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Journal of Avian Biology Climate change is altering species’ traits across the globe. To predict future trait 
changes and understand the consequences of those changes, we need to know the 
environmental drivers of phenotypic change. In the present study, we use multi-
decadal long datasets to determine periods of within-year environmental variation that 
predict growth of three seabird species. We evaluate whether these periods changed 
over time and use them to predict future growth under climate change. We find that 
predictions of trait change could be improved by considering that 1) the timing of 
environmental factors used to predict traits (predictive-environmental features) can 
change over time, and 2) the type of predictive-environmental features can change 
over time. We find evidence of changes in the timing of environmental predictors in all 
populations studied and evidence for a change in the type of predictor in the studied 
Arctic murre population. Environmental models of growth predict that warming 
conditions will decrease growth rates and bird body sizes in two species (black-legged 
kittiwake Rissa tridactyla and glaucous-winged gull Larus Larus glaucescens), but not 
the third (thick-billed murre Uria lomvia). Consequently, climate change is likely 
to decrease fledging rates in the gulls and kittiwakes. Further, we find that sea ice-
cover historically predicted murre chick growth well, but no longer does – instead air 
temperature is now a better predictor of murre growth. Our study highlights a need 
to investigate whether environmental determinants of trait variation commonly shift 
in a changing climate and whether such changes have implications for adaptation to 
novel environments.
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Introduction

The relationship between an organism’s phenotype and its environment is fundamental 
to ecology and evolutionary biology (West-Eberhard 2003, Sultan 2015), as 
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the expression of a particular phenotype in response to 
environmental conditions (plasticity) can shape both the 
fitness of an organism and the demography and evolution 
of a population (Ghalambor et al. 2007, Vedder et al. 2013, 
Snell-Rood et al. 2018, Rescan et al. 2020). Yet, we are far 
from accurately predicting phenotypic changes in response 
to climate change for many species and traits. In particular, 
it will be important to try to predict impacts on early-life 
phenotypes because early-life is often a strong selective period, 
during which many organisms integrate environmental 
information into a canalized adult phenotype (Williams 
1957, Hamilton 1966, English  et  al. 2016). Therefore, 
measuring the relationship between early-life phenotypes and 
environmental conditions is essential in determining the role 
of the environment in shaping the diversity of phenotypes in 
a population. Furthermore, environmental change is likely 
to produce novel environments that may alter patterns of 
selection experienced during early life and result in reduced 
recruitment.

In the event of novel environmental conditions in the 
future we need to know if we can predict organisms’ responses 
to environmental change, and whether the responses will 
be adaptive (English  et  al. 2016, Snell-Rood  et  al. 2018, 
Bonamour et al. 2019, Simmonds et al. 2019). The population 
responses to new environments will likely be caused by a 
complex mix of micro-evolution and phenotypic plasticity. 
Understanding the associations between environment and 
early-life growth phenotypes is an important first-step in 
identifying potential sources of selection or cues for plasticity 
(Ghalambor et al. 2007, Sultan 2015). After identifying new 
predictors of traits in longitudinal studies, researchers can 
evaluate hypotheses related to how these predictors might 
drive phenotypic change.

The effects of the environment on the developing 
phenotype can be complex and may include direct effects and 
indirect effects acting via interactions with other individuals 
such as parents (Noble  et  al. 2018, Sauve  et  al. 2021). 
Moreover, environmental effects may operate at particular 
stages, characterized by specific time windows (Kruuk et al. 
2015, van de Pol  et  al. 2016, de Zwaan  et  al. 2020). The 
availability of multi-decadal datasets and the development 
of sliding window statistical approaches are timely assets 
to identify critical time windows during which particular 
environmental effects occur (Simmonds et al. 2019).

High latitude populations are ideal study systems in 
this regard because they are experiencing rapidly warming 
temperatures that could impact growth directly through 
overheating, and indirectly through ecosystem changes 
(Hatch 2013, Gaston and Elliott 2014, Piatt  et  al. 2020, 
Choy  et  al. 2021). Here we investigate the relationship 
between early-life environmental conditions and growth, a 
trait frequently associated with immediate and future survival, 
in three high latitude seabirds. We had four objectives: 1) 
identify time windows and environmental variables (e.g. air 
temperature, sea ice-cover) within the breeding season that 
predict offspring growth, 2) determine if these environmental 
variables change across years, 3) determine whether the timing 
of these predictive windows change across years and 4) use this 
knowledge to make predictions about offspring growth under 
future climate change. Because environmental conditions are 
changing quickly in high latitude areas (Moon et al. 2021), we 
expected that the timing of environmental growth predictors 
or the predictors themselves might differ between historical 
and contemporary periods.

Methods

Species, study sites and available data

We used growth data from long-term studies of thick-billed 
murres Uria lomvia (hereafter ‘murres’) on Coats Island, 
Nunavut, Canada, and glaucous-winged gulls Larus glaucescens 
and black-legged kittiwakes Rissa tridactyla (hereafter, ‘gulls’ 
and ‘kittiwakes’) on Middleton Island, Alaska (Table 1).

Murres
Each year of study on Coats Island (1986–2010; 2017–
2018), chicks from ~60 parental pairs were monitored in the 
colony of ~15 000 pairs (Table 1; Hipfner and Gaston 1999, 
Gaston  et  al. 2003, 2005, Gaston and Elliott 2014). One 
hundred murre eggs were marked during incubation and 
visited every two days to determine hatching date. If a chick 
was found wet, it was recorded as hatching on the date of the 
check and if a chick was pipping it was recorded as hatched 
the following date. If no information was available a chick 
was aged using wing length measurements such that the hatch 
date was recorded as the date of discovery, the previous date 
and two days prior if the wing length was less than or equal 

Table 1. Details of the seabird datasets. Thick-billed murres lay single egg clutches, and we are unable to reliably disentangle the first, 
second and third egg laid in glaucous-winged gull clutches.

Species Colony location n years/chicks
Average number of mass 
measurements per chick

Study years with chick  
growth data

Thick-billed murre Coats Island (Northern 
Hudson Bay;  
62°56′N, 82°0′W)

27/1528 6.08 1986–2010; 2017–2018

Black-legged kittiwake Middleton Island  
(Gulf of Alaska; 
59°26′N, 146°20′W)

21/1980 First-hatched: 6.88  
Second-hatched: 4.5

1998–2018

Glaucous-winged gull Middleton Island  
(Gulf of Alaska)

13/1558 2.2 2002–2010; 2012; 2016–2018
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to 25, 26–27 and 28–29 mm, respectively. Individuals were 
banded upon hatching or toe-clipped (if too small to band) 
and subsequently banded. Chicks were weighed every two 
to four days. Only mass up to 14 days of age was analyzed 
because chicks begin to depart from the colony at 15 days, so 
masses before 15 days of age are unbiased by departure age.

Gulls
Two gull plots (each ~1000 m2, and encompassing 50–100 
nests) were monitored each year of study (2002–2010; 2012; 
2016–2018; total population on Middleton ~10 000 birds, 
Denlinger 2006). Gull nests were marked and checked every 
four days to determine approximate laying and hatching 
dates. If a chick was found wet it was recorded as hatching 
on the date of the check, but if a chick was dry the hatch 
date was recorded as the mid-point date between check dates. 
Finally, if a chick was pipping the hatch date was recorded as 
date after the check. Chicks were banded with a temporary 
plastic band with a short letter and number sequence to 
identify individuals. Attempts were made to capture chicks 
every four days after first discovery, but because chicks can 
wander from the nest soon after hatching and some chicks 
avoid capture, the majority of chicks were not weighed at 
each four-day interval (~2.2 measurements taken per chick; 
Table 1).

Kittiwakes
On Middleton Island, ~60–400 breeding pairs of kittiwakes 
that were part of a larger colony of ~15 000 birds were 
monitored annually in an abandoned radar tower (Gill and 
Hatch 2002). Birds at the radar tower construct their nests on 
wooden shelves that have been built in parallel rows on the 
exterior of the tower. One-way glass panel windows are set 
in the interior of the tower and can be used to observe each 
nest from within the tower, and can be removed to handle 
nestlings. Nests were checked twice daily (9:00 and 18:00 
h) throughout the season to record laying and hatching. 
Eggs hatch asynchronously within clutches, with an average 
difference of ~1.6 days between the first and second laid egg 
(Merkling et al. 2016). In each year of the study, the first-
hatched and second-hatched chicks were marked with a 
nontoxic colour marker to distinguish chick rank, and were 
banded at five days post-hatch for individual identification. 
Chicks were weighed every five days from hatching to 40 days 
(i.e. close to fledging). Mass was weighed to the nearest 0.1 
g using an electronic scale. As several experiments have been 
conducted on the nests in the past (Merkling et al. 2016), we 
excluded data from any chicks that had been experimentally 
manipulated.

Environmental variables

We evaluated three environmental variables that potentially 
influence chick growth for some or all seabird datasets: 1) 
sea-surface temperature, because it frequently reflects the 
community composition and abundance of prey species for 
seabirds (Furness 2016); 2) air temperature, because it could 

improve or worsen thermal conditions for growing chicks, it 
is associated with growth in kittiwakes (Sauve et al. 2022), 
and warm temperatures contribute to egg-losses and adult 
mortality in murres at Coats Island (Gaston and Elliott 2013); 
and 3) sea ice-cover (for murres), because it is an indicator 
of a regime shift in the marine ecosystem near Coats Island 
and has been associated with timing of laying and chick mass 
at 14-days of age (Gaston  et  al. 2003, 2005, Gaston and 
Elliott 2014). We ran analyses for sea ice-cover, sea-surface 
temperature and air temperature for murres, but only present 
results for sea ice-cover and air temperature in the main 
text because sea ice-cover and sea-surface temperature are 
closely correlated in the spring before and during ice breakup 
(Supporting information).

Because we expected that sea-surface temperature and sea 
ice-cover affect prey availability, we used sea-surface tem-
perature and sea ice-cover variables averaged across an area 
that approximately reflects the foraging range of each spe-
cies. For murres all pixels within 60 km of Coats Island were 
averaged each day for sea ice-cover. For kittiwakes and gulls, 
all pixels within 100 or 50 km respectively of Middleton 
Island were averaged each day for sea-surface temperatures 
(Mallory et al. 2018). We used ver. 2 of the advanced very 
high-resolution dataset (AVHRR) daily sea-surface tem-
perature or sea-ice concentration data from the National 
Oceanic and Atmospheric Administration (NOAA) National 
Climatic Data Center (NCDC; https://iridl.ldeo.colum-
bia.edu/SOURCES/.NOAA/.NCDC/.OISST/.version2/.
AVHRR/). Air temperatures for Coats Island were collected 
from the Coral Harbour weather station (~100 km from the 
murre growth plots; https://climate.weather.gc.ca). Elliott 
and Gaston (2015) found that daily maximum and mini-
mum air temperature at Coats Island and Coral Harbour are 
correlated (R2 = 0.6 for both parameters), suggesting that air 
temperatures at Coral Harbour may be used as a proxy for 
conditions at Coats Island. Air temperatures for Middleton 
Island were collected from an airport weather station situated 
~2 km from the kittiwake radar tower and gull plots (www.
ncdc.noaa.gov/cdo-web).

Statistical analyses

Models of growth
We modelled all growth patterns using Bayesian mixed 
models with the R package ‘brms’, which uses the ‘Stan’ 
software (Bürkner 2017, Stan Development Team 2019). 
In all models, we added chick identity and year as random 
effects for each growth parameter. For all analyses, our 
biological traits of interest were the individual deviations 
from the mean population-level estimates of growth curve 
parameters (for murres; Intercept and Slope; for kittiwakes 
and gulls, Asymptote, maximum growth rate and timing of 
maximum growth rate). Because we only used data from the 
approximately linear part of the growth curve for murres, 
we modelled murre growth as a linear function of age, the 
parameters of interest being the intercept and slope of the 
regression. We used linear mixed models for murres with age 
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as a fixed effect predictor. Age in days was population mean 
centred for murres so that the intercept of the regression is 
the estimated mean mass of a chick during growth and the 
slope is the estimated mean daily mass change. Because the 
data span the entirety or most of the chick growth phase for 
kittiwakes and gulls, we used non-linear mixed models (the 
unified Richard’s curve) for gulls and kittiwakes. The unified 
Richard’s curve is a reparameterization of the Richard’s curve, 
which is a generalized version of a logistic function providing 
estimations of the relative maximum growth rate, the age 
at maximum growth and the asymptote or maximum size 
reached during growth (Sugden et al. 1981, Tjørve and Tjørve 
2017). We choose the Richard’s curve because it is flexible 
and can take the shape of many commonly used models of 
determinate growth (Tjørve and Tjørve 2017). Details of 
model priors, the extraction of individual deviations, and 
an analysis of temporal changes in growth parameters are 
provided in the Supporting information.

Sliding window analyses
We performed sliding window analyses using the R package 
‘climwin’ (van de Pol et al. 2016). A sliding window analysis 
identifies a time window for which an environmental 
variable of interest best explains variation in a measured 
biological trait. We used relative windows that assume each 
individual record will be impacted by climate at different 
times relative to the timing of the biological trait. The sliding 
window analysis varies the start and duration of windows 
in increments of days. We used it to compare linear and 
quadratic relationships between the mean, minimum and 
maximum values of climate for a given time window and 
individual estimates of model parameters. We evaluate air 
temperature, sea ice-cover (murres only) and sea-surface 
temperature for murres, gulls and kittiwakes in a time-
period up to 100, 150 and 120 days before measurement of 
chicks, when they would be 14, 50 and 40 days old (roughly 
fledging date), respectively. The length of our time periods 
were chosen to encompass prelaying, follicle development, 
incubation and growth (Roudybush et  al. 1979, Astheimer 
and Grau 1990). For our interpretation of windows, we have 
binned the windows identified by our analysis into these time 
periods. Our process of selection for climwin models can be 
found in the Supporting information.

Environmental models of growth
The climatic windows identified by climwin were fitted in a 
model that estimated the statistical effects of each window 
on all growth curve parameters. If an identical window was 
detected for two or more growth parameters, the effect of 
that window was only evaluated once in the growth models. 
First, we ran separate models for air temperature, sea-surface 
temperature (gulls and kittiwakes only) and sea ice-cover 
(murres only). Finally, we ran a model that retained only 
fixed effects with credible intervals that did not span zero in 
sea-surface and air temperature models, and combined them 
into one model. We used an information criterion (LOOIC) 
derived from approximate leave-one-out cross-validation 

using Pareto-smoothed importance sampling to compare 
and evaluate the predictive performance (PSIS-LOO 
(Vehtari et al. 2017)). Models with a difference in LOOIC 
values > 5 were considered improvements in model fit.

Timing changes in determinant windows between historical 
and contemporary periods
We evaluated whether windows detected by the sliding 
window analysis changed throughout the study period for 
each species. To do this, we ran the sliding window described 
above but ran the analyses on each dataset split into two 
subsets (Supporting information). For each dataset we call 
the older subset the ‘historical’ period and the more recent 
subset the ‘contemporary’ period. We split the Coats Island 
dataset: 1) before and after 1995, corresponding to a marked 
discontinuity in sea ice and food web characteristics (Gaston 
and Hipfner 1998, Gaston  et  al. 2012, Provencher  et  al. 
2012), and 2) before and after 1999 to compare the 1995-
split to an analysis of the data subsets with similar sample 
sizes. We included an equal sample size comparison in 
addition to a comparsion based on an environmental shift 
for the murres to be consistent with the protocols for the 
other two species (below) and to include a comparison where 
differences in window identification between subsets are less 
likely to be caused by differences in sample size. The ocean 
regime near Middleton Island is more cyclical than that at 
Coats Island (Hatch 2013). Consequently, we only split the 
kittiwake and gull datasets from Middleton once to retain 
roughly equal sample sizes in the historic and contemporary 
periods (Supporting information). If we retained a window in 
both the historical and recent data subsets, we compared the 
median start and end of the top 95% models for that variable 
(sea-surface temperature, air temperature or percentage sea 
ice-cover). The top 95% of models are those that, when their 
Akaike weights are summed, encompass 95% of the sum of 
all Akaike weights for models evaluated in the sliding window 
analysis (Bailey and van de Pol 2016, van de Pol et al. 2016). 
If the median start and end dates did not overlap between 
the two data subsets, we considered this support for a shift in 
the time period of environmental variation that best predicts 
chick growth. For all data subsets (historical, contemporary 
and across the entire dataset) we calculated Bayes R2 from 
linear models run in ‘brms’ with each growth parameter as 
the response and all windows identified for a specific subset 
by our sliding window analysis as predictors (Gelman et al. 
2018).

Predicting future growth
We used the environmental growth models to make 
predictions about chick growth in a hypothetical environment 
altered by climate change. We made predictions based on 
future scenarios of high and low emission scenarios for 2080 
(Intergovernmental Panel on Climate Change 2018). The 
low emissions future corresponded to a 2.2°C increase in air 
temperatures, a 0.75°C increase in sea-surface temperatures 
and a 30% decrease in sea ice-cover. The high emissions 
future corresponded to an 8.3°C increase in air temperatures, 
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a 1.25°C increase in sea-surface temperatures and a 70% 
decrease in sea ice-cover for murres. All air temperature and sea 
ice-cover predictions are estimates derived from Collins et al. 
(2014) and correspond to estimates for ~60°N latitudes 
in the year 2080. Sea-surface temperature predictions are 
estimates derived from Ruela  et  al. (2020) and correspond 
to estimate changes predicted in the Gulf of Alaska. The low 
emission future corresponds to warming under representative 
concentration pathway 2.6 (RCP2.6; path required to keep 
global warming below 2°C), and the high emission future 
corresponds to warming under representative concentration 
pathway 8.5 (RCP8.5; unimpeded emissions scenario).

Results

Changes in growth over time

On average murres chicks were larger at the end of the study 
but did not have a clear change in growth rate over the course 

of study (Fig. 1a, Supporting information). Gull chicks in the 
latest years tended to reach the lightest asymptote (Fig. 1b). 
The timing of maximum growth in gulls was non-linear such 
that chicks growing in the middle of the study were starting 
maximum growth at ~18–20 days of age, while chicks at the 
end and beginning of the study started maximum growth at 
a ~13–15 days of age (Fig. 1b, Supporting information). On 
average, both first-hatched and second-hatched kittiwakes 
grew more slowly, started maximum growth at an older 
age, and reached a lighter asymptote at the end of the 
study compared to the beginning (Fig. 1c, d, Supporting 
information).

Climate and growth

In breeding seasons with a higher maximum sea ice-
cover, murre chicks grew more quickly (Fig. 2a, b), and 
when maximum air temperatures were warmer during 
the incubation/growth period, murres tended to grow 
more quickly as well (Fig. 2c, d). Warmer conditions were 

Figure  1. Model predicted changes in growth over time for (a) murres, (b) gulls, (c) first-hatched kittiwakes and (d) second-hatched 
kittiwakes. For each species predicted growth curves with associated 95% credible intervals (shaded areas) are displayed for the beginning 
and end year of each study and three evenly spaced sequential years between the start and end of the study. Details of models are presented 
in the Supporting information.
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associated with slower growing and smaller gull chicks, and 
second-hatched but not first-hatched kittiwake chicks. Gulls 
grew more slowly and started maximum growth at an older 
age when maximum air temperatures during incubation and 
growth were warmer (Supporting information). None of the 
environmental models for growth in first-hatched kittiwakes 
improved model fit compared to the baseline model 
(Supporting information). Second-hatched kittiwakes grew 
more slowly, started maximum growth at an older age, and 
reached a lower asymptote when minimum air temperatures 
during the breeding season were warmer (Fig. 3a–d).

Changes in windows over time

In all three species, we found evidence of temporal shifts in 
the timing of predictors identified by our sliding window 
analysis (Fig. 4, 5 and 6). Variation in murre growth 
parameters was better explained by environmental windows 
in contemporary periods, while in gulls and kittiwakes there 

was heterogeneity across growth traits in variation explained 
by windows in historic and contemporary periods (Table 2). 
The periods of sea ice-cover identified by the sliding window 
analysis of average murre mass tended to be similar before 
and after 1995, but for growth rate the windows shifted 
from the prelaying period to encompass follicle development 
and incubation after 1995 (Fig. 4a). The periods of air 
temperature identified by the sliding window analysis shifted 
from the incubation and growth period to the prelaying stage 
after 1995 (Fig. 4b). In the data subset of murre growth 
encompassing 1986–1994, only sea ice-cover windows were 
retained as predictors of chick growth, and only a single air 
temperature window was retained in the analysis of murre 
growth after 1994 (Fig. 4a, b).

Sea-surface temperature windows that predicted 
maximum growth rate and timing of maximum growth rate 
remained similar before and after 2009 for gulls (Fig. 5a). 
The sea-surface temperature window that predicted the 
asymptote of gull mass shifted from prelaying/incubation to 

Figure 2. Model predicted effects of (a) maximum sea ice-cover during prelaying and (c) maximum air temperature during incubation and 
growth, and scatter plots of individual growth slopes (g day−1) across (b) maximum sea ice-cover during prelaying and (d) maximum air 
temperature during incubation and growth of murre chicks. Individual estimates in graphs on the right (b, d) are the summed annual and 
individual group effects estimated in our baseline linear mixed effect model and they do not account for estimate error (Hadfield et al. 2010, 
Houslay and Wilson 2017), therefore the plotted relationships are just for visualization of effects identified in our sliding window analysis. 
Details of the model are presented in the Supporting information.
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the growth period after 2008. Only the window of sea-surface 
temperature that predicted the asymptote was retained for 
the model of gull growth before 2009, while no windows of 
sea-surface temperature were retained in the model of gull 
growth after 2009 (Fig. 5). Windows of air temperature that 
predicted maximum growth encompassed prelaying before 
and after 2009 but shifted to later in the prelaying period 
after 2009. The air temperature window that best predicted 
the timing of maximum growth shifted from the prelaying to 
growth period (Fig. 5b).

Sea-surface temperature windows that best predicted the 
timing of maximum growth rate and maximum growth 
rate of first-hatched kittiwakes shifted from intervals during 
incubation and growth to a prelaying period after 2007 
(Fig. 6a). Air temperature windows that predicted growth 
parameters of first-hatched kittiwakes remained similar except 
for windows that predicted the timing of maximum growth, 
which shifted from a period during growth to a period during 
prelaying (Fig. 6c). None of the windows identified in the 
sliding window analysis for any data subset were retained in 

the model selection for growth of first-hatched kittiwakes 
(Fig. 6a, c). Almost all sea-surface and air temperature 
windows that predicted maximum growth or timing of 
maximum growth in second-hatched chicks tended to overlap 
or encompass the same growth periods (Fig. 6b, d). However, 
similarly to first-hatched chicks, the sea-surface temperature 
windows that best predicted maximum growth and timing of 
maximum growth shifted to the prelaying period after 2007 
in second-hatched kittiwake chicks (Fig. 6b).

Prediction of future growth

Under high emission scenarios large impacts of climate 
change on growth are predicted for gulls and second-hatched 
kittiwakes. No environmental windows were retained for 
models of growth for first-hatched kittiwakes, limiting our 
ability to make predictions about first-hatched kittiwake 
chicks in a warming environment (Fig. 6a, c). Under a 
scenario of high effort to reduce emissions (RCP2.6), the 
models predicted little impact of warming on chick growth 

Figure 3. Model predicted effects of (a) maximum air temperature during the breeding season alongside the scatter plots of (b) individual 
asymptotes (g), (c) maximum growth rate (g day−1) and (d) the timing of maximum growth rate of second-hatched kittiwake chicks, across 
minimum air temperature during the breeding season. Individual estimates in scatterplots (b–d) are the summed annual and individual 
group effects estimated in our baseline linear mixed effect model and they do not account for estimate error (Hadfield et al. 2010, Houslay 
and Wilson 2017), therefore the plotted relationships are just for visualization of effects identified in our sliding window analysis. Details 
of the model are presented in the Supporting information.
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of murres, gulls or second-hatched kittiwakes (Fig. 7). Under 
high emissions (RCP8.5), the models predicted limited effects 
on murres (Fig. 7a) and a greater effect on the growth of 
gulls and second-hatched kittiwakes (Fig. 7b, c). The models 
suggest that warming conditions under a high emissions 
scenario will result on average in slower growing and lighter 
asymptotic masses for gulls and second-hatched kittiwakes.

Discussion

We applied sliding window analyses combined with long-term 
growth data to identify specific windows of environmental 
variation associated with growth of three seabird species. We 
found 1) windows during the breeding season that predict 
variation in growth for each species, 2) that the environmental 

Figure 4. Windows identified in our sliding window analysis as the best predictors of either the intercept (average mass; g) or slope (growth 
rate; g day−1) of murre growth. Each bar indicates the median start and end of the top 95% models for a given variable (sea-surface 
temperature, air temperature or percentage sea ice-cover). The top 95% of models are those that when their Akaike weights are summed 
together encompass 95% of the sum of all Akaike weights for models evaluated in our sliding window analysis (Bailey and Pol 2016, van 
de Pol et al. 2016). Windows for three data subsets are shown: a historical period (1986–1994, top of y-axis), a contemporary period 
(1995–2010, 2017–2018; middle of y-axis) and the entire study period (1986–2010, 2017–2018; bottom of y-axis). For each data subset 
and weather variable the upper teal bar indicates the median start and end of windows that best predict the average mass of murre growth 
and the purple bar below indicates the start and end of a window that predicts the growth rate of murre growth. Bolded bars were retained 
in our model selection process and faded bars were not. Details of each model are in the Supporting information. Details of models for 
murres split before and after 1999 are in the Supporting information.

Figure 5. Windows identified in our sliding window analysis as the best predictors of either the asymptote, timing of maximum growth or 
maximum growth rate of gull growth. Each bar indicates the median start and end of the top 95% models for a given variable (sea-surface 
temperature or air temperature). The top 95% of models are those that when their Akaike weights are summed together encompass 95% of 
the sum of all Akaike weights for models evaluated in our sliding window analysis (Bailey and Pol 2016, van de Pol et al. 2016). Windows 
for three data subsets are shown: a historical period (2002–2008; top of y-axis), a contemporary period (2009–2010, 2012, 2016–2018; 
middle of y-axis) and the entire study period (2002–2010, 2012, 2016–2018; bottom of y-axis). For each data subset and weather variable 
the upper teal bar indicates the median start and end of windows that best predict the asymptote of gull growth, the middle yellow bar 
indicates the median start and end of windows that best predict the timing of maximum growth, and the purple bar below indicates the 
start and end of a window that predicts the maximum growth rate. Bolded bars were retained in our model selection process and faded bars 
were not. Details of each model are detailed in the Supporting information.

 1600048x, 2023, 5-6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jav.03062 by C

ochrane France, W
iley O

nline L
ibrary on [23/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 9 of 15

variable that best predicts growth can change over time, 3) 
that the period during which an environmental variable is 
the best predictor of a growth parameter might also change 
over time and 4) that future warming should result in poorer 
growth for gulls and kittiwakes, but not murres.

Biological interpretation of associations between 
environmental windows and growth

More extensive sea ice-cover during the prelaying period 
and warmer air temperatures during incubation/growth 
periods were associated with faster growth in murre chicks. 
These results are similar to what has been identified through 
previous analyses of the Coats Island dataset on murres. 
When ice-extent is the lowest in Hudson’s bay the chicks 
tend to grow more slowly, presumably because ice extent 
is associated with abundance of preferred prey (artic cod 
Boreogadus saida) in the murre diet (Gaston  et  al. 2005). 
Warmer air temperatures might improve thermal conditions 
for growing chicks, as observed in some other high latitude 
bird species (McKinnon  et  al. 2012). But, the benefits of 
warmer air conditions may be transitory, as adult murres are 
thought to overheat quickly under excessive heat conditions 
(Choy  et  al. 2021). Alternatively, the positive relationship 
between air temperature and murre growth could reflect 
increased abundance of the subarctic capelin Mallotus villosus 
that are associated with the ‘Atlantification’ of North Eastern 
Hudson’s Bay (Provencher et al. 2012).

We found a weak quadratic relationship between the 
growth rate of gulls and sea-surface temperatures during 
the prelaying period that suggested warm or cold sea-
surface temperatures could result in faster growing chicks 
(Supporting information). We generally assumed warmer 
sea-surface temperature conditions are associated with poor 
foraging near Middleton, but gulls have broad diets and might 
do well foraging in intertidal zones, scavenging and preying 
on conspecifics when sea-surface temperatures are warm 
(Hayward et al. 2020). Consistent with that scenario, the sea-
surface temperature during the prelaying period was the best 
predictor of growth rate (Supporting information). Offspring 
grow more quickly to a smaller size under warm sea-surface 
temperatures and warmer air temperatures are associated with 
smaller asymptotes and a later timing of maximum growth 
in gull chicks suggesting parents might also alter investment 
(e.g. via hormones or egg size, Groothuis et al. 2005, Hipfner 
2012; Supporting information).

Similar to an earlier analysis on Middleton Island kitti-
wakes, our results suggest that warmer air temperature pre-
dicts poorer growth for second-hatched nestlings (Sauve et al. 
2021). Because the observed temperatures did not exceed the 
thermal neutral zone of kittiwake chicks (Bech  et  al. 1984), 
we hypothesize that the air temperature during the breeding 
season predicts or is associated with favourable or unfavourable 
ecological conditions correlated with temperatures rather than 
a direct effect of air temperature on nestlings (e.g. colder condi-
tions are associated with an increased capelin; Hatch 2013).

Figure 6. Windows identified in our sliding window analysis as the best predictors of either the asymptote, maximum growth rate or slope 
of kittiwake growth. Each bar indicates the median start and end of the top 95% models for a given variable (sea-surface temperature or air 
temperature). The top 95% of models are those that when their Akaike weights are summed together encompass 95% of the sum of all 
Akaike weights for models evaluated in our sliding window analysis (Bailey and Pol 2016, van de Pol et al. 2016). Windows for three data 
subsets are shown: a historical period (1998–2007; top of y-axis), a contemporary period (2008–2018; middle of y-axis) and the entire 
study period (1998–2018; bottom of y-axis). For each data subset and weather variable the upper teal bar indicates the median start and 
end of windows that best predicts the asymptote of kittiwake growth, the middle yellow bar indicates the median start and end of windows 
that best predict the timing of maximum growth, and the purple bar below indicates the start and end of a window that predicts the 
maximum growth rate. Bolded bars were retained in our model selection process and faded bars were not. Details of each model are detailed 
in the Supporting information.
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Table 2. Bayes R2 values with associated 95% credible intervals in brackets for models of each period and species-specific growth parame-
ters (Gelman et al. 2018). Bayes R2 values are calculated from models predicting a growth parameter and all significant environmental 
windows from our sliding window analysis of growth parameters.

Time period R2 value

Murres Growth rate Average mass
  Historic 0.07 [0.03, 0.11] 0.14 [0.09, 0.20]
  Contemporary 0.17 [0.14, 0.21] 0.32 [0.28, 0.36]
  Entire 0.07 [0.047, 0.094] 0.25 [0.22, 0.28]
Gulls Maximum growth rate Timing of maximum growth rate Asymptote
  Historic 0.18 [0.13, 0.22] 0.25 [0.20, 0.30] 0.07 [0.04, 0.10]
  Contemporary 0.07 [0.04, 0.11] 0.07 [0.04, 0.11] 0.05 [0.02, 0.08]
  Entire 0.08 [0.06, 0.11] 0.09 [0.06, 0.11] 0.03 [0.02, 0.05]
Alpha kittiwakes
  Historic 0.54 [0.50, 0.58] 0.37 [0.32, 0.42] 0.05 [0.02, 0.09]
  Contemporary 0.46 [0.42, 0.50] 0.25 [0.20, 0.30] 0.24 [0.19, 0.29]
  Entire 0.43 [0.40, 0.46] 0.28 [0.24, 0.31] 0.13 [0.10, 0.17]
Beta kittiwakes
  Historic 0.57 [0.52, 0.61] 0.51 [0.46, 0.56] 0.16 [0.10, 0.22]
  Contemporary 0.34 [0.28, 0.39] 0.21 [0.15, 0.27] 0.49 [0.44, 0.53]
  Entire 0.40 [0.35, 0.44] 0.30 [0.25, 0.34] 0.38 [0.34, 0.42]

Figure 7. Predicted growth of (a) murres, (b) gulls and (c) second-hatched kittiwakes under average conditions across the study of each 
species (blue solid line), a low emission climate change scenario (RCP2.6; green short dashed lined), and a high emission climate change 
scenario (RCP8.5; orange long dashed line). Details of models underlying predictions are in the Supporting information.

 1600048x, 2023, 5-6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jav.03062 by C

ochrane France, W
iley O

nline L
ibrary on [23/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 11 of 15

Changing predictors of growth across time periods

As global warming induces rapid environmental changes, 
the environmental predictors of traits can change among 
years. When testing whether the environmental variables 
can change over time, we found that sea ice-cover was previ-
ously an important predictor of murre growth but may no 
longer be (Fig. 4; Supporting information). The change in 
sea ice-cover as the main predictor of growth matches obser-
vations that the ecosystem on Coats Island is shifting from 
an ice-dominated ecosystem to one that is more similar to 
the Atlantic (Gaston and Hipfner 1998, Gaston et al. 2012, 
Provencher et al. 2012, Gaston and Elliott 2014).

We did not find evidence for a change in the environmen-
tal variables that best predict growth in gulls or kittiwakes 
(Fig. 5 and 6). The gull and kittiwake data on Middleton 
Island encompass warm and cool breeding seasons with less 
of a discontinuous shift in the ecosystem than at Coats Island 
(Gaston et  al. 2012, Hatch 2013). Conditions in the Gulf 
of Alaska are dominated by the Pacific Decadal Oscillation, 
which alternates between decades-long phases of cool, wet 
conditions and warmer, drier conditions (Mantua and Hare 
2002). Future studies should try to identify periods of ocean-
ographic and weather conditions that best predict growth 
across warm years only, to determine when variables are pre-
dictors of seabird growth during marine heatwaves.

Temporal changes in the timing of growth predictors

Previous studies have demonstrated that the timing of envi-
ronmental variables predicting avian phenological events can 
differ among habitats (Bonamour  et  al. 2019), but to the 
best of our knowledge whether the timing of predictors shifts 
over time has not been evaluated. Shifts of windows may be 
of concern because they may lead parents to follow unreli-
able cues and lead to maladaptive timing or offspring num-
ber (Temme and Charnov 1987, Visser et al. 2006). In our 
case study, shifts in growth windows to earlier in the season 
could indicate offspring reduction is determined early while 
windows later in the season could indicate abrupt changes 
occurring later in the breeding season (conditions are more 
frequently unfavourable late in the season). Abrupt deteri-
oration of breeding season conditions is expected to occur 
more frequently as late season anomalies and heat-waves are 
expected to become more common (Piatt et al. 2020).

The timing of the determinants of growth changed over 
time for all three species studied (Fig. 4, 5 and 6). We did 
not identify a general pattern in the direction of these 
shifts within the breeding season. Across all three species 
we observed environmental windows that moved to earlier 
periods in the breeding season (e.g. shifted from incuba-
tion and growth to prelaying) but also other shifts to later 
periods (e.g. from prelaying to chick rearing). Growth is a 
function of parental and chick energy budgets. Predictors 
identified prenatally could imply indirect parental effects 
(e.g. egg size, hormones, incubation) while predictors during 
the postnatal period might suggest impacts of environmental 

conditions on brooding, foraging rates or the chick thermal 
environment (Andrew et  al. 2017, Andreasson et  al. 2018, 
Sauve  et  al. 2022), but importantly should be confirmed 
with experimental approaches (Andrew et al. 2017). Shifts in 
adult phenology, like the advances observed in the timing of 
egg laying for Coat’s Island murres, also seem likely to play 
a role in changing predictors of chick growth (Whelan et al. 
2022). Determining whether shifts in adult phenology result 
in shifts in the timing of determinants of chick growth will be 
an interesting avenue for future research.

Implications of shifting predictors: cues and 
constraints

Some of the observed associations between climate and chick 
growth could be the result of growth responses to environ-
mental cues. Adaptive responses to changing environmental 
conditions are facilitated by temporal autocorrelation. When 
this autocorrelation is high, conditions in one period can be 
used to predict conditions in another when natural selection 
is experienced (Gavrilets and Scheiner 1993, de Jong 1999). 
To determine if the associations we detected allow adaptive 
responses we need to know whether they predict future envi-
ronments (i.e. can the parent environment predict the chick 
environment or can the chick environment predict the adult 
environment?). However, we still need to know how changes 
caused by environmental associations affect survival and 
reproduction. Empirical work has demonstrated that repro-
ductive hormones and parental care are adjusted to food con-
ditions, number of offspring, partner effort and prolonged 
prefledging periods (Drent and Daan 1980, Jacobsen et  al. 
1995, Harding et al. 2009, Whelan et al. 2021).

Our analysis also illustrates some of the difficulties in 
identifying specific climatic windows. The sliding win-
dow analysis detected many windows, but most were not 
retained in our model selection process, possibly limiting 
our conclusions on shifts in the timing of environmental 
predictors. Microclimatic variation or intrinsic factors might 
better explain some of the variation in growth. Experimental 
manipulation of chick environments and continued long-
term monitoring are needed to determine the importance of 
specific periods during ontogeny (Andrew et al. 2017, Nord 
and Giroud 2020, Whelan et al. 2021).

Predicting growth in a warming world

Our growth predictions qualitatively agree with some of the 
observed changes in murre growth and most of the observed 
changes in gull and kittiwake growth, suggesting that our 
identified environmental periods could be driving some of 
the observed changes in growth across each study period 
(Fig. 1 and 7). Our climate change predictions for murres 
suggested limited change in growth, but trends across the 
study period suggest heavier masses over time in murres. 
While we discuss some potential causes of the shifting 
windows above, the shifts highlight an important practical 
problem to prediction: if predictors continually change, it 
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becomes more difficult or impossible to make long-term 
projections. Perhaps a more complex understanding of trait 
responses to fluctuating conditions is needed. For example, 
studies attempting to predict microevolutionary change 
are beginning to model selection on traits as a function of 
environmental conditions (Chevin et al. 2015, Gamelon et al. 
2018, de Villemereuil  et  al. 2020). But even these models 
assume the same predictor of selection across years and 
might, like our window approach suggests, might need 
continual updates. Further, we could not predict changes in 
first-hatched kittiwake growth and we hypothesize that this 
is because parents favour first-hatched nestlings in poor years 
and, therefore, growth of first-hatched kittiwakes is relatively 
unperturbed by the range of environmental effects measured 
in our study. Currently observed environments seem to have 
a limited impact on first-hatched kittiwakes, but future 
conditions could nonetheless eventually impact growth of 
first-hatched kittiwakes. We emphasize this as a key point 
and limitation for trying to predict kittiwake growth. Finally, 
it will be important to consider environmental conditions 
outside the breeding season because migratory conditions 
might predict unexplained variation or temporal changes in 
growth (Patterson et al. 2021). While previous investigations 
have highlighted that changes in phenology and body 
shape are commonly predicted responses to climate change 
(Parmesan 2006, Dunn and Møller 2019, Ryding et al. 2021), 
altered growth patterns and investment in offspring may also 
be common responses to climate change. Significantly, the 
slower-growing and smaller chicks predicted for gulls and 
second-hatched kittiwakes in warm environments portend 
reduced survival of those chicks, as mass is often a predictor of 
post-fledging survival (Maness and Anderson 2013). Annual 
reductions in reproductive effort could have important 
consequences if later-hatched chicks make up a substantial 
proportion of the breeding population. For example, of the 
breeding kittiwakes on Middleton Island approximately 
30% are second-hatched chicks. Thus loss of second-hatched 
kittiwakes could result in a reduced breeding population if 
they are not replaced by first-hatched kittiwakes.

Conclusions

We found evidence that both the nature and timing of vari-
ables correlating with seabird growth can change over time. 
We identified time periods that predicted poor growth for 
species with multi-chick broods. We would stress, however, 
that the stability of environmental predictors over time is 
unknown, and that instability would compromise our pre-
dictive ability and the ability of species to adapt to novel 
conditions. There remains an important need for research 
that identifies temporal predictors of phenotypic traits and 
determines their stability under warming environmental 
conditions.
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