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Abstract
We study the classic problem of searching for a hidden target in the line and the m-ray star, in a
setting in which the searcher has some prediction on the hider’s position. We first focus on the main
metric for comparing search strategies under predictions; namely, we give positive and negative
results on the consistency-robustness tradeoff, where the performance of the strategy is evaluated at
extreme situations in which the prediction is either error-free, or adversarially generated, respectively.
For the line, we show tight bounds concerning this tradeoff, under the untrusted advice model, in
which the prediction is in the form of a k-bit string which encodes the responses to k binary queries.
For the star, we give tight, and near-tight tradeoffs in the positional and the directional models,
in which the prediction is related to the position of the target within the star, and to the ray on
which the target hides, respectively. Last, for all three prediction models, we show how to generalize
our study to a setting in which the performance of the strategy is evaluated as a function of the
searcher’s desired tolerance to prediction errors, both in terms of positive and inapproximability
results.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Theory and algorithms for application domains

Keywords and phrases Search problems, line and star search, competitive ratio, predictions, consist-
ency and robustness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.12

Funding This work was partially funded by the grant ANR-19-CE48-0016 from the French National
Research Agency (ANR).

Acknowledgements I am thankful to Shahin Kamali for several helpful discussions.

1 Introduction

Searching for a hidden target is one of the original disciplines within the field of Operations
Research, but also a topic of significant study in Computer Science, both from the point
of view of theoretical analysis and applications. This class of problems typically involves a
mobile searcher that must locate an immobile target (often called hider) which hides in some
unknown point of the search environment. Search problems provide natural formulations of
real-life applications such as search-and-rescue missions [41], de-mining operations [2], and
robot-based exploration [27].

Among the most well-studied search problems is searching on the line, in which the
environment is the unbounded line, and its generalization, the m-ray search, or star search
problem. In the m-ray search problem, the environment consists of m unbounded and
concurrent rays, with a common point O, which is called the origin. Starting from O, the
searcher must locate the target by following a strategy, defined as an infinite sequence of
the form (xi, ui)i, where xi ∈ R+ and ui ∈ {0, . . . , m − 1}, and with the following semantics:
in iteration i, the searcher starts from O, traverses the ray ui up to distance xi from O,
then returns back to O, before continuing with iteration i + 1, until the target is eventually
located. Note that for m = 2, the star environment reduces to the infinite line.
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12:2 Competitive Search in the Line and the Star with Predictions

Since the search environment is unbounded, the standard framework for evaluating the
performance of a search strategy is competitive analysis, first introduced in [11]. Given a
target t hiding at some unknown point of the star, define d(t) as the distance of t from O,
and d(X, t) as the distance covered (or cost incurred) by a searcher that follows X, until t is
located (i.e., the first time the searcher is reached, assuming a unit-speed searcher). The
competitive ratio of X is formally defined as

Cr(X) = sup
t

d(X, t)
d(t) . (1)

Searching on the line has a long history of study, going back to the work of Bellman [12]
and Beck [10]. Beck and Newman [11] were the first to show that an optimal competitive
ratio equal to 9 can be obtained by a simple doubling strategy, i.e., a strategy of the form
xi = 2i. The m-ray search problem was first studied in the seminal works of Gal [24, 25]
and independently by Baeza-Yates et al. [8]. Both problems have been extended in a variety
of settings and generalizations related to TCS, AI and OR since the 1960s, due to their
useful abstraction of resource allocation under uncertainty. For instance, linear and ray
searching have connections to the design of interruptible systems in AI [4, 13], the design
of hybrid algorithms [32], and pipelined filter ordering in databases [18]. They are also
involved in the analysis of strategies for more complex search problems, such as spiral search
on the plane [38]. There are numerous studies on variants of linear and star search; see,
e.g., [31, 36, 29, 44, 33, 16, 20, 5, 19, 37, 15, 34, 46, 6, 43, 51, 36, 17] as well as the book [1]
for a game-theoretic perspective of these problems. Note that the above are only some
representative works, and that the problems have been studied under several other variants.

1.1 Searching with predictions

In this work, we study the power and limitations of search strategies with predictions, in
which the searcher aims to improve the competitive ratio of its strategy by leveraging some
inherently imperfect information on the target. This follows a very active line of research in
online computation and algorithms with incomplete information, that was initiated with the
works [45] and [49]. A very large number of problems have been studied under this model
(see, e.g., the survey [47] and the online collection [42]).

In regards to the search problems we study, the nature of the prediction may vary
according to the application at hand. We are interested in the following models, which were
introduced in [3] in the context of linear search.

(a) The prediction is a k-bit string. Here, the search is enhanced with a k-bit string that
encodes some information on the target; alternatively, we may think of the prediction
string as responses to binary queries given by k experts. For example, a single bit can
provide a (potentially erroneous) response to queries such as “Is the target at distance
at most d from O”, or “Is the target on an even-indexed ray?”. This is a powerful model
that generalizes the concept of advice complexity so as to allow for advice that may be
erroneous. Note that search and exploration problems have been studied extensively
under the standard advice complexity model (see, e.g., [21, 23, 28, 35, 48]), however
all such studies rely crucially on advice that is error-free. Moreover, unlike works in
which each query is noisy [14], i.e., the query responses are erroneous with some known
probability, in our setting we do not rely on any probabilistic assumptions in regards to
the quality of the advice.
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(b) The prediction is directional. Here, the prediction is an index in {0, . . . , m − 1} which
describes the ray on which the target lies. This is a natural prediction can be useful, for
example, in a search-and-rescue application, in which there is a hint about the direction
a missing person may have taken when last seen.

(c) The prediction is positional. Here, the prediction describes the position of the target
within the environment, namely it is of the form (d, u), where d corresponds to the
predicted distance from the origin, and u corresponds to the predicted ray on which the
target hides. This is, likewise, a very natural prediction (e.g., in a search-and-rescue
mission, it provides a hint about the last reported whereabouts of the missing person).

We establish two objectives towards the evaluation of search strategies with predictions.
The first objective is to find strategies of optimal, or near-optimal tradeoff between their
consistency (namely, the competitive ratio assuming error-free prediction) and their robustness
(namely, the competitive ratio assuming adversarially generated predictions). This is one of
the standard methods of analyzing algorithms with predictions, since it establishes strong
guarantees on worst-case (extreme) situations with respect to the quality of the prediction;
see, e.g., [52, 40, 39, 3, 7] for applications to other online problems, and settings of incomplete
information, more generally. Specifically, we are interested in showing both positive and
negative results on the best-possible consistency that can be achieved by r-robust strategies,
for any given r.

Our second objective goes beyond the consistency/robustness tradeoffs, and we evaluate
the performance of the search strategy beyond the two extreme scenarios of error-free and
adversarial error. Specifically, we study the novel setting in which the searcher defines an
application-specific tolerance parameter H that determines its desired tolerance to errors or,
equivalently, an anticipated upper bound on the prediction error (that may be known by
historical data on previous searches). This parameter is defined appropriately for each of the
three prediction models we study. Namely, in the untrusted advice model, H is related to the
number of erroneous advice bits (or query responses); in the directional model H describes
the distance of the predicted ray index to the one of the actual hiding target; and in the
positional model, H is related to the distance between the predicted and the actual target
position. The tolerance model is motivated by recent works in learning-enhanced online
algorithms with weak predictions, in which the prediction is an upper bound of some pertinent
parameter of the input (see e.g., online knapsack with frequency predictions [30], where the
prediction is an upper bound on the size of items that appear online). Our objective is
thus to quantify the tradeoff between the competitive ratio and the robustness as a function
of the tolerance and other parameters of the problem (e.g., the number of queries, in the
query-based model). Following [30], we will make use of the term weak prediction to refer to
this setting.

The problems we study have applications in more general decision-making settings that
go beyond the confines of search theory. This is since m-ray search, as discussed above, is an
abstraction of resource allocation among m different tasks. To illustrate with an example,
consider a researcher who has to allocate time among m different projects, without knowing
ahead of time which project will be completed successfully. The researcher, however, may
have some intuition about which of these tasks is the most likely to succeed. This problem
fits the m-ray search abstraction with a directional prediction. In the weak prediction setting,
H describes, more generally, the specific projects which the researcher believes are more
likely to be successful.

MFCS 2023



12:4 Competitive Search in the Line and the Star with Predictions

Learning-augmented search has received attention in recent years. [3] studied consist-
ency/robustness (Pareto) tradeoffs for linear search in the three prediction models described
above. [9] studied a graph search setting where every node in the graph provides a prediction
of its distance to the target vertex. [22] showed how to robustify graph exploration algorithms,
where the prediction is related to the spanning tree of the explored graph.

1.2 Contribution
Our first results apply to the untrusted advice model (i.e, the k-query model). We prove tight
upper and lower bounds on the best consistency that an r-robust strategy for linear search
can achieve, for any r ≥ 9, any size of advice k, and with no assumptions on the nature of
the strategy. This improves upon both the upper and the lower bounds of [3], which gave
a non-tight lower bound for k = 1 and r = 9, and a non-tight lower bound for r > 9 and
k = 1 for a restricted class of strategies called asymptotic. Here, the challenge is on the lower
bound side. Specifically, we reduce the problem to a parallel search problem that involves 2k

searchers, and we rely on a novel application of Gal’s functional theorem [26] to prove an
information-theoretic tight lower bound. While this theorem has been previously applied in
parallel search problems [44], its application in our setting is much more challenging, since
we require that each of the 2k searchers must be individually r-robust. Specifically, unlike
previous works, the proof requires an explicit labeling scheme that maps the search lengths
of each parallel searcher to lengths of a “global” sequence. We also extend our upper bound
to weak predictions, by applying tools from the theory of games with a lying responder [50],
in order to bound the effect of erroneous query responses to the performance.

Our second class of results is on the directional prediction model of m-ray search. We
give the first upper and lower bounds on the consistency-robustness tradeoffs, which extend
those of [3] to star search. Here, the main challenge is again on the lower bound side, and
specifically in the weak predictions setting. We show how a generalization of a biased search
approach, in which the searcher allocates more time towards the predicted ray, allows us to
prove an asymptotically tight bound on the competitive ratio as a function of the tolerance
and the number of rays.

Last, we show tight (Pareto-optimal) consistency-robustness tradeoffs for m-ray search in
the positional model. As with the directional model, the only previous known results applied
to linear search [3]. The proof uses tools that circumvent the exact study of linear recurrence
relations inherent in m-ray search problems. To our knowledge, this is a new approach
towards impossibility results on this type of search games. As with the other models, we
also provide tight upper and lower bounds on the competitive ratio under weak predictions.
We emphasize that beyond the tight and near-tight results, the generalization to star search
and the accompanied analysis under weak predictions are conceptually novel aspects of this
work and extend the performance guarantees beyond the consistency/robustness tradeoffs.

Due to space limitations, we omit or sketch technical details in some of the proofs.

2 Preliminaries

We review some notation and known results concerning m-ray searching. Without predictions,
a strategy is described by a sequence of the form X = (xi, ui)i≥0; we refer to i as the iteration1

of the strategy, to xi as the length of the i-th search segment, to ui as the ray searched
in iteration i, and to the point at which the searcher turns in the i-th iteration as the

1 We will consider a numbering of iterations that starts either with 0, or with 1, depending on which
simplifies the presentation.
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corresponding turn point. Note that for linear search (m = 2), we may assume, without loss
of generality, that ui = i mod m, and that xi+2 > xi. We make the standing assumption that
the target lies within distance at least a fixed value, otherwise every strategy has unbounded
competitive ratio. It is well-known that the worst-case hiding positions of the target, i.e.,
the positions that maximize Cr(X), are infinitesimally beyond the turn points of a searcher
that follows X, namely, at distances xi + ϵ on rays ui, for ϵ > 0.

A strategy for m-ray search is called cyclic, if it explores the rays in a fixed permutation
of {0, . . . , m − 1}, e.g., if ui = i mod m. The competitive ratio of a cyclic strategy of the
form X = (xi, i mod m)i is easily shown to be equal to

Cr(X) = 1 + sup
i

2
∑i+m−1

j=0 xj

xi
. (2)

In particular, a cyclic strategy is called geometric if xi = bi, for some fixed b > 1 which is
called the base of the strategy; we will denote such strategies by Gb. Geometric strategies
are significant since they are often optimal for several variants of linear search. From (2), it
follows that the competitive ratio of Gb is therefore equal to 1 + 2bm/(b − 1). This expression
is minimized for b = m/(m − 1), and the resulting optimal competitive ratio, denoted by r∗

m,
is equal to

1 + 2ρ∗
m, where ρ∗

m = mm

(m − 1)m−1 .

Thus, given r ≥ r∗
m, strategy Gb has competitive ratio at most r if bm/(b − 1) ≤ ρr, where

ρr is defined to be equal to (r − 1)/2. We will denote by br the largest such b for which Gb

is r-competitive, i.e., the largest real root of the function f(x) = xm/(m − 1) − ρr.
Under the prediction framework, the searcher is given some information h in regards to

the target t, and determines a strategy Xh (we will often omit h when it is clear from context).
Following [3], we define the consistency of a strategy as its competitive ratio assuming no
prediction error, and its robustness as its competitive ratio assuming adversarial prediction
error. Note, in particular, that the robustness of a strategy is equal to its competitive ratio
without any prediction, and we will thus use these two terms interchangeably. We say that a
strategy is r-robust if its robustness is at most r (similarly for the consistency), and that it is
Pareto-optimal if its consistency and robustness are in an optimal tradeoff relation.

Let Y = (yi)∞
i=0 denote a sequence in R+. We define αY as αY = lim supn→∞ y

1/n
n .

This parameter appears prominently in Gal’s theorem [26] which, informally, gives a lower
bound on the supremum of a set of functionals by the supremum of these functionals over
geometrically increasing sequences. From it, it follows that any m-ray search strategy Y

with search lengths (yi)i has competitive ratio at least 1 + 2 αm
Y

αY −1 , hence if the strategy is
r-competitive it must be that αY ≤ br.

3 Linear search with untrusted advice

In this section, we study linear search in a model in which the prediction is an untrusted
advice string of size k. We first show optimal upper and lower bounds on the best consistency
of r-robust strategies, then in Section 3.1 we study the extension to weak predictions.

Our results will show and exploit connections between a single-searcher strategy with k-bit
advice, and a multi-searcher strategy with 2k parallel searchers, but no advice. Hence, we
first present some definitions and notation concerning the setting of p > 1 parallel searchers,
labeled from the set {0, . . . , p − 1}. In a p-searcher strategy, each searcher j defines its

MFCS 2023



12:6 Competitive Search in the Line and the Star with Predictions

own strategy of the form Xj = (xj,i, uj,i)∞
i=0. We thus denote the p-searcher strategy as

X = {Xj}p−1
j=0 , or equivalently, we say that it is defined by the set {Xj}p−1

j=0 . The competitive
ratio of a p-searcher strategy is the worst-case ratio of the first time one of the p searchers
finds the target t (assuming unit-speed searchers) and the distance d(t) of the target from
the origin [44].

Observe that the optimal consistency of an r-robust strategy with k advice bits is equal
to the competitive ratio of a parallel search strategy that is defined by 2k searchers, each of
which is individually r-robust. Namely, if the advice is error-free, it can be used to select the
single-searcher strategy, among the 2k ones, that reaches the target at optimal cost. Note
that, by construction, the robustness of this strategy is at most r, since each individual
searcher is r-robust. This observation applies to both positive and negative results on the
consistency/robustness tradeoffs.

We first show an upper bound on the consistency of r-robust strategies:

▶ Theorem 1. For any r ≥ 9, there is an r-robust strategy for searching on the line with
k-bit advice that has consistency at most 1 + 2 b1/q

r

br−1 , where q = 2k−1.

Proof sketch. Let S denote the 2k-parallel strategy as defined by the set S0, . . . S2k−1 where

Sj = (bj+iq, i mod 2), if j is even and Sj = (bj+iq, (i + 1) mod 2), if j is odd,

for some b > 1 that will be specified later. That is, each individual strategy is near-geometric,
and half of the searchers explore ray 0 in their first iteration, whereas the other half explore
ray 1. We require that each strategy in S is r-robust which implies, from the discussion in
Section 2, that b must satisfy bq ≤ br, hence b ≤ b

1/q
r . ◀

Note that this upper bound is not only of theoretical significance, but can be obtained
in practice via a query-based implementation. This is because the i-th advice bit can be
interpreted, equivalently, as a response to a subset query that asks whether the target is
hiding within a specific subset of the infinite line. Informally, the theorem shows which
questions to ask to k different experts2 about the whereabouts of the target so as to maximize
the efficiency of search, while remaining robust to adversarial responses.

We now move to the lower bound. We first show a useful property of parallel search.
To illustrate the property, consider Figure 1, which shows the first segments of a p-parallel
strategy defined by S1, . . . Sp. In this example, the first segment of strategies S1, . . . Si is to
the left ray of the line, whereas the first segment of Si+1, . . . , Sp is to the right ray of the
line. Furthermore, the lengths of these segments are in increasing order, in the left and the
right ray, respectively, as illustrated. We observe that, without loss of generality, a target
that hides infinitesimally beyond the first turnpoint in Sj , with j ∈ {1, . . . , p − 1} is first
discovered by Sj+1, and if j = p, it is first discovered by S1. This is because, if this was not
the case, then one of the strategies would mark its second turn before it had explored any
new parts of the line, which would mean that the corresponding second segment would be
redundant and thus could be omitted.

We can argue, inductively, that the same property extends not only to targets hiding
infinitesimally beyond the first turn points, but beyond every turn point. To formalize this
concept, let S be a p-parallel strategy defined by single-searcher strategies S1, . . . , Sp. We say
that Sj is responsible for the i-th turn point of Sl if Sj is the first strategy in S to discover a

2 Experts may be inherently erroneous; in Theorem 4 we extend the result to account for query errors.
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S1

S2

Si

Si+1

Si+2

Sp

O

Figure 1 A snapshot of the first iteration in a p-parallel strategy.

target hiding infinitesimally beyond the i-th turnpoint of Sl. The following lemma shows
that it suffices to consider p-parallel strategies in which a “snapshot” of the first iteration
of the p individual strategies provides a global picture about the relative turnpoints of all
individual strategies, for all subsequent iterations. This will help us setup the lower bound.

▶ Lemma 2. For any p-searcher strategy S, there is a p-searcher strategy S ′ = {S′
1, . . . , S′

p}
such that there is a bijection π : {1, . . . p} → {1, . . . p} with the property that for any
j ∈ {1, . . . , p}, S′

π(j) is responsible for the i-th turn point of S′
j for all i ∈ N+, and S ′ has

competitive ratio no worse than S.

We now show how to prove the lower bound.

▶ Theorem 3. For any r ≥ 9, every r-robust strategy for searching on the line with untrusted
advice of size k has consistency at most 1 + 2 b1/q

r

br−1 , where q = 2k−1.

Proof sketch. For convenience of notation, let n = 2k, and let S be an n-parallel strategy
defined by S1, . . . Sn, and which satisfies the property of Lemma 2. Let i be such that
strategies S1, . . . Si start their first iteration to the left (in increasing order of this length),
whereas Si+1, . . . Sn start their first iteration to the right (again in increasing length order).
Thus, we have that Sj is responsible for Sj−1, for all j ∈ {2, . . . , 2k}, whereas S1 is responsible
for Sn. The situation is depicted in Figure 1, where p = n.

Let sj,m denote the search length of the m-th iteration of Sj . For any fixed m, consider
a target hiding infinitesimally beyond the m-th turn point of Sj , for each j. Since Sj+1 is
responsible for Sj , for all j ∈ {1, . . . i − 1, i + 1, . . . n − 1}, we have

Cr(S) ≥ 1 + 2
∑m−1

l=1 sj+1,l

sj,m
, for all j ∈ {1, . . . i − 1, i + 1, . . . n − 1}. (3)

In addition, since Si+1 and S1 are responsible for Si and Sn, respectively, we have that

Cr(S) ≥ 1 + 2
∑m−1

l=1 si+1,l

si,m−1
and Cr(S) ≥ 1 + 2

∑m−1
l=1 s1,l

sn,m−1
, (4)

and note the subtle, but important differences in the indexing of the denominators between (3)
and (4). This motivates our next step, in which we label the lengths of all search segments of
the 2k strategies in S in a way that will allow us to use the above lower bounds. Let {xl}∞

l=1
denote the set of all segment lengths in the parallel strategy S. We map bijectively each such
length to a segment length of one of the strategies Sj , according to the following function.

sj,m =


xj+mn, if j ∈ [1, . . . i − 1]
xj−1+mn if j ∈ [i + 1, . . . n − 1]
xn−1+mn, if j = i

xn+mn, if j = n.

(5)

MFCS 2023



12:8 Competitive Search in the Line and the Star with Predictions

Combining (3), (4) and the mapping (5), we can show that

Cr(S) ≥ 1 + 2 sup
m

∑mn
l=1 xl∑n−1

l=0 xmn−1+l

. (6)

Define the functional Fm to be Fm =
∑mn

l=1
xl∑n−1

l=0
xmn−1+l

. It is easy to see that this functional

satisfies the conditions of Gal’s Theorem [26]. Therefore,

Cr(S) ≥ 1 + 2 sup
m

∑mn
l=1 αl∑n−1

l=0 αmn−1+l
, where α = lim sup

l→∞
x

1/l
l . (7)

If α ≤ 1, the RHS of (7) is unbounded. If α > 1, (7) gives

Cr(S) ≥ 1 + 2 sup
m

αmn+1 − α

(α − 1)αmn−1 αn−1
α−1

≥ 1 + 2 α2

αn − 1 . (8)

We will now use the fact that each strategy in S is individually r-robust, in order to bound
α from below, and thus Cr(S) as well. From [31] we know that any r-competitive single
searcher strategy of the form Y = (yj)∞

j=1 satisfies yj = O(bj
r). Given the labeling scheme (5),

it follows that xj = O(bj/n
r ), hence from the definition of α, α ≤ b

1/n
r . Therefore, (8) gives

Cr(S) ≥ 1 + 2 b
2/n
r

br − 1 = 1 + 2 b
1/q
r

br − 1 ,

which completes the proof. ◀

We give some intuition behind the significance of the mapping (5) in the proof. The
labeling accomplishes two goals: First, it leads to (6), whose sums in the numerator and the
denominator contain summands with “contiguous” indices: this is an essential requirement
for the application of Gal’s theorem. Second, it implies that each strategy Sj is of the form
(xπ(j)+nl)∞

l=0, where π is a bijection over {1, . . . , n}, which allows us to argue that α ≤ b
1/n
r .

3.1 Extension to weak predictions
We show how to extend the upper bound to incorporate weak predictions. In this setting, as
discussed in Section 1, given advice of size k, and robustness requirement r ≥ 9, the searcher
specifies a tolerance parameter H ≤ k/2. The objective is to obtain an r-robust strategy of
minimum competitive ratio assuming that at most H advice bits are erroneous.

To address this problem, we will make use of a result by Rivest et al. [50], who studied
games with a lying responder. In their setting, given k ∈ N+, H ≤ k/2, and a domain
D = {1, . . . , m}, the objective is to find the index of an unknown x ∈ D, using k queries, of
which up to H may receive incorrect responses. A query can be a comparison query of the
form “Is x ≤ M?”, for some given M ∈ [1, m], or more generally, a subset query of the form
“Is x in S?”, where S is a subset of the domain D. Define the sum of binomial coefficients((

N
m

))
:=

∑m
j=0

(
N
j

)
, for m ≤ N . In [50] it was shown that as long as m ≤ 2k/

((
k
H

))
, k

comparison queries suffice to find x in the above game, in the presence of at most H ≤ k/2
errors. This leads to the following extension of Theorem 1.

▶ Theorem 4. For any r ≥ 9, and any H ≤ k/2, there is an r-robust strategy for searching on
the line with k-bit advice that has competitive ratio at most 1+2 b1/q

r

br−1 , where q = 2k−1/
((

k
H

))
.
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We can further show that
1
q

≤ 1
2k(1−H( H

k ))−1
,

where H denotes the binary entropy function. This allows for a direct comparison to the
Pareto-optimal upper bound of Theorem 1. In particular, we observe that as k increases, the
effect of the advice error in the competitive ratio becomes marginal, even if H is as high as
linear in k.

4 Ray search with directional prediction

In this section, we study m-ray search in the setting in which the prediction is the ray of the
hiding target. Without loss of generality, we suppose that the prediction is the ray indexed 0.

For the upper bound, we consider the following strategy that generalizes the biased search
approach of [20]. The searcher fixes some b > 1 and δ > 1, to be specified later, and explores
the rays in the cyclic order 0, 1, . . . , m − 1. If the ray visited in the i-th iteration is ray 0, it
explores it to a length equal to δbi, otherwise, i.e., if the visited ray is in {1, . . . , m − 1}, it
explores it to a length equal to bi. Thus the search combines elements of geometric search
with a bias towards the predicted ray, as expressed by the parameter δ.

▶ Theorem 5. For every b > 1, δ > 1, the strategy described above has consistency at most
1 + 2 bm

bm−1 + 2
δ

bm

bm−1
bm−b
b−1 , and robustness at most 1 + 2δ bm+1

bm−1 + 2 bm+1

bm−1
bm−b
b−1 − 2bm.

Observe that if δ = 1, then both the consistency and the robustness of the above strategy
are equal to 1 + 2 bm

b−1 , as expected (i.e., the competitive ratio of a geometric strategy with
base b). For any fixed b, by increasing δ, the consistency of the resulting strategy improves,
at the expense of its robustness. We would like thus to optimize the robustness by choosing
δ as a function of b, m and the desired consistency, however it is not obvious that this is
possible analytically. Instead, suppose that we choose b = (m + 1)/m, namely the base of
the geometric strategy that results in an optimal competitive ratio for m-ray search equal to
r∗

m = 1 + 2ρ∗
m. Then bm

bm−1 ≤ e/(e − 1), which implies that the consistency of the strategy is
at most

1 + 2 e

e − 1 + 2
δ

e

e − 1(ρ∗
m − m) = 2

δ

e

e − 1(ρ∗
m − m) + O(1).

On the other hand, the robustness of the strategy is at most

1 + 2δ
81
36 + 281

36(ρ∗
m − m) − 4 = 9

2(δ + ρ∗
m − m) + O(1).

Therefore, if we would like the strategy to be c-consistent, where c = O(1) + 2c̃, for some
c̃, we can choose δ to be equal to e

(e−1)c̃ (ρ∗
m − m), and the resulting robustness is then at

most 9
2 (ρ∗

m − m)(1 + e
(e−1)c̃ ) + O(1). We can also obtain more precise tradeoffs as m → ∞,

since in this case, it is known that r∗
m = 1 + 2ρ∗

m = 1 + 2em.

▶ Corollary 6. For m → ∞, the above strategy has consistency at most 1 + 2 e
e−1 + 2

δ em, and
robustness at most 2e(m + δ

e−1 ). In particular, given c̃, the strategy is (O(1) + 2c̃)-consistent,
and (O(1) + 2em(1 + e

(e−1)c̃ )-robust.

Next, we show a negative result on the tradeoff between the consistency and robustness
that any strategy can achieve. The proof follows an approach that we generalize in the weak
predictions setting (proof of the lower bound in Theorem 8).
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▶ Theorem 7. Any c-consistent strategy for searching with directional prediction, where
c = 1 + 2c̃, has robustness at least 1 + 2ρ∗

m−1(1 + 1
c̃−1 )). In particular, for m → ∞, its

robustness is at least 1 + 2e(m − 1)(1 + 1
c̃−1 ).

4.1 Extension to weak predictions
We consider the model in which if the predicted ray is h ∈ {0, . . . , m − 1}, then the searcher
would like to minimize its competitive ratio, assuming that the target hides in one of the rays
in the interval [h − H mod m, h + H mod m], where H ≤ m/2 is the tolerance parameter.
This captures the case that the hiding ray is expected to be in a vicinity of the predicted
ray, with respect to the tolerance of the searcher. We denote this set of rays by RH , and its
complement, by RH , and note that |RH | = 2H + 1 and |RH | = m − 2H − 1. Without loss of
generality, we may assume that RH = {0, . . . 2H}.

We prove an asymptotically tight bound on the tradeoff between the competitive ratio
and the robustness, that generalizes the error-free setting. Note that every strategy has
competitive ratio at least 1 + 2ρ∗

2H+1, since the weak prediction may incur a search in a
(2H +1)-ray star. We also obtain an interesting corollary: as the competitive ratio approaches
the optimal bound of 1 + 2ρ∗

2H+1, the robustness increases dramatically.

▶ Theorem 8. For every c̃ > ρ∗
2H−1 there exists a strategy with directional hint that has

competitive ratio 1 + 2c̃, and robustness at most O( ρ∗
2H+1

c̃−ρ∗
m−2H−1

(m − 2H)). Furthermore,
this bound is tight, i.e., every strategy of competitive ratio 1 + 2c̃ has robustness at least
Ω( ρ∗

2H+1
c̃−ρ∗

m−2H−1
(m − 2H)).

Proof. We first prove the upper bound, which generalizes the strategy we used in the context
of consistency/robustness tradeoffs. Define b = 2H+1

2H , i.e., the optimal base of a geometric
strategy for searching in a (2H + 1)-ray star, and δ > 1, to be specified later. Consider
a cyclic strategy which visits rays 0, . . . , m − 1 in this order, and which works in rounds.
Specifically, in round i, it explores ray j ∈ RH to length δb(2H+1)i+j , and every ray in RH

to length b(2H+1)i+2H . The competitive ratio of this strategy, assuming error at most H,
is maximized for targets hiding infinitesimally beyond the turn points on ray 2H in RH .
Simple calculations show that the competitive ratio is

1 + 2ρ∗
2H+1 + Θ(1

δ

b2H+1

b2H+1 − 1(m − 2H − 1)),

and note that b2H+1

b2H+1−1 is at most e/(e − 1), by the choice of b. Thus, for the competitive
ratio to be at most 1 + 2c̃, it must be that

δ ∈ Ω( m − 2H

c̃ − ρ∗
2H+1

). (9)

The robustness of the strategy is evaluated for a target hiding at distance infinitesimally
beyond the turn points of the searcher on ray m − 1. After simple calculations we obtain that
the robustness is at most O(δρ∗

2H+1(m − 2H + 1)), which from (9) is at most O( ρ∗
2H+1

c̃−ρ∗
2H+1

(m −
2H)), and which proves the upper bound.

We now proceed with the lower bound. Any strategy for the problem consists of phases,
which alternate between searching a subset of RH and a subset of RH . Namely, every strategy
X is of the form X = (xi)i≥0, in which xi, for even i, describes the aggregate explored
length of X on rays that belong exclusively in RH , and xi for i odd, describes the aggregate
explored length on rays that belong exclusively in RH . Thus, in each phase i, the searcher
incurs a cost of 2xi, for all i (except for the phase at which the target is found).
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Define Si =
∑i

j=0 x2j , and S′
i =

∑i−1
j=0 x2j+1. Then from the competitiveness of the

strategy, for all even i, and for any target tH hiding in RH that is discovered in phase 2(i+1),

1 + 2Si + S′
i

d(tH) ≤ c ⇒ c̃ ≥ Si + S′
i

d(tH) . (10)

We know that searching in a (2H + 1)-ray has competitive ratio at least 1 + 2ρ∗
2H+1. This

means that for all i, there exists a target di that is discovered in phase 2(i + 1) such that

1 + 2 sup
i

Si

di
≥ 1 + 2ρ∗

2H+1,

hence there exists some ī for which the above inequality gives 1 + 2Sī

dī
≥ 1 + 2ρ∗

2H+1 − ϵ,
where ϵ → 0, as ī is allowed to be unbounded. To simplify the exposition, we can thus assume
that ϵ = 0, and obtain

d(t̄i) ≤ Sī

ρ∗
2H+1

. (11)

Moreover, for any i, there exists a hiding position for a target t′
i in RH that is first discovered

in phase 2i + 1 it must be that

1 + 2 S′
i

d(t′
i)

≥ m − 2H − 1 ⇒ d(t′
i) = O( S′

i

m − 2H − 1), (12)

since 2S′
i describes the cost incurred by the searcher on rays in RH , right before phase 2i + 1

starts. Note also that this inequality holds for all i, unlike (11), that holds only for ī.
To bound the robustness, consider the phase 2̄i + 1, with ī as defined above, and the

target t′
ī
, again as defined above. Then we have that

Robustness ≥ 1 + 2
Sī + S′

ī

d(t′
ī
) = Ω((1 + Sī

S′
ī

)(m − 2H)), (13)

from (12). Moreover, from (10) and (11) we have that

Sī + S′
ī

S′
ī

≤ c̃

ρ∗
2H+1

⇒ Sī

S′
ī

≥
ρ∗

2H+1
c̃ − ρ∗

2H+1
,

and substituting the above inequality to (10) yields the result. ◀

5 Ray search with positional prediction

In this section we study m-ray searching in the setting in which the prediction is the position
of the target in the star environment. Namely, the prediction h is a pair (dh, uh), where dh is
the predicted distance from O and uh is the predicted ray. We first show the upper bound.

▶ Theorem 9. For any r ≥ r⋆
m, there is an r-robust strategy of consistency at most 1+2 1

br−1 .

We will now show that the strategy of Theorem 9 is Pareto-optimal. The proof of the
following theorem generalizes, but also simplifies the lower bound of [3] which applies only
to linear search (m = 2). The crux in the proof is to exploit the properties of the parameter
αY , where Y will be defined as the sequence of search lengths of a cyclic strategy defined
by a linear recurrence relation. In particular, these properties allow us to bypass technical
complications related to the study of such relations, by establishing appropriate lower bounds
(as opposed to solving the recurrence relation).
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▶ Theorem 10. For any r ≥ r⋆
m, no r-robust strategy for searching with positional prediction

has consistency better than 1 + 2 1
br−1 .

Proof sketch. Using techniques rooted in previous studies of star search, we can show that
there exists a cyclic strategy of the form

yjh
= h, for some index jh and 1 + 2

∑j
i=0 yi

yj−m+1
= r, for all j ∈ [m − 1, jh],

which is r-robust and minimizes the consistency (among all r-robust strategies). It follows
that for all j ≤ jh, the search length yj is determined by the recurrence

yj = r(yj−m+1 − yj−m), (14)

with some initial conditions y0, . . . , ym−1. We have that

d(Y, h) =
jh∑

j=0
yj = dh + 2

jh−1∑
j=0

yj = dh + 2r(yjh−m+1 − y0) +
m−1∑
j=0

yj , (15)

where we used the fact that
∑

j yj is telescoping, as seen by (14). From (15) we have
d(Y,h)

dh
= 1 + 2 ryjh−m+1

dh
+ 1

dh
(
∑m−1

j=0 yj − y0). Since Y is cyclic, and dh = yjh
, we obtain that

sup
h

d(Y, h)
dh

≥ 1 + 2 sup
jh

ryjh−m+1

yjh

= 1 + 2r sup
jh

yjh−m+1

yjh

. (16)

Define the functional Fj(Y ) = yj−m+1
yj

. This functional satisfies the conditions of Gal’s

functional theorem [26], hence supj
yj−m+1

yj
≥ αj−m+1

Y

αY
= α−m

Y . Since Y is r-robust, as
discussed in Section 2 r ≥ Cr(X) ≥ αm

Y

αY −1 , where it must be αY ≤ br, from the definition of
br. Thus, (16) gives

sup
h

d(Y, h)
dh

≥ 1 + 2 αm
Y

αY − 1α−m
Y = 1 + 2 1

αY − 1 ≥ 1 + 2 1
br − 1 .

Hence, the consistency of Y is at least 1 + 2 1
br−1 , and thus so is the consistency of X. ◀

5.1 Extension to weak predictions
Given the prediction h related to a target t, we define the prediction error as the distance
between t and h in the star, normalized by the distance d(h) of the prediction’s position
from the origin. Namely, η = |d(t)−d(h)|

d(h) . We distinguish between different types of the error:
If d and h are in the same ray, but d(t) > d(h) we call the error positive, whereas if d and h

are in the same ray, but d(t) < d(h) we call the error negative. If the error is neither positive
or negative, then h and t are in different rays.

Let Xh denote the Pareto-optimal strategy of Theorem 9. Let H > 0 denote the tolerance
parameter that is specified by the searcher, and consider the strategy Xh(1+H), i.e., the
strategy that pretends that the prediction is at the same ray as h, but at distance d(h)(1+H)
from O. The following result is a corollary of Theorem 9.
▶ Corollary 11. For any H > 0 and r ≥ r∗

m, strategy Xh(1+H) is r-robust and has competitive
ratio at most min{1 + 2 1+H

br−1 , r}, if the error is either positive or negative, and at most H.
Otherwise, its competitive ratio is at most r.

Last, we can show that the above tradeoffs are tight.
▶ Theorem 12. For any r-robust strategy with positional prediction, there exists q > 0 such
that its competitive ratio is no better than min{1 + 2 1+q

br−1 , r} for positive or negative error at
most q. Otherwise, its competitive ratio is at least r.
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