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We introduce the study of search problems, in a setting in which the searcher has some information, or hint concerning the hiding target. In particular, we focus on one of the fundamental problems in search theory, namely the linear search problem. Here, an immobile target is hidden at some unknown position on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line called the root, must traverse the line so as to locate the target. The objective is to minimize the worst-case ratio of the distance traversed by the searcher to the distance of the target from the root, which is known as the competitive ratio of the search.

We consider three settings in regards to the nature of the hint: i) the hint suggests the exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e., to the left or the right of the root); and iii) the hint is a general k-bit string that encodes some information concerning the target. Our objective is to study the Pareto-efficiency of strategies in this model, with respect to the tradeoff between consistency and robustness. Namely, we seek optimal, or near-optimal tradeoffs between the searcher's performance if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by an adversary).

We prove several results in each of these three settings. For positional hints, we show that the optimal consistency of r-robust strategies is (b r + 1)/(b r -1), where b r is defined to be equal to

, and ρ r = (r -1)/2, for all r ≥ 9. For directional hints, we show that for every b ≥ 1 and δ ∈ (0, 1], there exists a strategy with consistency equal to

b 2 -1 ); furthermore, we show again that this upper bound is tight. Last, for general k-bit hints, we show upper bounds for general k-bit hints, as well as lower bounds: specifically, we show that the consistency of any 9-robust strategy must be at least 5, and that the consistency of r-robust strategies is at least 1 + 2b r /(b r -1), in the case of a natural class of asymptotic strategies.

Introduction

Searching for a hidden target is a common task in everyday life, and an important computational problem with numerous applications. Problems involving search arise in diverse areas such as drilling for oil in multiple sites, the forest service looking for missing backpackers, search-and-rescue operations in the open seas, and navigating a robot between two points on a terrain [START_REF] Alpern | The theory of search games and rendezvous[END_REF]. All these problems involve a mobile searcher which must locate an immobile target, often also called hider, that lies in some unknown point in the search domain, i.e, the environment in which the search takes place. The searcher starts from some initial placement within the domain, denoted by O, which we call the root. There is, also, some underlying concept of quality of search, in the sense that we wish, in informal terms, for the searcher to be able to locate the target as efficiently as possible.

One of the simplest, yet fundamental search problems is searching on an infinite line that is unbounded both to the left and to the right of the root. In this problem, which goes back to Bellman [START_REF] Bellman | An optimal search problem[END_REF] and Beck and Newman [START_REF] Beck | On the linear search problem[END_REF], the objective is to find a search strategy that minimizes the competitive ratio of search. More precisely, let S denote the search strategy, i.e., the sequence of moves that the searcher performs on the line. Given a target t, let d(S, t) denote the total distance that the searcher has traveled up to the time it locates the target, and d(t) the distance of t from O. We define the competitive ratio of S as cr(S) = sup A strategy of minimum competitive ratio is called optimal. The problem of optimizing the competitive ratio of search on the line is known as the linear search problem (mostly within Mathematics and Operations Research), but is also known in Computer Science as the cow path problem. It has long been known that the optimal (deterministic) competitive ratio of linear search is 9 [START_REF] Beck | Yet more on the linear search problem[END_REF], and is derived by a simple doubling strategy. Specifically, let the two semi-infinite branches of the line be labeled with 0, 1 respectively. Then in iteration i, with i ∈ N, the searcher starts from O, traverses branch i mod 2 to distance 2 i , and returns to the root.

Linear search, and its generalization, the m-ray search problem, in which the search domain consists of m semi-infinite branches have been studied in several settings. Substantial work on linear search was done in the '70s and '80s predominantly by Beck and Beck, see e.g., [START_REF] Beck | More on the linear search problem[END_REF][START_REF] Beck | The return of the linear search problem[END_REF][START_REF] Beck | Son of the linear search problem[END_REF][START_REF] Beck | The linear search problem rides again[END_REF][START_REF] Beck | The revenge of the linear search problem[END_REF]. Gal showed that a variant of the doubling strategy is optimal for m-ray search [START_REF] Gal | A general search game[END_REF][START_REF] Gal | Minimax solutions for linear search problems[END_REF]. These results were later rediscovered and extended in [START_REF] Baeza-Yates | Searching in the plane[END_REF].

Other related work includes the study of randomization [START_REF] Schuierer | A lower bound for randomized searching on m rays[END_REF] and [START_REF] Kao | Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem[END_REF]; multi-searcher strategies [START_REF] López | On-line parallel heuristics, processor scheduling and robot searching under the competitive framework[END_REF]; searching with turn cost [START_REF] Demaine | Online searching with turn cost[END_REF][START_REF] Angelopoulos | Infinite linear programming and online searching with turn cost[END_REF]; the variant in which some probabilistic information on the target is known [START_REF] Jaillet | Online searching[END_REF][START_REF] Kao | Algorithms for informed cows[END_REF]; the related problem of designing hybrid algorithms [START_REF] Kao | Optimal constructions of hybrid algorithms[END_REF]; searching with an upper bound on the distance of the target from the root [START_REF] López | The ultimate strategy to search on m rays?[END_REF] and [START_REF] Bose | Searching on a line: A complete characterization of the optimal solution[END_REF]; fault tolerant search [START_REF] Czyzowicz | Search on a line by byzantine robots[END_REF][START_REF] Kupavskii | Lower bounds for searching robots, some faulty[END_REF]; and performance measures beyond the competitive ratio [START_REF] David | Hyperbolic dovetailing[END_REF][START_REF] Mcgregor | The oil searching problem[END_REF][START_REF] Angelopoulos | Best-of-two-worlds analysis of online search[END_REF]. Competitive analysis has been applied beyond the linear and star search, for example in searching within a graph [START_REF] Koutsoupias | Searching a fixed graph[END_REF][START_REF] Fleischer | Competitive online approximation of the optimal search ratio[END_REF][START_REF] Angelopoulos | The expanding search ratio of a graph[END_REF].

Searching with a hint

Previous work on competitive analysis of deterministic search strategies has mostly assumed that the searcher has no information about the target, whose position is adversarial to the search. In practice, however, we expect that the searcher may indeed have some information concerning the target. For instance, in a search-and-rescue mission, there may be some information on the last sighting of the missing person, or the direction the person had taken when last seen. The question then is: how can the searcher leverage such information, and to what possible extent?

If the hint comes from a source that is trustworthy, that is, if the hint is guaranteed to be correct, then the performance of search can improve dramatically. For example, in our problem, if the hint is the branch on which the target lies, then the optimal search is to explore that branch until the target is found, and the competitive ratio is 1. There is, however, an obvious downside: if the hint is incorrect, the search may be woefully inefficient since the searcher will walk eternally on the wrong branch, and the competitive ratio in this case is unbounded.

We are thus interested in analyzing the efficiency of search strategies in a setting in which the hint may be compromised. To this end, we first need to define formally the concept of the hint, as well as an appropriate performance measure for the search strategy. In general, the hint h is a binary string of size k, for a given k ∈ N + , where the i-th bit is a response to a query Q i . For example, one can define a single query Q as "Is the target within distance at most 100 from O?" and a one-bit hint, so that the hint answers the corresponding query. For another example, if Q="Is the target to the left or to the right of O?", then a 1-bit hint informs the searcher about the direction it should pursue. From the point of view of upper bounds (positive results), we are interested in settings in which the queries and the associated hints have some natural interpretation, such as the ones given above. From the point of view of lower bounds (impossibility results), we are interested on the limitations of general k-bit hint strings which may be associated with any query, as we will discuss in more detail later.

Concerning the second issue, namely evaluating the performance of a search strategy S with a hint h, note first that S is a function of h. We will analyze the competitiveness of S(h) in a model in which the competitive ratio is not defined by a single value, but rather by a pair (c S,h , r S,h ). The value c S,h describes the competitive ratio of S(h) assuming that h is trusted, and thus guaranteed to be correct. The value r S,h describes the competitive ratio of S(h) when the hint is given by an adversarial source. More formally, we define

c S = inf h sup t d(S(h), t, h) d(t)
, and r S = sup

t sup h d(S(h), t, h) d(t) , (1) 
where d(S(h), t, h) denotes the distance traversed in S(h) for locating a target t with a hint h. We will call c S,h the consistency of S(h), and r S,h the robustness of S(h). To simplify notation, we will often write S instead of S(h) when it is clear from context that we refer to a strategy with a hint h. For example, if the hint h is the branch on which the target lies, then the strategy that always trusts the hint is (1, ∞) competitive, whereas the strategy that ignores the hint entirely is (9, 9)-competitive. Our objective is then to find strategies that are provably Pareto-optimal or Pareto-efficient [START_REF] Fudenberg | Game theory[END_REF] in this model, and thus identify the strategies with the best tradeoff between robustness and consistency. Specifically, we say that a strategy with robustness r and consistency f (r), for some function f , is Pareto-optimal if any other strategy with robustness at most r, has consistency at least f (r), for all r ≥ 9. Identifying the function f reveals the Pareto frontier of the bi-objective optimization problem (where the two objectives are the consistency and the robustness). When it is not obvious how to identify the function f , we rely to approximations, i.e., one aims to provide upper and lower bound on f (r). In our results, we assume that the robustness of the strategy is bounded by some given r ≥ 9, and our goal is to minimize the consistency. This is because an upper bound on the robustness provides us with significant information about the worstcase behavior of the strategy, which we can leverage both in terms of the upper and the lower bound analysis of the consistency (see e.g, Lemma 4, in which we obtain lower bounds on the search lengths of the strategy).

Our model is an adaptation, to search problems, of the untrusted advice framework for online algorithms proposed in [START_REF] Lykouris | Competitive caching with machine learned advice[END_REF] (which introduced the concepts of consistency and robustness in the context of paging), [START_REF] Purohit | Improving online algorithms via ML predictions[END_REF] (which applied the framework to other online problems) and [START_REF] Angelopoulos | Renault. Online computation with untrusted advice[END_REF] (which studied an extension of the advice complexity model to include erroneous advice); see also the survey [START_REF] Mitzenmacher | Algorithms with predictions[END_REF]. Since then, studies of trade-offs between consistency and robustness have become prominent in the context of online optimization problems with machine-learned predictions, see e.g., [START_REF] Sun | Pareto-optimal learning-augmented algorithms for online conversion problems[END_REF][START_REF] Wei | Optimal robustness-consistency trade-offs for learningaugmented online algorithms[END_REF][START_REF] Li | Robustness and consistency in linear quadratic control with untrusted predictions[END_REF][START_REF] Lee | Online peak-aware energy scheduling with untrusted advice[END_REF][START_REF] Lee | Pareto-optimal learningaugmented algorithms for online k-search problems[END_REF].

Contribution

In this work we study the power of limitations of linear search with hints. Let r ≥ 9 be a parameter that in general will denote the robustness of a search strategy, and let b r be defined as

b r = ρ r + ρ 2 r -4ρ r 2
, where ρ r = (r -1)/2.

(

Here, b r is the largest value for which a geometric strategy with base b r is r-competitive (see Section 2 for details). We consider the following classes of hints:

• The hint is the position of the target. Here, the hint describes the exact location of the target on the line: its distance from O, along with the branch (0 or 1) on which it lies. We present a strategy that is ( br-1 br+1 , r)-competitive, and we prove it is Pareto-optimal. • The hint is the branch on which the target lies. Here, the hint is information on whether the searcher is to the left or to the right of the root. We present a strategy that, given parameters b > 1 and δ ∈ (0, 1),

has consistency c = 1 + 2 • ( b 2 b 2 -1 + δ b 3 b 2 -1
), and robustness

r = 1 + 2 • ( b 2 b 2 -1 + 1 δ b 3 b 2 -1 )
. Again, we prove that this strategy is Pareto-optimal.

• The hint is a general k-bit string. In the previous settings, the hint is a single bit, which answers the corresponding query. Here we address the question: how powerful can be a single-bit hint, or more generally a k-bit hint? In other words, how powerful can k binary queries be for linear search? We give several upper and lower bounds on the competitiveness of strategies in this setting. First, we look at the case of a single-bit hint. Here, we give a 9-robust strategy that has consistency at most 1 + 4 √ 2, whereas we show that no 9-robust strategy can have consistency less than 5, for any associated query. For general robustness r, we give upper and lower bounds that apply to some specific, but broadly used class of strategies, including geometric strategies (see Section 2 for a definition and Theorem 12 for the statement of the result). For general k, and for a given r ≥ 9, we give an r-robust strategy whose consistency decreases rapidly as function of k (Proposition 13).

The above setting focuses on the trade-off between the consistency and the robustness of the search strategies. In Section 6, we expand our study so as to consider the effect of the error in hints. We discuss the challenges one has to face, and how to extend the strategies so as to make them more robust to errors.

In terms of techniques, for the first setting described above (in which the hint is the position of the target), the main idea is to analyze a geometric strategy with "large" base, namely b r , for r ≥ 9. The technical difficulty here is the lower bound; to this end, we prove a lemma that shows, intuitively, that for any r-robust strategy, the search length of the i-th iteration cannot be too big compared to the previous search lengths (Lemma 4). This technical result may be helpful in more broad settings (e.g., we also apply it in the setting in which the advice is a general k-bit string).

Concerning the second setting, in which the hint describes the branch, we rely on tools developed by Schuierer [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] for lower-bounding the performance of search strategies; more precisely on a theorem for lower-bounding the supremum of a sequence of functionals. But unlike [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF], we use the theorem in a parameterized manner, that allows us to express the tradeoffs between the consistency and the robustness of a strategy, instead of their average.

Concerning the third, and most general setting, our upper bounds (i.e., the positive results) come from a strategy that has a natural interpretation: it determines a partition of the infinite line into 2 k subsets, and the hint describes the partition in which the target lies. The lower bounds (negative results) come from information-theoretic arguments, as is typical in the field of advice complexity of online algorithms (see, e.g., the survey [START_REF] Boyar | Online algorithms with advice: A survey[END_REF]).

The broader objective of this work is to initiate the study of search games with some limited, but potentially untrusted information concerning the target. As we will show, the problem becomes challenging even in a simple search domain such as the infinite line. The framework should be readily applicable to other search games, and the analysis need not be confined to the competitive ratio, or to worst-case analysis. For example, search games in bounded domains are often studied assuming a probability distribution on the target, with the objective to minimize the expected search time (for several such examples see the book [START_REF] Alpern | The theory of search games and rendezvous[END_REF]). However, very little work has addressed the setting in which the searcher may have access to hints, such as the High-Low search games described in Section 5.2 of [START_REF] Alpern | The theory of search games and rendezvous[END_REF], in which a searcher wants to locate a hider on the unit interval by a sequence of guesses. Again, our model is applicable, in that one would like to find the best tradeoff on the expected time to locate the target assuming a trusted or untrusted hint.

Further related work

There are several works related to exploring a known or unknown environment in the standard advice complexity model. Here, the explorer is enhanced with an additional information called advice, which is guaranteed to be error-free. The objective is to quantify the number of bits required to achieve a desired competitive ratio (relative to an offline optimal algorithm). Examples include graph exploration [START_REF] Dobrev | Online graph exploration with advice[END_REF], in which the explorer must visit all vertices in an unknown graph and return to its origin; tree exploration [START_REF] Fraigniaud | Tree exploration with advice[END_REF] in which the environment is a tree graph; exploration under different classes of advice oracles [START_REF] Gorain | Deterministic graph exploration with advice[END_REF], in which the advice may encode aspects of the environment such as a port-numbered map of the graph or the starting point of the explorer, and treasure hunt [START_REF] Komm | Treasure hunt with advice[END_REF][START_REF] Pelc | Advice complexity of treasure hunt in geometric terrains[END_REF], in which a mobile searcher must locate a hider in an unknown environment. These works provided powerful information-theoretic lower bounds on the interplay between the size of advice and the competitive ratio, as well as explicit upper bounds via algorithms that leverage the corresponding advice.

Our work differs from the above studies in two important ways. First, unlike all previous works related to advice-complexity aspects of searching, we do not assume that the advice is perfect and error-free. Instead, we allow the possibility of worst-case manipulation of advice by an adversary, and provide results that explicitly quantify the effect of such manipulation, both from the upper and the lower bound point of view. Second, beyond the performance of the search strategies at the two extreme situations (precise versus adversarial advice), we provide a more nuanced analysis that expresses the competitive ratio as a function of the advice error, which is likewise novel in the analysis of search-related algorithms.

Furthermore, this work puts emphasis on the semantic information of hints. For positional and directional hints, this semantic information is straightforward: the hint provides the location or the direction of the target. But even for the setting of k-bit hints, our upper bounds interpret each bit as information with intuitive meaning. As we discuss in Section 5, each bit can be interpreted as a response to a binary query, which asks whether the target lies in some partition of the infinite line. Coupled with the error-based analysis, the upper bounds express the power of using k imperfect binary experts towards locating a hidden target.

Last, there is related work in which the searcher relies on advice in the form of noisy queries [START_REF] Boczkowski | Searching a tree with permanently noisy advice[END_REF]. Specifically, the response to each query is correct with some known probability. In our setting, in contrast, we do not rely on any probabilistic assumptions in regards to the quality of the advice.

Preliminaries

In the context of searching on the line, a search strategy X can be defined as an infinite set of pairs (x i , s i ), with i ∈ N, x i ∈ R ≥1 and s i ∈ {0, 1}. We call i an iteration and x i the length of the i-th search segment. More precisely, in the i-th iteration, the searcher starts from the root O, traverses branch s i mod 2 up to distance x i from O, then returns to O. It suffices to focus on strategies for which x i+2 ≥ x i , i.e., in any iteration the searcher always searches a new part of the line. We will sometimes omit the s i 's from the definition of the strategy, if the direction is not important, i.e., the searcher can start by moving either to the left or to the right of O. In this case, there is the implicit assumption that s i and s i+1 have complementary parities, since any strategy that revisits the same branch in consecutive iterations can be transformed to another strategy that is no worse, and upholds the assumption. We make the standing assumption that the target lies within distance at least a fixed value, otherwise every strategy has unbounded competitive ratio. In particular, we will assume that t is such that d(t) ≥ 1.

Given a strategy X = (x 0 , x 1 , . . .) (which we will denote by X = (x i ), for brevity). It is known that its competitive ratio is maximized for targets hiding immediately after the turn point of each segment (see e.g., [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF]). Consider a target hiding at the end of segment i -1, i.e., at distance infinitesimally larger than x i-1 . In this case, the strategy locates the target

t at cost x i-1 + 2 i j=1 x j , whereas d(t) = x i-1 . Hence, cr(X) = 1 + 2 sup i≥0 i j=1 x j x i-1 , (3) 
where x -1 is defined to be equal to 1. Geometric sequences are important in search problems, since they often lead to efficient, or optimal strategies (see, e.g., Chapters 7 and 9 in [START_REF] Alpern | The theory of search games and rendezvous[END_REF]). We call the search strategy

G b = (b i ) geometric with base b. From (3), we obtain that cr(G b ) = 1 + 2 b 2 b -1 . ( 4 
)
For example, for the standard doubling strategy in which x i = 2 i , hence b = 2, the above expression implies a competitive ratio of 9.

For any r ≥ 9 define ρ r to be such that r = 1 + 2ρ r , thus ρ r = (r -1)/2. From (4), it follows that for the geometric strategy G b to be r-competitive, it suffices that

1 + 2 b 2 b-1 ≤ r, or equivalently, b 2 b-1 ≤ ρ r .
Note that the function x 2 /(x -1) -ρ r has two roots, the largest of which is given by ( 2), and will be denoted by b r . This expression will be prominent in the analysis of our strategies, and we will use the following fact: Remark 1. For the geometric strategy G(b r ) with base b r , it holds that cr(G br ) = r.

In the context of searching with a hint, we will say that a strategy is (c, r)-competitive if it has consistency at most c and robustness at most r; equivalently we say that the strategy is c-consistent and r-robust. Clearly, an r-robust strategy gives rise to a strategy with no hints, and with competitive ratio at most r.

We conclude with some definitions that will be useful in Section 4. Let X = (x 0 , x 1 , . . .) denote a sequence of positive numbers. We define α X as

α X = lim n→∞ x 1/n n .
We also define as X +i the subsequence of X starting at i, i.e, X +i = (x i , x i+1 , . . .). Last, we define the sequence G b (γ 0 , . . . γ n-1 ) as

G b (γ 0 , . . . γ n-1 ) = (γ 0 , γ 1 a, γ 2 a 2 , . . . γ n-1 a n-1 , γ 0 a n , γ 1 a n+1 , . . .).

Hint is the position of the target

In this section we study the setting in which the hint is related to the exact position of the target. Namely, the hint h describes the distance d(t) of the target t from the root, as well as the branch on which it hides. For any r ≥ 9, we will give a strategy that is ( br+1 br-1 , r))-competitive. Moreover, we will show that this is Pareto-optimal. We begin with the upper bound.

Theorem 2. For any r ≥ 9 there exists a ( br+1 br-1 , r)-competitive strategy for linear search in which the hint is the position of the target.

Proof. From the hint h, we have as information the distance d(t) as well as the branch on which the target t lies; without loss of generality, suppose that this branch is the branch 0. Recall that this information may or may not be correct, and the searcher is oblivious to this.

Consider the geometric strategy G br = (b i r ), with i ∈ N, and recall that G br is r-robust (Remark 2). There must exist an index

j t such that b jt-2 r < d(t) ≤ b jt r . Define λ = b jt r /d(t) ≥ 1, and let G denote the strategy G = ({ 1 λ b i r , s i }),
where the s i 's are defined such that that s i+1 = s i , for all i, and s jt = 0.

In words, G is obtained by "shrinking" the search lengths of G br by a factor equal to λ, and by choosing the right parity of branch for starting the search, in a way that, if the hint is trusted, then in G the searcher will locate the target right as it is about to turn back to O at the end of the j t -th iteration.

Since G br is r-robust, so is the scaled-down strategy G . This follows immediately from the expression of the worst-case competitive ratio, namely [START_REF] Angelopoulos | Infinite linear programming and online searching with turn cost[END_REF]. It remains then to bound the consistency c G of G . Suppose that the hint is trusted. We have that

d(G , t) = 1 λ (2 jt-1 i=0 b i r + b jt r ),
and since

d(t) = b jt r /λ we can bound c G from above by d(G , t) d(t) = 1 + 2 b jt r -1 b jt r (b r -1) ≤ 1 + 2 b r -1 = b r + 1 b r -1 .
We conclude that G is ( br+1 br-1 , r)-competitive. Example 3. For r = 9, Theorem 2 shows a 9-robust strategy that has consistency 3. In this strategy, a third of the search cost is dedicated to reaching the target in the last iteration, and two thirds of the cost are dedicated towards the exploration of the line in both directions, prior to finding the target.

Next, we will show that the strategy of Theorem 2 is Pareto-optimal. To this end, we will need a technical lemma concerning the segment lengths of any r-robust strategy. Lemma 4. For any r-robust strategy X = (x i ), it holds that

x i ≤ (b r + b r i + 1 )x i-1 ,
for all i ≥ 1, where x -1 is defined to be equal to 1.

Proof. The proof is by induction on i. We first show the claim for i = 0. There exists a branch such that if a target t hides on it, and at distance d(t) = 1 + , with infinitesimally small, then X locates t at cost 1 + 2x 0 + (namely, t hides on the opposite branch explored by X in iteration 0). For → 0, and since X is r-robust, it must be that

1 + 2x 0 ≤ r = 1 + 2 b 2 r b r -1 ⇒ x 0 ≤ b 2 r b r -1 ≤ 2b r ,
where the last inequality follows from the fact that b r ≥ 2. Thus, the base case holds.

For the induction hypothesis, suppose that the claim holds for all j ≤ i, that is x j ≤ (b r + br j+1 )x j-1 , for all j ≤ i. This implies that

x i-j ≥ 1 j-1 k=0 (b r + br i+1-k ) x i . (5) 
We will show that the claim holds for i+1. Consider a target t hiding at distance d(t) = x i + , with → 0, and at the same branch as the one explored by X in iteration i. Then X finds t at cost d(t) + 2 i j=0 x j , and since X is r-robust, from the definition of ρ r in (2), it follows that

i+1 j=0 x j x i ≤ ρ r ⇒ x i+1 + i-1 j=0 x j ≤ (ρ r -1)x i ,
and substituting x 0 , . . . , x i-1 using (5), we obtain that

x i+1 ≤ (ρ r -1 -P i )x i , where P i = i-1 j=0 1 j-1 k=0 (b r + br i+1-k )
.

It then suffices to show that

ρ r -1 -P i ≤ b r + b r i + 2 or equivalently P i ≥ ρ r -1 -b r i + 3 i + 2 . ( 6 
)
We will prove (6) by induction on i.

For i = -1, (6) is equivalent to 2b r ≥ b 2 r b r -1 -1,
which can be readily verified from the fact that b r ≥ 2. Assuming then that (6) holds for i, we will show that it holds for i + 1. We have

P i+1 = 1 b r + br i+2 (1 + P i ) (From the definition of P i ) ≥ 1 b r + br i+2 (1 + ρ r -1 -b r i + 3 i + 2 ) (From induction hypothesis) = i + 2 b r (i + 3) ( b 2 r b r -1 -b r i + 3 i + 2 ) (Since b 2 r br-1 = ρ r ) > i + 2 i + 3 b r b r -1 -1.
To complete the proof of this lemma, it remains to show that

i + 2 i + 3 b r b r -1 -1 ≥ ρ r -1 -b r i + 3 i + 2 ,
or equivalently, by substituting ρ r with the expression b 2 r br-1 , that i + 2 i + 3

1 b r -1 + i + 3 i + 2 ≥ b r b r -1 .
The lhs of the above expression is decreasing in i, for every b r ≥ 2, thus the lhs is at least

lim i→∞ ( i + 2 i + 3 1 b r -1 + i + 3 i + 2 ) = b r b r -1 ,
which concludes the proof.

We obtain a useful corollary concerning the sum of the first i -1 search lengths of an r-robust strategy.

Corollary 5. For any r-robust strategy X = (x i ), it holds that i-1 j=0

x j ≥ x i 1 + 1 i+1 ( b r b r -1 - i + 2 i + 1 ),
and for every ∈ (0, 1], there exists i 0 such that for all i > i 0 , i-1 j=0

x j ≥ ( 1 br-1 -)x i . Proof. We have i-1 j=0 x j = x i-1 + i-2 j=0 x j ≥ x i-1 (1 + i-2 j=0 1 j-1 k=0 (b r + br i+1-k ) ) = x i-1 (1 + P i-1 ) ≥ x i-1 (ρ r -b r i + 2 i + 1 ) ≥ x i b r + br i+1 ( b 2 r b r -1 -b r i + 2 i + 1 ),
where the first inequality follows from Lemma 4, the second inequality holds from the property on P i that was shown in the proof of Lemma 4, and the last inequality follows again from Lemma 4. We now observe that for sufficiently large i, the rhs of the inequality is arbitrarily close to 1 br-1 x i , which concludes the proof.

We can now show a lower bound on the competitiveness of every strategy that matches the upper bound of Theorem 2. Theorem 6. For every (c, r)-competitive strategy for linear search in which the hint is the position of the target, it holds that c ≥ br+1 br-1 -, for any > 0. Proof. Let X = (x i ) denote an r-robust strategy, with a hint that specifies the position of a target t. Suppose that X locates the target at the j t -th iteration. We have that

c = d(X, t) d(t) = 2 jt-1 i=0 x i + d(t) d(t) ≥ 2 jt-1 i=0 x i + x jt x jt = 1 + 2 jt-1 i=0 x i x jt .
Note that the target t can be chosen to be arbitrarily far from O, which means that j t can be unbounded (otherwise the strategy would not have bounded robustness). From Corollary 5 this implies that jt-1 i=0 x i can be arbitrarily close to x jt 1 br-1 , and therefore c is arbitrarily close to 1 + 2 1 br-1 = br+1 br-1 , which concludes the proof.

Hint is the direction of search

In this section we study the setting in which the hint is related to the direction of the search. More precisely, the hint is a single bit that dictates whether the target is to the left or to the right of the root O. Again, we are interested in Pareto-optimal strategies with respect to competitiveness: namely, for any fixed r ≥ 9, what is the smallest c such that there exist (c, r)-competitive strategies?

A related problem was studied by Schuierer [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF], which is called biased search. One defines the left and right competitive ratios, as the competitive ratio of a search, assuming that the target hides to the left of the root, or to the right of the root, respectively. However, the searcher does not know the target's branch. Of course we know that the maximum of the left and the right competitive ratios is at least 9 (and for the doubling strategy, this is tight). [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] shows that for any search strategy on the line (not necessarily 9-robust), the average of the left and the right competitive ratios is at least 9. At first glance, one may think that this could be an unsurprising, and perhaps even trivial result; however this is not the case. The proof in [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] is not straightforward, and relies in a generalization of a theorem of [START_REF] Gal | A general search game[END_REF] which lower bounds the supremum of a sequence of functionals by the supremum of much simpler, geometric functionals. We will discuss this theorem shortly.

The problem studied in [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] is related to our setting: the left and right competitive ratios correspond to the consistency c and the robustness r of the strategy. Hence from [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] we know that c + r ≥ 18. However, there is a lot of room for improvement. In this section we will show a much stronger tradeoff between c and r, and we will further prove that it is tight. For example, we will show that for any (c, r)-competitive strategy, if c approaches 5 from above, then r approaches infinity (in contrast, in this case, the lower bound of [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] yields r ≥ 13). In fact, we will show that c + r is minimized when c = r = 9. To this end, we will apply a parameterized analysis based on Schuierer's approach. We begin with the upper bound, by analyzing a specific strategy.

Theorem 7. For every b ≥ 1, and δ ∈ (0, 1], there is a (c, r)-competitive strategy for linear search with the hint being the direction of search, in which

c = 1 + 2 • ( b 2 b 2 -1 + δ b 3 b 2 -1 ) and r = 1 + 2 • ( b 2 b 2 -1 + 1 δ b 3 b 2 -1
).

Proof. Suppose, without loss of generality, that the hint points to branch 0. Consider a strategy X = ({x i , i mod 2}), which starts with branch 0, and alternates between the two branches. This strategy has consistency and robustness given by the following expressions, as a consequence of (3):

c = 1 + 2 • sup k≥0 { 2k+1 i=0 x i x 2k } and r = 1 + 2 • sup k≥0 { 2k i=0 x i x 2k-1 }, (7) 
where x -1 is defined to be equal to 1.

In addition, the search lengths of X are defined by

x i = b i , if i even and x i = δb i , if i is odd,
where we require that b > 1, and δ ∈ (0, 1]. Note that X is "biased" with respect to branch 0, which makes sense since the hint points to that branch. Substituting these values into [START_REF] Angelopoulos | Online search with best-price and query-based predictions[END_REF], we obtain that

c = 1 + 2 • sup k≥0 { k i=0 b 2i b 2k + δ k i=0 b 2i+1 b 2k } = 1 + 2 • sup k≥0 { b 2(k+1) -1 (b 2 -1)b 2k + δ b 2k+3 -1 (b 2 -1)b 2k } ≤ 1 + 2 • ( b 2 b 2 -1 + δ b 3 b 2 -1
).

Similarly, we have that

r = 1 + 2 • sup k≥0 { 1 δ k i=0 b 2i b 2k-1 + k-1 i=0 b 2i+1 b 2k-1 } = 1 + 2 • sup k≥0 { 1 δ b 2(k+1) -1 (b 2 -1)b 2k-1 + b 2k+1 -1 (b 2 -1)b 2k-1 } ≤ 1 + 2 • ( 1 δ b 3 b 2 -1 + b 2 b 2 -1
).

For example, if δ = 1, and b = 2, then Theorem 7 shows that there exists a (9, 9)competitive strategy. Interestingly, the theorem shows that as the consistency c approaches 5 from above, the robustness r of the strategy must approach infinity. This is because the function b 2 b-1 is minimized for b = 2, and hence for c to approach 5 from above, it must be that b approaches 2, and δ approaches 0. But then 1 δ must approach infinity, and so must r. We will show that the strategy of Theorem 7 is Pareto-optimal. To this end, we will use the following theorem of [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF]. Recall the definitions of α X , X +i and G a (γ 0 , . . . γ n-1 ) given in Section 2.

Theorem 8 (Theorem 1 in [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF]). Let p, q be two positive integers, and X = (x 0 , x 1 , . . .) a sequence of positive numbers with sup n≥0 x n+1 /x n < ∞ and α X > 0. Suppose that F k is a sequence of functionals that satisfy the following properties:

(1) F k (X) depends only on x 0 , x 1 , . . . x pk+q , (2) F k (X) is continuous in every variable, for all positive sequences X,

(3) F k (aX) = F k (X), for all a > 0, (4) F k (X + Y ) ≤ max(F k (X), F k (Y )
), for all positive sequences X, Y , and

(5) F k+i (X) ≥ F k (X +ip ), for all i ≥ 1.
Then there exist p positive numbers γ 0 , γ 1 , γ p-1 such that sup 0≤k<∞ F k (X) ≥ sup 0≤k<∞ F k (G α X (γ 0 , . . . , γ p-1 )).

We will use Theorem 8 to prove a tight lower bound on the competitiveness of any strategy X. Theorem 9. For every (c, r)-competitive strategy, there exists α > 1, and δ ∈ (0, 1]

such that c = 1 + 2 • ( α 2 α 2 -1 + δ α 3 α 2 -1 ), and r = 1 + 2 • ( α 2 α 2 -1 + 1 δ α 3 α 2 -1
). Proof. Let X = (x 0 , x 1 , . . .) denote a (c, r)-competitive strategy, and suppose, without loss of generality, that the hint specifies that the target is in the branch labeled 0. There are two cases concerning X: either the first exploration is on the branch labeled 0, or on the branch labeled 1. Let us assume the first case; at the end, we will argue that the second case follows from a symmetrical argument. As we argued in the proof of Theorem 7, in this case the competitiveness of X is described by [START_REF] Angelopoulos | Online search with best-price and query-based predictions[END_REF]. Let us define the functionals

C k = 2k+1 i=0 x i x 2k and R k = 2k i=0 x i x 2k-1 .
Then we have that

c = 1 + 2 • sup k≥0 C k and r = 1 + 2 • sup k≥0 R k . (8) 
The functional C k satisfies the conditions of Theorem 8 with p = 2, as shown in [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] therefore there exist γ 0 , γ 1 > 0 such that

sup k≥0 C k ≥ sup k≥0 C k (G α X (γ 0 , γ 1 )) = sup k≥0 γ 0 + γ 1 α X + γ 0 α 2 X + . . . + γ 0 α 2 X k + γ 1 α 2k+1 X γ 0 α 2k X = sup k≥0 { k i=0 α 2i X α 2k X + γ 1 γ 0 k i=0 α 2i+1 X α 2k X }.
If α X ≤ 1, then the above implies that sup k≥0 C k = ∞ (another way of dismissing this case is that if α X ≤ 1, then X is bounded and the two branches are not explored to infinity, as required by any strategy of bounded consistency). We can thus assume that α X > 1, and we obtain that

sup k≥0 C k ≥ sup k≥0 { α 2k+2 X -1 (α 2 X -1)α 2k X + γ 1 γ 0 α 2k+3 x -1 (α 2 X -1)α 2k X } = α 2 X α 2 X -1 + γ 1 γ 0 α 3 X α 2 X -1 . (9) 
We can lower-bound r using a similar argument. Namely, the functional R k satisfies the conditions of Theorem 8, again as shown in [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF] therefore

sup k≥0 R k ≥ sup k≥0 R k (G α X (γ 0 , γ 1 )) = sup k≥0 γ 0 + γ 1 α X + γ 0 α 2 X + . . . + γ 0 α 2k X γ 1 α 2k-1 X = sup k≥0 { γ 0 γ 1 k i=0 α 2i X α 2k-1 X + k i=0 α 2i-1 X α 2k-1 X }.
Using the same argument as earlier, it suffices to consider only the case α X > 1, in which case we further obtain that

sup k≥0 R k ≥ sup k≥0 { γ 0 γ 1 α 2k+2 X -1 (α 2 X -1)α 2k-1 X + α 2k+1 x -1 (α 2 X -1)α 2k-1 X } = γ 0 γ 1 α 3 X α 2 X -1 + α 2 X α 2 X -1 .
We thus obtain that

sup k≥0 R k ≥ sup k≥0 { γ 0 γ 1 α 2k+2 X -1 (α 2 X -1)α 2k-1 X + α 2k+1 x -1 (α 2 X -1)α 2k-1 X } = γ 0 γ 1 α 3 X α 2 X -1 + α 2 X α 2 X -1 . ( 10 
)
Let us define δ = γ 1 γ 0 > 0. The result follows then by combining ( 8), ( 9) and [START_REF] Beck | On the linear search problem[END_REF]. Note that if we require that c ≤ r, it must be that δ ≤ 1, since α X > 1.

It remains to consider the symmetric case, in which in X, the first explored branch is branch 1. In this case the analysis is essentially identical: in (8) we substitute C k with R k and vice versa, in the expressions of c and r, and in the resulting lower bounds we require that δ > 1.

It is important to note that in the proof of Theorem 9 we used the fact that the values γ 0 and γ 1 depend only on X and not on any functionals defined over X, as follows from the proof of Theorem 8 in [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF].

Theorem 9 implies that any (c, r)-competitive strategy X is such that

c + r ≥ 2 + 4 α 2 X α 2 X -1 + 2(δ + 1 δ ) α 3 X α 2 X -1 , which is minimized at δ = 1, hence c + r is minimized only if c = r = 1 + 2 α 2 X α X -1 ≥ 9.
We conclude that the average of a strategy's consistency and robustness (or the average of the left and right competitive ratio, in the terminology of [START_REF] Schuierer | Lower bounds in online geometric searching[END_REF]) is minimized only by strategies that are 9-robust.

Hint is a k-bit string

In this section we study the setting in which the searcher has access to a hint string of k bits. We first consider the case k = 1. In Section 5.1 we will study the more general case.

It should be clear that even a single-bit hint is quite powerful, and that the setting is non-trivial. For example, the bit can indicate the right direction for search, as discussed in Section 4, but it allows for other possibilities, such as whether the target is at distance at most D from the root, for some chosen D. The latter was studied in [START_REF] Jaillet | Online searching[END_REF], assuming that the hint is correct. More generally, the hint can induce a partition of the infinite line into two subsets L 1 and L 2 , such that the hint dictates whether the target is hiding on L 1 or L 2 .

We begin with the upper bound, namely we describe a specific search strategy, and the corresponding hint bit (as well as the query which it responds). Consider two strategies of the form X 1 = (b i r ) and X 2 = (b

i+ 1 2 r
).

Note that both X 1 and X 2 are r-robust: X 1 is geometric with base b r , whereas X 2 is obtained from X 1 by scaling the search lengths by a factor equal to b 1/2 r . We also require that the two strategies start by searching the same branch, hence in every iteration, they likewise search the same branch.

We can now define a strategy Z with a single bit hint, which indicates whether the searcher should choose strategy X 1 or strategy X 2 . For any given target, one of the two strategies will outperform the other, assuming the hint is trusted. Thus, an equivalent interpretation of the hint is in the form of a partition of the infinite line into two sets L 1 and L 2 , such that if the target is in L i , then X i is the preferred strategy, with i ∈ [START_REF] Alpern | The theory of search games and rendezvous[END_REF][START_REF] Angelopoulos | Online search with a hint[END_REF]. See Figure 1 for an illustration.

The following result bounds the performance of this strategy, and its proof will follow as a corollary of a more general theorem concerning k-bit strings that we show in Section 5.1 (Theorem 13).

Proposition 10. For given r ≥ 9, the above-defined strategy Z is r-robust and has consistency at most 1 + 2 a3/2 a-1 , where a = b r , if r ≤ 10, and a = 3, otherwise.

Note that if r = 9, then Z has consistency 1+4 √ O Figure 1: Illustration of strategy Z, using the first four segments of strategies X 1 and X 2 . Blue (dark)and orange (faded) segments correspond to the search segments of strategies X 1 and X 2 , respectively. The parts of the line in blue (resp. orange) indicate the hiding intervals for the target such that X 1 (resp. X 2 ) is preferred, and thus chosen by the hint.

We now turn our attention to lower bounds. To this end, we observe that a single-bit hint h has only the power to differentiate between two fixed strategies, say X = (x i ), and Y = (y i ), i.e., two strategies that are not defined as functions of h. We say that Z is determined by strategies X and Y , and the bit h.

Setting up the lower-bound proofs. We give some definitions and notation that will be used in the proofs of Theorems 11 and 12. Let Z be determined by strategies X and Y , and a single-bit hint h. Let C denote the lower bound on the consistency of Z that we wish to show. For given i, define T i X = 2 i j=0 x j + x i-1 , and similarly for T i Y . Define also q = r/C. Note that a searcher that follows strategy X will turn towards the root at iteration i -1, after having explored some branch β i ∈ {0, 1} up to distance x i-1 . Thus, X barely misses a target that may be hiding at branch β i , and at distance x i-1 + from O, with > 0 infinitesimally small, and thus requires time T i X to discover it. We will denote this hiding position of a potential target by P i . If, on the other hand, the searcher follows Y , then it can locate a target at position P i at a time that may be smaller than T i X ; let τ i denote this time. When strategy Y locates a target hiding at P i , it does so by exploring branch β i to a length greater than x i-1 . Let j i be the iteration at which Y locates P i , thus y j i ≥ x i-1 . Last, let Q i denote the position in branch β i and at distance y j i + from O. In words, if a target hides at Q i , then strategy Y barely misses it when executing the search segment y j i .

We first show a lower bound on the consistency of 9-robust strategies. In the proof we will not replace all parameters with the corresponding values (e.g., we will sometimes use r to refer to robustness, instead of the value 9). We do so because the arguments in the proof can be applied to other settings, as will become clear in the proof of Theorem 12.

Theorem 11. For any (c, 9)-competitive strategy with single-bit hint, it holds that c ≥ 5.

Proof. We will prove the result by way of contradiction. Let C = 5, and suppose that there is a strategy Z of consistency strictly less than C. Let Z be determined by two fixed strategies X and Y . Both X and Y must be r-robust (i.e., 9-robust), otherwise Z cannot be r-robust.

Fix i 0 ∈ N. Suppose first that i 0 is such that for all i ≥ i 0 , we have τ i ≥ 1 q T i X . In this case, for a target at position P i , defined earlier, X requires time T i X to locate it, whereas Y requires time at least τ i ≥ 1 q T i X to locate it, thus the minimum time X or Y can locate this target is 1 q T i X . Therefore, the consistency of Z is at least

c ≥ sup i≥i 0 T i X q • x i-1 = 1 q sup i≥i 0 T i X x i-1 ≥ C r • r = C, (11) 
which is a contradiction. Here, we used crucially the fact that sup i≥i 0 T i X

x i-1 ≥ 9, for any 9-robust strategy X and any i 0 1 . Specifically, there exists sufficiently large i such that T i X is arbitrarily close to 9x i-1 .

It must then be that i 0 does not obey the property described above, namely for some i ≥ i 0 we have that τ i ≤ 1 q T i X . Since X is r = 9-robust, it must also be that

T i X x i-1 ≤ r,
as can be seen if a target hides at P i . We therefore obtain that

τ i ≤ 1 q T i X ≤ 1 q • r • x i-1 = Cx i-1 . (12) 
We can also give a lower bound on τ i , as follows. Recall that we denote by y j i the segment at which strategy Y locates a target at position P i . For arbitrarily small > 0, we can choose i 0 sufficiently large, which also implies that j i can also be sufficiently large (since otherwise Y would not have finite robustness), so that Corollary 5 applies. To simplify the arguments, in the remainder of the proof we will assume that the corollary applies with = 0; this has no effect on correctness, since we want to show a lower bound of the form C -δ on the consistency, and can be made as small as we want in comparison to δ. More precisely, we obtain that

τ i = 2 j i l=0 y l + x i-1 ≥ 2 b r -1 y j i + x i-1 . (13) 
Combining ( 12) and (13) we have

y j i ≤ C -1 2 (b r -1)x i-1 . (14) 
In particular, since r = 9 and C = 5, we have that

y j i ≤ 2x i-1 .
Consider now a target at position Q i , and recall that this position is at distance infinitesimally larger than y j i . We will show that in both X and Y , there exists an i ≥ i 0 such that the searcher walks distance at least C • y j i before reaching this position, which implies that Z has consistency at least C, and which yields the contradiction.

Consider first strategy Y . In this case, the searcher walks distance at least T j i Y , to reach Q i , from the definition of T Y . Since r = 9, we know that sup i≥i 0 T j i Y y j i ≥ 9, for any i 0 , hence 1 In general, this statement is not immediately true for arbitrary r > 9.

there exists an i ≥ i 0 such that the distance walked by the searcher is at least r • y j i , and hence at least C • y j i .

Consider now strategy X. In this case, in order to arrive at position Q i , the searcher needs to walk distance T i X , then at least an additional distance y j i -x i-1 to reach Q i . Let us denote by D i X this distance. We have

D i X = T i X + y j i -x i-1 ≥ 9x i-1 + y j i -x i-1
(From Corollary 5 and since T i X is arbitrarily close to 9x i-1 )

= 8x i-1 + y j i . (15) 
We then bound the ratio D i X /y j i from below as follows.

D i X y j i ≥ 8x i-1 + y j i y j i = 1 + 8 x i-1 y j i ≥ 1 + 8 x i-1 2 • x i-1
(From the fact that

y j i ≤ 2 • x i-1 ) = 5. (16) 
We thus conclude that C ≥ 5, which yields the contradiction, and completes the proof.

Showing a lower bound on the consistency, as a function of general r > 9 is quite hard, even for the case of a single-bit hint. The reason is that as r increases, so does the space of r-robust strategies. For example, any geometric strategy G b has robustness r, as long

as b ∈ [ ρr- √ ρ 2 r -4ρr 2 , ρr+ √ ρ 2 r -4ρr 2 
]. In what follows we will show a lower bound for a class of strategies which we call asymptotic. More precisely, recall the definition of T i X . We call an r-robust strategy S asymptotic if sup i≥i 0 T i X x i-1 = r, for all fixed i 0 . In words, in an asymptotic strategy, the worst-case robustness (i.e., the worst case competitive ratio without any hint) can always be attained by targets placements sufficiently far from the root. All geometric strategies, including the doubling strategy, have this property, and this holds for many strategies that solve search problems on the line and the star, such as the ones described in the introduction. Note also that the strategies X 1 and X 2 that determine the strategy Z in the statement of Proposition 10 are asymptotic, since they are near-geometric. Thus, the lower bound we show in the next theorem implies that in order to substantially improve consistency, one may have to resort to much more complex, and most likely irregular strategies.

Theorem 12. Let Z denote a strategy with 1-bit hint which is determined by two r-robust, asymptotic strategies X and Y . Then Z is (c, r)-competitive, with c ≥ 1 + 2br br-1 .

Proof. We show how to modify the proof of Theorem 11. Let C be equal to 1 + 2br br-1 , and suppose, by way of contradiction, that the robustness of Z is strictly less than C. First, we note that (11) applies since X is asymptotic, and so do equations [START_REF] Beck | Son of the linear search problem[END_REF], 13 and (14).

As in the proof of Theorem 11, we next consider a target hiding at position Q i . We then can argue that there exists i ≥ i 0 such that, for this hiding position, the total distance walked by Y is at least r • y j i ≥ Cy j i . Here we use the fact that Y is asymptotic.

Next we consider strategy X, and we bound its cost for locating the hiding position Q i . We have, similarly to the proof of Theorem 11, that

D i X = T i X + y j i -x i-1 ≥ (r -1)x i-1 + y j i . (Since X is asymptotic) Therefore R ≥ D i X y j i ≥ 1 + (r -1)x i-1 y j-1 ≥ 1 + 2(r -1) (C -1)(b r -1)
,

where the last inequality follows from [START_REF] Beck | The revenge of the linear search problem[END_REF]. Solving this inequality for C we obtain

C ≥ 1 + 2(r -1) b r -1 ,
and substituting with r = 1 + 2 b 2 r br-1 we obtain that C ≥ 1 + 2br br-1 , a contradiction, and the proof is complete.

k-bit hints

Here we consider the general setting in which the hint is a k-bit string, for some fixed k. First, we give an upper bound that generalizes Proposition 10. Consider 2 k strategies X 0 , . . . , X 2 k -1 , where X j = (a i+ j 2 k ) i≥0 , for some a to be determined later, and where all the X j have the same parity: they all search the same branch in their first iteration and, therefore in every iteration as well. Define a strategy Z, which is determined by X 0 , . . . , X 2 k -1 , and in which the k-bit hint h dictates the index j of the chosen strategy X j . In other words, h answers the query Q h ="which strategy among X 0 , . . . , X 2 k -1 should the searcher choose?". An equivalent interpretation is that the statements of the X j 's induce a partition of the line, such that for every given target position, one of the X j 's is the preferred strategy. Thus every bit i of the hint can be thought, equivalently, as the answer to a partition query Q i of the line, i.e., of the form "does the target belong in a subset L i of the line or not?". Theorem 13. For every r ≥ 9, the strategy Z defined above is (c, r)-competitive with c ≤

1 + 2 a 1+ 1 2 k a-1 , where a = b r , if ρ r ≤ (1+2 k ) 2 2 k
, and a = 1 + 2 k , otherwise.

Proof. For a given target t, let j t = h, that is, j t is the index of the best strategy among the X j 's for located t, as dictated by h. From the statements of the strategies, this implies that there exists some i t such that

a it+ j t 2 k -1-1 2 k < d(t) ≤ a it+ j t 2 k , Then d(X jt , t) d(t) = 2 it-1 l=0 a l+ j t 2 k + d(t) d(t) ≤ 1 + 2 it-1 l=0 a l+ j t 2 k a it+ j t 2 k -1-1 2 k ≤ 1 + 2 a 1+ 1 2 k a -1 .
It remains to chose the right value for a. Recall that the geometric strategy G a is (1 + 2 a 2 a-1 )robust, thus so is every X j defined earlier. We then require that a is such that

1 + 2 a 2 a -1 ≤ r = 1 + 2ρ r ⇒ a 2 a -1 ≤ ρ r .
We also require that the consistency of Z, as bounded earlier, is minimized. Therefore, we seek a > 1 such that a 1+ 1 2 k a-1 is minimized and a 2 a-1 ≤ ρ r . Using simple calculus, we obtain that the value of a that satisfies the above constraints is as in the statement of the theorem.

For example, for r = 9, we obtain a strategy that is (1 + 2 2+ 1 2 k , 9)-competitive. Thus, the consistency decreases rapidly, as function of k, and approaches 5.

Last, it is easy to see that no 9-robust strategy with hint string of any size can have consistency better than 3. To see this, let X be any 9-robust strategy, and let i t be the iteration in which it locates a target t. Since t can be arbitrarily far from O, i t is unbounded, and thus Corollary 5 applies. We thus have that

d(X, t) d(t) = it-1 j=0 x j + d(t) d(t) = 1 + 2 it-1 j=0 x j d(t) ≥ 1 + 2 it-1 j=0 x j x it ≥ 1 + 2 (1 -)x it x it ,
thus the consistency of X cannot be smaller that 3 -, for any . The same holds then for any strategy that is determined by any number of 9-robust strategies, and thus for any hint.

Dealing with errors

In all previous sections, we studied consistency/robustness tradeoffs in online search. In this section we will discuss the case in which the hint comes with some error η, as in recent works in Machine Learning [START_REF] Lykouris | Competitive caching with machine learned advice[END_REF][START_REF] Purohit | Improving online algorithms via ML predictions[END_REF][START_REF] Mazumdar | Clustering with noisy queries[END_REF]. The ultimate goal here is to describe Pareto-efficient solutions in which the competitive ratio of the search is also robust to the error. Note that the concept of error makes a lot of sense for positional hints (Section 3) or advice-string hints (Section 5); in contrast, for the directional hint we studied in Section 4, the Pareto-optimality results inherently captures the possibility of directional error.

Before we proceed, we first need to point out certain subtleties in regards to performance evaluation as function of the error, which are specific to search problems. That is, unlike other online problems, the competitive ratio of linear search is not necessarily an increasing function of the error η. For example, consider the case in which there is a prediction of the position of the target, and suppose that we have a "bad" search strategy (e.g, a strategy with very large search lengths, which results in a bad competitive ratio). Suppose that we are given a positional hint for a target, which is also very bad: the actual target hides very far away from the position of the hint. However, it is possible that this strategy performs extremely well, if the target happens to hide right before the turn point of one of the search lengths. In this case, a bad strategy turns out to be quite efficient, even if the hint is also quite bad. These are complications that need to be taken into consideration in terms of defining efficiency in this setting, and highlight the difficulties in filtering out such outliers from the analysis, without resorting to some assumptions on the amount of the error.

Positional hints

Suppose that the searcher is given a hint h that describes the position of the target t on the line, and let d(h) denote the distance of the hint from the origin. We will make the assumption that h and t are both on the same branch, and we define the error η to be such that either

d(h) = d(t)(1 -η), if d(h) < d(t), and d(h) = d(t)(1 + η), if d(h) ≥ d(t).
In the former case, we call the error negative, whereas in the second case we call the error positive. This is only be for the purposes of the analysis, since the searcher does not know the parity of the error. Note that if the error is negative, then from the assumption it must be that η ∈ [0, 1].

We discuss how to adapt the strategy of Section 3 to this setting. For given hint h, let X h denote the Pareto-optimal strategy of Theorem 2. This strategy cannot tolerate any errors: if η is infinitesimally small positive error, then X h barely misses the target in the crucial iteration, and the competitive ratio of the strategy becomes as bad as its worst-case robustness. This example shows that one needs to further "stretch" the search lengths of X h , so as to robustify the strategy against such extreme situations. Let p > 0 denote a parameter that is specified by the searcher, and which captures the degree to which it is able to tolerate errors, and consider the strategy X h(1+p) , i.e., the strategy that pretends that the positional hint is at distance d(h)(1 + p) from O. The following is a corollary of Theorem 2.

Corollary 14. For any p ∈ [0, 1] and r ≥ 9, strategy X h(1+p) is r-robust and has consistency at most min{1 + 2 1+p br-1 , r}. It also has competitive ratio at most min{1 + 2 1+p br-1 , r}, for any negative error, or positive error at most p, and at most r, in all other cases.

k-bit hints

In this setting, we assume that a number η ≤ k of hint bits may be erroneous. As with positional hints, the searcher specifies a parameter p ≤ k that describes its desired tolerance to errors, or, alternatively, an anticipated upper bound on the error. We will first outline our approach. Let X a,2 k denote the collection of the 2 k strategies in the proof of Theorem 13. We will show that this collection has a nice structural property (Property 15): given a target T , if j T is the index of the strategy that locates T at minimum cost among the strategies in X a,2 k , then a strategy of index j ∈ [j T , 2 k -1], will find T at cost at most a j-j T times the cost of strategy j T . In the next step, we show how to apply a fault-tolerant binary-search algorithm, using as hint the response to k binary queries (in the presence of errors), so as to find, within the interval [0, 2 k -1], a strategy in X a,2 k of index close (and exceeding) j T . Last, in Theorem 16, we show how to evaluate the competitive ratio and optimize the choice of a. Property 15. Consider the set X a,2 k = {X 0 , . . . , X 2 k -1 } of 2 k single-searcher strategies, as defined in the proof of Theorem 13. For a given hiding target T , let j T ∈ [0, 2 k -1] be such that X j T locates T at minimum cost among strategies in X a,2 k , and specifically at cost c 0 +d(T ), for some c 0 . Then, for all j ∈ [j T , 2 k -1], X j finds T at cost at most a j-j T c 0 +d(T ).

Proof. Follows straightforwardly from the definition of X a,2 k , and the observation that if X j T finds T in round i T , then X j , with j ∈ [j T , 2 k -1] finds T no later than round i T .

From Property 15, the searcher would like to leverage the hint so as to find the index of a strategy in X a,2 k that is as close to j T as possible, but is larger than j T . This can be accomplished using the Robust Binary Interval Search (RBIS) algorithm of [START_REF] Disser | Robust and adaptive search[END_REF], which was developed in the context of an online problem known as time-series search, and which is based on an algorithm for a related fault-tolerant setting due to [START_REF] Disser | Robust and adaptive search[END_REF]. The same, essentially, algorithm, can be applied in our setting with only a minor modifications. Namely, we use the algorithm of [START_REF] Angelopoulos | Online search with best-price and query-based predictions[END_REF] so as to search a binary tree that corresponds to the set of all strategy indices {0, . . . 2 k -1}, and knowing that the search ends in a node of height at most k/2 + 2p, we return the rightmost leaf of the subtree rooted at that node. Here, each one of the k bits corresponds to a query of the form "Is j T ≤ x?", for some x ∈ [0, 2 k -1].

Combining Property 15, the fault-tolerant search algorithm RBIS, and an analysis along the lines of the proof of Theorem 13, we obtain the following result. 

if η ≤ p ≤ k/4, where U = 2 k/2 +2p . Otherwise, the competitive ratio of the strategy is at most r.

Proof. We apply RBIS on the set of indices of all strategies in X a,2 k , where a > 1 will be chosen later. Assuming that η ≤ p, then the output is the index of a strategy in X a,2 k which is ranked at most U among the strategies in X a,2 k , in regards to its cost for locating the target (where lower ranking indicates better performance). From Property 15, this means that the selected strategy has cost at most a U c 0 + d(t), where c 0 + d(t) is the cost of the best strategy in X a,2 k . It is easy to evaluate the competitive ratio of this strategy along the lines of the proof of Theorem 13, and we infer that the competitive ratio of the selected strategy is at most 1 + 2 a 2 k +1+U a 2 k -1 . The proof follows by choosing a > 1 that minimizes this expression.

We conclude with an observation about the performance of the strategy of Theorem 16. As k increases, and more specifically as k → ∞, the competitive ratio of the strategy converges to that of Theorem 13, even if p is as large as the highest tolerance of RBIS to errors, namely k/4 -o(k). In other words, even if we allow error as high as k/4 -o(k), the strategy of Theorem 16 remains very robust to errors, provided that the size of the hint is sufficiently large.

Conclusion

We introduced a model that allows us to analyze the performance of search strategies with some information on the target. As explained in the introduction, the eventual goal is to apply this model to many other search problems, within or beyond competitive analysis, and for deterministic or randomized strategies. A good starting point is the generalization of linear search, namely the m-ray star problem, which has a long history of research, and has a broad connection to resource allocation problems (see, e.g. [START_REF] Kupavskii | Lower bounds for searching robots, some faulty[END_REF][START_REF] Azar | On-line choice of on-line algorithms[END_REF][START_REF] Daniel | Contract algorithms and robots on rays: unifying two scheduling problems[END_REF]). In this context, there are m tasks and the goal is to allocate resources to each of them, without knowing ahead of time which task will be the crucial one. The hint can be interpreted as some information concerning the instance (e.g., the index of the crucial task, or the time we may have to allocate to each one of the tasks in order to guarantee some good solution). A more ambitious goal is to study searching in general graphs; here the hints could provide, for instance, some information about a neighborhood of nodes in which the target is likely to hide, or one may choose again to encode the hint as a k-bit advice string.
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 161 For any r ≥ 9, there exists a strategy with k-bit hint that has competitive ratio at most where a= b r , if ρ r ≤ (1+2 k /(1+U )) 2 2 k /(1+U ) 1 + 2 k /(1 + U ), otherwise,

≈ 6.657. For r ∈[START_REF] Baeza-Yates | Searching in the plane[END_REF][START_REF] Beck | On the linear search problem[END_REF], the consistency of Z is decreasing in r, as one expects. For r ≥ 10, the consistency is 1 +

√3 ≈ 6.196.
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