 9-robust.

5. Hint is a k-bit string

In this section we study the setting in which the searcher has access to a hint string of k
bits. We first consider the case k = 1. In Section 5.1 we will study the more general case.

It should be clear that even a single-bit hint is quite powerful, and that the setting is
non-trivial. For example, the bit can indicate the right direction for search, as discussed in
Section 4, but it allows for other possibilities, such as whether the target is at distance at
most D from the root, for some chosen D. The latter was studied in [32], assuming that the
hint is correct. More generally, the hint can induce a partition of the infinite line into two
subsets L1 and L2, such that the hint dictates whether the target is hiding on L1 or L2.

We begin with the upper bound, namely we describe a specific search strategy, and the
corresponding hint bit (as well as the query which it responds). Consider two strategies of
the form

X1 = (bir) and X2 = (b
i+ 1

2
r ).

Note that both X1 and X2 are r-robust: X1 is geometric with base br, whereas X2 is obtained
from X1 by scaling the search lengths by a factor equal to b1/2r . We also require that the two
strategies start by searching the same branch, hence in every iteration, they likewise search
the same branch.

We can now define a strategy Z with a single bit hint, which indicates whether the
searcher should choose strategy X1 or strategy X2. For any given target, one of the two
strategies will outperform the other, assuming the hint is trusted. Thus, an equivalent
interpretation of the hint is in the form of a partition of the infinite line into two sets L1

and L2, such that if the target is in Li, then Xi is the preferred strategy, with i ∈ [1, 2]. See
Figure 1 for an illustration.

The following result bounds the performance of this strategy, and its proof will follow as
a corollary of a more general theorem concerning k-bit strings that we show in Section 5.1
(Theorem 13).

Proposition 10. For given r ≥ 9, the above-defined strategy Z is r-robust and has consis-
tency at most 1 + 2a

3/2

a−1 , where a = br, if r ≤ 10, and a = 3, otherwise.

Note that if r = 9, then Z has consistency 1+4
√
2 ≈ 6.657. For r ∈ [9, 10], the consistency

of Z is decreasing in r, as one expects. For r ≥ 10, the consistency is 1 + 3
√
3 ≈ 6.196.
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Figure 1: Illustration of strategy Z, using the first four segments of strategies X1 and X2. Blue (dark)and
orange (faded) segments correspond to the search segments of strategies X1 and X2, respectively. The parts
of the line in blue (resp. orange) indicate the hiding intervals for the target such that X1 (resp. X2) is
preferred, and thus chosen by the hint.

We now turn our attention to lower bounds. To this end, we observe that a single-bit
hint h has only the power to differentiate between two fixed strategies, say X = (xi), and
Y = (yi), i.e., two strategies that are not defined as functions of h. We say that Z is
determined by strategies X and Y , and the bit h.

Setting up the lower-bound proofs. We give some definitions and notation that will be used
in the proofs of Theorems 11 and 12. Let Z be determined by strategies X and Y , and a
single-bit hint h. Let C denote the lower bound on the consistency of Z that we wish to
show. For given i, define T iX = 2

∑i
j=0 xj + xi−1, and similarly for T iY . Define also q = r/C.

Note that a searcher that follows strategy X will turn towards the root at iteration i− 1,
after having explored some branch βi ∈ {0, 1} up to distance xi−1. Thus, X barely misses
a target that may be hiding at branch βi, and at distance xi−1 + ε from O, with ε > 0
infinitesimally small, and thus requires time T iX to discover it. We will denote this hiding
position of a potential target by Pi. If, on the other hand, the searcher follows Y , then it
can locate a target at position Pi at a time that may be smaller than T iX ; let τi denote this
time. When strategy Y locates a target hiding at Pi, it does so by exploring branch βi to
a length greater than xi−1. Let ji be the iteration at which Y locates Pi, thus yji ≥ xi−1.
Last, let Qi denote the position in branch βi and at distance yji + ε from O. In words, if a
target hides at Qi, then strategy Y barely misses it when executing the search segment yji .

We first show a lower bound on the consistency of 9-robust strategies. In the proof we
will not replace all parameters with the corresponding values (e.g., we will sometimes use r
to refer to robustness, instead of the value 9). We do so because the arguments in the proof
can be applied to other settings, as will become clear in the proof of Theorem 12.

Theorem 11. For any (c, 9)-competitive strategy with single-bit hint, it holds that c ≥ 5.

Proof. We will prove the result by way of contradiction. Let C = 5, and suppose that there is
a strategy Z of consistency strictly less than C. Let Z be determined by two fixed strategies
X and Y . Both X and Y must be r-robust (i.e., 9-robust), otherwise Z cannot be r-robust.
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Fix i0 ∈ N. Suppose first that i0 is such that for all i ≥ i0, we have τi ≥ 1
q
T iX . In this

case, for a target at position Pi, defined earlier, X requires time T iX to locate it, whereas Y
requires time at least τi ≥ 1

q
T iX to locate it, thus the minimum time X or Y can locate this

target is 1
q
T iX . Therefore, the consistency of Z is at least

c ≥ sup
i≥i0

T iX
q · xi−1

=
1

q
sup
i≥i0

T iX
xi−1

≥ C

r
· r = C, (11)

which is a contradiction. Here, we used crucially the fact that supi≥i0
T i
X

xi−1
≥ 9, for any

9-robust strategy X and any i01. Specifically, there exists sufficiently large i such that T iX is
arbitrarily close to 9xi−1.

It must then be that i0 does not obey the property described above, namely for some
i ≥ i0 we have that τi ≤ 1

q
T iX . Since X is r = 9-robust, it must also be that T i

X

xi−1
≤ r, as can

be seen if a target hides at Pi. We therefore obtain that

τi ≤
1

q
T iX ≤

1

q
· r · xi−1 = Cxi−1. (12)

We can also give a lower bound on τi, as follows. Recall that we denote by yji the segment at
which strategy Y locates a target at position Pi. For arbitrarily small ε > 0, we can choose
i0 sufficiently large, which also implies that ji can also be sufficiently large (since otherwise
Y would not have finite robustness), so that Corollary 5 applies. To simplify the arguments,
in the remainder of the proof we will assume that the corollary applies with ε = 0; this has
no effect on correctness, since we want to show a lower bound of the form C − δ on the
consistency, and ε can be made as small as we want in comparison to δ. More precisely, we
obtain that

τi = 2

ji∑
l=0

yl + xi−1 ≥
2

br − 1
yji + xi−1. (13)

Combining (12) and (13) we have

yji ≤
C − 1

2
(br − 1)xi−1. (14)

In particular, since r = 9 and C = 5, we have that yji ≤ 2xi−1.
Consider now a target at position Qi, and recall that this position is at distance infinites-

imally larger than yji . We will show that in both X and Y , there exists an i ≥ i0 such that
the searcher walks distance at least C · yji before reaching this position, which implies that
Z has consistency at least C, and which yields the contradiction.

Consider first strategy Y . In this case, the searcher walks distance at least T jiY , to reach

Qi, from the definition of TY . Since r = 9, we know that supi≥i0
T

ji
Y

yji
≥ 9, for any i0, hence

1In general, this statement is not immediately true for arbitrary r > 9.
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there exists an i ≥ i0 such that the distance walked by the searcher is at least r · yji , and
hence at least C · yji .

Consider now strategy X. In this case, in order to arrive at position Qi, the searcher
needs to walk distance T iX , then at least an additional distance yji − xi−1 to reach Qi. Let
us denote by Di

X this distance. We have

Di
X = T iX + yji − xi−1
≥ 9xi−1 + yji − xi−1 (From Corollary 5 and since T iX is arbitrarily close to 9xi−1)
= 8xi−1 + yji . (15)

We then bound the ratio Di
X/yji from below as follows.

Di
X

yji
≥ 8xi−1 + yji

yji
= 1 + 8

xi−1
yji

≥ 1 + 8
xi−1

2 · xi−1
(From the fact that yji ≤ 2 · xi−1)

= 5. (16)

We thus conclude that C ≥ 5, which yields the contradiction, and completes the proof.

Showing a lower bound on the consistency, as a function of general r > 9 is quite hard,
even for the case of a single-bit hint. The reason is that as r increases, so does the space
of r-robust strategies. For example, any geometric strategy Gb has robustness r, as long

as b ∈ [
ρr−
√
ρ2r−4ρr
2

,
ρr+
√
ρ2r−4ρr
2

]. In what follows we will show a lower bound for a class
of strategies which we call asymptotic. More precisely, recall the definition of T iX . We
call an r-robust strategy S asymptotic if supi≥i0

T i
X

xi−1
= r, for all fixed i0. In words, in an

asymptotic strategy, the worst-case robustness (i.e., the worst case competitive ratio without
any hint) can always be attained by targets placements sufficiently far from the root. All
geometric strategies, including the doubling strategy, have this property, and this holds
for many strategies that solve search problems on the line and the star, such as the ones
described in the introduction. Note also that the strategies X1 and X2 that determine the
strategy Z in the statement of Proposition 10 are asymptotic, since they are near-geometric.
Thus, the lower bound we show in the next theorem implies that in order to substantially
improve consistency, one may have to resort to much more complex, and most likely irregular
strategies.

Theorem 12. Let Z denote a strategy with 1-bit hint which is determined by two r-robust,
asymptotic strategies X and Y . Then Z is (c, r)-competitive, with c ≥ 1 + 2br

br−1 .

Proof. We show how to modify the proof of Theorem 11. Let C be equal to 1 + 2br
br−1 , and

suppose, by way of contradiction, that the robustness of Z is strictly less than C. First, we
note that (11) applies since X is asymptotic, and so do equations (12), 13 and (14).
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As in the proof of Theorem 11, we next consider a target hiding at position Qi. We
then can argue that there exists i ≥ i0 such that, for this hiding position, the total distance
walked by Y is at least r · yji ≥ Cyji . Here we use the fact that Y is asymptotic.

Next we consider strategy X, and we bound its cost for locating the hiding position Qi.
We have, similarly to the proof of Theorem 11, that

Di
X = T iX + yji − xi−1 ≥ (r − 1)xi−1 + yji . (Since X is asymptotic)

Therefore

R ≥ Di
X

yji
≥ 1 +

(r − 1)xi−1
yj−1

≥ 1 +
2(r − 1)

(C − 1)(br − 1)
,

where the last inequality follows from (14). Solving this inequality for C we obtain

C ≥ 1 +

√
2(r − 1)

br − 1
,

and substituting with r = 1 + 2 b2r
br−1 we obtain that C ≥ 1 + 2br

br−1 , a contradiction, and the
proof is complete.

5.1. k-bit hints
Here we consider the general setting in which the hint is a k-bit string, for some fixed

k. First, we give an upper bound that generalizes Proposition 10. Consider 2k strategies
X0, . . . , X2k−1, where

Xj = (ai+
j

2k )i≥0,

for some a to be determined later, and where all the Xj have the same parity: they all search
the same branch in their first iteration and, therefore in every iteration as well. Define a
strategy Z, which is determined by X0, . . . , X2k−1, and in which the k-bit hint h dictates
the index j of the chosen strategy Xj. In other words, h answers the query Qh=“which
strategy among X0, . . . , X2k−1 should the searcher choose?”. An equivalent interpretation
is that the statements of the Xj’s induce a partition of the line, such that for every given
target position, one of the Xj’s is the preferred strategy. Thus every bit i of the hint can
be thought, equivalently, as the answer to a partition query Qi of the line, i.e., of the form
“does the target belong in a subset Li of the line or not?”.

Theorem 13. For every r ≥ 9, the strategy Z defined above is (c, r)-competitive with c ≤

1 + 2a
1+ 1

2k

a−1 , where a = br, if ρr ≤ (1+2k)2

2k
, and a = 1 + 2k, otherwise.

Proof. For a given target t, let jt = h, that is, jt is the index of the best strategy among the
Xj’s for located t, as dictated by h. From the statements of the strategies, this implies that
there exists some it such that

ait+
jt
2k
−1− 1

2k < d(t) ≤ ait+
jt
2k ,
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Then
d(Xjt , t)

d(t)
=

2
∑it−1

l=0 a
l+

jt
2k + d(t)

d(t)
≤ 1 + 2

∑it−1
l=0 a

l+
jt
2k

ait+
jt
2k
−1− 1

2k

≤ 1 + 2
a1+

1

2k

a− 1
.

It remains to chose the right value for a. Recall that the geometric strategy Ga is (1+2 a2

a−1)-
robust, thus so is every Xj defined earlier. We then require that a is such that

1 + 2
a2

a− 1
≤ r = 1 + 2ρr ⇒

a2

a− 1
≤ ρr.

We also require that the consistency of Z, as bounded earlier, is minimized. Therefore, we

seek a > 1 such that a
1+ 1

2k

a−1 is minimized and a2

a−1 ≤ ρr. Using simple calculus, we obtain that
the value of a that satisfies the above constraints is as in the statement of the theorem.

For example, for r = 9, we obtain a strategy that is (1+22+
1

2k , 9)-competitive. Thus, the
consistency decreases rapidly, as function of k, and approaches 5.

Last, it is easy to see that no 9-robust strategy with hint string of any size can have
consistency better than 3. To see this, let X be any 9-robust strategy, and let it be the
iteration in which it locates a target t. Since t can be arbitrarily far from O, it is unbounded,
and thus Corollary 5 applies. We thus have that

d(X, t)

d(t)
=

∑it−1
j=0 xj + d(t)

d(t)
= 1 + 2

∑it−1
j=0 xj

d(t)
≥ 1 + 2

∑it−1
j=0 xj

xit
≥ 1 + 2

(1− ε)xit
xit

,

thus the consistency of X cannot be smaller that 3− ε, for any ε. The same holds then for
any strategy that is determined by any number of 9-robust strategies, and thus for any hint.

6. Dealing with errors

In all previous sections, we studied consistency/robustness tradeoffs in online search. In
this section we will discuss the case in which the hint comes with some error η, as in recent
works in Machine Learning [45, 50, 46]. The ultimate goal here is to describe Pareto-efficient
solutions in which the competitive ratio of the search is also robust to the error. Note that
the concept of error makes a lot of sense for positional hints (Section 3) or advice-string hints
(Section 5); in contrast, for the directional hint we studied in Section 4, the Pareto-optimality
results inherently captures the possibility of directional error.

Before we proceed, we first need to point out certain subtleties in regards to performance
evaluation as function of the error, which are specific to search problems. That is, unlike
other online problems, the competitive ratio of linear search is not necessarily an increasing
function of the error η. For example, consider the case in which there is a prediction of the
position of the target, and suppose that we have a “bad” search strategy (e.g, a strategy
with very large search lengths, which results in a bad competitive ratio). Suppose that we
are given a positional hint for a target, which is also very bad: the actual target hides very
far away from the position of the hint. However, it is possible that this strategy performs
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extremely well, if the target happens to hide right before the turn point of one of the search
lengths. In this case, a bad strategy turns out to be quite efficient, even if the hint is also
quite bad. These are complications that need to be taken into consideration in terms of
defining efficiency in this setting, and highlight the difficulties in filtering out such outliers
from the analysis, without resorting to some assumptions on the amount of the error.

6.1. Positional hints
Suppose that the searcher is given a hint h that describes the position of the target t

on the line, and let d(h) denote the distance of the hint from the origin. We will make the
assumption that h and t are both on the same branch, and we define the error η to be such
that either d(h) = d(t)(1− η), if d(h) < d(t), and d(h) = d(t)(1 + η), if d(h) ≥ d(t). In the
former case, we call the error negative, whereas in the second case we call the error positive.
This is only be for the purposes of the analysis, since the searcher does not know the parity
of the error. Note that if the error is negative, then from the assumption it must be that
η ∈ [0, 1].

We discuss how to adapt the strategy of Section 3 to this setting. For given hint h, let
Xh denote the Pareto-optimal strategy of Theorem 2. This strategy cannot tolerate any
errors: if η is infinitesimally small positive error, then Xh barely misses the target in the
crucial iteration, and the competitive ratio of the strategy becomes as bad as its worst-case
robustness. This example shows that one needs to further “stretch” the search lengths of
Xh, so as to robustify the strategy against such extreme situations. Let p > 0 denote a
parameter that is specified by the searcher, and which captures the degree to which it is able
to tolerate errors, and consider the strategy Xh(1+p), i.e., the strategy that pretends that the
positional hint is at distance d(h)(1 + p) from O. The following is a corollary of Theorem 2.

Corollary 14. For any p ∈ [0, 1] and r ≥ 9, strategy Xh(1+p) is r-robust and has consistency
at most min{1 + 2 1+p

br−1 , r}. It also has competitive ratio at most min{1 + 2 1+p
br−1 , r}, for any

negative error, or positive error at most p, and at most r, in all other cases.

6.2. k-bit hints
In this setting, we assume that a number η ≤ k of hint bits may be erroneous. As with

positional hints, the searcher specifies a parameter p ≤ k that describes its desired tolerance
to errors, or, alternatively, an anticipated upper bound on the error. We will first outline
our approach. Let Xa,2k denote the collection of the 2k strategies in the proof of Theorem 13.
We will show that this collection has a nice structural property (Property 15): given a target
T , if jT is the index of the strategy that locates T at minimum cost among the strategies in
Xa,2k , then a strategy of index j ∈ [jT , 2

k − 1], will find T at cost at most aj−jT times the
cost of strategy jT . In the next step, we show how to apply a fault-tolerant binary-search
algorithm, using as hint the response to k binary queries (in the presence of errors), so as
to find, within the interval [0, 2k − 1], a strategy in Xa,2k of index close (and exceeding) jT .
Last, in Theorem 16, we show how to evaluate the competitive ratio and optimize the choice
of a.
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Property 15. Consider the set Xa,2k = {X0, . . . , X2k−1} of 2k single-searcher strategies,
as defined in the proof of Theorem 13. For a given hiding target T , let jT ∈ [0, 2k − 1] be
such that XjT locates T at minimum cost among strategies in Xa,2k , and specifically at cost
c0+d(T ), for some c0. Then, for all j ∈ [jT , 2

k−1], Xj finds T at cost at most aj−jT c0+d(T ).

Proof. Follows straightforwardly from the definition of Xa,2k , and the observation that if XjT

finds T in round iT , then Xj, with j ∈ [jT , 2
k − 1] finds T no later than round iT .

From Property 15, the searcher would like to leverage the hint so as to find the index
of a strategy in Xa,2k that is as close to jT as possible, but is larger than jT . This can be
accomplished using the Robust Binary Interval Search (RBIS) algorithm of [24], which was
developed in the context of an online problem known as time-series search, and which is
based on an algorithm for a related fault-tolerant setting due to [24]. The same, essentially,
algorithm, can be applied in our setting with only a minor modifications. Namely, we use the
algorithm of [7] so as to search a binary tree that corresponds to the set of all strategy indices
{0, . . . 2k − 1}, and knowing that the search ends in a node of height at most bk/2c+2p, we
return the rightmost leaf of the subtree rooted at that node. Here, each one of the k bits
corresponds to a query of the form “Is jT ≤ x?”, for some x ∈ [0, 2k − 1].

Combining Property 15, the fault-tolerant search algorithm RBIS, and an analysis along
the lines of the proof of Theorem 13, we obtain the following result.

Theorem 16. For any r ≥ 9, there exists a strategy with k-bit hint that has competitive
ratio at most

1 + 2
a1+

1+U

2k

a− 1
, where a =

{
br, if ρr ≤ (1+2k/(1+U))2

2k/(1+U)

1 + 2k/(1 + U), otherwise,
(17)

if η ≤ p ≤ k/4, where U = 2bk/2c+2p. Otherwise, the competitive ratio of the strategy is at
most r.

Proof. We apply RBIS on the set of indices of all strategies in Xa,2k , where a > 1 will be
chosen later. Assuming that η ≤ p, then the output is the index of a strategy in Xa,2k which
is ranked at most U among the strategies in Xa,2k , in regards to its cost for locating the
target (where lower ranking indicates better performance). From Property 15, this means
that the selected strategy has cost at most aUc0 + d(t), where c0 + d(t) is the cost of the
best strategy in Xa,2k . It is easy to evaluate the competitive ratio of this strategy along the
lines of the proof of Theorem 13, and we infer that the competitive ratio of the selected
strategy is at most 1 + 2a

2k+1+U

a2k−1
. The proof follows by choosing a > 1 that minimizes this

expression.

We conclude with an observation about the performance of the strategy of Theorem 16.
As k increases, and more specifically as k → ∞, the competitive ratio of the strategy
converges to that of Theorem 13, even if p is as large as the highest tolerance of RBIS to
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errors, namely k/4− o(k). In other words, even if we allow error as high as k/4− o(k), the
strategy of Theorem 16 remains very robust to errors, provided that the size of the hint is
sufficiently large.

7. Conclusion

We introduced a model that allows us to analyze the performance of search strategies
with some information on the target. As explained in the introduction, the eventual goal is
to apply this model to many other search problems, within or beyond competitive analysis,
and for deterministic or randomized strategies. A good starting point is the generalization
of linear search, namely the m-ray star problem, which has a long history of research, and
has a broad connection to resource allocation problems (see, e.g. [39, 8, 18]). In this context,
there are m tasks and the goal is to allocate resources to each of them, without knowing
ahead of time which task will be the crucial one. The hint can be interpreted as some
information concerning the instance (e.g., the index of the crucial task, or the time we may
have to allocate to each one of the tasks in order to guarantee some good solution). A more
ambitious goal is to study searching in general graphs; here the hints could provide, for
instance, some information about a neighborhood of nodes in which the target is likely to
hide, or one may choose again to encode the hint as a k-bit advice string.
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